
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

QP-SNN: QUANTIZED AND PRUNED SPIKING
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Brain-inspired Spiking Neural Networks (SNNs) leverage sparse spikes to en-
code information and operate in an asynchronous event-driven manner, offering
a highly energy-efficient paradigm for machine intelligence. However, the current
SNN community focuses primarily on performance improvement by developing
large-scale models, which limits the applicability of SNNs in resource-limited
edge devices. In this paper, we propose a hardware-friendly and lightweight SNN,
aimed at effectively deploying high-performance SNN in resource-limited sce-
narios. Specifically, we first develop a baseline model that integrates uniform
quantization and structured pruning, called QP-SNN baseline. While this baseline
significantly reduces storage demands and computational costs, it suffers from
performance decline. To address this, we conduct an in-depth analysis of the
challenges in quantization and pruning that lead to performance degradation and
propose solutions to enhance the baseline’s performance. For weight quantization,
we propose a weight rescaling strategy that utilizes bit width more effectively to
enhance the model’s representation capability. For structured pruning, we pro-
pose a novel pruning criterion using the singular value of spatiotemporal spike
activities to enable more accurate removal of redundant kernels. Extensive exper-
iments demonstrate that integrating two proposed methods into the baseline allows
QP-SNN to achieve state-of-the-art performance and efficiency, underscoring its
potential for enhancing SNN deployment in edge intelligence computing.

1 INTRODUCTION

Chowdhury et al.

25.43MB

[IJCNN21]

QP-SNN

1.61MB

QP-SNN

3.16MB QP-SNN

6.27MB

Deng et al.

5.99MB

[TNNLS21]

Deng et al.

11.75MB

[TNNLS21]

Shi et al.

13.18MB

[ICLR24]

Shi et al.

7.67MB

[ICLR24]

Li et al.

14.40MB

[ICML24]

Li et al.

9.48MB

[ICML24]

Bit width for weight

Figure 1: Comparison of accuracy and model size
between our QP-SNN and related work on CIFAR-
100. The bubble size represents the model size.

Inspired by the information processing
paradigm of biological systems, Spiking
Neural Networks (SNNs) encode informa-
tion via binary spikes and process them in
a sparse spike-driven manner (Gerstner &
Kistler (2002); Izhikevich (2003)). This
paradigm simplifies the matrix computa-
tions of weight and spike activity in SNNs
from computationally intensive multiply-
accumulate (MAC) operations to computa-
tionally efficient accumulate (AC) operations.
Therefore, SNNs are regarded as a promis-
ing energy-efficient solution for achieving
next-generation machine intelligence (Pfeif-
fer & Pfeil (2018); Roy et al. (2019b)).
Furthermore, the energy efficiency of SNNs
has driven the development of neuromorphic
hardware, such as SpiNNaker (Painkras et al. (2013)), TrueNorth (Akopyan et al. (2015)), Loihi
(Davies et al. (2018)), Tianjic (Pei et al. (2019)) etc. These neuromorphic hardware can fully exploit
the energy efficiency potential of SNNs. Despite these advantages, the application scenarios and
performance of SNNs still require improvement compared to artificial neural networks (ANNs).

In the past few years, the SNN community has focused primarily on designing complex SNNs ar-
chitectures to achieve impressive performance across various application tasks, such as image clas-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

sification (Yao et al. (2024b;a)), object detection (Kim et al. (2020); Luo et al. (2024)), and temporal
modeling (Yin et al. (2024b); Zhang et al. (2024)). While these studies have yielded satisfactory
performance, they typically come at the cost of large model parameters, high memory consumption,
and increased computational complexity (Shi et al. (2024); Li et al. (2024)). This undermines the
inherent energy efficiency of SNNs and restricts their applicability in resource-limited scenarios. To
achieve effective deployment, a growing number of researchers have worked on compressing large-
scale SNNs. Existing methods to improve SNN energy efficiency primarily fall into two categories:
(1) reducing the precision of parameter representations (Deng et al. (2021); Yin et al. (2024a); Hu
et al. (2024); Wei et al. (2024)) and (2) reducing redundant parameters within the model (Shi et al.
(2024); Yan et al. (2024); Liu et al. (2024); Li et al. (2024)).

Quantization is a key technique for the first category, which reduces memory storage and computa-
tional complexity by storing full-precision values in low bit-width precision (Gholami et al. (2022)).
Based on whether an equal-size interval is used to discretize full-precision values, it can be divided
into non-uniform and uniform quantization (Rokh et al. (2023)). Non-uniform quantization divides
discretization intervals unevenly, enabling a more precise capture of critical information and leading
to improved performance. However, it is challenging to deploy this approach on general computing
hardware efficiently (Cai et al. (2017); Kulkarni et al. (2022)). In contrast, uniform quantization
maps full-precision values to equal-sized discrete intervals, offering advantages such as simplicity,
low computational cost, and efficient mapping to hardware (Zhu et al. (2016); Jain et al. (2020)).

Pruning is one of the effective methods for reducing redundant parameters in a model, which reduces
the model size by removing unimportant connections (Li et al. (2016)). Pruning can be classified
into unstructured and structured pruning (Vadera & Ameen (2022)). Unstructured pruning removes
individual nodes like a single neuron of networks, resulting in unstructured sparsity. This often leads
to a high compression rate, but requires specialized hardware or library support for acceleration (Han
et al. (2015)). In contrast, structured pruning removes entire convolutional filters, ensuring model’s
structure. This avoids complex sparse matrix operations, enabling acceleration with standard hard-
ware by taking advantage of a highly efficient library (He & Xiao (2023); Xu et al. (2020)).

Real-world deployments are typically limited by size, weight, area, and power. This makes com-
bined quantization and pruning a promising approach for maximizing SNN compression. Existing
research on integrating quantization and pruning in SNNs faces two challenges. Firstly, they do not
sufficiently account for hardware-friendliness, for example, (Rathi et al. (2018)) and (Deng et al.
(2021)) adopt unstructured pruning. Secondly, despite significant energy efficiency, these studies
suffer from severe performance degradation, with evaluations limited to simple datasets like MNIST
(Rathi et al. (2018)) or CIFAR (Chowdhury et al. (2021); Deng et al. (2021)). Thus, integrating both
techniques for maximal compression while ensuring hardware efficiency and high performance re-
mains challenging. In this paper, we introduce the QP-SNN, a hardware-efficient and lightweight
SNN tailored for effective deployment in resource-limited environments. We first build a QP-SNN
baseline that integrates uniform quantization and structured pruning. While this baseline offers sub-
stantial efficiency gains, it suffers from reduced performance. To address this, we investigate the
root causes of performance degradation in quantization and pruning, and propose solutions to en-
hance the QP-SNN baseline’s performance. As shown in Figure 1, QP-SNN utilizing the proposed
solutions achieves excellent accuracy and model size. We summarize our main contributions as,

• We first develop a hardware-efficient and lightweight QP-SNN baseline by integrating uni-
form quantization and structured pruning. This baseline significantly reduces storage and
computational demands, but suffers from performance limitations.

• To improve performance through quantization, we reveal that the vanilla uniform quan-
tization in the QP-SNN baseline constrains the model’s representation capability due to
inefficient bit-width utilization. To address this, we propose a weight rescaling strategy
(ReScaW) that optimizes bit-width usage for improved representation.

• To further boost performance through pruning, we introduce a novel structured pruning
criterion for the QP-SNN baseline that leverages the singular value of spatiotemporal spike
activity (SVS). This SVS criterion provides greater robustness across varying input samples
and allows more precise removal of redundant convolutional kernels.

• Extensive experiments show that integrating ReScaW-based quantization and the SVS-
based criterion into the baseline allows QP-SNN to achieve state-of-the-art performance
and efficiency, revealing its potential for advancing edge intelligence computing.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Quantization technique Early research on quantization in SNNs is primarily based on ANN-to-
SNN conversion algorithms, where a quantized ANN is first trained and then converted into the
corresponding quantized SNN version (Sorbaro et al. (2020); Roy et al. (2019a)). To mitigate the
performance loss associated with the conversion, researchers have proposed many strategies, such
as the utilization of activation penalty term (Sorbaro et al. (2020)) and the weight-threshold balanc-
ing method (Wang et al. (2020)). However,these quantized SNNs still experience significant perfor-
mance degradation and long latency issues. To address these limitations, some studies have explored
directly training quantized SNNs and introduced different strategies to enhance performance, such
as alternating direction method of multipliers (Deng et al. (2021)), accuracy loss estimator (Pei et al.
(2023)), and suitable activation function (Hu et al. (2024)). Despite performance improvement, the
above studies fail to effectively leverage the allocated bit-width, resulting in the limited expressive
capability of models. Therefore, there still remains significant room for performance improvement.

Pruning technique Existing research on pruning SNNs can be broadly divided into two groups.
The first group is unstructured pruning. For example, (Yin et al. (2021)) use a magnitude-based
method to remove insignificant weights, and (Shi et al. (2024)) propose a fine-grained pruning
framework that integrates unstructured weight and neuron pruning to enhance SNN energy effi-
ciency. Additionally, there are some biologically inspired unstructured pruning works (Bellec et al.
(2017); Chen et al. (2022)). While these studies achieve great sparsity and performance, they lead
to irregular memory access in forward propagation, requiring specialized hardware for acceleration.
The second group is structured pruning that offers better hardware compatibility. (Chowdhury et al.
(2021)) use principal component analysis on membrane potentials to evaluate channel correlations
and eliminate redundant ones. However, it suffers from long latency and cannot handle neuromor-
phic datasets. Recently, (Li et al. (2024)) evaluate the importance of kernels based on spike activity,
advancing the performance of pruned SNNs to a new level. However, this evaluation criterion ex-
hibits high dependency on inputs and may not accurately reflect the importance of kernels.

Compression with joint quantization and pruning Several studies have explored combining
quantization and pruning to maximize the compression of SNNs. First, (Rathi et al. (2018)) adopt
the STDP learning rule and a predefined pruning threshold to remove insignificant connections,
and then quantizes retained important weights. Then, (Chowdhury et al. (2021)) perform principal
component analysis on membrane potentials for spatial pruning and gradually decreases the time
step during training for temporal pruning. They also use post-training quantization to compress re-
tained weights. Moreover, (Deng et al. (2021)) formulate pruning and quantization as a constraint
optimization problem in supervised learning, and address it with the alternating direction method
of multipliers. However, these existing studies combining quantization and pruning face two main
problems. Firstly, the unstructured pruning methods in (Rathi et al. (2018)) and (Deng et al. (2021))
require specialized hardware for efficient acceleration. Secondly, (Rathi et al. (2018)) only evaluate
their method on very simple datasets, and (Chowdhury et al. (2021)) and (Deng et al. (2021)) only
extend their methods to CIFAR (88.6% and 87.84% accuracy on CIFAR-10 with 5, 3 bits respec-
tively), leading to significant room for improvement in both performance and efficiency.

3 QUANTIZED AND PRUNED SNN BASELINE

In this section, we develop the QP-SNN baseline by combining uniform quantization and structured
pruning. These two compression techniques are highly compatible with existing hardware accelera-
tors, significantly improving the model’s deployment efficiency.

Neuron model. We use the Leaky Integrate-and-Fire (LIF) model in our QP-SNN due to its high
computational efficiency (Wu et al. (2018)). The membrane potential of LIF model is computed as,

Ũl[t] = τUl[t− 1] +Xl[t], (1)

where Ul[t] represents the membrane potential of neurons in layer l at time t, τ is the constant leaky
factor, and Xl[t] = WlSl−1[t] denotes the input current. Neurons integrate incoming signals and
generates a binary spike (i.e., 0 or 1) when the membrane potential surpasses the firing threshold θ.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The spike generation function is described as,

Sl[t] =

{
1, if Ul[t] ≥ θ,
0, otherwise. (2)

After spike emission, we use the hard reset mechanism to update the membrane potential. This
mechanism resets membrane potential to zero when a spike occurs and remains inactive otherwise.

Ul[t] = Ũl[t] ·
(
1− Sl[t]

)
. (3)

Vanilla uniform quantization. Quantization can be grouped into non-uniform and uniform quan-
tization. Non-uniform quantization exhibits superior performance, but requires specialized hardware
support. In contrast, uniform quantization maps weights to integer grids with equal size, simplifying
both computational complexity and hardware implementation (Zhu et al. (2016)). In this study, we
explore the uniform quantization in QP-SNNs. The vanilla uniform quantization for weights in layer
l, i.e., Wl, can be formulated as follows,

Wl
int =

⌈
s(b)

2
·
(
clamp(Wl;−1, 1) + z

)⌋
, (4)

where clamp(·) is a clipping operator, ⌈·⌋ is a rounding operator, z is the zero-point, b is the bit
width, and s(b) = 2b − 1 is the number of integer grids. We set z to 1 and explore bit widths b of
8, 4, 2. Therefore, Eq.(4) maps Wl onto the unsigned integer grid

{
0, · · · , 2b − 1

}
. To reconstruct

Wl through their quantized counterparts, the de-quantization is defined as,

Ŵl = 2 · W
l
int

s(b)
− z. (5)

Consequently, the general definition for the quantization used in the QP-SNN baseline is stated as,

Wl ≈ Ŵl =
2

s(b)

⌈
s(b)

2
·
(
clamp(Wl;−1, 1) + z

)⌋
− z. (6)

The vanilla quantization greatly reduces the baseline’s storage and computation demands, but suffers
from the limited weight precision. This constrains the model’s representation capability, reducing
performance. In the next section, we resolve this issue by effectively using the assigned bit-width.

Structured pruning. Pruning can be classified as unstructured and structured pruning. Unstruc-
tured pruning enables high sparsity and excellent performance but requires specialized design for
hardware acceleration. In contrast, structured pruning preserves the model’s structure and is highly
compatible with existing hardware accelerators. Currently, the most advanced structured pruning
method in SNN is presented by (Li et al. (2024)). They prune convolutional kernels according to
the spiking channel activity (SCA) criterion. We use this criterion in our QP-SNN baseline for the
following analysis and comparison. For the weight tensor Wl ∈ Rcl×cl−1×k×k, the SCA-based cri-
terion evaluates and prunes kernels based on the magnitude of membrane potential. The importance
evaluation for the f -th kernel, i.e., Wl,f ∈ Rcl−1×k×k, is defined as,

Score(Wl,f) =
1

B · T
·

(
B∑

b=1

T∑
t=1

∥∥∥Ũl,f [t]
∥∥∥) , (7)

where B is the number of samples per mini-batch, T is the time step, ∥·∥ is the L1-norm, and Ũl,f [t]
is the membrane potential of the f -th feature map. As shown in Eq.(7), the SCA-based criterion
regards positive values in Ũl,f as excitatory postsynaptic potentials and negative values as inhibitory
postsynaptic potentials, thus removing kernels that contribute less to the membrane potential. By
unifying the SCA-based criterion, the number of parameter and computation in baseline is further
reduced. Noteworthy, the performance of the pruned QP-SNN baseline model relies strongly on the
scoring function. Therefore, the idea Score(W)

l,f should accurately identify the important kernels.

4 METHOD

To enhance the performance of the QP-SNN baseline, we analyze and resolve the underlying issues
in quantization and pruning that cause performance reduction. In quantization, we reveal that the
baseline suffers from limited representation capability due to inefficient bit-width utilization, and
propose the weight rescaling strategy to use bit-width more effectively. In pruning, we propose a
novel pruning criterion for the QP-SNN baseline to more accurately remove redundant kernels.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

�
��

��
�

Wasted

−a

����
�

����
�

1−1

0 s(b)

a−a

������� ≈ 1 + a × s(b)

0

Wasted

��

�������
� 1−1

0

0

s(b)

s(b)
2

������� = 2�

a

��
��

���

(a) Uniform quantization comparison

0.5 0.0 0.50.0

0.5

1.0

1e4

VGG-16

P0.99(Wl) = 0.25
P0.01(Wl) = -0.32

Conv4

0.5 0.0 0.50.0

0.5

1.0

1e5

VGG-16

P0.99(Wl) = 0.22
P0.01(Wl) = -0.23

Conv10

0.5 0.0 0.50

2

4

6

1e5

VGG-16

P0.99(Wl) = 0.12
P0.01(Wl) = -0.14

Conv16

0.5 0.0 0.50.0

0.5

1.0
1e4

ResNet20

P0.99(Wl) = 0.26
P0.01(Wl) = -0.24

Layer1.0.Conv1

0.5 0.0 0.50

2

4

1e4

ResNet20

P0.99(Wl) = 0.18
P0.01(Wl) = -0.16

Layer2.0.Conv1

0.5 0.0 0.50

1

2
1e5

ResNet20

P0.99(Wl) = 0.15
P0.01(Wl) = -0.15

Layer3.0.Conv1

(b) Visualization of weight distribution

Figure 2: (a) Vanilla uniform quantization exhibits inefficient bit-width utilization, while ReScaW-
based quantization can fully leverage the allocated bit-width. Green dots represent normal weights
within the 1st and 99th percentiles, orange dots are boundary values, and blue dots are outliers. (b)
Distribution is plotted to show that weights are concentrated in a narrow range around zero.

4.1 WEIGHT RESCALING STRATEGY

Problem analysis. The vanilla uniform quantization in the QP-SNN baseline minimizes resource
usage, but suffers from inefficient bit-width utilization. This weakens the discrimination of the quan-
tized weights in the QP-SNN baseline, limiting the model’s representation capability. To evaluate
the bit-width utilization efficiency, we define a metric as,

Rutilize =
Nactual

(
Wl

int

)
Ntotal

(
Wl

int

) , (8)

where Nactual(·), Ntotal(·) are the actual, available number of distinct values that Wl
int repre-

sents. Next, we analyze Rutilize for QP-SNN baseline to assess bit-width utilization efficiency. We
compute Nactual(W

l
int) using the range of full precision weights, shown in Figure 2(a)(top). We

consider full precision weights between the 1st and 99th percentiles to eliminate outliers. For clarity,
we denote Wl ∈ [−a, a], where a = max

(∣∣P0.01(W
l)
∣∣ , ∣∣P0.99(W

l)
∣∣). Typically, a is a positive

value near zero (LeCun et al. (2002); He et al. (2015)). This means that the clamp function in Eq.(4)
doesn’t alter weight values. Based on this, we can deduce Wl

int∈
[⌊

z−a
2 s(b)+ 1

2

⌋
,
⌊
z+a
2 s(b)+ 1

2

⌋]
.

Therefore, Nactual(W
l
int) is approximately (1+a · s(b)), leading to a utilization rate of s(b)·a+1

s(b)+1 .

To clearly show the low bit-width utilization of the baseline, we analyze the weight distribution and
determine the value of a. We plot the weight distributions of VGG-16 and ResNet20 in Figure 2(b),
and also label the 1st and 99th percentiles. In Figure 2(b), the smallest value of a is 0.14 (VGG-
16.conv16), and the largest is 0.32 (VGG-16.conv4). This indicates that under 8-bit quantization,
the QP-SNN baseline uses less than half of the assigned bit width, with a minimum of 14.33%
and a maximum of 32.26%. This inefficient utilization causes a large number of weights to be
quantized to the same integer grid, reducing the discrimination of quantized weights. This limits the
representation capacity of the QP-SNN baseline, leading to decreased performance. The complete
weight distributions are provided in Appendix E.1.

ReScaW-based uniform quantization. To resolve the limited representation capacity, we pro-
pose a simple yet effective weight rescaling (ReScaW) strategy for the QP-SNN baseline that uses
bit-width more efficiently. Specifically, we introduce a scale coefficient γ to regulate the weight
distribution to a wider range before quantization. The proposed ReScaW strategy is defined as,

Wl
scaled =

Wl

γ
. (9)

The scaling coefficient γ can assume any positive value within the range 0 <γ <1. We provide three
options for γ: (1) the maximum absolute value: max(|Wl|); (2) the maximum absolute value of the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

��
�

Cr
ite

ri
on

���������� �����() =

��−1∈ {0,1}�,��−1,ℎ,�

ℎ, �

�

 � �−
1


⋮

��,1

��,2

�� ∈ ℝ��,��−1,�,�

 � �−
1

 � ��,��

 �

⋮

�� ∈ ℝ�,��,ℎ,�

ℎ, �

��,1

��,2

��,�� �

, ,()

 �

��∈ {0,1}�,��,ℎ,�

� �

ℎ, �

����
� ∈ ℝ��,ℎ,�

ℎ, �

� �

ℎ

�ℎ×ℎ ∑ℎ×� ��×�

×=
�

×

�������

Figure 4: Proposed pruning criterion based on the singular value of spatiotemporal spike activity.

x-th and (1−x)-th percentiles: Ψx(W
l) =max

(∣∣P1−x(W
l)
∣∣ , ∣∣Px(W

l)
∣∣); and (3) 1-norm mean

value:
∥Wl∥

1

|Wl| , where |Wl| is the number of entries in Wl. These three options can scale weights
to span the range of [−1, 1], thereby ensuring more efficient bit width utilization. The impact of
these three options on performance will be explored in the experimental section. Consequently, we
formulate the ReScaW-based uniform quantization as,

Wl ≈ γ ·
(

2

s(b)

⌈
s(b)

2
·
(
clamp(

Wl

γ
;−1, 1) + z

)⌋
− z

)
. (10)

We compare vanilla uniform quantization in the QP-SNN baseline with the ReScaW in Figure 2(a).
Clearly, the ReScaW method utilizes the allocated bit width more efficiently. This efficient bit-
width utilization preserves the discrimination of quantized weights, enhancing the representation
capability and performance of the QP-SNN baseline.

4.2 PRUNING CRITERION BASED ON THE SINGULAR VALUE OF SPIKE ACTIVITY

1 8 15 22 29 36 43 50 57 64
Channel index

1
2

3
4

5
B

at
ch

 in
de

x

ResNet20
500

1000

1500

2000

2500

3000

Figure 3: SCA assigns different scores to the same
kernel for different input samples. The colors in
the figure represent the value of importance score.

Problem analysis. The structured pruning
work (Li et al. (2024)) employing the SCA-
based criterion can produce high-performance
pruned models, but the performance is ensured
through multiple iterative pruning and regrowth
processes. In fact, we observe that the SCA-
based pruning criterion exhibits a high depen-
dency on inputs. Specifically, it generates vary-
ing importance scores for the same convolu-
tional kernel when processing different inputs.
To prove this observation, we plot the impor-
tance scores of different kernels under varying
inputs, as shown in Figure 3. The strong in-
put dependency of SCA criterion can lead to bi-
ases in kernel evaluation, posing a risk of erro-
neously identifying crucial kernels as insignif-
icant or misjudging unimportant kernels as essential. These misidentifications can affect the re-
liability of pruning, ultimately diminishing the performance of the QP-SNN baseline. Complete
importance scores are available in Appendix F.1.

SVS-based pruning criterion. Several studies suggest that the number of singular values corre-
lates with information richness (Sadek (2012); Baker (2005); Jaradat et al. (2021)). Inspired by this,
we propose a novel pruning criterion for QP-SNN baseline using the singular value of spike activity
(SVS) to remove redundant kernels precisely. As shown in Figure 4, the SVS-based criterion applies
singular value decomposition to the average spike matrix over a given time window T , defined as,

Sl,f
avg =

1

T

∑T

t=1
Sl,f [t] = PΣh×wQ

⊤, (11)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: The overall workflow of QP-SNN.
Input: Initial SNN model:M = {W1, · · · ,WL}; Bit width: b; Pruning channel ratio: r; Number of

training epoch: Nepoch; Number of training iteration per epoch: Itrain.
Output: The trained QP-SNNMq&p.

1 ▷ Step 1: Get quantized SNNMq by using the ReScaW-based uniform quantization;
2 for epoch← 1 to Nepoch do
3 for i← 1 to Itrain do
4 for l← 1 to L do
5 γ ∈ {max(|Wl|),Ψx(W

l), ∥Wl∥1
|Wl| }; ▷ The selection is fixed during training;

6 Wl
scaled = Wl

γ
; ▷ Rescale 32-bit weight parameters to a wide range;

7 Wl ≈ γ ·
(

2
s(b)

⌈
s(b)
2
·
(
clamp(W

l

γ
;−1, 1) + z

)⌋
− z

)
;

8 for t← 1 to T do
9 Calculate Ũl[t], Sl[t], and Ul[t] according to Eq.(1∼ 3)

10 end
11 end
12 Perform backpropagation and update the quantized model parametersMq;
13 end
14 end
15 ▷ Step 2: Get the pruned QP-SNNMq&p with the SVS-based pruning criterion;
16 for l← 1 to L do
17 Initialize an array F ;
18 for f ← 1 to nl do
19 Perform a inference process with mini-batch data, get spatiotemporal spike activity;
20 Get the singular value matrix Σ: 1

T

∑T
t=1 S

l,f [t] = PΣh×wQ
⊤;

21 Score(Wl,f) = EB

(∑min(H,W)
i=1 I(σi > ϵ)

)
;

22 F [f] = Score(Wl,f);
23 end
24 Iprun = ⌈r ∗ nl⌋; sindex = argsort(F)[Iprun :]; ▷ Select kernels with high score;
25 Wl

q&p ← Kernels with index in sindex;
26 end
27 function Finetune(Mq&p); ▷ Fine-tune the pruned model to optimize performance.

where h, w are the height and width of the spike matrix. P = [p1, . . . ,ph] ∈ Rh×h and Q =
[q1, . . . ,qw] ∈ Rw×w are orthogonal matrices representing the left and right singular vectors. Σ ∈
Rh×w is a diagonal matrix containing the singular values of Sl,f

avg in descending order, denoted as,

Σ = diag
(
σ1, σ2, · · · , σmin(h,w)

)
,

with σ1 ≥ σ2 ≥ · · · ≥ σr∗ ≥ ϵ > σr∗+1 ≥ · · · ≥ σmin(h,w) ≥ 0.
(12)

Here, ϵ serves as a threshold to distinguish significant and negligible singular values, and it is gen-
erally set to a positive value near zero. Based on the threshold ϵ, Sl,f

avg can be expressed as two

components: Sl,f
avg =

∑r∗

i=1 σipiq
⊤
i +

∑min(H,W)
i=r∗+1 σipiq

⊤
i . The first term captures the core feature

dictated by the significant singular values, while the second term reflects potentially noise-related
information (Jaradat et al. (2021)). Based on this decomposition, we define our pruning criterion as,

Score(Wl,f) = EB

(∑min(H,W)

i=1
I(σi > ϵ)

)
, (13)

where EB denotes the average over the mini-batch, and I(·) is the indicator function that counts
only significant singular values (those exceeding ϵ) for importance evaluation. We will demonstrate
in the experimental section that the proposed SVS-based pruning criterion achieves more accurate
removal of unimportant convolutional kernels.

By integrating the ReScaW strategy and the SVS-based pruning criterion into the baseline, we de-
velop QP-SNN, with its workflow outlined in Algorithm 1. In summary, the proposed QP-SNN is
lightweight and hardware-friendly, while also achieving high performance. Therefore, our QP-SNN
offers an efficient solution for applications in resource-constrained scenarios like edge computing
devices and low-power systems.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 EXPERIMENT

In this section, we first present the experiment setup, including the datasets, network structures, and
learning algorithms. Then, we evaluate the performance of our QP-SNN by comparing it to existing
methods. Finally, we conduct extensive ablation studies to verify the effectiveness of the proposed
ReScaW strategy and the SVS-based pruning criterion.

5.1 EXPERIMENT SETUP

We evaluate our method on image classification tasks, including static datasets like CIFAR-10,
CIFAR-100 (Krizhevsky et al. (2009)), TinyImageNet, and ImageNet-1k (Deng et al. (2009)), along-
side neuromorphic dataset DVS-CIFAR10 (Li et al. (2017)). These datasets serve as standard bench-
marks in machine learning and neuromorphic computing for evaluating various methods. For archi-
tecture, we use classical structures VGGNet and Spiking ResNet (Zheng et al. (2021)), with details
provided in Table 1. We use SEW-ResNet (Fang et al. (2021)) on ImageNet-1k for a fair comparison
with (Shi et al. (2024)). As for ϵ in Eq.(13), we observe minimal variation in the singular values, so
we set it to a small value of 1e-6 (Jaradat et al. (2021)). For the learning of QP-SNN, we use the
surrogate gradient (Wu et al. (2018)) and straight-through estimator (Bengio et al. (2013)) to handle
the nondifferentiability of spike and quantization. We provide additional details in the appendix,
with the learning algorithm described in Appendix D and experimental setups in Appendix G.

5.2 PERFORMANCE COMPARISON

As shown in Table 1, we compare QP-SNN with related work in performance and model size to
prove the effectiveness and efficiency. We use 8, 4, and 2-bit weight configurations in experiments
across all datasets. Compared to ANN2SNN conversion and hybrid algorithms, QP-SNN achieves
top-1 performance with fewer timesteps, such as 2 or 4 on static datasets. When compared to direct
algorithms, QP-SNN also performs well. On CIFAR-10 and CIFAR-100, QP-SNN outperforms
previous methods (Shi et al. (2024); Li et al. (2024)) with smaller models and shorter timesteps
(e.g., CIFAR-10: 1.61 MB, Acc=95.06%, T=2; CIFAR-100: 1.79 MB, Acc=75.13%, T=2). On
TinyImageNet, using the same timesteps and architecture, QP-SNN reduces model size by 90.26%
and increase accuracy by 3.71% compared to (Li et al. (2024)). On ImageNet, we are the first study
to report results for structured pruning in SNNs, achieving comparable performance to unstructured
pruning method (Shi et al. (2024)) with a 15.55% reduction in model size. On DVS-CIFAR10, QP-
SNN achieves an 88.55% smaller model size and a 0.2% higher accuracy compared to (Shi et al.
(2024)). To intuitively demonstrate QP-SNN’s improvements, we plot comparison results in Figure
1. These results show that QP-SNN achieves superior results in both efficiency and performance,
positioning it as a leading approach for compact and high-performance SNNs.

5.3 ABLATION STUDY

To prove the effectiveness of QP-SNN, we conduct extensive ablation studies. Firstly, we analyze
the three options for γ in the ReScaW strategy to select the optimal one. Then, we perform thorough
ablation experiments to validate the effectiveness of the proposed ReScaW strategy and SVS-based
pruning criterion. Finally, we visualize the effect of the ReScaW strategy and the SVS-based cri-
terion to demonstrate that they have effectively addressed the above mentioned issues. All ablation
experiments are conducted on the CIFAR-100 dataset using ResNet20 with 1.20 MB model size.

Analysis of three options for γ. We compare the performance of quantized SNNs (not involve
pruning process) with different γ settings to determine the optimal one as the default experimental
setting. As depicted in Figure 5(a), the quantized SNN using max(|Wl|) achieves an accuracy of
77.85%, the one using Ψx(W

l) achieves an accuracy of 77.8%, and the one using
∥∥Wl

∥∥
1
/|Wl|

achieves an accuracy of 79.16%. Clearly, the accuracy differences between them are minimal, with
the 1-norm mean value performs best. This may be because

∥∥Wl
∥∥
1
/|Wl| can effectively capture the

characteristics of the full precision distribution (Rastegari et al. (2016); Qin et al. (2020)). Therefore,
we choose the 1-norm mean value as the default experimental setting.

Effectiveness of two proposed methods. As shown in Table 2, we conduct extensive ablation ex-
periments to validate the effectiveness of two proposed methods in QP-SNN, i.e., the ReScaW strat-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison on static and neuromorphic datasets. Note: ‘H’, ‘D’, and ‘C’
represent hybrid, direct, and conversion learning, respectively. ‘HardF’ denotes ‘hardware-friendly’.
Dataset Method Network Train Bits HardF Accuracy(%) Timestep Size (MB)

C
IF

A
R

-1
0

Chowdhury et al. (2021)
[IJCNN21]

VGG-9 H 32 ! 90.02 100 44.52
H 5 ! 88.60 25 12.59

Deng et al. (2021)
[TNNLS21]

7Conv2FC D 32 % 90.19 8 62.16
D 3 % 87.59 8 5.84

Shi et al. (2024)
[ICLR24]

6Conv2FC D 32 % 92.63 8 50.28
D 32 % 90.65 8 28.40

Li et al. (2024)
[ICML24]

VGG-16 D 32 ! 91.67 4 17.32
D 32 ! 90.26 4 5.68

Proposed QP-SNN
ResNet20 D 8, 4, 2 ! 95.12, 95.41, 95.06 2 6.27, 3.16, 1.61

D 8, 4, 2 ! 94.56, 94.65, 94.44 2 3.92, 1.98, 1.02

VGG-16 D 8, 4, 2 ! 91.98, 91.90, 91.61 4 4.28, 2.16, 1.10
D 8, 4, 2 ! 91.30, 91.19, 90.59 4 1.45, 0.74, 0.39

C
IF

A
R

-1
00

Chowdhury et al. (2021)
[IJCNN21]

VGG-11 H 32 ! 67.80 50 75.90
H 5 ! 66.20 30 25.43

Deng et al. (2021)
[TNNLS21]

7Conv2FC D 3 % 57.83 8 11.75
D 1 % 55.95 8 5.99

Shi et al. (2024)
[ICLR24]

ResNet18 D 32 % 72.34 4 13.18
D 32 % 70.45 4 7.67

Li et al. (2024)
[ICML24]

VGG-16 D 32 ! 65.53 4 14.40
D 32 ! 64.64 4 9.48

Proposed QP-SNN
ResNet20 D 8, 4, 2 ! 75.29, 75.77, 75.13 2 6.45, 3.35, 1.79

D 8, 4, 2 ! 74.78, 74.73, 73.89 2 4.10, 2.17, 1.20

VGG-16 D 8, 4, 2 ! 66.69, 66.21, 65.69 4 2.48, 1.35, 0.79
D 8, 4, 2 ! 64.70, 64.22, 63.08 4 1.85, 1.04, 0.63

Ti
ny

Im
ag

eN
et Kundu et al. (2021)

[WACV21]
VGG-16 C 32 % 52.70 150 24.21

Li et al. (2024)
[ICML24]

VGG-16 D 32 ! 49.36 4 27.92
D 32 ! 49.14 4 19.76

Proposed QP-SNN VGG-16 D 8, 4, 2 ! 53.32, 53.11, 53.07 4 5.90, 3.78, 2.72
D 8, 4, 2 ! 51.99, 51.78, 51.67 4 4.67, 3.17, 2.41

Im
ag

eN
et Shi et al. (2024)

[ICLR24]
ResNet18

D 32 % 61.89 4 15.72
D 32 % 60.00 4 12.40
D 32 % 58.99 4 10.48

Proposed QP-SNN ResNet18 D 8 ! 61.36 4 13.28
D 4 ! 58.06 4 7.71

D
V

S-
C

IF
A

R
10

Shi et al. (2024)
[ICLR24]

VGGSNN D 32 % 81.90 10 14.08
D 32 % 78.30 10 7.24

Li et al. (2024)
[ICML24]

5Conv1FC D 32 ! 73.00 20 3.92
D 32 ! 71.90 20 0.32

Proposed QP-SNN VGGSNN
D 8, 4, 2 ! 82.10, 81.80, 81.30 10 1.61, 0.90, 0.55
D 8, 4, 2 ! 81.50, 80.90, 80.50 10 1.05, 0.62, 0.41
D 8, 4, 2 ! 75.90, 75.40, 74.90 10 0.40, 0.29, 0.24

egy and the SVS-based pruning criterion. First, we demonstrate the effectiveness of the ReScaW
strategy. A and B are models that apply vanilla and ReScaW quantization for SNN respectively,
without involving pruning process. Their comparison shows that ReScaW-based quantization im-
proves the performance of the quantized SNN by 0.63% over vanilla quantization, highlighting its
effectiveness. Moreover, the comparison between Models C and D indicates that merely replac-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

max(|Wl|) x(Wl) Wl 1
|Wl|

73.0
74.4
75.8
77.2
78.6
80.0

A
cc

ur
ac

y(
%

)

77.85 77.8
79.16

(a) Analysis of three options for γ

Channel index

(b) Kernel scores with SVS criterion

2 0 20

2

4

6
1e4

VGG-16

Conv4
ReScaW-based
Vanilla

2 0 20

2

4

1e5

VGG-16

Conv10
ReScaW-based
Vanilla

2 0 20.0

0.5

1.0

1e6

VGG-16

Conv16
ReScaW-based
Vanilla

2 0 20

1

2

3

1e4

ResNet20

Layer1.0.Conv1
ReScaW-based
Vanilla

2 0 20.0

0.5

1.0

1e5

ResNet20

Layer2.0.Conv1
ReScaW-based
Vanilla

2 0 20

2

4

6
1e5

ResNet20

Layer3.0.Conv1
ReScaW-based
Vanilla

(c) Weight distribution with ReScaW-based quantization

Figure 5: Visualization of ablation experiments.

Table 2: Ablation study on the effectiveness of two proposed methods. Note: ‘Increment’ represents
the accuracy improvement relative to the specified model; ‘ r.w./ ’ denotes ‘replaced with’.

Model Accuracy(%) Compared to Increment(%)
A. only vanilla quant 78.53 - -
B. only ReScaW quant 79.16 A. 0.63 ↑
C. baseline 69.16 - -
D. r.w./ ReScaW 73.40 C. 4.24 ↑
E. r.w./ SVS 73.32 C. 4.16 ↑
F. r.w./ ReScaW & SVS 73.89 C. 4.73 ↑

ing the quantization in the baseline also results in a significant performance gain of 4.24%, further
validating the ReScaW strategy. Second, we demonstrate the effectiveness of the SVS-based prun-
ing criterion. The comparison between Models C and E reveals that the SVS criterion enhances
the baseline performance by 4.16%, confirming its ability to remove kernels accurately and preserve
model performance. By integrating these two methods into baseline, the performance is significantly
improved by 4.73%, underscoring their importance for preserving QP-SNN performance.

Impact of the ReScaW strategy and the SVS-based pruning criterion. To demonstrate that the
ReScaW strategy and SVS-based criterion effectively address the previously mentioned issues, we
present the weight distribution and importance scores of QP-SNN. We depict the weight distribu-
tion of QP-SNN in Figure 5(c). This indicates that ReScaW-based quantization results in a broader
weight distribution compared to vanilla quantization, indicating improved bit-width utilization effi-
ciency. In addition, Figure 5(b) depicts the importance scores of QP-SNN, showing that the SVS-
based pruning criterion produces stable scores with minimal fluctuation across different inputs. This
input-insensitive characteristic enables QP-SNN to remove redundant kernels accurately. Complete
visualization of weight distributions and kernel scores are provided in Appendix E.2 and F.2.

6 CONCLUSION

SNNs offer energy-efficient solutions for artificial intelligence. However, the current SNN commu-
nity focuses mainly on building large-scale SNNs to increase performance, which limits their feasi-
bility in resource-constrained edge devices. To tackle this limitation, we first developed a QP-SNN
baseline using uniform quantization and structured pruning, which significantly reduces resource
usage. Furthermore, we analyzed and addressed the underlying issues of the QP-SNN baseline in
quantization and pruning to improve performance. For quantization, we revealed that the vanilla
uniform quantization suffers from limited representation capability due to inefficient bit-width uti-
lization and proposed a weight rescaling strategy to resolve it. For pruning, we observed that the
SCA criterion exhibits low robustness on inputs and introduced a novel criterion using the singular
value of spike activity to remove unimportant kernels more accurately. By integrating the ReScaW
and SVS pruning criteria, our QP-SNN achieved superior efficiency and performance, demonstrating
its potential for advancing neuromorphic intelligent systems and edge computing.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla,
Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: Design and tool
flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE transactions on
computer-aided design of integrated circuits and systems, 34(10):1537–1557, 2015.

Kirk Baker. Singular value decomposition tutorial. The Ohio State University, 24:22, 2005.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. arXiv preprint arXiv:1711.05136, 2017.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision by
half-wave gaussian quantization. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5918–5926, 2017.

Yanqi Chen, Zhaofei Yu, Wei Fang, Zhengyu Ma, Tiejun Huang, and Yonghong Tian. State tran-
sition of dendritic spines improves learning of sparse spiking neural networks. In International
Conference on Machine Learning, pp. 3701–3715. PMLR, 2022.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Sayeed Shafayet Chowdhury, Isha Garg, and Kaushik Roy. Spatio-temporal pruning and quantiza-
tion for low-latency spiking neural networks. In 2021 International Joint Conference on Neural
Networks (IJCNN), pp. 1–9. IEEE, 2021.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Lei Deng, Yujie Wu, Yifan Hu, Ling Liang, Guoqi Li, Xing Hu, Yufei Ding, Peng Li, and Yuan Xie.
Comprehensive snn compression using admm optimization and activity regularization. IEEE
transactions on neural networks and learning systems, 34(6):2791–2805, 2021.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

Terrance DeVries. Improved regularization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017.

Yifu Ding, Haotong Qin, Qinghua Yan, Zhenhua Chai, Junjie Liu, Xiaolin Wei, and Xianglong Liu.
Towards accurate post-training quantization for vision transformer. In Proceedings of the 30th
ACM international conference on multimedia, pp. 5380–5388, 2022.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems,
34:21056–21069, 2021.

Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE transactions on pattern analysis and machine intelligence, 2023.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. IEEE
Signal processing magazine, 29(6):82–97, 2012.

Yangfan Hu, Qian Zheng, and Gang Pan. Bitsnns: Revisiting energy-efficient spiking neural net-
works. IEEE Transactions on Cognitive and Developmental Systems, 2024.

Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions on neural networks,
14(6):1569–1572, 2003.

Sambhav Jain, Albert Gural, Michael Wu, and Chris Dick. Trained quantization thresholds for
accurate and efficient fixed-point inference of deep neural networks. Proceedings of Machine
Learning and Systems, 2:112–128, 2020.

Yousef Jaradat, Mohammad Masoud, Ismael Jannoud, Ahmad Manasrah, and Mohammad Alia. A
tutorial on singular value decomposition with applications on image compression and dimension-
ality reduction. In 2021 international conference on information technology (ICIT), pp. 769–772.
IEEE, 2021.

Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. Spiking-yolo: spiking neural
network for energy-efficient object detection. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 11270–11277, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Uday Kulkarni, Abhishek S Hosamani, Abhishek S Masur, Shashank Hegde, Ganesh R Vernekar,
and K Siri Chandana. A survey on quantization methods for optimization of deep neural networks.
In 2022 international conference on automation, computing and renewable systems (ICACRS), pp.
827–834. IEEE, 2022.

Souvik Kundu, Gourav Datta, Massoud Pedram, and Peter A Beerel. Spike-thrift: Towards energy-
efficient deep spiking neural networks by limiting spiking activity via attention-guided compres-
sion. In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp.
3953–3962, 2021.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–50. Springer, 2002.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:244131, 2017.

Yaxin Li, Qi Xu, Jiangrong Shen, Hongming Xu, Long Chen, and Gang Pan. Towards efficient
deep spiking neural networks construction with spiking activity based pruning. arXiv preprint
arXiv:2406.01072, 2024.

Yuhang Li, Youngeun Kim, Hyoungseob Park, Tamar Geller, and Priyadarshini Panda. Neuromor-
phic data augmentation for training spiking neural networks. In Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part VII, pp.
631–649. Springer, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Qianhui Liu, Jiaqi Yan, Malu Zhang, Gang Pan, and Haizhou Li. Lite-snn: Designing lightweight
and efficient spiking neural network through spatial-temporal compressive network search and
joint optimization. arXiv preprint arXiv:2401.14652, 2024.

Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and spike-
driven inference spiking neural network for high-performance and energy-efficient object detec-
tion. arXiv preprint arXiv:2407.20708, 2024.

Eustace Painkras, Luis A Plana, Jim Garside, Steve Temple, Francesco Galluppi, Cameron Patter-
son, David R Lester, Andrew D Brown, and Steve B Furber. Spinnaker: A 1-w 18-core system-
on-chip for massively-parallel neural network simulation. IEEE Journal of Solid-State Circuits,
48(8):1943–1953, 2013.

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
architecture. Nature, 572(7767):106–111, 2019.

Yijian Pei, Changqing Xu, Zili Wu, and Yintang Yang. Albsnn: ultra-low latency adaptive local bi-
nary spiking neural network with accuracy loss estimator. Frontiers in Neuroscience, 17:1225871,
2023.

Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: opportunities and chal-
lenges. Frontiers in neuroscience, 12, 2018.

Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary neural
networks: A survey. Pattern Recognition, 105:107281, 2020.

Haotong Qin, Yifu Ding, Mingyuan Zhang, Qinghua Yan, Aishan Liu, Qingqing Dang, Ziwei Liu,
and Xianglong Liu. Bibert: Accurate fully binarized bert. arXiv preprint arXiv:2203.06390,
2022.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016.

Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Stdp-based pruning of connections and weight
quantization in spiking neural networks for energy-efficient recognition. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 38(4):668–677, 2018.

Babak Rokh, Ali Azarpeyvand, and Alireza Khanteymoori. A comprehensive survey on model
quantization for deep neural networks in image classification. ACM Transactions on Intelligent
Systems and Technology, 14(6):1–50, 2023.

Deboleena Roy, Indranil Chakraborty, and Kaushik Roy. Scaling deep spiking neural networks with
binary stochastic activations. In 2019 IEEE International Conference on Cognitive Computing
(ICCC), pp. 50–58. IEEE, 2019a.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019b.

Rowayda A Sadek. Svd based image processing applications: state of the art, contributions and
research challenges. arXiv preprint arXiv:1211.7102, 2012.

Xinyu Shi, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Towards energy efficient spiking neu-
ral networks: An unstructured pruning framework. In The Twelfth International Conference on
Learning Representations, 2024.

Martino Sorbaro, Qian Liu, Massimo Bortone, and Sadique Sheik. Optimizing the energy consump-
tion of spiking neural networks for neuromorphic applications. Frontiers in neuroscience, 14:
516916, 2020.

Sunil Vadera and Salem Ameen. Methods for pruning deep neural networks. IEEE Access, 10:
63280–63300, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yixuan Wang, Yang Xu, Rui Yan, and Huajin Tang. Deep spiking neural networks with binary
weights for object recognition. IEEE Transactions on Cognitive and Developmental Systems, 13
(3):514–523, 2020.

Yuanyuan Wang, Chao Wang, Hong Zhang, Yingbo Dong, and Sisi Wei. A sar dataset of ship
detection for deep learning under complex backgrounds. remote sensing, 11(7):765, 2019.

Wenjie Wei, Yu Liang, Ammar Belatreche, Yichen Xiao, Honglin Cao, Zhenbang Ren, Guoqing
Wang, Malu Zhang, and Yang Yang. Q-snns: Quantized spiking neural networks. arXiv preprint
arXiv:2406.13672, 2024.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Sheng Xu, Anran Huang, Lei Chen, and Baochang Zhang. Convolutional neural network pruning:
A survey. In 2020 39th Chinese Control Conference (CCC), pp. 7458–7463. IEEE, 2020.

Jiaqi Yan, Qianhui Liu, Malu Zhang, Lang Feng, De Ma, Haizhou Li, and Gang Pan. Efficient
spiking neural network design via neural architecture search. Neural Networks, 173:106172,
2024.

Man Yao, Jiakui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, Bo Xu, and Guoqi
Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design
of next-generation neuromorphic chips. arXiv preprint arXiv:2404.03663, 2024a.

Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
transformer. Advances in neural information processing systems, 36, 2024b.

Hang Yin, John Boaz Lee, Xiangnan Kong, Thomas Hartvigsen, and Sihong Xie. Energy-efficient
models for high-dimensional spike train classification using sparse spiking neural networks. In
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp.
2017–2025, 2021.

Ruokai Yin, Yuhang Li, Abhishek Moitra, and Priyadarshini Panda. Mint: Multiplier-less integer
quantization for energy efficient spiking neural networks. In 2024 29th Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 830–835. IEEE, 2024a.

Yujia Yin, Xinyi Chen, Chenxiang Ma, Jibin Wu, and Kay Chen Tan. Efficient online learning for
networks of two-compartment spiking neurons. arXiv preprint arXiv:2402.15969, 2024b.

Shimin Zhang, Qu Yang, Chenxiang Ma, Jibin Wu, Haizhou Li, and Kay Chen Tan. Tc-lif: A two-
compartment spiking neuron model for long-term sequential modelling. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pp. 16838–16847, 2024.

Xiangguo Zhang, Haotong Qin, Yifu Ding, Ruihao Gong, Qinghua Yan, Renshuai Tao, Yuhang Li,
Fengwei Yu, and Xianglong Liu. Diversifying sample generation for accurate data-free quanti-
zation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 15658–15667, 2021.

Yichi Zhang, Zhiru Zhang, and Lukasz Lew. Pokebnn: A binary pursuit of lightweight accuracy.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12475–12485, 2022.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 11062–11070, 2021.

Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Zhengyu Ma, Han Zhang, Huihui Zhou, and Yonghong
Tian. Spikingformer: Spike-driven residual learning for transformer-based spiking neural net-
work. arXiv preprint arXiv:2304.11954, 2023.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. arXiv
preprint arXiv:1612.01064, 2016.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ANALYSIS ON THE ORDER OF QUANTIZATION AND PRUNING

When two or more model lightweight techniques are employed, compatibility issues often arise,
such as the order of applying these techniques and the training strategies involved. In this paper, we
adpot the ‘quantize first, then prune’ strategy based on the following two considerations. First, this
strategy can better guarantee the effect of pruning technique. Specifically, if pruning is applied be-
fore quantization, important convolutional kernels identified in the full-precision parameter domain
may become misaligned after quantization, as the quantization reintroduces additional errors. In
contrast, by quantizing first and then pruning, redundant convolutional kernels are identified directly
in the target low-precision parameter domain. This order allows for more accurate identification
and preservation of critical kernels. Second, this strategy significantly reduces training overhead.
Pruning before quantization requires three weight updates: ‘full-precision SNN training→ pruning
with fine-tuning → quantization with fine-tuning,’ while ‘quantize first, then prune’ only requires
two adjustments: ‘quatized SNN training→ pruning with fine-tuning.’

In addition to the theoretical analysis, we have also conducted experiments by reversing the order of
quantization and pruning, termed PQ-SNN, to validate the effectiveness of QP-SNN. Experiments
are performed on the CIFAR-100 with ResNet20 under the bit-width of 4. We summarize the experi-
mental results in Table 3, from which two conclusions can be obtained. First, the proposed ReScaW
and SVS can improve both performance, regardless of the order in which they are applied, leading
to a 1.83% improvement in PQ-SNN and a 4.46% improvement in QP-SNN. This proves the ef-
fectiveness of our ReScaW and SVS methods. Second, QP-SNN achieves the highest performance
(surpassing PQ-SNN by 1.39%), demonstrating that ‘quantize first, then prune’ is more effective.

Table 3: Ablation study on the order of quantization and pruning.
Method PQ-SNN baseline PQ-SNN QP-SNN baseline QP-SNN

Accuracy 71.51% 73.34%(baseline+1.83%) 70.27% 74.73%(baseline+4.46%)

B SCALABILITY OF QP-SNN TO COMPLEX ARCHITECTURES AND TASKS

QP-SNN can be extended to complex architectures like Transformer and complex tasks like object
detection. The reason we choose the ResNet and simple classification tasks is to facilitate a com-
prehensive comparison with advanced compression methods in SNNs (Li et al. (2024); Shi et al.
(2024)). In this section, we have conducted two additional experiments: (1) using the Spiking-
former (Zhou et al. (2023)) architecture, and (2) applying our method to an object detection task, to
prove the scalability of QP-SNN to complex architectures and tasks.

Experiments with the Spikingformer architecture. We select the Spikingformer-4-384 structure
and validate it on the CIFAR-10 dataset. The training setups are consistent with the original paper
(Zhou et al. (2023)). Experimental results are shown in Table 4, where our method achieves a
87.93% reduction in model size, a 55.48% decrease in SOPs, and a 55.64% reduction in power
consumption, while maintaining an excellent performance of 76.94%. These results fully validate
the effectiveness of QP-SNN for complex Spiking Transformer architecture.

Table 4: Performance on the Spikingformer architecture.
Architecture Method Connection Bit Model size (MB) SOPs (M) Power (mJ) Accuracy

Spikingformer-4-384 Full-precision 100% 16 18.64 292.14 0.266 79.09%
Spikingformer-4-384 QP-SNN 44.74% 4 2.25 130.05 0.118 76.94%

Object detection validation. We conduct object detection experiments on two remote sensing
datasets SSDD (Wang et al. (2019)) and NWPU VHR-10 (Cheng et al. (2017)). The SSDD dataset
focuses on ship detection imagery acquired through synthetic aperture radar. The NWPU VHR-
10 is a high-resolution remote sensing image object detection dataset containing ten object classes,
including airplane, ship, storage tank, baseball diamond, tennis court, basketball court, ground track
field, harbor, bridge and vehicle. In our experiments, we adopt the YOLO-v3 detection architecture
with ResNet10 as the backbone. During training, we perform the pruning operation on the backbone
and employ the SGD optimizer with a polynomial decay learning rate schedule, initializing the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 6: The detection result of QP-SNN on the NWPU-10 dataset.

learning rate at 1e-2 and training for 300 epochs. Results are shown in Table 5, where QP-SNN
achieves a significant reduction in model size while maintaining satisfactory detection performance.
This fully demonstrates the potential of our approach to extend to more challenging tasks.

Table 5: Object detection results of QP-SNN on SSDD and NWPU VHR-10.
Dataset Method Bit Model size (MB) mAP@0.5

SSDD
(Wang et al. (2019))

Full-precision 32 19.29 96.80%
QP-SNN 4 2.15 97.10%

NWPU VHR-10
(Cheng et al. (2017))

Full-precision 32 19.29 89.89%
QP-SNN 4 2.15 86.68%

C EFFICIENCY VALIDATION OF QP-SNN

Model compression aims to optimize efficiency during the inference phase, facilitating efficient
deployment on resource-constrained devices. Therefore, we present the key efficiency metrics of
QP-SNN during inference, including model size, SOPs, power consumption, and accuracy, to verify
the efficiency advantage of QP-SNN.

We first present a comparison of our model with the full-precision uncompressed SNN counterparts.
The results are summarized in Table 7. We acknowledge that our method exhibits accuracy loss
compared to uncompressed SNNs. However, this performance degradation is a common challenge
in the field of model compression. Fortunately, QP-SNN demonstrates satisfactory performance
under extreme compression ratios. For example, on the CIFAR-10 dataset, under the extreme con-
nection ratio of 9.61%, QP-SNN reduces the model size by 98.74%, SOPs by 78.69%, and power
consumption by 77.45%, while the accuracy decreases by only 2.44%. This trade-off between per-
formance degradation and resource efficiency is highly advantageous in edge computing scenarios.

Table 6: Efficiency metrics comparison of QP-SNN with full-precision uncompressed SNN.
Architecture Connection Bit Model size (MB) SOPs (M) Power (mJ) Accuracy

CIFAR-10 VGG-16 100% 32 58.88 54.60 0.204 93.63%
VGG-16 9.61% 4 0.74 11.63 0.046 91.19%

CIFAR-100 ResNet20 100% 32 68.4 415.64 0.756 79.49%
ResNet20 22.69% 4 2.17 131.53 0.126 74.73%

We then add a comparison of our method with related studies on CIFAR-10. Experimental results are
shown in Table 7. It can be seen that QP-SNN exhibits competitive SOPs compared to compression
work in the SNN domain, and exhibits extremely low model size due to quantization. Moreover, it
is worth noting that the advanced works (Deng et al. (2021); Shi et al. (2024)) focus on unstructured
pruning, which typically achieves higher sparsity and performance but requires specialized hardware
support. In contrast, our work adopts uniform quantization and structured pruning, balancing the
advantages of sparsity, performance, and hardware compatibility.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 7: Efficiency metrics comparison of QP-SNN with related studies on the CIFAR-10 dataset.
Method Architecture Time step HardF Model size (MB) SOPs (M)

Deng et al. (2021) [TNNLS21] 7Conv2FC 8 % 62.16 107.97
Shi et al. (2024) [ICLR24] 6Conv2FC 8 % 33.76 11.98
Li et al. (2024) [ICML24] VGG-16 4 ! 5.68 -

QP-SNN VGG-16 4 ! 0.74 11.63

D LEARNING ALGORITHM FOR QP-SNN

In this section, we introduce the learning algorithm for the QP-SNN. We use the spatio-temporal
backpropagation (STBP) (Wu et al. (2018)) and the straight-through estimator (STE) (Bengio et al.
(2013)) methods to solve the non-differentiability of the spike generation function and quantization.

Training QP-SNNs requires calculating the gradient of the loss function with respect to the synaptic
weight. In this work, we use the STBP learning algorithm, which performs gradient propagation in
both spatial and temporal dimensions. By applying the chain rule, STBP computes the derivative of
the loss function L with respect to synaptic weights Wl through the following equation,

∂L
∂Wl

=

T∑
t=1

∂L
∂Sl+1[t]

∂Sl+1[t]

∂Ul+1[t]

(
∂Ul+1[t]

∂Wl
+

∑
τ<t

τ∏
i=t−1

(
∂Ul+1[i+ 1]

∂Ul+1[i]
+

∂Ul+1[i+ 1]

∂Sl+1[i]

∂Sl+1[i]

∂Ul+1[i]

)
∂Ul+1[τ]

∂Wl

)
,

(14)

where the derivative of the loss function with respect to the spike ∂L
∂Sl+1[t]

is obtained in an iterative

manner. The terms of ∂Ul+1[t]
∂Wl , ∂Ul+1[i+1]

∂Ul+1[i]
and ∂Ul+1[i+1]

∂Sl+1[i]
can be computed from Eq.(1). Unfortu-

nately, the direct training of SNNs faces a distinct challenge due to the non-differentiable nature of
the spiking (i.e. firing) mechanism. Specifically, the term of ∂Sl+1[t]

∂Ul+1[t]
represents the gradient of the

spike generation function (described in Eq. (2)). This function evaluates to infinity at the moment
of spike emission and to zero elsewhere, making it incompatible with the traditional error back-
propagation used in ANN training. STBP addresses this non-differentiability problem by employing
surrogate gradients to approximate the true gradient Wu et al. (2018). In this paper, we use the trian-
gular surrogate function (Deng et al. (2022)), described as ∂Sl+1[t]

∂Ul+1[t]
= 1

a max
(
a− |Ul+1[t]− θ|, 0

)
,

where a is the coefficient that controls the width of the gradient window. In this paper, we use the
cross-entropy loss function to access the difference between the predicted probability distribution

and the true label, given by, L = −
∑NL

i=1 yi log

(
exp(1

T

∑T
t=1 ŨL

i [t])∑
j exp(1

T

∑T
t=1 ŨL

j [t])

)
, where NL is the number

of classes and yi ∈ {0, 1} is the label for the i-th neuron in the last layer. Moreover, to solve the
non-differentiability of quantization, we use the STE method (Hinton et al. (2012); Bengio et al.
(2013)), expressed as, ∂Wl

∂Wl
int

= 1|Wl|≤1. By using the surrogate gradient function and STE, the
proposed QP-SNN can be trained directly with gradient backpropagation.

E COMPLETE WEIGHT DISTRIBUTION COMPARISON

E.1 VANILLA UNIFORM QUANTIZATION

We present the weight distributions of models utilizing vanilla uniform quantization across multiple
datasets and architectures, such as ResNet20 on CIFAR100, VGG-16 on TinyImageNet, and VG-
GSNN on DVS-CIFAR10. In addition to the weight distribution, we also label the 1st and 99th
percentiles of each layer’s weights in the figure to determine the value of a. Based on the value of a
and the utilization rate equation s(b)·a+1

s(b)+1 in Sec. 4.1, we calculate the bit-width utilization for each
model. In these calculations, we consider an 8-bit weight configuration, i.e., s(b) = 256.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The weight distribution of ResNet20 on the CIFAR-100 dataset is presented in Figure 7. It can be
seen from this figure that only the weight distribution of the first layer is relatively wide, with an a
value of 0.7, which corresponds to a bit-width utilization rate of 70.12%. In contrast, the a value
for the subsequent layers are predominantly around 0.2, resulting in a significantly lower bit-width
utilization rate of approximately 20.31%.

0.5 0.0 0.50.0

0.5

1.0

1e2

ResNet20

P0.99(Wl) = 0.70
P0.01(Wl) = -0.65

Conv1

0.5 0.0 0.50.0

0.5

1.0
1e4

ResNet20

P0.99(Wl) = 0.26
P0.01(Wl) = -0.24

Layer1.0.Conv1

0.5 0.0 0.50

1

2

1e4

ResNet20

P0.99(Wl) = 0.19
P0.01(Wl) = -0.19

Layer1.0.Conv2

0.5 0.0 0.50

1

2

1e4

ResNet20

P0.99(Wl) = 0.20
P0.01(Wl) = -0.20

Layer1.1.Conv1

0.5 0.0 0.50

1

2
1e4

ResNet20

P0.99(Wl) = 0.18
P0.01(Wl) = -0.19

Layer1.1.Conv2

0.5 0.0 0.50

1

2 1e4

ResNet20

P0.99(Wl) = 0.21
P0.01(Wl) = -0.21

Layer1.2.Conv1

0.5 0.0 0.50

1

2
1e4

ResNet20

P0.99(Wl) = 0.19
P0.01(Wl) = -0.20

Layer1.2.Conv2

0.5 0.0 0.50

2

4

1e4

ResNet20

P0.99(Wl) = 0.18
P0.01(Wl) = -0.16

Layer2.0.Conv1

0.5 0.0 0.50.0

0.5

1.0 1e5

ResNet20

P0.99(Wl) = 0.15
P0.01(Wl) = -0.15

Layer2.0.Conv2

0.5 0.0 0.50.0

2.5

5.0

7.5

1e4

ResNet20

P0.99(Wl) = 0.17
P0.01(Wl) = -0.16

Layer2.1.Conv1

0.5 0.0 0.50.0

2.5

5.0

7.5

1e4

ResNet20

P0.99(Wl) = 0.16
P0.01(Wl) = -0.16

Layer2.1.Conv2

0.5 0.0 0.50.0

2.5

5.0

7.5

1e4

ResNet20

P0.99(Wl) = 0.17
P0.01(Wl) = -0.17

Layer2.2.Conv1

0.5 0.0 0.50.0

2.5

5.0

7.5

1e4

ResNet20

P0.99(Wl) = 0.16
P0.01(Wl) = -0.16

Layer2.2.Conv2

0.5 0.0 0.50

1

2
1e5

ResNet20

P0.99(Wl) = 0.15
P0.01(Wl) = -0.15

Layer3.0.Conv1

0.5 0.0 0.50

2

4
1e5

ResNet20

P0.99(Wl) = 0.14
P0.01(Wl) = -0.14

Layer3.0.Conv2

0.5 0.0 0.50

1

2

3

1e5

ResNet20

P0.99(Wl) = 0.16
P0.01(Wl) = -0.16

Layer3.1.Conv1

0.5 0.0 0.50

1

2

3

1e5

ResNet20

P0.99(Wl) = 0.15
P0.01(Wl) = -0.16

Layer3.1.Conv2

0.5 0.0 0.50

2

4
1e5

ResNet20

P0.99(Wl) = 0.14
P0.01(Wl) = -0.15

Layer3.2.Conv1

0.5 0.0 0.50

2

4

1e5

ResNet20

P0.99(Wl) = 0.12
P0.01(Wl) = -0.13

Layer3.2.Conv2

Figure 7: Weight distribution: vanilla uniform quantization, ResNet20, CIFAR-100.

The weight distribution of VGG-16 on TinyImagenet is illustrated in Figure 8. From this figure,
it can be revealed that the weight distribution of each layer is broader than ResNet20 on CIFAR-
100. However, the maximum a value is 0.64, which corresponds to a bit-width utilization rate of
approximately 64.14%. This result indicates it is still quite far from full utilization.

0.5 0.0 0.50

1

2
1e2

VGG-16

P0.99(Wl) = 0.64
P0.01(Wl) = -0.63

Conv0

0.5 0.0 0.50

1

2
1e3

VGG-16

P0.99(Wl) = 0.58
P0.01(Wl) = -0.61

Conv1

0.5 0.0 0.50

2

4 1e3

VGG-16

P0.99(Wl) = 0.47
P0.01(Wl) = -0.63

Conv3

0.5 0.0 0.50

2

4

6

1e3

VGG-16

P0.99(Wl) = 0.48
P0.01(Wl) = -0.64

Conv4

0.5 0.0 0.50.0

0.5

1.0

1.5
1e4

VGG-16

P0.99(Wl) = 0.48
P0.01(Wl) = -0.61

Conv6

0.5 0.0 0.50

1

2

1e4

VGG-16

P0.99(Wl) = 0.47
P0.01(Wl) = -0.61

Conv7

0.5 0.0 0.50

1

2

1e4

VGG-16

P0.99(Wl) = 0.46
P0.01(Wl) = -0.60

Conv8

0.5 0.0 0.50

2

4

1e4

VGG-16

P0.99(Wl) = 0.47
P0.01(Wl) = -0.57

Conv10

0.5 0.0 0.50.0

0.5

1.0
1e5

VGG-16

P0.99(Wl) = 0.47
P0.01(Wl) = -0.57

Conv11

0.5 0.0 0.50.0

0.5

1.0
1e5

VGG-16

P0.99(Wl) = 0.47
P0.01(Wl) = -0.57

Conv12

0.5 0.0 0.50.0

0.5

1.0
1e5

VGG-16

P0.99(Wl) = 0.48
P0.01(Wl) = -0.57

Conv14

0.5 0.0 0.50.0

0.5

1.0
1e5

VGG-16

P0.99(Wl) = 0.48
P0.01(Wl) = -0.57

Conv15

0.5 0.0 0.50.0

0.5

1.0
1e5

VGG-16

P0.99(Wl) = 0.49
P0.01(Wl) = -0.56

Conv16

Figure 8: Weight distribution: vanilla quantization, VGG-16, TinyImageNet.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The weight distribution of VGGSNN on DVS-CIFAR10 is displayed in Figure 9. As can be seen
from the figure, the maximum a value is 0.44 (Conv1), corresponding to a bit width utilization rate of
44.22%. Moreover, the a value of subsequent layers is mainly around 0.3, resulting in a significantly
lower bit width utilization rate of about 30.27%.

0.5 0.0 0.50

25

50

75

VGG-16

P0.99(Wl) = 0.30
P0.01(Wl) = -0.34

Conv0

0.5 0.0 0.50

2

4

6
1e3

VGG-16

P0.99(Wl) = 0.27
P0.01(Wl) = -0.44

Conv1

0.5 0.0 0.50

1

2

1e4

VGG-16

P0.99(Wl) = 0.26
P0.01(Wl) = -0.34

Conv3

0.5 0.0 0.50

2

4

1e4

VGG-16

P0.99(Wl) = 0.24
P0.01(Wl) = -0.33

Conv4

0.5 0.0 0.50.0

0.5

1.0
1e5

VGG-16

P0.99(Wl) = 0.24
P0.01(Wl) = -0.31

Conv6

0.5 0.0 0.50

1

2
1e5

VGG-16

P0.99(Wl) = 0.24
P0.01(Wl) = -0.31

Conv7

0.5 0.0 0.50

1

2
1e5

VGG-16

P0.99(Wl) = 0.25
P0.01(Wl) = -0.31

Conv9

0.5 0.0 0.50

1

2
1e5

VGG-16

P0.99(Wl) = 0.24
P0.01(Wl) = -0.30

Conv10

Figure 9: Weight distribution: vanilla quantization, VGGSNN, DVS-CIFAR10.

Clearly, these weight distributions prove the inefficient bit-width utilization of vanilla uniform quan-
tization. This inefficiency leads to a substantial number of floating-point weights being discretized
on the same integer grid during the quantization process, thus reducing the discrimination of the
quantized weights. Consequently, this reduction adversely impacts the network’s representational
capacity and overall performance.

E.2 RESCAW-BASED UNIFORM QUANTIZATION

2 0 20

2

4

1e2

ResNet20

Conv1
ReScaW-based
Vanilla

2 0 20

1

2

3

1e4

ResNet20

Layer1.0.Conv1
ReScaW-based
Vanilla

2 0 20

2

4

6

1e4

ResNet20

Layer1.0.Conv2
ReScaW-based
Vanilla

2 0 20

2

4

6

1e4

ResNet20

Layer1.1.Conv1
ReScaW-based
Vanilla

2 0 20

2

4

6

1e4

ResNet20

Layer1.1.Conv2
ReScaW-based
Vanilla

2 0 20

2

4

6

1e4

ResNet20

Layer1.2.Conv1
ReScaW-based
Vanilla

2 0 20

2

4

6

1e4

ResNet20

Layer1.2.Conv2
ReScaW-based
Vanilla

2 0 20.0

0.5

1.0

1e5

ResNet20

Layer2.0.Conv1
ReScaW-based
Vanilla

2 0 20

1

2

3 1e5

ResNet20

Layer2.0.Conv2
ReScaW-based
Vanilla

2 0 20

1

2

3 1e5

ResNet20

Layer2.1.Conv1
ReScaW-based
Vanilla

2 0 20

1

2

3
1e5

ResNet20

Layer2.1.Conv2
ReScaW-based
Vanilla

2 0 20

1

2

3 1e5

ResNet20

Layer2.2.Conv1
ReScaW-based
Vanilla

2 0 20

1

2

3
1e5

ResNet20

Layer2.2.Conv2
ReScaW-based
Vanilla

2 0 20

2

4

6
1e5

ResNet20

Layer3.0.Conv1
ReScaW-based
Vanilla

2 0 20.0

0.5

1.0

1e6

ResNet20

Layer3.0.Conv2
ReScaW-based
Vanilla

2 0 20.0

0.5

1.0

1e6

ResNet20

Layer3.1.Conv1
ReScaW-based
Vanilla

2 0 20.0

0.5

1.0

1e6

ResNet20

Layer3.1.Conv2
ReScaW-based
Vanilla

2 0 20.0

0.5

1.0

1e6

ResNet20

Layer3.2.Conv1
ReScaW-based
Vanilla

2 0 20.0

0.5

1.0

1e6

ResNet20

Layer3.2.Conv2
ReScaW-based
Vanilla

Figure 10: Weight distribution: ReScaW-based uniform quantization, ResNet20, CIFAR-100.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We also present a comparison of weight distributions between vanilla uniform quantization and
ReScaW-based uniform quantization across multiple datasets and architectures. The weight dis-
tribution of ResNet20 on CIFAR-100 is presented in Figure 10, VGG-16 on TinyImageNet is il-
lustrated in Figure 11, and VGG-SNN on DVS-CIFAR10 is displayed in Figure 12. These three
figures clearly demonstrate that the weight distribution using ReScaW-based quantization is broader
than that of vanilla uniform quantization, indicating the more efficient bit-width utilization of our
ReScaW.

2 0 20

2

4

1e2

VGG-16

Conv0
ReScaW-based
Vanilla

2 0 20.0

2.5

5.0

7.5

1e3

VGG-16

Conv1
ReScaW-based
Vanilla

2 0 20.0

0.5

1.0

1.5

1e4

VGG-16

Conv3
ReScaW-based
Vanilla

2 0 20

1

2

3

1e4

VGG-16

Conv4
ReScaW-based
Vanilla

2 0 20

2

4

6

1e4

VGG-16

Conv6
ReScaW-based
Vanilla

2 0 20.0

0.5

1.0

1e5

VGG-16

Conv7
ReScaW-based
Vanilla

2 0 20.0

0.5

1.0

1e5

VGG-16

Conv8
ReScaW-based
Vanilla

2 0 20

1

2

1e5

VGG-16

Conv10
ReScaW-based
Vanilla

2 0 20

2

4

1e5

VGG-16

Conv11
ReScaW-based
Vanilla

2 0 20

2

4

1e5

VGG-16

Conv12
ReScaW-based
Vanilla

2 0 20

2

4

1e5

VGG-16

Conv14
ReScaW-based
Vanilla

2 0 20

2

4

1e5

VGG-16

Conv15
ReScaW-based
Vanilla

2 0 20

2

4

1e5

VGG-16

Conv16
ReScaW-based
Vanilla

Figure 11: Weight distribution: ReScaW-based uniform quantization, VGG-16, TinyImageNet.

2 0 20

1

2

3

1e2

VGG-16

Conv0
ReScaW-based
Vanilla

2 0 20

1

2

1e4

VGG-16

Conv1
ReScaW-based
Vanilla

2 0 20.0

0.5

1.0
1e5

VGG-16

Conv3
ReScaW-based
Vanilla

2 0 20

1

2
1e5

VGG-16

Conv4
ReScaW-based
Vanilla

2 0 20

2

4
1e5

VGG-16

Conv6
ReScaW-based
Vanilla

2 0 20.0

2.5

5.0

7.5

1e5

VGG-16

Conv7
ReScaW-based
Vanilla

2 0 20.0

2.5

5.0

7.5

1e5

VGG-16

Conv9
ReScaW-based
Vanilla

2 0 20.0

2.5

5.0

7.5

1e5

VGG-16

Conv10
ReScaW-based
Vanilla

Figure 12: Weight distribution: ReScaW-based uniform quantization, VGGSNN, DVS-CIFAR10.

F COMPLETE IMPORTANCE SCORE COMPARISON

F.1 SCA-BASED PRUNING CRITERION

We present the convolutional kernel scores of models using the SCA criterion across different archi-
tectures and datasets, including ResNet20 on CIFAR100, VGG-16 on TinyImageNet, and VGGSNN
on DVS-CIFAR10. Note that we only display the layers that perform pruning operations, and the
colors in these figures represent the value of the importance score. Moreover, to intuitively reflect
the robustness of the pruning criterion to input samples, we compute the average cosine similarity
of kernel scores between pairs of input batches for each layer in every model. The calculation for
the average cosine similarity of l-th layer is outlined as,

AvgCosSl =
2

NB(NB − 1)

∑
i<j

∑
f Scorei(W

l,f) · Scorej(Wl,f)√∑
f Scorei(W

l,f)2 ·
√∑

f Scorej(W
l,f)2

(15)

where NB is the number of input batches and Scorei is the kernel score for input batch i.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The kernel scores for ResNet20 on CIFAR-100 are presented in Figure 13. It can be seen from this
figure that the SCA-based pruning criterion yields varying scores for the same kernel when process-
ing different input samples. Furthermore, we calculated AvgCosSl for each layer in ResNet20, and
the minl AvgCosSl is 0.870. This indicates that the SCA criterion is not robust enough to inputs.

1 15 29 43 57

1
2

3
4

5
B

at
ch

 in
de

x

ResNet20

Conv1

1 29 57 85 113
1

2
3

4
5 ResNet20

Layer1.0.Conv1

1 29 57 85 113

1
2

3
4

5 ResNet20

Layer1.0.Conv2

1 29 57 85 113

1
2

3
4

5 ResNet20

Layer1.1.Conv1

1 29 57 85 113

1
2

3
4

5 ResNet20

Layer1.1.Conv2

1 29 57 85 113

1
2

3
4

5
B

at
ch

 in
de

x

ResNet20

Layer1.2.Conv1

1 29 57 85 113

1
2

3
4

5 ResNet20

Layer1.2.Conv2

1 50 99 148197246
1

2
3

4
5 ResNet20

Layer2.0.Conv1

1 50 99 148197246

1
2

3
4

5 ResNet20

Layer2.0.Conv2

1 50 99 148197246

1
2

3
4

5 ResNet20

Layer2.1.Conv1

1 50 99 148197246

1
2

3
4

5
B

at
ch

 in
de

x

ResNet20

Layer2.1.Conv2

1 50 99 148197246

1
2

3
4

5 ResNet20

Layer2.2.Conv1

1 50 99 148197246

1
2

3
4

5 ResNet20

Layer2.2.Conv2

1 99 197295393491
1

2
3

4
5 ResNet20

Layer3.0.Conv1

1 99 197295393491

1
2

3
4

5 ResNet20

Layer3.0.Conv2

1 99 197295393491
Channel index

1
2

3
4

5
B

at
ch

 in
de

x

ResNet20

Layer3.1.Conv1

1 99 197295393491
Channel index

1
2

3
4

5 ResNet20

Layer3.1.Conv2

1 99 197295393491
Channel index

1
2

3
4

5 ResNet20

Layer3.2.Conv1

1 99 197295393491
Channel index

1
2

3
4

5 ResNet20

Layer3.2.Conv2

Figure 13: Kernel scores: SCA-based pruning criterion, ResNet20, CIFAR-100.

The kernel scores for VGG-16 on TinyImagenet are illustrated in Figure 14. We calculate AvgCosSl
for each layer in VGG-16, and obtain the minl AvgCosSl is 0.879. In this structure, the kernel
scores’ fluctuation with inputs is slightly better compared to ResNet20, but still not negligible.

1 15 29 43 57

1
2

3
4

5
B

at
ch

 in
de

x

VGG-16

Conv0

1 15 29 43 57

1
2

3
4

5 VGG-16

Conv1

1 29 57 85 113

1
2

3
4

5 VGG-16

Conv3

1 29 57 85 113

1
2

3
4

5 VGG-16

Conv4

1 50 99 148197246

1
2

3
4

5 VGG-16

Conv6

1 50 99 148197246

1
2

3
4

5
B

at
ch

 in
de

x

VGG-16

Conv7

1 50 99 148197246

1
2

3
4

5 VGG-16

Conv8

1 99 197295393491

1
2

3
4

5 VGG-16

Conv10

1 99 197295393491

1
2

3
4

5 VGG-16

Conv11

1 99 197295393491

1
2

3
4

5 VGG-16

Conv12

1 99 197295393491
Channel index

1
2

3
4

5
B

at
ch

 in
de

x

VGG-16

Conv14

1 99 197295393491
Channel index

1
2

3
4

5 VGG-16

Conv15

Figure 14: Kernel scores: SCA-based pruning criterion, VGG-16, TinyImageNet.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

The kernel scores for VGGSNN on DVS-CIFAR-10 are displayed in Figure 15. As can be seen
from the figure, The kernel score’s fluctuation with input data is better compared to both ResNet and
VGG-16, but in deeper layers, the fluctuation is higher. We also calculate AvgCosSl for each layer
in VGGSNN, and the minl AvgCosSl is 0.952.

1 15 29 43 57

1
2

3
4

5
B

at
ch

 in
de

x

VGGSNN

Conv0

1 29 57 85 113

1
2

3
4

5 VGGSNN

Conv1

1 50 99 148197246

1
2

3
4

5 VGGSNN

Conv3

1 50 99 148197246

1
2

3
4

5 VGGSNN

Conv4

1 99 197295393491

1
2

3
4

5 VGGSNN

Conv6

1 99 197295393491
Channel index

1
2

3
4

5
B

at
ch

 in
de

x

VGGSNN

Conv7

1 99 197295393491
Channel index

1
2

3
4

5 VGGSNN

Conv9

Figure 15: Kernel scores: SCA-based pruning criterion, VGGSNN, DVS-CIFAR10.

These results demonstrate that the SCA-based pruning criterion yields varying scores for the same
kernel when processing different input sample, demonstrating low robustness to input samples. This
sensitivity to inputs suggests that the criterion may fail to accurately identify critical convolutional
kernels within SNNs, potentially impacting the reliability of the pruning process.

F.2 SVS-BASED PRUNING CRITERION

We also depict kernel scores using the SVS pruning criterion. The kernel score for ResNet20 on
CIFAR-100 in Figure 16, VGG-16 on TinyImagenet in Figure 17, and VGGSNN on DVS-CIFAR10
in Figure 18. We still only display the layers that perform pruning operation. In VGG-16, ResNet20,
and VGGSNN, the minl AvgCosSl values are 0.997, 0.993, and 1.000 respectively, which exceed
the corresponding minl AvgCosSl when using the SCA-Based pruning criterion by 13.4%, 14.1%,
and 5.0%, respectively. The results demonstrate that the SVS-based pruning criterion yields consis-
tent evaluations, with only minor variations between different input samples. This high robustness
to input samples enables QP-SNN to effectively identify and eliminate redundant kernels.

1 15 29 43 57

1
2

3
4

5
B

at
ch

 in
de

x

ResNet20

Conv1

1 29 57 85 113

1
2

3
4

5 ResNet20

Layer1.0.Conv1

1 29 57 85 113

1
2

3
4

5 ResNet20

Layer1.0.Conv2

1 29 57 85 113

1
2

3
4

5 ResNet20

Layer1.1.Conv1

1 29 57 85 113

1
2

3
4

5 ResNet20

Layer1.1.Conv2

1 29 57 85 113

1
2

3
4

5
B

at
ch

 in
de

x

ResNet20

Layer1.2.Conv1

1 29 57 85 113

1
2

3
4

5 ResNet20

Layer1.2.Conv2

1 50 99 148197246

1
2

3
4

5 ResNet20

Layer2.0.Conv1

1 50 99 148197246

1
2

3
4

5 ResNet20

Layer2.0.Conv2

1 50 99 148197246

1
2

3
4

5 ResNet20

Layer2.1.Conv1

1 50 99 148197246

1
2

3
4

5
B

at
ch

 in
de

x

ResNet20

Layer2.1.Conv2

1 50 99 148197246

1
2

3
4

5 ResNet20

Layer2.2.Conv1

1 50 99 148197246

1
2

3
4

5 ResNet20

Layer2.2.Conv2

1 99 197295393491

1
2

3
4

5 ResNet20

Layer3.0.Conv1

1 99 197295393491

1
2

3
4

5 ResNet20

Layer3.0.Conv2

1 99 197295393491
Channel index

1
2

3
4

5
B

at
ch

 in
de

x

ResNet20

Layer3.1.Conv1

1 99 197295393491
Channel index

1
2

3
4

5 ResNet20

Layer3.1.Conv2

1 99 197295393491
Channel index

1
2

3
4

5 ResNet20

Layer3.2.Conv1

1 99 197295393491
Channel index

1
2

3
4

5 ResNet20

Layer3.2.Conv2

Figure 16: Kernel scores: SVS-based pruning criterion, ResNet20, CIFAR-100.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1 15 29 43 57

1
2

3
4

5
B

at
ch

 in
de

x

VGG-16

Conv0

1 15 29 43 57

1
2

3
4

5 VGG-16

Conv1

1 29 57 85 113

1
2

3
4

5 VGG-16

Conv3

1 29 57 85 113

1
2

3
4

5 VGG-16

Conv4

1 50 99 148197246

1
2

3
4

5 VGG-16

Conv6

1 50 99 148197246

1
2

3
4

5
B

at
ch

 in
de

x

VGG-16

Conv7

1 50 99 148197246

1
2

3
4

5 VGG-16

Conv8

1 99 197295393491

1
2

3
4

5 VGG-16

Conv10

1 99 197295393491

1
2

3
4

5 VGG-16

Conv11

1 99 197295393491

1
2

3
4

5 VGG-16

Conv12

1 99 197295393491
Channel index

1
2

3
4

5
B

at
ch

 in
de

x

VGG-16

Conv14

1 99 197295393491
Channel index

1
2

3
4

5 VGG-16

Conv15

Figure 17: Kernel scores: SVS-based pruning criterion, VGG-16, TinyImageNet.

1 15 29 43 57

1
2

3
4

5
B

at
ch

 in
de

x

VGGSNN

Conv0

1 29 57 85 113

1
2

3
4

5 VGGSNN

Conv1

1 50 99 148197246

1
2

3
4

5 VGGSNN

Conv3

1 50 99 148197246

1
2

3
4

5 VGGSNN

Conv4

1 99 197295393491

1
2

3
4

5 VGGSNN

Conv6

1 99 197295393491
Channel index

1
2

3
4

5
B

at
ch

 in
de

x

VGGSNN

Conv7

1 99 197295393491
Channel index

1
2

3
4

5 VGGSNN

Conv9

Figure 18: Kernel scores: SVS-based pruning criterion, VGGSNN, DVS-CIFAR10.

G EXPERIMENT

Datasets We evaluate our method on image classification datasets, including static datasets
CIFAR-10 (Krizhevsky et al. (2009)), CIFAR-100 (Krizhevsky et al. (2009)), TinyImageNet (Deng
et al. (2009)), ImageNet-1k (Deng et al. (2009)), and the neuromorphic dataset DVS-CIFAR10 Li
et al. (2017). Before introducing the experiment setups, we briefly outline each dataset. The CIFAR-
10 and CIFAR-100 are color image datasets, with each dataset containing 50,000 training images
and 10,000 testing images. Each image features 3 color channels and a spatial resolution of 32×32
pixels. CIFAR-10 is composed of 10 categories, whereas CIFAR-100 comprises 100 categories.
During the preprocessing process of CIFAR datasets, we apply the commonly used data augmenta-
tion techniques (Cubuk et al. (2018); DeVries (2017)). The TinyImageNet dataset is a subset of the
ImageNet dataset, consisting of 200 categories, with each category containing 500 training images
and 50 test images. Each image has 3 color channels and a spatial resolution of 64×64 pixels. The
ImageNet-1K dataset is a large-scale dataset commonly used for computer vision tasks. It spans
1000 classes and contains around 1.3 million training images and 50,000 validation images. The
DVS-CIFAR10 is a neuromorphic dataset captured using Dynamic Vision Sensor (DVS) event cam-
eras. It is the most challenging neuromorphic dataset, featuring 9,000 training samples and 1,000
testing samples, featuring a spatial resolution of 128×128. During the preprocessing process of the
DVS-CIFAR10 dataset, we apply the data augmentation technique proposed in (Li et al. (2022)).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Experimental Setups We summarize the training hyperparameters for each dataset in Table 8,
including time step, image resolution, optimizer, and other factors. Additionally, we present the
network architectures and the corresponding pruning rates for each module in Table (9∼11). In our
experiments, we directly utilize the classification head after completing the convolution operations.
Therefore, we do not prune the output channels of the last convolutional layer to preserve the in-
tegrity of the classification head. Note that the pruning rates used in our experiments are manually
selected, without rigorous design or the application of parameter search methods.

Table 8: Experimental setups.
Hyper-parameter CIFAR-10/100 TinyImageNet ImageNet DVS-CIFAR10
Timestep 2, 4 4 4 10
Resolution 32×32 64×64 224×224 48×48
Batch size 256 256 256 64
Epoch (Train/Fine-tune) 300 / 150 300 / 150 320 / 200 300 / 150
Optimizer (Train/Fine-tune) SGD / Adam SGD / Adam SGD / SGD SGD / Adam
Initial lr (Train/Fine-tune) 0.1 / 0.001 0.1 / 0.001 0.1 / 0.05 0.1 / 0.001
Learning rate decay Cosine Cosine Cosine Cosine

Table 9: Detailed network architecture and the channel pruning ratio for VGG-16.

Layer Resolution Channel Module
Channel Pruning Ratio

CIFAR-10 CIFAR-100 TinyImageNet
4.25M 1.42M 2.31M 1.68M 4.65M 3.43M

1 H ×W 64 Conv
-BN-LIF 0.45 0.49 0.45 0.45 0.45 0.45

2 H ×W 64 QConv
-BN-LIF 0.45 0.49 0.45 0.45 0.45 0.45

3 - MaxPool -

4 H
2 × W

2 128 QConv
-BN-LIF 0.45 0.49 0.45 0.45 0.45 0.45

5 H
2 × W

2 128 QConv
-BN-LIF 0.45 0.49 0.45 0.45 0.45 0.45

6 - MaxPool -

7 H
4 × W

4 256 QConv
-BN-LIF 0.45 0.49 0.45 0.45 0.45 0.45

8 H
4 × W

4 256 QConv
-BN-LIF 0.45 0.49 0.45 0.45 0.45 0.45

9 H
4 × W

4 256 QConv
-BN-LIF 0.45 0.49 0.45 0.45 0.45 0.45

10 - MaxPool -

11 H
8 × W

8 512 QConv
-BN-LIF 0.51 0.8 0.7 0.78 0.51 0.62

12 H
8 × W

8 512 QConv
-BN-LIF 0.51 0.8 0.7 0.78 0.51 0.62

13 H
8 × W

8 512 QConv
-BN-LIF 0.51 0.8 0.7 0.78 0.51 0.62

14 - MaxPool -

15 H
16 × W

16 512 QConv
-BN-LIF 0.51 0.8 0.7 0.78 0.51 0.62

16 H
16 × W

16 512 QConv
-BN-LIF 0.51 0.8 0.7 0.78 0.51 0.62

17 H
16 × W

16 512 QConv
-BN-LIF - - - - - -

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 10: Detailed network architecture and the channel pruning ratio for ResNet20.

Layer Resolution Channel Module
Channel Pruning Ratio

CIFAR-10 / 100
6.22M / 6.27M 3.87M / 3.92M

conv0 H ×W 64 Conv-BN-LIF 0.1 0.1

Layer1.0 H ×W 128 QConv-BN-LIF 0.3 0.35
QConv-BN-LIF 0.3 0.35

Layer1.1 H ×W 128 QConv-BN-LIF 0.6 0.75
QConv-BN-LIF 0.3 0.35

Layer1.2 H ×W 128 QConv-BN-LIF 0.6 0.75
QConv-BN-LIF 0.3 0.35

Layer2.0 H
2 × W

2
256 QConv-BN-LIF 0.6 0.75

QConv-BN-LIF 0.6 0.75

Layer2.1 H
2 × W

2
256 QConv-BN-LIF 0.6 0.75

QConv-BN-LIF 0.6 0.75

Layer2.2 H
2 × W

2
256 QConv-BN-LIF 0.6 0.75

QConv-BN-LIF 0.6 0.75

Layer3.0 H
4 × W

4
512 QConv-BN-LIF 0.6 0.75

QConv-BN-LIF - -

Layer3.1 H
4 × W

4
512 QConv-BN-LIF 0.6 0.75

QConv-BN-LIF - -

Layer3.2 H
4 × W

4
512 QConv-BN-LIF 0.6 0.75

QConv-BN-LIF - -

Table 11: Detailed network architecture and the channel pruning ratio for VGGSNN.

Layer Resolution Channel Module
Channel Pruning Ratio

DVS-CIFAR10
1.46M 0.9M 0.25M

1 H ×W 64 Conv-BN-LIF 0.5 0.5 0.82
2 H ×W 128 QConv-BN-LIF 0.5 0.5 0.82
3 - MaxPool -
4 H

2 × W
2 256 QConv-BN-LIF 0.5 0.5 0.82

5 H
2 × W

2 256 QConv-BN-LIF 0.7 0.8 0.93
6 - MaxPool -
7 H

4 × W
4 512 QConv-BN-LIF 0.7 0.8 0.93

8 H
4 × W

4 512 QConv-BN-LIF 0.7 0.8 0.93
9 - MaxPool -
10 H

8 × W
8 512 QConv-BN-LIF 0.7 0.8 0.93

11 H
8 × W

8 512 QConv-BN-LIF - - -

Model size calculation The model size is computed by aggregating the storage requirements of
both quantized and full precision parameters, as expressed by the following equation (Qin et al.
(2022); Zhang et al. (2022)),

M = Params × Bitwidth =
∑

Pq ×Bq +
∑

Pfp ×Bfp, (16)

where Pq and Pfp denote the quantized parameters and full precision parameters, respectively, while
Bq and Bfp represent their corresponding bit widths. It is important to note that, in our experiments,
full-precision weights are employed in both the initial convolutional layer and the final fully con-
nected layer to ensure optimal performance (Zhang et al. (2021); Ding et al. (2022)). We also take
this configuration into account when calculating our model size.

25

	Introduction
	Related work
	Quantized and pruned SNN baseline
	Method
	Weight rescaling strategy
	Pruning criterion based on the singular value of spike activity

	Experiment
	Experiment setup
	Performance comparison
	Ablation study

	Conclusion
	Analysis on the order of quantization and pruning
	Scalability of QP-SNN to complex architectures and tasks
	Efficiency validation of QP-SNN
	Learning algorithm for QP-SNN
	Complete Weight distribution comparison
	Vanilla uniform quantization
	ReScaW-based uniform quantization

	Complete importance score comparison
	SCA-based pruning criterion
	SVS-based pruning criterion

	Experiment

