
Looks Too Good To Be True:
An Information-Theoretic Analysis of Hallucinations

in Generative Restoration Models

Regev Cohen Idan Kligvasser Ehud Rivlin Daniel Freedman

Verily AI (Google Life Sciences), Israel
regevcohen@google.com

Abstract

The pursuit of high perceptual quality in image restoration has driven the devel-
opment of revolutionary generative models, capable of producing results often
visually indistinguishable from real data. However, as their perceptual quality
continues to improve, these models also exhibit a growing tendency to generate
hallucinations – realistic-looking details that do not exist in the ground truth im-
ages. Hallucinations in these models create uncertainty about their reliability,
raising major concerns about their practical application. This paper investigates
this phenomenon through the lens of information theory, revealing a fundamental
tradeoff between uncertainty and perception. We rigorously analyze the relation-
ship between these two factors, proving that the global minimal uncertainty in
generative models grows in tandem with perception. In particular, we define the
inherent uncertainty of the restoration problem and show that attaining perfect
perceptual quality entails at least twice this uncertainty. Additionally, we estab-
lish a relation between distortion, uncertainty and perception, through which we
prove the aforementioned uncertainly-perception tradeoff induces the well-known
perception-distortion tradeoff. We demonstrate our theoretical findings through
experiments with super-resolution and inpainting algorithms. This work uncovers
fundamental limitations of generative models in achieving both high perceptual
quality and reliable predictions for image restoration. Thus, we aim to raise aware-
ness among practitioners about this inherent tradeoff, empowering them to make
informed decisions and potentially prioritize safety over perceptual performance.
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Figure 1: Illustration of Theorem 3. In restoration tasks, the minimal attainable uncertainty is lower
bounded by a function that begins at the inherent uncertainty UInherent of the problem (Definition 2)
and graudally increases up to twice this value as the recovery approaches perfect perceptual quality.
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Better Perception

Higher Uncertainty (Hallucinations)

Figure 2: Image inpainting results. Algorithms are ordered from low to high perception (left to right).
Note the corresponding increased hallucinations and distortion. See Section 5 for details.

1 Introduction

Restoration tasks and inverse problems impact many scientific and engineering disciplines, as well
as healthcare, education, communication and art. Generative artificial intelligence [80, 38, 10] has
transformed the field of inverse problems due to its unprecedented ability to infer missing information
and restore corrupted data. In the realm of image restoration, the quest for high perceptual quality has
led to a new generation of generative models, capable of producing outputs of remarkable realism,
virtually indistinguishable from true images.

While powerful, growing empirical evidence indicates that generative models are susceptible to
hallucinations [30], characterized by the generation of seemingly authentic content that deviates
from the original input data, hindering applications where faithfulness is crucial. The root cause of
hallucination lies in the ill-posed nature of restoration problems, where multiple possible solutions
can explain the observed measurements, leading to uncertainty in the estimation process.

Concerns surrounding hallucinations have prompted the development of uncertainty quantification
methods, designed to evaluate the reliability of generated outputs. These approaches offer crucial
insights into the model’s confidence in its predictions, empowering users to assess potential deviations
from the original data and make informed decisions. Despite this progress, the relationship between
achieving high perceptual quality and the extent of uncertainty remains an understudied area.

This paper establishes the theoretical relationship between uncertainty and perception, demonstrating
through rigorous analysis that the global minimal uncertainty in generative models increases with
the level of desired perceptual quality (see illustration in Figure 1). Leveraging information theory,
we quantify uncertainty using the entropy of the recovery error [19], while we measure perceptual
quality via conditional divergence between the distributions of the true and recovered images [58].
Our main contribution are as follows:

1. We introduce a definition for the inherent uncertainty UInherent of an inverse problem, and formulate
the uncertainty-perception (UP) function, seeking the minimal attainable uncertainty for a given
perceptual index. We prove the UP function is globally lower-bounded by UInherent (Theorem 1).

2. We prove a fundamental trade-off between uncertainty and perception under any underlying data
distribution, restoration problem or model (Theorem 1). Specifically, the entropy power of the
recovery error exhibits a lower bound inversely related to the Rényi divergence between the true
and recovered image distributions (Theorem 3). This shows that perfect perceptual quality requires
at least twice the inherent uncertainty UInherent.

3. We establish a relationship between uncertainty and mean squared error (MSE) distortion, demon-
strating that the uncertainty-perception trade-off induces the well-known distortion-perception
trade-off [14] (Theorem 4).

4. We empirically validate all theoretical findings through experiments on image super-resolution
and inpainting (Section 5), covering a broad spectrum of recovery algorithms, diverse metrics and
data distributions. Our experimental results for image inpainting are illustrated in Figure 2.
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We aim to provide practitioners with a deeper understanding of the tradeoff between uncertainty and
perceptual quality, allowing them to strategically navigate this balance and prioritize safety when
deploying generative models in real-world, sensitive applications.

2 Related Work

Recent work in image restoration has made significant strides in both perceptual quality assessment
and uncertainty quantification, largely independently. Below, we outline the main trends in research
on these topics, laying the foundation for our framework.

Perception Quantification Perceptual quality in restoration tasks encompasses how humans perceive
the output, considering visual fidelity, similarity to the original, and absence of artifacts. While
traditional metrics like PSNR and SSIM [82] capture basic similarity, they miss finer details and
higher-level structures. Learned metrics like LPIPS [87], VGG-loss [72], and DISTS [22] offer
improvements but still operate on pixel or patch level, potentially overlooking holistic aspects.
Recently, researchers have leveraged image-level embeddings from large vision models like DINO
[17] and CLIP [62] to capture high-level similarity. Further advancements include HyperIQA [74] that
leverages self-adaptive hyper networks to blindly assess image quality in the wild, while LIQE [88]
and QAlign [84] utilize large language models to capture high-level semantic similarity and alignment
between the restored and original images. Here, we follow previous works [58, 14, 31] and adopt a
mathematical notion of perceptual quality defined as the divergence between probability densities.

Uncertainty Quantification Uncertainty quantification techniques can be broadly categorized into
two main paradigms: Bayesian estimation and frequentist approaches. The Bayesian paradigm defines
uncertainty by assuming a distribution over the model parameters and/or activation functions [1].
The most prevalent approach is Bayesian neural networks [52, 78, 34], which are stochastic models
trained using Bayesian inference. To improve efficiency, approximation methods have been developed,
including Monte Carlo dropout [24, 25], stochastic gradient Markov chain Monte Carlo [67, 18],
Laplacian approximations [63] and variational inference [16, 51, 60]. Alternative Bayesian techniques
encompass deep Gaussian processes [20], deep ensembles [7, 33], and deep Bayesian active learning
[26]. In contrast to Bayesian methods, frequentist approaches operate assume fixed model parameters
with no underlying distribution. Examples of such distribution-free techniques are model ensembles
[44, 59], bootstrap [36, 2], interval regression [59, 37, 83] and quantile regression [27, 64].

An emerging approach in recent years is conformal prediction [3, 70], which leverages a labeled
calibration dataset to convert point estimates into prediction regions. Conformal methods require
no retraining, computationally efficient, and provide coverage guarantees in finite samples [49].
These works include conformalized quantile regression [64, 69, 6], conformal risk control [5, 8, 4],
and semantic uncertainty intervals for generative adversarial networks [68]. The authors of [42]
introduce the notion of conformal prediction masks, interpretable image masks with rigorous statistical
guarantees for image restoration, highlighting regions of high uncertainty in the recovered images.
Please see [75] for an extensive survey of distribution-free conformal prediction methods. A recent
approach [11] introduces a principal uncertainty quantification method for image restoration that
considers spatial relationships within the image to derive uncertainty intervals that are guaranteed
to include the true unseen image with a user-defined confidence probabilities. While the above
studies offer a variety of approaches for quantifying uncertainty, a rigours analysis of the relationship
between uncertainty and perception remains underexplored in the context of image restoration.

The Distortion-Perception Tradeoff The most relevant studies to our research are the work on the
distortion-uncertainty tradeoff [14] and its follow-ups [23, 15, 13]. A key finding in [14] establishes
a convex tradeoff between perceptual quality and distortion in image restoration, applicable to any
distortion measure and distribution. Moreover, perfect perceptual quality comes at the expense of no
more than 3dB in PSNR. The work in [23] extends this, providing closed-form expressions for the
tradeoff when MSE distortion and Wasserstein-2 distance are considered as distortion and perception
measures respectively. In [58], it is shown that the Lipschitz constant of any deterministic estimator
grows to infinity as it approaches perfect perception.

This work uniquely emphasizes uncertainty in image restoration, distinguishing it from distortion.
While distortion measures how close a restored image is to the original, uncertainty quantifies the
confidence in the restoration itself. This distinction is crucial for decision-making, as high uncertainty
can hinder informed choices, complementing existing research on perceptual quality and robustness.
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3 Problem Formulation

We adopt a Bayesian perspective to address inverse problems, wherein we seek to recover a random
vector X ∈ Rd from its observations, represented by another random vector Y = M(X) ∈ Rd′ .
Here M : Rd → Rd′ is a non-invertible degradation function, implying X cannot be perfectly
recovered from Y . Formally:
Definition 1. A degradation functionM said to be invariable if, the conditional probability pX|Y (·|y)
is a Dirac delta function for almost every y in the support of the distribution pY of Y .

The restoration process involves constructing a estimator X̂ ∈ Rd to estimate X from Y , inducing
conditional probability pX̂|Y . The estimation process forms a Markov chain X → Y → X̂ , implying

that X and X̂ are statistically independent given Y .

In this paper, we analyze estimators X̂ with respect to two performance criteria: perception and
uncertainty. To assess perceptual quality, we follow a theoretical approach, similar to previous works
[85, 14], and measure perception using conditional divergence1 between X and X̂ defined as

Dv(X, X̂
∣∣Y ) , Ey∼pY

[
Dv

(
pX|Y=y, pX̂|Y=y

)]
, (1)

where Dv stands for general divergence function. When an estimator attains a low value of the metric
above, we say it exhibits high perceptual quality. When it comes to uncertainty, there are diverse
practical methods to quantify it [28, 1]. However, for our analysis, we aim to identify a fundamental
understanding of uncertainty. Therefore, we adopt the concept of entropy power from information
theory, which assesses the statistical spread of a random variable. For the definition of entropy power
and other relevant background, we refer the reader to Appendix B. Utilizing entropy power, we
formally define the inherent uncertainty intrinsic to the restoration problem as follows
Definition 2. The inherent uncertainty in estimating X from Y is defined as:

UInherent , N(X|Y ) =
1

2πe
e

2
dh(X|Y ),

where h(X|Y ) denotes the entropy of X given Y .

The inherent uncertainty quantifies the information irrevocably lost during observation, acting as a
fundamental limit on the recovery of X from Y , regardless of the estimation method. Notably, when
the degradation process is invertible, this inherent uncertainty becomes zero UInherent = 0, reflecting
the possibility of perfect recovery of X with complete confidence.

We now turn our attention to the main focus of this paper, the uncertainty-perception (UP) function:

U(P ) , min
pX̂|Y

{
N(X̂ −X|Y ) : Dv(X, X̂

∣∣Y ) ≤ P
}
. (2)

In essence, U(P ) represents the minimum uncertainty achievable by an estimator with perception
quality of at least P , given the side information within the observation Y . In contrast to the
perception-distortion function [14], the above objective prioritizes the information content of error
signals over their mere energy, and its minimization promotes concentrated errors for robust and
reliable predictions. The following example offers intuition into the typical behavior of this function.
Example 1. Consider Y = X + W where X ∼ N (0, 1) and W ∼ N (0, σ2) are independent.
Let the perception measure be the symmetric Kullback–Leibler (KL) divergence DSKL and assume
stochastic estimators of the form X̂ = E [X|Y ] + Z where Z ∼ N (0, σ2

z) is independent of Y . As
derived in Appendix C, the UP function admits a closed form expression in this case, given by

U(P ) = N(X|Y )
[
1 +

(
P + 1−

√
(P + 1)2 − 1

)2 ]
, where N(X|Y ) = σ2/(1 + σ2).

The above result, illustrated in Appendix C, demonstrates the minimal attainable uncertainty in-
creases as the perception quality improves. Moreover, The above example suggests a structure
for uncertainty-perception function U(P ), which fundamentally relies on the inherent uncertainty

1See Appendix A for a brief explanation of how conditional divergence relates to human perception.
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N(X|Y ). Remarkably, the following section shows that this dependency generalizes beyond the spe-
cific example presented here, where its particular form is determined by the underlying distributions,
along with the specific perception measure employed.

Remark One may consider the following alternative formulation

Ũ(P ) , min
pX̂|Y

{
N(X̂ −X) : Dv(X, X̂

∣∣Y ) ≤ P
}
. (3)

The alternative objective quantifies uncertainty as the entropy power of the error, independent of the
side information Y . While potentially insightful, this approach may overestimate uncertainty since
N(X̂−X|Y ) ≤ N(X̂−X) where equality holds if and only if the error E = X̂−X is independent
of Y . Although further investigation is warranted, we hypothesize that the behavior of function (3)
mirrors that of the UP function (2), which we examine in detail in the following section.

4 The Uncertainty-Perception Tradeoff

Thus far, we have formulated the uncertainty-perception function and elucidated its underlying
rationale. We now proceed to derive its key properties, including a detailed analysis for the case
where Rényi divergence serves as the measure of perceptual quality. Subsequently, we establish a
direct link between the UP function and the well-known distortion-perception tradeoff. Finally, we
demonstrate our theoretical findings through experiments on image super-resolution.

4.1 The Uncertainty-Perception Plane

The following theorem establishes general properties of the uncertainty-perception function, U(P ),
irrespective of the specific distributions and divergence measures chosen.

Theorem 1. The uncertainty-perception function U(P ) displays the following properties

1. Quasi-linearity (monotonically non-increasing and continuous):

min
(
U(P1), U(P2)

)
≤ U

(
λP1 + (1− λ)P2

)
≤ max

(
U(P1), U(P2)

)
, ∀λ ∈ [0, 1]

2. Boundlessness:
N(X|Y ) ≤ U(P ) ≤ 2N(XG|Y ),

where XG is a zero-mean Gaussian random variable with covariance identical to X . The inherent
uncertainty is upper bounded by N(XG|Y ), which depends on the deviation of X from Gaussianity.

The theorem establishes a fundamental tradeoff between perceptual quality and uncertainty in image
restoration, regardless of the specific divergence measure, data distributions, or restoration model
employed. This tradeoff is fundamentally linked to the inherent uncertainty N(X|Y ) arising from
the information loss during the observation process. Notably, the upper bound can be expressed as

N(XG|Y ) = N(X|Y )e
2
dDKL(X,XG|Y ). (4)

This shows that as X approaches Gaussianity, N(X|Y ) approaches N(XG|Y ). However, concur-
rently, it implies in general higher values of N(X|Y ) due to Lemma 1 of Appendix B. This finding
yields a surprising insight: for multivariate Gaussian distributions, perfect perceptual quality comes
at the expense of exactly twice the inherent uncertainty of the problem.

Next, we show that for a fixed perceptual index P , the optimal algorithms lie on the boundary of the
constraint set. This facilitates the optimization, as it restricts the search space to the boundary points.

Theorem 2. Assume Dv(X, X̂
∣∣Y ) is convex in its second argument. Then, for any P ≥ 0, the

minimum is attained on the boundary where Dv(X, X̂
∣∣Y ) = P .

Note that the assumption of the convexity of Dv in its second argument is not a restrictive condition.
In fact, most widely-used divergence functions, notably all f -divergences (such as KL divergence,
total variation distance, Hellinger distance, and Chi-square divergence), exhibit this property.
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While the above theorems describe important characteristics of the uncertainty-perception function,
additional assumptions are needed to gain deeper insights. Therefore, we now focus on Rényi
divergence as our perception measure. Rényi divergence is a versatile family of divergence functions
parameterized by an order 0 ≤ r, encompassing the well-known KL divergence as a special case
when r = 1. This divergence plays a critical role in in analyzing Bayesian estimators and numerous
information theory calculations [79]. Importantly, it is also closely related to other distance metrics
used in probability and statistics, such as the Wasserstein and Hellinger distances. Focusing on the
case where r = 1/2, we arrive at:

U(P ) = min
pX̂|Y

{
N(X̂ −X|Y ) : D1/2(X, X̂

∣∣Y ) ≤ P
}
. (5)

While we set r = 1/2 to facilitate our derivations, it is important to note that all orders r ∈ (0, 1)
are equivalent (see Appendix B). Consequently, given this equivalence and the close relationship
between Rényi divergence and other metrics, analyzing the specific formulation provided by (5) may
yield valuable insights applicable to a wide range of divergence measures. The following theorem
provides lower and upper bounds for the UP function.
Theorem 3. The uncertainty-perception function is confined to the following region

η(P ) ·N(X|Y ) ≤ U(P ) ≤ η(P ) ·N(XG|Y )

where 1 ≤ η(P ) ≤ 2 is a convex function w.r.t the perception index and is given by

η(P ) =
(

2e
2P
d −

√
(2e

2P
d − 1)2 − 1

)
.

Noteworthy, Theorem 3 holds true regardless of the underlying distributions of X and Y , thereby
providing a universal characterization of the UP function in terms of perception. Furthermore, as
depicted in Figure 3, Theorem 3 gives rise to the uncertainty-perception plane, which divides the
space into three distinct regions:

1. Impossible region, where no estimator can reach.
2. Optimal region, encompassing all estimators that are optimal according to (5).
3. Suboptimal region of estimators which exhibit overly high uncertainty.

The existence of an impossible region highlights the uncertainty-perception tradeoff, proving no
estimator can achieve both high perception and low uncertainty simultaneously. This finding under-
scores the importance of practitioners being aware of this tradeoff, enabling them to make informed
decisions when prioritizing between perceptual quality and uncertainty in their applications. The
uncertainty-perception plane could serve as a valuable framework for evaluating estimator perfor-
mance in this context. While not a comprehensive metric, it may offer insights into areas where
improvements can be made, guiding practitioners towards estimators that strike a more desirable
balance between perception and uncertainty. For certain estimators residing in the suboptimal region,
it may be possible to achieve lower uncertainty without sacrificing perceptual quality. Thus, we
believe that our proposed uncertainty-perception plane can serve as a valuable starting point for
further research and practical applications, ultimately leading to the development of safer and reliable
image restoration algorithms.

Next, we analyze how the dimensionality of the underlying data affects the uncertainty-perception
tradeoff. To achieve this, we extend the function η(P ) to include a dimension parameter d, denoted
as η(P ; d). As shown in Fig. 4, η(P ; d) exhibits a rapid incline as perception improves and it attain
higher values in higher dimensions. This observation suggests that in high-dimensional settings, the
uncertainty-perception tradeoff becomes more severe, implying that any marginal improvement in
perception for an algorithm is accompanied by a dramatic increase in uncertainty.

Finally, we conjecture that the general form of the tradeoff, given by the inequality in Theorem 3,
holds for different divergence measures, with the specific form of η(P ) capturing the nuances of
each chosen measure. For instance, considering the Hellinger distance as our perception measure, we
obtain the same inequality as in Theorem 3 but with η(P ) defined for 0 ≤ P ≤ 1 as2

ηHellinger(P ) =
2

(1− P )4/d
−

√(
2

(1− P )4/d
− 1

)2

− 1. (6)

2The case of P = 1 is obtained by taking the limit lim
P→1

η(P ) = 1.
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Figure 3: The uncertainty-perception plane (Theorem 3). The impossible region demonstrates the
inherent tradeoff between perception and uncertainty, while other regions may guide practitioners
toward estimators that better balance the two factors, highlighting potential areas for improvement.
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Figure 4: Impact of dimensionality, as revealed in Theorem 3, demonstrates that the uncertainty-
perception tradeoff intensifies in higher dimensions. This implies that even minor improvements in
perceptual quality for an algorithm may come at the cost of a significant increase in uncertainty.

4.2 Revisiting the Distortion-Perception Tradeoff

Having established the uncertainty-perception tradeoff and its characteristics, we now broaden
our analysis to estimation distortion, particularly the mean squared-error. A well-known result in
estimation theory states that for any random variable X and for any estimator X̂ based upon side
information Y , the following holds true [19]:

E
[
||X̂ −X||2

]
≥ 1

2πe
e2h(X|Y ). (7)

This inequality, related to the uncertainty principle, serves as a fundamental limit to the minimal
MSE achieved by any estimator. However, it does not consider the estimation uncertainty of X̂ as the
right hand side is independent of X̂ . Thus, we extend the above in the following theorem.

Theorem 4. For any random variable X , observation Y and unbiased estimator X̂ , it holds that
1

d
E
[
||X̂ −X||2

]
≥ N

(
X̂ −X

∣∣Y ) .
Notice that for any estimator X̂ we have N(X̂ −X|Y ) ≥ N(X|Y ), implying

1

d
E[‖X̂ −X‖2] ≥ N(X|Y ) =

1

2πe
e

2
dh(X|Y ). (8)
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The above result aligns with equation (7), demonstrating that Theorem 4 serves as a generalization of
inequality (7), incorporating the uncertainty associated with the estimation. Furthermore, by viewing
the estimator X̂ as a function of perception index P , we arrive at the next corollary.

Corollary 1. Define the following distortion-perception function

D(P ) , min
pX̂|Y

{1

d
E
[
||X̂ −X||2

]
: Dv(X, X̂

∣∣Y ) ≤ P
}
.

Then, for any perceptual index P , we have D(P ) ≥ U(P ).

As uncertainty increases with improving perception, the corollary implies that distortion also increases.
Thus, when utilizing MSE as a measure of distortion, the uncertainty-perception tradeoff induces a
distortion-perception tradeoff [14], offering a novel interpretation of this well-known phenomenon.

5 Experiments

Setup. Our theoretical framework is grounded in empirical observations, leading us to validate our
findings through experiments on common benchmark tasks: image super-resolution and inpainting.
We analyze performance through the lens of uncertainty, alongside established measures of perceptual
quality and distortion. To assess perceptual quality, we employ state-of-the-art metrics including
HyperIQA [74], LIQE [88] and Q-ALIGN [84]. Distortion is evaluated using traditional measures:
MSE, peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) [82]. Accurately
estimating entropy in high-dimensional spaces presents significant challenges [46]; hence, we utilize
an upper bound for uncertainty, N(X̂G−XG|Y ), as detailed in Appendix F. This practical alternative
simplifies computation to calculating the geometric mean of the singular values of the error covariance.

For super-resolution, we utilize the BSD100 benchmark dataset [55], aiming to predict a high-
resolution image from its low-resolution counterpart obtained via 4× bicubic downsampling. Our
evaluation spans a diverse range of recovery algorithms, including EDSR [50], ESRGAN [81],
SinGAN [71], SANGAN [39], DIP [77], SRResNet/SRGAN variants [47], EnhanceNet [66], and
Latent Diffusion Models (LDMs) with parameter β ∈ [0, 1] [65], where β = 0 recovers DDIM
[32] and β = 1 recovers DDPM [73]. In the context of image inpainting, we leverage the SeeTrue
dataset [86], an image-text alignment benchmark known for its diverse collection of real and synthetic
text-image pairs. Here, we focus our analysis on diffusion models due to their state-of-the-art
performance and growing popularity in the field.

Results. Figure 5 presents our super-resolution analysis. As observed in the top row, across various
perceptual measures, an unattainable blank region exists in the lower right corner, indicating that no
model simultaneously achieves both low uncertainty and high perceptual quality. Furthermore, an
anti-correlation emerges near this region, where modest improvements in perceptual quality translate
to dramatic increases in uncertainty. This observation suggests the existence of a tradeoff between
uncertainty and perception. Additionally, the bottom row showcases a strong relationship between
uncertainty and distortion across diverse measures, demonstrating that any increase in uncertainty
leads to a significant rise in distortion.3 Figure 6 displays similar trends for image inpainting,
consistent with our super-resolution analysis and reinforcing the validity of our findings across
diverse restoration tasks and data distributions. This is further visualized in Figure 2, which presents
outputs from selected algorithms ordered by perceptual quality. The results clearly demonstrate
an increase in hallucination (uncertainty) and distortion with increasing perceptual quality. Finally,
Appendix H presents additional results obtained via direct estimation of statistics in high dimensions,
further supporting our theoretical analysis.

6 Conclusion

This study established the uncertainty-perception tradeoff in generative restoration, demonstrating that
high perceptual quality leads to increased hallucination (uncertainty), particularly in high dimensions.
We characterized this tradeoff and its fundamental relation to the inherent uncertainty of the problem,

3Note that MSE is a measure of distortion, whereas PSNR and SSIM are measures of inverse distortion; this
accounts for the negative slope in the first two figures, and the positive slope in the third.
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Figure 5: Evaluation of SR algorithms. Top: Uncertainty-perception plane showing the tradeoff
between perceptual quality and uncertainty (y-axis) for various perceptual measures. Bottom:
Uncertainty-distortion plane showing the relationship between uncertainty and various distortion
measures. Axis placement differs in the two rows to highlight the distinct roles of uncertainty.

introducing the uncertainty-perception plane which may guide practitioners in understanding estimator
performance. By extending our analysis to MSE distortion, we showed that the distortion-perception
tradeoff emerges as a direct consequence of the uncertainty-perception tradeoff. Experimental results
confirmed our theoretical findings, highlighting the importance of this tradeoff in image restoration.

7 Limitations

Our analysis is grounded in the theoretical framework of entropy as a measure of uncertainty.
Information theory offers a powerful framework for quantifying uncertainty and dependencies in
data, handling multivariate and heterogeneous data types, and capturing complex patterns. However,
its wider adoption has been limited by the challenge of estimating information-theoretic measures in
high dimensions. The curse of dimensionality makes accurate density estimation infeasible [12, 48],
leading many to rely on simpler second-order statistics.

The development of practical tools for estimating statistics in high-dimensional data remains an
active area of research [76]. While initial approaches assumed exponential family distributions (e.g.,
Gaussian) for tractable calculations [57], their performance degrades for long-tailed distributions.
Non-parametric methods like binning strategies, including KDE and kNN estimators [61, 40, 29], offer
more flexibility but are data-dependent and sensitive to parameter choices. Alternative approaches
involve ensemble estimation [43] or von Mises Expansions [35], the distributional analog of the
Taylor expansion. Rotation-Based Iterative Gaussianization [46] presents a promising direction by
transforming data into a multivariate Gaussian domain, simplifying density estimation. However,
its application to images has been limited to small patches due to the computational challenges
of learning rotations based on principal or independent component analysis. A recent extension
addresses this by utilizing convolutional rotations, enabling efficient processing of entire images [45].

While accurately estimating high-dimensional entropy remains an active research area, Section 5
utilizes a tractable upper bound. This alternative calls for further investigation into its potential
for quantifying uncertainty and analyzing algorithm performance. Moreover, incorporating this
bound into the design of new algorithms could enable explicit control over the uncertainty-perception
trade-off, potentially leading to more reliable solutions.
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Figure 6: Evaluation of LDMs on image inpainting, highlighting the trade-off between uncertainty
and perceptual quality (top) and the uncertainty-distortion relationship (bottom). No model achieves
both low uncertainty and high perceptual quality, with higher uncertainty generally leading to
increased distortion. Differing axis placements emphasize the distinct roles of uncertainty.

Lastly, we focused our empirical validation on image super-resolution and inpainting, two benchmark
problems in image restoration. Our analysis, however, applies to any restoration task with non-
invertible degradation. Hence, expanding the experiments to additional image-to-image tasks and
domains such as audio, video, and text may reveal broader implications and applications of our work.

8 Broader Impact

Our work revealing a fundamental tradeoff between uncertainty and perception in image restora-
tion carries significant societal impact. Developers across various fields, including healthcare and
autonomous systems, often integrate cutting-edge models into their applications, prioritizing state-
of-the-art performance and perceptual quality. However, our work aims to highlight a crucial factor
often overlooked: the inherent tradeoff between uncertainty and perception. By raising awareness of
this tradeoff, we empower developers to make informed decisions that prioritize safety and reliability
over purely perceptual enhancements. For instance, in healthcare, potential restoration algorithms
can be evaluated by plotting them on the uncertainty-perception plane, facilitating the identification
of methods that strike the optimal balance for specific clinical needs. Furthermore, by understanding
this inherent trade-off, practitioners can consider trading performance for better safety and resilience
against potential misuse and misinterpretations.

While primarily theoretical, our analysis yields a practical measure of uncertainty (or entropy), used
in our experiments to visually and quantitatively illustrate our findings. This tractable uncertainty
measure, or any differentiable alternative, can be incorporated into a loss function during the training
of generative models like GANs or as an optimization objective to guide the reverse process in
diffusion models. This approach enables the development of algorithms that explicitly optimize for
the tradeoff between uncertainty and perception.
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A Conditional Divergence and Human Perception

In our context, perception is defined as the probability psuccess of a human observer successfully
distinguishing between a pair of natural and degraded images, drawn from pX,Y ), and a pair of
restored and degraded images drawn from pX̂,Y ). From a Bayesian perspective, the optimal decision
rule maximizing psuccess yields ([56] Section 2):

psuccess =
1

2
+

1

2
DTV(pX,Y , pX̂,Y )

where DTV(pX,Y , pX̂,Y ) is the total-variation (TV) distance. When D(pX,Y , pX̂,Y ) = 0, the two
pairs are indistinguishable (psuccess = 0.5), implying perfect perception quality. We generalize
this beyond the total-variation (TV) distance to any conditional divergence, recognizing that the
divergence that best relates to human perception remains an open question.

B Information-Theory Preliminaries

To make the paper self-contained, we briefly overview the essential definitions and results in
information-theory. Let X , Y and Z be continuous random variables with probability density
functions pX(x), pY (y) and pZ(z) respectively. The space of probability density functions is denoted
by Ω. We assume the quantities described below, which involve integrals, are well-defined and finite.

Definition 3 (Entropy). The differential entropy of X , whose support is a set Sx, is defined by

h(X) , −
∫
SX

pX(x) log pX(x)dx.

Definition 4 (Rényi Entropy). The Rényi entropy of order r ≥ 0 of X is defined by

hr(X) ,
1

1− r
log

∫
prX(x)dx.

The above quantity generalizes various notions of entropy, including Hartley entropy, collision
entropy, and min-entropy. In particular, for r = 1 we have

h1(X) , lim
r→1

hr(X) = h(X).

Definition 5 (Entropy Power). Let be h(X) be the differential entropy of X ∈ Rd. Then, the
entropy Power of X is given by

N(X) ,
1

2πe
e

2
dh(X).

Definition 6 (Divergence). A statistical divergence is any functionDv : Ω×Ω→ R+ which satisfies
the following conditions for all p, q ∈ Ω:

1. Dv(p, q) ≥ 0.

2. Dv(p, q) = 0 iff p = q almost everywhere.

Table 1: Formulas for Multivariate Gaussian Distribution

Distribution Quantity Closed-Form Expression

X ∼ N (µx,Σx) h(X) 1
2 ln{(2πe)d |Σx|}.

X ∼ N (µx,Σx) N(X) |Σx|1/n .
X ∼ N (µx,Σx) h 1

2
(X) 1

2 ln{(8π)d |Σx|}.

X ∼ N (µx,Σx),
Y ∼ N (µy,Σy)

D1/2(X,Y ) 1
4 (µx − µy)T

(
Σx+Σy

2

)−1

(µx − µy) + ln

( ∣∣∣Σx+Σy
2

∣∣∣√
|Σx||Σy|

)
.
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Definition 7 (Rényi Divergence). The Rényi divergence of order r ≥ 0 between pX and pY is

Dr(X,Y ) ,
1

r − 1
log

∫
prX(x)p1−r

Y (x)dx.

The above establishes a spectrum of divergence measures, generalising the Kullback–Leibler diver-
gence as D1(X,Y ) = DKL(X,Y ). Furthermore, it is important to note that all orders r ∈ (0, 1)
are equivalent [79], since

r

t

1− t
1− r

Dt(·, ·) ≤ Dr(·, ·) ≤ Dt(·, ·), ∀ 0 < r ≤ t < 1. (9)

Definition 8 (Conditioning). Consider the joint probability pXY and the conditional probabilities
pX|Y (x|y) and pZ|Y (z|y). The conditional differential entropy of X ∈ Rd given Y is defined as

h(X|Y ) , −
∫
SXY

pXY (x, y) log pX|Y (x|y)dxdy

= Ey∼pY [h(X|Y = y)]

where SXY is the support set of pXY . Then, the conditional entropy power of X given Y is

N(X|Y ) =
1

2πe
e

2
dh(X|Y ).

Similarly, the conditional divergence between X and Z given Y is defined as

Dv(X,Z
∣∣Y ) , Ey∼pY [Dv(X|Y = y, Z|Y = y)] .

For example, the conditional Rényi divergence is given by

Dr(X,Z
∣∣Y ) ,∫ (

1

r − 1
log

∫
prX|Y (x|y)p1−r

Z|Y (x|y)dx

)
pY dy.

Table 1 summarizes closed-form expressions for several quantities relevant to the multivariate
Gaussian distribution. Below we present two fundamental results that form the basis of our analysis.
Lemma 1 (Maximum Entropy Principle [19]). Let X ∈ Rd be a continuous random variable
with zero mean and covariance Σx. Define XG ∼ N (0,Σx) to be a Gaussian random variable,
independent of X , with the identical covariance matrix ΣxG

= Σx. Then,

h(X) ≤ h(XG),

N(X) ≤ N(XG) = |Σx|1/d .

Lemma 2 (Entropy Power Inequality [53]). Let X and Y be independent continuous random
variables. Then, the following inequality holds

N(X) +N(Y ) ≤ N(X + Y ),

where equality holds iff X and Y are multivariate Gaussian random variables with proportional
covariance matrices. Equivalently, let Xg and Yg be defined as independent, isotropic multivariate
Gaussian random variables satisfying h(Xg) = h(X) and h(Yg) = h(Y ). Then,

h(X) + h(Y ) = h(Xg) + h(Yg) = h(Xg + Yg) ≤ h(X + Y ).

C Derivation of Example 1

Since X̂ = E [X|Y ] + Z, then X̂|Y ∼ N (E [X|Y ] , σ2
z). Moreover, X|Y ∼ N (E [X|Y ] , σ2

q )

where σ2
q = σ2

1+σ2 . Thus, the conditional error entropy is given by N(X̂ −X|Y ) = σ2
q + σ2

z and the

symmetric KL divergence is DSKL(X, X̂
∣∣Y ) =

σ2
q+σ2

z

2σzσq
− 1, leading the following problem

U(P ) = min
σz

{
σ2
q + σ2

z :
σ2
q + σ2

z

2σzσq
− 1 ≤ P

}
. (10)
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Figure 7: The Uncertainty-Perception function for Example 1. As perception quality improves, the
minimal achievable uncertainty increases, suggesting a tradeoff governed by the inherent uncertainty.

Therefore, we seek the minimal value of σz that satisfies the constraint. Note that the minimal value
is attained at the boundary of the constraint set, where the inequality becomes an equality

σ2
q + σ2

z

2σzσq
− 1 = P ⇒ σ2

z − 2σq(P + 1)σz + σ2
q = 0. (11)

The solution to the aforementioned quadratic problem is σ∗z = σq

(
P + 1−

√
(P + 1)2 − 1

)
.

Substituting the later into the objective function, we obtain

U(P ) = σ2
q

[
1 +

(
P + 1−

√
(P + 1)2 − 1

)2 ]
. (12)

Finally, the entropy power of an univariate Gaussian distribution equals its variance σ2
q = N(X|Y ).

Figure 7 visualizes the resulting uncertainty-perception tradeoff.

D Proof of Theorem 1

First, the constraint C(P ) , {X̂ : Dv(X, X̂
∣∣Y ) ≤ P} defines a compact set which is continuous in

P . Hence, by the Maximum Theorem [19], U(P ) is continuous. In addition, U(P ) is the minimal
error entropy power obtained over a constraint set whose size does not decrease with P , thus, U(P )
is non-increasing in P . Any continuous non-increasing function is quasi-linear. For the lower bound
consider the case where P =∞, leading to the following unconstrained problem

U(∞) , min
pX̂|Y

N(X̂ −X|Y ). (13)

For any P ≥ 0 it holds that U(∞) ≤ U(P ), and by Lemma 2 we have

N(X|Y ) + min
pX̂|Y

N(X̂|Y ) ≤ U(∞). (14)

Since minpX̂|Y
N(X̂|Y ) ≥ 0 we obtain

∀P ≥ 0 : N(X|Y ) ≤ U(P ). (15)

Next, we have U(P ) ≤ U(0) = N(X̂0 −X|Y ) where pX̂0|Y = pX|Y . Define V , X̂0 −X , then

Σv|y = Σx̂|y + Σx|y = 2Σx|y where we use that X and X̂ are independent given Y . Thus,

U(0) = N(V |Y ) ≤ N(VG|Y ) =
∣∣Σv|y∣∣1/d =

∣∣2Σx|y
∣∣1/d = 2

∣∣Σx|y∣∣1/d = 2N(XG|Y ), (16)

where the first inequality is due to Lemma 1. Finally, for any P ≥ 0 it holds that U(P ) ≤ U(0)
which implies U(0) ≤ 2N(XG|Y ), completing the proof.

18



E Proof of Theorem 2

Assuming Dv(X, X̂
∣∣Y ) is convex in its second argument, the constraint represent a compact, convex

set. Moreover, h(X̂ − X|Y ) is strictly-concave w.r.t pX̂|Y as a composition of a linear function
(convolution) with a strictly-concave function (entropy). Therefore, we minimize a log-concave
function over a convex domain and thus the global minimum is attained on the set boundary where
Dv(X, X̂

∣∣Y ) = P .

F Proof of Theorem 3

We begin with applying Lemma 1 and Lemma 2 to bound the objective function as follows

N(X̂g|Y ) +N(Xg|Y ) = N(X̂g −Xg|Y ) ≤ N(X̂ −X|Y ) ≤ N(X̂G −XG|Y ). (17)

Note that the bounds are tight as the upper bound is attained when X̂|Y and X|Y are multivariate
Gaussian random variables, while the lower bound is attained if we further assume they are isotropic.
Thus, we can bound the uncertainty-perception function as follows

Ug(P ) ≤ U(P ) ≤ UG(P ) (18)

where we define

Ug(P ) , min
pX̂g|Y

{
N(X̂g|Y ) +N(Xg|Y ) : D1/2(Xg, X̂g

∣∣Y ) ≤ P
}
,

UG(P ) , min
pX̂G|Y

{
N(X̂G −XG|Y ) : D1/2(XG, X̂G

∣∣Y ) ≤ P
}
.

(19)

The above quantities can be expressed in closed form. We start with minimization problem of the
upper bound which can be written as

UG(P ) = min
pX̂G|Y

{ 1

2πe
e

2
dE[h(X̂G−XG|Y=y)] : E

[
D1/2(XG, X̂G

∣∣Y = y)
]
≤ P

}
, (20)

where the expectation is over y ∼ Y . Substituting the expressions for h(XG − XG|Y = y) and
D1/2(XG, X̂G

∣∣Y = y), we get

UG(P ) = min
{Σx̂|y}

{
1

2πe
e

2
dE
[

1
2 log

{
(2πe)d|Σx̂|y+Σx|y|

}]
: E

log

∣∣(Σx̂|y + Σx|y
)
/2
∣∣√∣∣Σx̂|y∣∣ ∣∣Σx|y∣∣
 ≤ P}.

(21)
Notice the optimization is with respect to the covariance matrices {Σx̂|y}. Simplifying the above, we
can equivalently solve the following minimization

min
{Σx̂|y}

E
[
log
∣∣Σx̂|y + Σx|y

∣∣] s.t. E

log

∣∣(Σx̂|y + Σx|y
)
/2
∣∣√∣∣Σx̂|y∣∣ ∣∣Σx|y∣∣
 ≤ P. (22)

The solution of a constrained optimization problem can be found by minimization the Lagrangian

L
(
{Σx̂|y}, λ

)
, E

[
log
∣∣Σx̂|y + Σx|y

∣∣]+ λ

E

log

∣∣(Σx̂|y + Σx|y
)
/2
∣∣√∣∣Σx̂|y∣∣ ∣∣Σx|y∣∣
− P

 . (23)

Since expectation is a linear operation and using that P = E [P ], we rewrite the above as

L
(
{Σx̂|y}, λ

)
= E

log
∣∣Σx̂|y + Σx|y

∣∣+ λ

log

∣∣(Σx̂|y + Σx|y
)
/2
∣∣√∣∣Σx̂|y∣∣ ∣∣Σx|y∣∣ − P

 . (24)

The expression within the expectation can be written as

log
∣∣Σx̂|y + Σx|y

∣∣+ λ

(
log
∣∣(Σx̂|y + Σx|y

)
/2
∣∣− 1

2
log
∣∣Σx̂|y∣∣− 1

2
log
∣∣Σx|y∣∣− P) . (25)
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Next, according to KKT conditions the solutions should satisfy ∂L
∂Σx̂|y

= 0. Using the linearity of the
expectation and differentiating (25) w.r.t Σx̂|y we obtain(

Σx̂|y + Σx|y
)−1

+ λ

((
Σx̂|y + Σx|y

)−1 − 1

2
Σ−1
x̂|y

)
= 0 (26)

Multiplying both sides by
(
Σx̂|y + Σx|y

)
, we have

I + λI − λ

2
I − λ

2
Σx|yΣ−1

x̂|y = 0

⇒ (1 +
λ

2
)I =

λ

2
Σx|yΣ−1

x̂|y

⇒ (λ+ 2)Σx̂|y = λΣx|y

⇒ Σx̂|y =
λ

λ+ 2
Σx|y.

(27)

Define γ = λ
λ+2 , so Σx̂|y = γΣx|y . Substituting the latter into the constraint we get

log
∣∣(γΣx|y + Σx|y

)
/2
∣∣− 1

2
log
∣∣γΣx|y

∣∣− 1

2
log
∣∣Σx|y∣∣ = P

⇒ n log
1 + γ

2
− n

2
log γ = P

⇒ (1 + γ)2

4γ
= e

2
dP

⇒ γ2 + 2γ + 1 = 4γe
2
dP

⇒ γ(P ) = 2e
2
dP − 1−

√
(2e

2
dP − 1)2 − 1.

(28)

Thus, we obtain that
UG(P ) = η(P ) ·N(XG|Y ) (29)

where

η(P ) = γ(P ) + 1 = 2e
2
dP −

√
(2e

2
dP − 1)2 − 1. (30)

Notice that η(0) = 2, while limP→∞ η(P ) = 1, so 1 ≤ η(P ) ≤ 2. Following similar steps where
we replace Σx̂|y and Σx|y with N(X̂|Y ) and N(X|Y ) respectively, we derive

Ug(P ) = η(P ) ·N(X|Y ). (31)

G Proof of Theorem 4

Define E , X̂ −X . Then,

1

d
E
[
||X̂ −X||2

]
=
(a)

E
[

1

d
E
[
||X̂ −X||2

∣∣Y ]] = E
[

1

d
E
[
||E||2

∣∣Y ]] = E
[

1

d
E
[
ETE

∣∣Y ]]
= E

[
1

d
Tr
(
E
[
EET

∣∣Y ])] = E
[

1

d
Tr
(
Σε|y

)]
≥
(b)

E
[∣∣Σε|y∣∣1/d] = E

[∣∣Σx̂|y + Σx|y
∣∣1/d]

≥
(c)

E
[

1

2πe
e

2
dh(X̂−X|Y=y)

]
≥
(d)

1

2πe
e

2
dE[h(X̂−X|Y=y)] =

1

2πe
e

2
dh(X̂−X|Y ) = N

(
X̂ −X

∣∣Y ) ,
where (a) is by the law of total expectation, (b) is due to the inequality of arithmetic and geometric
means, (c) follows Lemma 1, and (d) is according to Jensen’s inequality.
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H Results via Direct Estimation

Estimating high-dimensional statistics is prone to errors [46]. we used practical measures for
perceptual quality and a tractable upper bound for uncertainty. Here, we supplement those results
with direct computations of entropy and divergence in a high-dimensional setting. Following prior
work [14, 23], we treat images as stationary sources and extract 9× 9 patches. To estimate Rényi
divergence for perceptual quality assessment, we first model the probability density functions using
kernel density estimation. Subsequently, we compute the divergence through empirical expectations.
Uncertainty is estimated using the Kozachenko-Leonenko estimator, which calculates the patch
sample differential entropy based on nearest neighbor distances [41, 21, 9, 54]. Results, shown in
Figure 8, strongly align with the trends observed in Figure 5.
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Figure 8: Evaluation of SR algorithms via direct estimation of high-dimensional statistics. Left:
Uncertainty-perception plane demonstrating the tradeoff between perceptual quality and uncertainty.
Right: Uncertainty-distortion plane illustrating the relation between uncertainty and distortion.
Results are consistent with the finding in Figure 5.
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Answer: [Yes]
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Justification: Broader Impacts of our work are discussed in their own dedicated section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper focuses on analyzing existing open-source models and datasets,
and therefore does not introduce new models or datasets that require specific safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All relevant publicly-available models and datasets utilized in our work are
properly cited and acknowledged in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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