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Abstract

Federated learning (FL) combined with differen-
tial privacy (DP) offers machine learning (ML)
training with distributed devices and with a for-
mal privacy guarantee. With a large population
of devices, FL with DP produces a performant
model in a timely manner. However, for applica-
tions with a smaller population, not only does the
model utility degrade as the DP noise is inversely
proportional to population, but also the training
latency increases since waiting for enough clients
to become available from a smaller pool is slower.
In this work, we thus propose expanding the pop-
ulation based on domain adaptation techniques to
speed up the training and improves the final model
quality when training with small populations. We
empirically demonstrate that our techniques can
improve the utility by 13% to 30% on real-world
language modeling datasets.

1. Introduction
Federated learning (FL) (McMahan et al., 2017) enables
training machine learning (ML) models using on-device
data and is widely used in our daily lives as usage of mobile
devices, e.g., smartphones, smart watches, and smart speak-
ers, increases. Although FL, by design, does not require
raw data to be transmitted from devices, privacy breaches
can happen by transmitting model gradients to the central
server. Thus, FL algorithms are modified to satisfy differ-
ential privacy (DP) (McMahan et al., 2018) to provide a
formal privacy guarantee. We refer this learning framework
as private federated learning (PFL).

Successful ML models trained with PFL typically require
the number of devices sampled at each round, cohort size,
to be large enough to reduce the detrimental impact of DP
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noise on the model utility (Anil et al., 2022). The require-
ment of large cohort size, which is easily met with hundreds
of millions of devices, can be hard to fulfill for applica-
tions with device-constrained populations. For a motivating
example, to train a language model (LM) with PFL for
automatic speech recognition (ASR) system in a virtual as-
sistant, the on-device training data are transcribed speech.
For popular languages, such as English or Chinese, there are
ample devices with transcriptions. However, for less popu-
lar languages such as Romanian or Swahili, the population
with data is orders of magnitude smaller due to the limited
speaker base. In such small populations, as we will show
in Section 3.1, the server needs to spend much longer wait-
ing for a full cohort of devices to become available in each
iteration, which is impractical for models that require thou-
sands of iterations to converge. Thus, PFL has the tradeoff
among privacy, utility, and latency for device-constrained
applications.

Our contributions In this work, we develop approaches
to expand the population size to address the latency bot-
tleneck for PFL in the device-constrained scenarios. We
propose to use data from different applications than the tar-
get application to augment the training data, e.g. there are
more devices with typed text than those with audio transcrip-
tions as the messaging application is used more frequently
than a virtual assistant. Population expansion for PFL has
three benefits: (1) training will be faster as there are more
devices available, (2) DP noise scale will be smaller from
amplification by subsampling (Wang et al., 2019) by making
population size larger, and (3) sampling error will be smaller.
We explore combinations of various domain adaptation tech-
niques and show that they outperform naively augmenting
the devices from other sources. We focus on training LMs
and evaluate the proposed approaches on public benchmark
datasets including Reddits Comments and Common Voice.
We demonstrate our methods can expand the population
size by 10 times, which significantly reduces the latency
and achieves better model utility.

1.1. Related Work

Prior works on domain adaptation in the LM applications fo-
cuses on centralized training. Jiang & Zhai (2007) explored
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instance weighting with importance sampling to reweight
the training objective for domain adaptation. Moore &
Lewis (2010) selected and used a portion of non-domain-
specific language data for domain-specific LM training.
Moriokal et al. (2018) extended LM neural networks (NNs)
to have domain-specific and domain-shared representations
so that those representations are learned separately. Gururan-
gan et al. (2022) focused on transformer model and modify
the model architecture to have domain-specific layers. More
recently, Chronopoulou et al. (2022) adopted hierarchical
network structures for training on data from a larger number
of domains, where models are gradually trained along with
the hierarchy in a top-down manner.

With regards to domain adaptation in the federated setting,
prior works address the setting where the clients and the
server own data from different domains (Peng et al., 2019;
Yao et al., 2022). Shen et al. (2021) extended the adver-
sarial domain adaptation technique to the federated setting,
but their main focus is cross-silo FL, where the number of
clients is much smaller. Peterson et al. (2019) also proposed
a domain adaptation technique in cross-silo FL with differ-
ential privacy, which properly combines general and specific
models.

2. Preliminaries
Federated Learning (FL) (McMahan et al., 2017) en-
ables model training on multiple devices, each having a
separate dataset, without sharing on-device dataset with a
central server. In particular, we focus on cross-device FL
where the number of clients is very large, as opposed to
cross-silo FL where client population is small. The standard
iterative procedure for training machine learning models
executes at each iteration t: (1) the central server samples
a set of clients Ct from the population, (2) each sampled
client i ∈ Ct downloads the shared model parameter θt from
the server and locally trains the model on its own data to
produce a local model θi, (3) each sampled client i sends
back the model difference ∆t,i = θi − θt to the server, and
(4) the server aggregates the model differences as a “pseudo-
gradient” ∆t =

1
|Ct|∆t,i and uses it to update θt with any

standard optimizer.

Differential Privacy (DP) provides strong privacy protec-
tions for sensitive data on device. DP is formally defined as
follows:
Definition 2.1 ((ϵ, δ)-DP (Dwork et al., 2006)). A random-
ized algorithm M satisfies (ϵ, δ)-DP if for any neighboring
datasets D,D′ and for any S ⊆ range(M),

Pr[M(D) ∈ S] ≤ exp(ϵ) Pr[M(D′) ∈ S] + δ.

We say two datasets D,D′ ∈ X are neighboring if they dif-
fer on at most an individual’s participation. Two additional

steps are added to the FL algorithm to ensure a DP guar-
antee: (1) each sampled client clips the model difference
before sending it back to have a bounded norm, and (2) the
server applies a DP building block, commonly the Gaussian
mechanism (Dwork & Roth, 2014), when aggregating the
model differences to get the noisy pseudo-gradient. We fo-
cus on using the Gaussian mechanism for aggregating the
model differences in this work. The noise variance is then
calibrated by the moment accountant (Abadi et al., 2016;
Mironov, 2017; Mironov et al., 2019) with fixed sampling
rate q (fraction of clients sampled in each iteration), number
of training iterations T , and privacy budgets (ϵ, δ).

3. Expanding Population in PFL
3.1. Device Sampling Latency

We first formulate how population size N impacts latency
in PFL. In each round of PFL, cohort size C ≈ Nq of de-
vices are sampled to participate in training, where q is the
device sampling probability to provide an amplification on
privacy (Wang et al., 2019). Server tends to over-sample by
using a slightly larger q > C

N to improve the latency. In real-
ity, only a proportion of devices satisfying certain conditions
(e.g. locked, charging and on Wi-Fi) are eligible for train-
ing and devices might dropout or abort training (Bonawitz
et al., 2019; Paulik et al., 2021), and we denote this ratio
of eligible devices as p. Therefore, if C is larger than Npq,
we need to wait until enough devices become available to
participate before updating the model.

More formally, assume Npq < C, we model the latency
to wait C −Npq devices more to become available and be
sampled as follows. Let m = N − Np be the number of
current unavailable devices, k = C −Npq be the number
of devices needed for current PFL iteration.
Proposition 3.1. Assume that the time for the i-th unavail-
able device becoming available and being sampled for train-
ing is Ti ∼ Exponential(λ). Let Uk be the random vari-
able which describes the time when the first k devices be-
come available and are sampled. Then

1

λ
· C −Npq

N(1− p) + 1
≤ E[Uk] ≤

C

λ(N − C)
. (1)

We defer the proof to Appendix B. We use exponential time
model since it is a common choice for modeling training
time in the distributed scenario (Lee et al., 2017; Tandon
et al., 2017; Nguyen et al., 2022).

From the above proposition we see that the expected latency
Uk is inversely proportional to the population size, i.e. the
smaller the population size, the longer the server needs to
wait for enough devices to become available in each itera-
tion. Figure 1 illustrates the relationship between latency
and population size.
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Figure 1. Relative latency estimated with Equation 1 for different
cohort sizes C and population sizes N .

3.2. Domain Adaptation for Expanding Population

The small population situation happens often when building
task-specific LMs, where potential data sources are scarce,
e.g. training a LM on Swahili spoken texts as a part of virtual
assistant system. It is a challenging task since only a small
number of users are frequent users of a virtual assistant and
have Swahili speech on their devices. Nonetheless, for such
device-constrained locales, there could be other data sources,
e.g., typed texts, with larger population. This motivates us
to expand the population by exploiting another text source
with a different distribution to train the LM for the target
data source, which can be cast as a domain adaptation (DA)
problem. Following DA convention, we denote data from
other source applications with larger population as source
domain S, and data from target application with smaller
population as target domain T .

Goal We wish learn a global model that minimizes the
objective Ex∼T [L(x)], where L is the loss function, with
data from S ∪ T under a fixed privacy budget (ϵ, δ). The
latency-utility trade-off should be much better than training
in T alone.

Instance weighting (IW) Naively training with devices
sampled from S ∪ T would bias towards S due to its larger
population. To remedy this sampling bias, we apply instance
weighting (Jiang & Zhai, 2007) on the training objective:

Ex∼S∪T [w(x)L(x)], (2)

where w(x) = pT (x)/pπ(x) is the importance weight,
π ∈ {S, T } denotes which domain x is from and pπ(x)
is the data density function for domain π. As pπ(x) has to
be estimated privately, we choose to approximate it with un-
igram likelihood p̂π(x) =

∏
i ûπ(xi) as unigram frequency

ûπ can be efficiently learned with a relative small privacy
budget.

The product of unigrams in p̂π(x) can lead to bipolarized
density estimation, and thus unstable importance weights.
We instead use relative importance weight (Yamada et al.,
2013) to provide a more robust estimation:

w(x) =
p̂T (x)

αp̂T (x) + (1− α)p̂π(x)
, (3)

where α is the proportion of the devices with data from T .

The overall PFL training procedure with IW is: (1) learn
the unigram frequency ûπ for π ∈ {S, T } with privacy
budget (ϵ0, δ0) which can be done with private federated
statistics (McMillan et al., 2022), and (2) train model using
objective weighted by Equation 3 with privacy budget (ϵ−
ϵ0, δ − δ0).

Pretrain in S and finetune in T (PT) Recent
work (Ganesh et al., 2023) has shown that pretraining a
model in a different domain to target domain with a large
population reduces the amount of data required for private
finetuning. We consider pretraining in S with a large co-
hort size C and finetune in T with a small cohort size αC
so that the latency for finetuning stays roughly the same
as pretraining. We enforce that the population of S and
T to be disjoint so that both pretraining in S and finetun-
ing in T can spend privacy budget of (ϵ, δ) with parallel
composition (McSherry, 2009).

Instance weighted pretraining (IWPT) Domain adap-
tive pretraining (Gururangan et al., 2020) (DAPT) demon-
strated the benefits of pretraining with in-domain data. How-
ever because the in-domain population is limited and it is
inefficient to train with PFL, we consider instance weighted
pretraining on S with objective weighted by Equation 3 as
an approximation of DAPT.

4. Experiment
4.1. Datasets

To simulate a practical situation, we focus on using real-
world datasets with user identifiers so that we can partition
data naturally by users. In particular, we use two sources
of data: (1) Reddits (Caldas et al., 2019) and (2) Common
Voice (CV) (Ardila et al., 2020) to build two datasets for
DA tasks. More data processing details are described in
Appendix A.

SubReddits The first constructed DA dataset consists
of only the Reddits dataset with different SubReddit top-
ics. We treat a set of similar subreddits as a domain,
where we choose stock-related subreddits {Superstonk, amc-
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stock, wallstreetbets, GME, Wallstreetsilver} as S and news-
related subreddits {news, worldnews, politics} as T . As a
result of the constrution, we have 117, 708 clients in total
and 14, 072 clients (about 12%) have target domain data as
well as source domain data.

CV&Reddits The other constructed DA dataset combines
Reddit (typed texts) and CV (transcribed audios) which
simulates the difference between spoken and typed texts
domains. We treat texts from Reddits as S and texts from
CV as T . CV dataset has 68, 312 clients. We randomly
select clients from Reddit dataset so that the total number
of clients is 10 times more than the number of clients with
Common Voice data.

4.2. Experiment Setup

Since there usually is a constraint on the client device stor-
age and communication cost in real world applications, we
consider a rather simple LSTM following (McMahan et al.,
2018). We evaluate the performance of our approaches by
the perplexity (PPL) in T . We divide clients into training,
validation, and test sets with the ratio of 6:2:2, where the
hyper-parameters are tuned on validation set.

We consider two baselines with unweighted objective: (1)
training with cohort sizes αC and C in T only where α
is the proportion of the devices with data from T , and
(2) training with cohort size C in S ∪ T . We also exper-
iment the baseline (2) with domain adaptive layers pro-
posed in domain-shared/domain-specific representations
(DSDSR) (Moriokal et al., 2018) and DEMix (Gururangan
et al., 2022).

To speed up the training process, we follow (McMahan et al.,
2018) and set the cohort size C to be 5,000 for adjusting
the magnitude of noise in the DP analysis and to be 400 for
actual training. We set α = 0.1 i.e. the ratio of population
between T and S. All experiments last for 2,000 server
iterations and 1 client iteration. For fine-tuning experiments
(PT and IWPT), we split the server iterations into 1,000
and 1,000 for pretraining and fine-tuning, respectively. We
use FedAdam (Reddi et al., 2022) as the server optimizer
with learning rate 0.1 and SGD as the client optimizer with
learning rate 0.5.

We set the total privacy parameters to (ϵ, δ) = (2, 10−6)
throughout the experiments. The clipping bound of Gaus-
sian mechanism in PFL is set to 0.5. For IW and IWPT,
we allocate (ϵ0, δ0) = (0.8, 0) for estimating unigrams with
Geometric Mechanism (Ghosh et al., 2009), and (ϵ, δ) =
(1.2, 10−6) for model training. To bound the sensitivity for
the unigram estimation, we use at most 5 sequences with
each of which have a fixed length of 10 tokens.

Dataset Approach val PPL test PPL

SubReddits

T w. αC 415.35 414.61
T w. C 358.37 358.06
S ∪ T 398.82 400.90

DSDSR 379.06 380.79
DEMix 395.02 396.68

IW 354.81 356.37
PT 369.57 370.24

IWPT 346.85 347.78

CV&Reddits

T w. αC 302.43 320.13
T w. C 215.96 241.42
S ∪ T 275.85 302.64

DSDSR 206.07 233.43
DEMix 226.09 255.87

IW 218.61 234.22
PT 195.49 217.62

IWPT 180.98 203.14

Table 1. Perplexity scores for baselines and different DA ap-
proaches. We set cohort size C = 5, 000 and α = 0.1.

4.3. Results

Table 1 summarizes the model performance of our algorithm
and baseline approaches. First, we observe from results on
both datasets that training models with a small cohort size
αC in T only has the worst performance, which is because
the DP noise dominates the model update in each iteration.
Increasing the cohort size to C can greatly improve the
utility for T only. However, according to the argument made
in Section 3.1, we need to trade off a significant amount of
training time for a larger C.

For the baseline trained with large population size in S ∪ T
and large cohort size, simply treating source domain data
as target domain data does not improve the performance
much possibly because source domain data is from a dif-
ferent distribution and has larger volume which dominates
the model update. DA specific architectures (DSDSR and
DEMix) improved this baseline to some extent but can incur
more communication cost due to larger model sizes.

On the other hand, both IW and PT approaches outperform
the baseline methods, and are better than the DA specific
architectures on SubReddits dataset. The combined IWPT
approach achieves the best PPL, 13% and 30% lower than
the baseline models on SubReddits and CV&Reddits, re-
spectively.

5. Conclusion and Future Work
We demonstrate that the population size being small in PFL
not only harms the model quality but also slows down the
LM training. With our proposed domain adaptation algo-
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rithm, which weights the source domain data appropriately,
we show it is possible to have a larger population and train
LMs with a better quality in a timely manner. Since instance
weighting framework can be applied to other data domains
than languages, extending the framework to other domains,
e.g., images, is a direction for future work.
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Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K.,
Beltagy, I., Downey, D., and Smith, N. A. Don’t stop
pretraining: Adapt language models to domains and tasks.
In Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 8342–8360, On-
line, July 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.740. URL https:
//aclanthology.org/2020.acl-main.740.

Gururangan, S., Lewis, M., Holtzman, A., Smith, N. A., and
Zettlemoyer, L. Demix layers: Disentangling domains for
modular language modeling. In Proceedings of the 2022
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, pp. 5557–5576, 2022.

Jiang, J. and Zhai, C. Instance weighting for domain
adaptation in NLP. In Proceedings of the 45th An-
nual Meeting of the Association of Computational Lin-
guistics, pp. 264–271, Prague, Czech Republic, June
2007. Association for Computational Linguistics. URL
https://aclanthology.org/P07-1034.

Lee, K., Lam, M., Pedarsani, R., Papailiopoulos, D., and
Ramchandran, K. Speeding up distributed machine learn-
ing using codes. IEEE Transactions on Information The-
ory, 64(3):1514–1529, 2017.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L.
Learning differentially private recurrent language models.
In International Conference on Learning Representations,
2018.

McMillan, A., Javidbakht, O., Talwar, K., Briggs, E., Chatzi-
dakis, M., Chen, J., Duchi, J., Feldman, V., Goren, Y.,
Hesse, M., et al. Private federated statistics in an interac-
tive setting. arXiv preprint arXiv:2211.10082, 2022.

5

https://aclanthology.org/2022.findings-emnlp.484
https://aclanthology.org/2022.findings-emnlp.484
https://aclanthology.org/2020.acl-main.740
https://aclanthology.org/2020.acl-main.740
https://aclanthology.org/P07-1034


Population Expansion for Training Language Models with Private Federated Learning

McSherry, F. D. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In Proceed-
ings of the 2009 ACM SIGMOD International Conference
on Management of data, pp. 19–30, 2009.
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A. Dataset Preprocessing
The set of known vocabulary is built with target domain data in the training set by choosing top 10K frequent words and is
assumed to be known in advance. Every word outside the vocabulary list is mapped as <UNK>. We append <BOS> to the
beginning and <EOS> to the end of every sentence. Within each user, we limit the number of tokens (words) to 1,600 and
cut the input sentences into sequences of length 10. When a sequence has length less than 10, we append <PAD> to make it
have length 10.

B. Proof of Proposition 3.1
Here we restate and prove Proposition 3.1. Let m = N −Np be the number of current unavailable devices, k = C −Npq
be the number of devices needed for current PFL iteration.

Proposition B.1. Assume that the time for the i-th unavailable device becoming available and being sampled for training is
Ti ∼ Exponential(λ). Let Uk be the random variable which describes the time when the first k devices become available
and are sampled. Then

1

λ
· C −Npq

N(1− p) + 1
≤ E[Uk] ≤

C

λ(N − C)
.

Proof. We first state two properties about Exponential distribution:

1. The minimum of n exponential random variables is exponential: min{T1, . . . Tn} ∼ Exponential(nλ) (Parzen, 1960).

2. The exponential random variable Ti is a memoryless: P (Ti > a+ b|Ti > b) = P (Ti > a) (Parzen, 1960).

In our definition, U1 = min{T1, . . . Tm} ∼ Exponential(mλ) from the first property.

WLOG, let Ui = min{Ti, . . . , Tm}|Tj > Ui−1 where j = {i, . . . ,m} and i > 1, then with the second property we can
derive:

P (Ui − Ui−1 > a) = P (Ui − Ui−1 > a|Ui > Ui−1)

= P (Ui > a+ Ui−1|Ui > Ui−1)

= P (Ui > a)

= P (min{Ti, . . . , Tm} > a).

Thus, Ui − Ui−1 ∼ Exponential((m− i+ 1)λ) from the first property.

Then we have:

E[Uk] = E[
k∑

i=2

(Ui − Ui−1) + U1] =

k∑
i=2

E[(Ui − Ui−1)] + E[U1] =
1

λ

m∑
x=m−k+1

1

x
.

Since 1
x is convex, we know from the lower and upper Riemann sum that:∫ m+1

m−k+1

1

x
dx ≤

m∑
x=m−k+1

1

x
≤

∫ m

m−k

1

x
dx

Then the lower bound can be derived as follows:∫ m+1

m−k+1

1

x
dx = ln

m+ 1

m− k + 1

≥ 1− m− k + 1

m+ 1

=
k

m+ 1
=

C −Npq

N(1− p) + 1
,

where the first inequality comes from the fact that 1− 1
x ≤ lnx ≤ x− 1.
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Similarly, the upper bound can be derived as follows:∫ m

m−k

1

x
dx = ln

m

m− k

≤ m

m− k
− 1

=
k

m− k

=
C −Npq

N(1− p)− (C −Npq)

=
C

N (1−p)

(1−Nq
C p)

− C

≤ C

N − C
,

where the last inequality comes from the fact that server tends to oversample q ≥ C
N .
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