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Abstract

We show that the response to rotation angle θ in a rotation-based pretext task in self-
supervised pretraining (SSP) via contrastive learning interacts in systematic, dataset-
dependent, and architecture-dependent ways that produce unique “signature” curves of
performance versus θ. We perform a comprehensive 16× 16 experiment, pre-training eight
encoder architectures on 16 diverse image datasets using both SimCLR and MoCo v2, with
θ swept from 0◦ to 360◦ in 0.1◦ increments. Each of the resulting 256 accuracy-versus-θ
plots exhibits a distinct periodic pattern. A simple classifier trained on these curves can
predict the originating dataset and encoder–method pair with high accuracy, confirming
patterns specific to both datasets and architectures.

In a preliminary experiment on three medical imaging datasets (BraTS, Lung Mask,
Kvasir-SEG), we measure Dice scores between ground-truth masks and saliency maps from
ResNet-50, ConvNeXt-Tiny, and ViT-B/16 encoders pre-trained at fixed θ, observing clear
dataset-specific oscillations. We report a negative result: Histogram-of-Gradients (HoG)
features do not explain the phenomenon. We find a fascinating and previously undocu-
mented “fingerprinting” effect linking augmentation choices to data and architecture and
a negative finding about a mechanistic explanation for it.

Keywords: self-supervised pretraining, contrastive learning, rotation augmentation, peri-
odicity, representation learning, medical imaging, learning shortcuts

1. Introduction

Self-supervised pre-training (SSP) increases a network’s ability to learn low-level features,
which is especially valuable when training data are scarce. In contrastive pre-training,
the model is taught to tell apart different transforms of the same input — for example,
distinguishing an original image from its version rotated by an angle θ versus unrelated
image pairs. We show that the choice of rotation angle θ interacts in surprising ways not
only with the characteristics of the dataset but also with the encoder architecture during
contrastive training. We also demonstrate that a classifier trained on the curves of encoder
performance versus rotation angle θ can accurately predict both the underlying dataset
and the encoder architecture, indicating that each architecture and dataset have their own
“signature” periodic pattern.

We conducted three complementary experiments to investigate how fixed rotation angles
θ for image augmentation (without masking, shifting, or cropping) affect contrastive learning
performance using MoCo and SimCLR.
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We investigate the response pattern to different datasets and architectures by select-
ing 16 datasets (Table 2), 8 encoder architectures (Table 1), and two contrastive learning
method (SimCLR and MoCo v2), training each encoder–dataset pair using both MoCo and
SimCLR with rotation angles θ from 0◦ to 360◦ in 0.1◦ increments. We then evaluated each
pre-trained encoder on a binary classification task, yielding 16 × 16 = 256 classification
accuracy-versus-θ curves (Fig. 1 the full results). This experiment (“16× 16 experiment”)
is described in Section 2.1.

Next, we conducted a prediction experiment to test whether the plots from the 16 ×
16 experiment contain distinctive patterns that let a classifier identify their originating
dataset and encoder–method pair. As shown in Fig. 2, classification accuracy was very
high, indicating that each setting indeed has unique identifiable features. This experiment
is described in Section 2.2.

In a preliminary experiment, we focus on three medical datasets — BraTS Menze et al.
(2014), Lung Mask lun (2020), and Kvasir-SEG Jha et al. (2020) — and trained ResNet-50,
ConvNeXt-Tiny, and ViT-B/16 with MoCo under fixed θ augmentations. We measured
performance via the Dice score between predicted and ground-truth segmentations and
observed clear periodic oscillations (Fig. 3). This experiment (“segmentation experiment”)
is described in Section 2.3.

Finally, we test a shortcut hypothesis: that rotation-dependent reliance on HoG-like
features Lowe (1999); Dalal and Triggs (2005) produces the observed patterns. We train
an SVM on HoG descriptors to classify rotated vs. unrotated images and compare model
saliency with ground-truth masks (Section 2.4). The SVM does not reproduce the charac-
teristic periodicities (Fig. 3), so our preliminary results do not support this explanation; see
Section 2.4 for details.

2. Experiments

2.1. 16×16 Experiment

This experiment quantifies how a fixed pretext rotation angle θ affects downstream clas-
sification accuracy across datasets, architectures, and contrastive methods. We evaluate
16 datasets (Section E) and 8 encoder architectures (Section D) with SimCLR and MoCo
v2, using their default hyperparameters and ImageNet-pretrained weights for all encoders.
The architectures and datasets, chosen to span diverse image domains, are summarized in
Tables 1 and 2.

For each encoder–dataset–method triple, we run contrastive pretraining at 3,600 an-
gles, θ ∈ {0, 0.1, . . . , 359.9}◦, resetting encoder weights before every run. Positives are
(x, rotateθ(x)); no other augmentations are used.

After contrastive pre-training, we freeze the encoder and train a binary classifier on
concatenated features from image pairs. Positives use (f(x), f(rotateθ(x))); negatives use
(f(x), f(x′)), where x′ denotes a different image randomly sampled from the dataset. The
classifier is a six-layer ReLUMLP with a final sigmoid, trained with binary cross-entropy and
identical hyperparameters for all 256 = 8× 16× 2 encoder–dataset–method combinations.
We construct a balanced dataset by encoding each image and its rotated version to form
positives, and by pairing each x with a randomly sampled x′ to form negatives.
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Figure 1: Each row is a dataset; each column is a contrastive-method/encoder combo. Each
subplot shows accuracy vs. rotation angle (0–360◦). Note the distinct periodic
patterns unique to each dataset-architecture pair.

Results (Fig. 1) show dataset- and architecture-dependent periodicity; implementation
details are in Section B.

2.2. Prediction Experiment

The goal of this experiment is to train a classifier that, given an accuracy-versus-θ curve from
the 16×16 experiment, can identify its originating dataset (row) and architecture (column)

3



Yan Saranchuk Guerzhoy

with high accuracy, for a held-out curve. Strong performance indicates that each dataset
and architecture produces a distinct, recognizable pattern. We find that it is possible to
predict with high accuracy which architecture and dataset held-out signature curves were
generated from. The results are summarized in Fig. 2. More details on the prediction
experiment are given in Section C.

2.3. Segmentation Experiment

This experiment revisits the effect of a fixed rotation angle θ on downstream performance
using a standard U-Net segmentation pipeline (rather than saliency maps). We evaluate
three medical datasets—BraTS Menze et al. (2014), Lung Mask Image Dataset lun (2020),
and Kvasir-SEG Jha et al. (2020)—and three encoders: ResNet-50, ConvNeXt-Tiny, and
ViT-B/16. For each encoder and each angle θ ∈ {0◦, 1◦, . . . , 360◦}, we run MoCo v2 con-
trastive pretraining with fixed-angle positives: a positive pair is the original image and the
same image rotated by θ (no other augmentations). For each (dataset, encoder, θ) triple,
we instantiate a U-Net in which the encoder path is initialized from the corresponding
MoCo(θ)-pretrained backbone (ResNet-50 / ConvNeXt-Tiny / ViT-B/16). The U-Net de-
coder is a conventional upsampling stack with skip connections from the encoder stages.
We then train the U-Net supervised on the dataset’s ground-truth masks, fine-tuning end-
to-end with a soft dice loss function, Adam optimizer, and early stopping on a validation
split. For each fixed θ, we measure the mean Dice score on a held-out set and record this as
one point on the Dice-vs-θ curve. Repeating this over θ = 0◦ . . . 360◦ yields one curve per
dataset–encoder pair. We summarize these results in a 3× 3 grid (rows: datasets; columns:
encoders), which exhibits clear, dataset-specific oscillations (Fig. 3).

2.4. Shortcut Hypothesis Experiment

We hypothesized that MoCo may use HoG-like features as “shortcuts.” To test this, we
extracted HoG descriptors from each image both before and after applying a rotation of
θ. A support vector machine (SVM) was then trained (using cross-validation to select
its hyperparameters) to distinguish rotated from unrotated HoG feature vectors at each
θ. We plotted the SVM’s classification accuracy as a function of the rotation angle. A
close correspondence between the SVM’s accuracy curve and MoCo’s orientation-dependent
performance would support the idea that MoCo similarly relies on orientation-specific HoG-
like cues. Fig. 3 plots SVM accuracy against rotation angle θ for all three datasets. We
compare these SVM accuracy curves to the MoCo model’s Dice score plots (also in Fig. 3).
They do not match very well. More details are in Section F.

3. Conclusions

Encoder performance under rotation-based self-supervised pretraining varies with angle
θ in a periodic, non-monotonic manner, with patterns that depend on both dataset and
architecture. Each dataset–encoder pair shows a distinctive signature in our 16×16 grid. We
did not find evidence that edge-based shortcuts explain the phenomenon, and a mechanistic
explanation remains an open question.
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Appendix A. Background: Self-Supervised Pretraining

Self-supervised pre-training (SSP) lets the model create its own training signals from unla-
beled data, rather than relying on human labels Rani et al. (2023); Chowdhury et al. (2021).
SSP usually involves two stages:

• Pretext task: The model is trained on an artificial task (e.g., predicting image
rotations or solving a jigsaw puzzle) to learn useful features.

• Downstream task: The pre-trained model is fine-tuned on the actual task of interest
(e.g., classification or segmentation) Shah and Jha.

Pretext tasks generate pseudo-labels that force the network to discover patterns like edges,
colors, and shapes in the data. Common pretext examples include image recoloring, rotation
prediction, and jigsaw solving Xu (2021). Once the model learns these basic representations,
it transfers them to help solve the downstream task.

Contrastive learning trains a model by bringing similar examples closer in feature space
and pushing dissimilar ones apart. Two leading frameworks are SimCLR Chen et al. (2020b)
and Momentum Contrast (MoCo) He et al. (2020). Both build on the idea that different
augmentations of the same image share the same semantic content.

SimCLR is a simple, end-to-end approach that:

• Creates a positive pair by applying two random augmentations to the same image.
In this study, positive pairs were created by applying a constant rotation angle θ to
every image in the dataset.

• Treats every other image in the batch as a negative example.

• Uses the NT-Xent loss to pull positive pairs together and push negatives apart, all
within each batch.

MoCo extends this idea by:

• Maintaining a dynamic queue (dictionary) of encoded “keys” from previous batches
as extra negatives.

• Using a momentum-updated encoder for the keys, which stabilizes training when batch
sizes are smaller.

Both methods learn high-quality image representations that transfer well to downstream
tasks by leveraging unlabeled data Rani et al. (2023); Xu (2021); Jaiswal et al. (2021); Huang
et al. (2023); Chen et al. (2020a).
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Appendix B. Details: 16× 16 experiment

All classifiers were trained using identical protocols and hyperparameter settings:

• Optimizer: SGD with a learning rate of 0.015.

• Batch size: 64.

• Number of epochs: 20.

• Data split: 80% for classifier training and 20% for evaluation.

After training, we evaluate each classifier on the test set to obtain its classification accuracy.
Each accuracy value represents a single point on an accuracy-versus-θ curve, and since θ
ranges from 0◦ to 360◦ in 0.1◦ increments, each of the 256 curves contains 3600 data points.
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Figure 2: 2×2 violin plots of prediction accuracy: rows—row (top) vs. column (bottom)
prediction; columns—cosine (left) vs. L2 (right). Each violin shows the distribu-
tion; red numbers mark means.

Appendix C. Details: Prediction experiment

We organize all R = 16 datasets and C = 16 encoder–method combinations into a tensor

X ∈ RR×C×T (1)

where T = 3600 is the number of measurements at 0.1◦ increments over a full 0◦–360◦

rotation. Each slice Xi,j,: is the curve for dataset i and encoder–method j.
For row prediction, we split each row’s 16 curves into a training set of columns 1–10 and

a test set of columns 11–16:

Ctrain = {1, . . . , 10} Ctest = {11, . . . , 16} (2)

We then learn a weight vector a ∈ RR for each row r by maximizing intra-row similarity
on its training curves:

1. Initialization & optimization. Set a = 1. Use the Adam optimizer (learning rate
0.01) for 200 epochs.

2. Mini-batch sampling. In each epoch, sample 20 column indices j (with replace-
ment) from Ctrain.
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3. Similarity & logits. For each sampled j, let x = Xr,j,:. Compute

Si,k = sim
(
x, Xi,k,:

)
i ∈ {0, . . . , R− 1}, k ∈ Ctrain. (3)

Then form per-row logits

si = ai ×


1

|Ctrain| − 1

∑
k∈Ctrain
k ̸=j

Sr,k, i = r

1

|Ctrain|
∑

k∈Ctrain

Si,k, i ̸= r

(4)

Apply cross-entropy loss against the one-hot label for row r and backpropagate to
update a.

4. Evaluation on held-out columns. After convergence, we assess performance on
the test columns as follows:

(a) Sample 100 indices j from Ctest with replacement.

(b) For each sampled j, compute

Si,k = sim
(
Xr,j,:, Xi,k,:

)
, i ∈ {1, . . . , 16}, k ∈ Ctest. (5)

(c) For each i, compute the mean similarity across the test columns by applying (4)
with Ctest in place of Ctrain.

(d) Multiply by the learned weights and predict:

si = ai S̄i, r̂ = argmax
i

si. (6)

(e) The row-classification accuracy for dataset r is the fraction of trials where r̂ = r.

An analogous procedure applies when predicting encoder–method combinations by swap-
ping the roles of rows and columns.
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Appendix D. Architectures

Table 1: Summary of Encoder Architectures
Encoder Architecture Type # Params
ResNet-18He et al. (2016) CNN with residual connections 11.7M
ConvNeXt-TinyLiu et al.
(2022)

Modernized CNN (inspired by
transformers)

29M

ViT-B/16Dosovitskiy et al.
(2020)

Vision Transformer (Transformer-based) 86M

EfficientNet-B0Tan and Le
(2019)

CNN with compound scaling 5.3M

RegNetY-
400MFRadosavovic et al.
(2020)

CNN (simple design space-based) 2.7M

WideResNet-50-
2Zagoruyko and
Komodakis (2016)

Wider variant of ResNet-50 (CNN) 68M

MobileNetV2Sandler et al.
(2018)

Depthwise separable CNN 3.4M

Swin-TinyLiu et al. (2021) Hierarchical Vision Transformer 29M
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Appendix E. Datasets

Table 2: Summary of Datasets

Dataset #
Examples

Image
Dimensions

#
Channels

Domain

CIFAR-10Krizhevsky
(2009)

60,000 32× 32 3 Natural objects

MNISTLeCun et al.
(1998)

70,000 28× 28 1 Handwritten digits

Fashion-MNISTXiao
et al. (2017)

70,000 28× 28 1 Clothing items

Tiny ImageNetLe
et al. (2015)

100,000 64× 64 3 Natural images

BraTSMenze et al.
(2014)

∼ 300 (cases) ∼ 240× 240 (slice) 4 Medical (MRI)

Lung Mask Image
Datasetlun (2020)

∼ 1,000 ∼ 512× 512 1 Medical (X-ray)

Kvasir-SEGJha et al.
(2020)

∼ 1,000 Variable (e.g.,
∼ 512× 512)

3 Medical (Endoscopy)

Stanford DogsKhosla
et al. (2011)

20,580 Variable (resized to
∼ 224× 224)

3 Natural (Animals)

iNaturalistVan Horn
et al. (2018)

≥ 100,000 Variable (resized to
∼ 224× 224)

3 Natural (Biodiversity)

PlantVillageMohanty
et al. (2016)

∼ 54,000 Variable (resized to
∼ 256× 256)

3 Agricultural

ChestX-ray14Wang
et al. (2017)

112,120 ∼ 1024× 1024
(often resized)

1 Medical (X-ray)

Street View House
NumbersNetzer et al.
(2011)

∼ 100,000 32× 32 3 Natural (Scene text)

EuroSATHelber
et al. (2019)

27,000 64× 64 3 Remote sensing

Caltech-101Fei-Fei
et al. (2004)

9,146 Variable (e.g.,
∼ 227× 227)

3 Natural (Objects)

Flowers-102Nilsback
and Zisserman (2008)

8,189 Variable (e.g.,
∼ 224× 224)

3 Natural (Floral)

Food-101Bossard
et al. (2014)

101,000 Variable (e.g.,
∼ 224× 224)

3 Natural (Food)
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Appendix F. Shortcut hypothesis details
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Figure 3: Average correspondence (Dice score) between ground-truth segmentations and
saliency maps (left three columns) and SVM classification accuracy for original
vs. rotated images (right column), each plotted against rotation angle (0◦−360◦).
Rows correspond to datasets (BraTS, Kvasir, Lung); left columns are MoCo en-
coders (ConvNeXt-Tiny, ViT-B/16, ResNet50). Dice panels report performance
vs. the rotation angle used during pre-training—higher is better—and reveal
dataset-specific periodic patterns.

In Fig. 3, angles of 45◦, 90◦, 135◦, . . . consistently coincide with the local minima and
maxima in the correspondence between saliency maps and the segmentation ground truth.
We hypothesize that, when good features are learned, the saliency maps correspond to the
segmentation ground truth better. We hypothesize that worse features are learned when the
network can take “shortcuts” in figuring out the angle θ. For example, the network could
rely on Histogram-of-Gradients (HoG) Lowe (1999)-like features. (Although those features
are famously good, they are not specific to our dataset; we do not expect that learning HoG
features would be a part of a successful fine-tuning of a network that was already pretrained
on ImageNet.)

To explore this hypothesis, we train SVMs to classify the HoG features of images rotated
by θ vs unrotated images. We compute and concatenate HoG descriptors for every 64× 64
cell. We use cross-validation to select the best parameters for a Guassian-kernel SVM.

The results are in Fig. 3. We observe that the HoG classification accuracy is low for θ
close to 0◦ (and 360◦), reflecting the increased difficulty of the task.
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For the Kvasir-SEG dataset, we observe minima in the accuracy of the HoG classifier
that correspond to minima in the correspondence between the saliency map and the ground
truth segmentation. This seems to be evidence against our theory: when it is more difficult
to classify based on HoGs and there are no shortcuts (at least via HoGs), it seems that the
correspondence between the saliency map and the ground truth segmentation is lower.
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Appendix G. Segmentation experiments: illustrations

Figure 4: Comparison of original images from BraTS2020 dataset, true segmentation masks,
and predicted segmentation. Top row: Original orientation. Bottom row: Ro-
tated by 95 ◦.
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