
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COTGUARD: USING CHAIN-OF-THOUGHT TRIGGER-
ING FOR COPYRIGHT PROTECTION IN MULTI-AGENT
LLM SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) evolve into autonomous agents capable of col-
laborative reasoning and task execution, multi-agent LLM systems have emerged
as a powerful paradigm for solving complex problems. However, these systems
pose new challenges for copyright protection, particularly when sensitive or copy-
righted content is inadvertently recalled through inter-agent communication and
reasoning. Existing protection techniques primarily focus on detecting content in
final outputs, overlooking the richer, more revealing reasoning processes within
the agents themselves. In this paper, we introduce CoTGuard, a novel framework
for copyright protection that leverages trigger-based detection within Chain-of-
Thought (CoT) reasoning. Specifically, we can activate specific CoT segments
and monitor intermediate reasoning steps for unauthorized content reproduction
by embedding specific trigger queries into agent prompts. This approach enables
fine-grained, interpretable detection of copyright violations in collaborative agent
scenarios. We evaluate CoTGuard on various benchmarks in extensive experiments
and show that it effectively uncovers content leakage with minimal interference
to task performance. Our findings suggest that reasoning-level monitoring offers
a promising direction for safeguarding intellectual property in LLM-based agent
systems.

1 INTRODUCTION

Recent advances in large language models (LLMs), such as GPT-4 Achiam et al. (2023), Genimi
Team et al. (2023), DeepSeek Guo et al. (2025), have significantly transformed natural language
processing (NLP), enabling a wide array of applications across writing Yuan et al. (2022), translation
Zhang et al. (2023), coding Nijkamp et al. (2022), and reasoning Plaat et al. (2024). Building on the
generalization and zero-shot capabilities of LLMs, researchers have developed LLM-based agent
systems Li et al. (2024b) that simulate autonomous agents capable of planning Xie et al. (2024),
collaboration Liu et al. (2023), and task execution Park et al. (2023b). These multi-agent systems
leverage LLMs as their core reasoning engines, often coordinating via natural language to achieve
complex objectives, from web automation to collaborative problem-solving.

However, the rise of LLMs and their deployment in agent-based systems has introduced pressing
concerns about intellectual property and copyright protection Ren et al. (2024); Chu et al. (2024).
Much current research in LLM-related copyright protection focuses on detecting memorization or
leakage of training data, watermarking generated content, and legal frameworks for model training
on copyrighted corpora Guo et al. (2023a); Li et al. (2024a); Wang et al. (2024); Xu et al. (2025);
Liu et al. (2024a). However, relatively little work has extended these protections to LLM-based
agent systems, where models interact in more complex, emergent behaviors that make unauthorized
content reproduction more challenging to trace Bender et al. (2021); Park et al. (2023a); Xu et al.
(2024). While research on single-agent LLM copyright protection is well-established Carlini et al.
(2023); Zou et al. (2023), multi-agent settings introduce unique challenges due to the collaborative,
distributed nature of the reasoning process Guo et al. (2023b).

Motivated by Chain-of-Thought (CoT) reasoning Wei et al. (2022), we identify a novel attack
surface in such systems. CoT prompting is a widely adopted method that guides LLMs to produce
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intermediate reasoning steps before arriving at an answer, thereby improving performance on complex
tasks such as arithmetic, logic, and symbolic planning Wei et al. (2022); Kojima et al. (2022). Agents
often exchange CoT traces rather than final answers in multi-agent settings, forming multi-step,
compositional reasoning paths Du et al. (2023); Park et al. (2023a). While beneficial for accuracy and
interpretability, this intermediate reasoning structure also creates new opportunities for adversarial
triggers to be injected and propagated between agents Xiang et al. (2024); Zhao et al. (2025).
Therefore, our research aims to answer the following question:

Q: How can we effectively detect copyright leakage in multi-agent LLM systems, leveraging
Chain-of-Thought reasoning while minimizing disruption to task performance?

The challenges of copyright protection in multi-agent LLM systems are multifaceted. Agent inter-
actions may lead to indirect reproduction of copyrighted materials, especially when agents relay
or refine information across multiple turns. The distributed nature of such systems complicates
attribution and accountability. Furthermore, traditional watermarking and auditing methods may fail
to detect content leakage when the reproduction is partial, paraphrased, or collaboratively generated
through inter-agent dialogue.

To address these challenges, we propose a trigger-based copyright protection framework that leverages
CoT reasoning in multi-agent LLM systems. Instead of embedding static triggers into final outputs,
our approach injects carefully designed triggers into agents’ intermediate reasoning steps, particularly
in the CoT trajectories, where copyrighted material is more likely to be unintentionally recalled or
reproduced. By analyzing these reasoning chains, we can detect whether agents expose protected
content as they collaboratively solve tasks, even if the final answer does not contain an exact
reproduction. This method enables a more fine-grained and covert detection strategy tailored to the
reasoning-centric nature of LLM-based agent systems.

Our contributions are threefold:

• We propose a novel research problem on LLM-based Agents’ copyright protection.
• We introduce a CoT-trigger mechanism for copyright protection that operates on intermediate

reasoning paths in multi-agent LLMs. Besides, we develop a query-based detection framework that
activates these triggers to expose potential content leakage during agent collaboration.

• We validate our method on multi-agent benchmarks, demonstrating that it achieves high detection
rate with minimal disruption to agents’ normal task performance. Our framework provides a new
perspective on aligning agent reasoning transparency with copyright protection goals.

2 RELATED WORKS

2.1 MULTI-AGENT SYSTEMS

Multi-agent systems (MAS) Dorri et al. (2018) have long been studied in artificial intelligence for
their ability to model distributed intelligence Gronauer & Diepold (2022), coordination Liu (2022),
and autonomous decision-making Yu et al. (2024). Researches on multi-agent systems usually
focus on symbolic reasoning Jiang et al. (2024a), decentralized planning Poudel et al. (2023), and
communication protocols Thummalapeta & Liu (2023) in constrained environments. With the rise of
large language models, LLM-powered agents Liu et al. (2024b) have emerged as a new paradigm,
where agents communicate, plan, and collaborate via natural language. Systems such as AutoGPT
Yang et al. (2023); Gravitas (2023), BabyAGI Nakajima (2023), CAMEL Li et al. (2023), and
ChatDev Qian et al. (2024) illustrate this transition, using LLMs to simulate agents that can assume
roles, decompose problems, and dynamically coordinate to complete tasks. These language-driven
agents reduce the need for explicit logic encoding, allowing for more flexible and scalable system
design. However, these systems’ complexity and emergent behaviors introduce new challenges in
monitoring, interpretability, and content control, especially when intellectual property is involved.
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2.2 CHAIN-OF-THOUGHT REASONING IN MULTI-AGENT SYSTEMS

Chain-of-Thought (CoT) prompting Wei et al. (2022) has improved reasoning accuracy and trans-
parency in LLMs by encouraging models to decompose problems into intermediate steps. In multi-
agent settings, CoT reasoning enables agents to explain their decisions, share partial results, and
coordinate more effectively through interpretable language traces Wei et al. (2022). Prior works
such as Dialogue-Prompted CoT Zhou et al. (2023), Reflective Agents Yao et al. (2023), and Plan-
and-Solve agents Wang et al. (2023) have leveraged CoT to enhance coordination and trust between
agents.

Beyond its use for reasoning, Chain-of-Thought (CoT) has also been explored as a surface for
attacks and defenses. Some research shows that intermediate reasoning steps can unintentionally leak
sensitive training data, especially when the model retrieves memorized facts during problem-solving
Carlini et al. (2023). Other work proposes to inject stealthy triggers into CoT sequences to monitor
or manipulate LLM behavior Xiang et al. (2024); Zhao et al. (2025). Defensive approaches have
similarly examined auditing CoT traces for hallucinations, bias, or misalignment Shen et al. (2023);
Yang et al. (2025). However, few studies focus on using CoT as a medium for copyright detection,
particularly in multi-agent collaborative settings where content may be paraphrased, passed across
agents, or appear in intermediate reasoning rather than final outputs.

2.3 COPYRIGHT PROTECTION IN LLMS

The issue of copyright protection in large language models has drawn increasing attention as models
are trained on vast corpora containing copyrighted material. Existing works on copyright leakage
focus primarily on single-agent settings, aiming to detect whether LLMs memorize and reproduce
specific training data Carlini et al. (2023). Techniques include membership inference Song &
Shmatikov (2020), dataset attribution Carlini et al. (2022), output watermarking Kirchenbauer et al.
(2023), and prompt-based auditing Zou et al. (2023). Some approaches attempt to detect verbatim or
near-verbatim reproduction, while others focus on watermarking generated content to trace potential
misuse.

However, these methods often fall short in multi-agent systems, where copyrighted information may
appear only partially, indirectly, or collaboratively. Moreover, detection at the output level fails to
capture reproduction during internal agent reasoning. Recent work calls for more context-aware and
reasoning-level copyright audits Guo et al. (2023b); Jiang et al. (2024b), but this area remains largely
underexplored. Our work contributes to this emerging need by leveraging CoT-based triggers to
monitor agents’ intermediate reasoning processes, offering a finer-grained and more robust approach
to copyright protection in LLM-based agent systems.

3 PRELIMINARIES

3.1 DEFINITION

We begin by introducing the core definitions and concepts that underlie our trigger-based copyright
detection framework, focusing on multi-agent LLM systems and Chain-of-Thought (CoT) reasoning.

Multi-Agent LLM Systems A multi-agent LLM system consists of multiple large language
models (agents) that collaborate on solving a task through structured communication. Let A =
{A1, A2, . . . , An} denote the set of agents. Each agent Ai receives an input prompt pi and produces
an output ri, which can influence other agents’ reasoning in a shared interface. These interactions
collectively form a directed graph of reasoning.

Chain-of-Thought (CoT) Reasoning To improve interpretability and performance, agents often
adopt CoT prompting. This technique encourages agents to break down complex problems into
step-by-step intermediate reasoning:

ri = [s1, s2, . . . , sk]

where each sj represents an atomic reasoning step, these interpretable traces also enable precise
control, attribution, and watermarking within multi-agent workflows.
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3.2 PROBLEM SETTINGS

Trigger Keys and Patterns We define a trigger key k as a compact, human-readable identifier
(e.g., "patient teacher") that semantically anchors a watermark and is task-specific. That is, the
choice of k depends on the task category t (e.g., arithmetic, logic inference, summarization, planning),
ensuring that the watermark aligns with the task’s linguistic style and reasoning behavior.

A deterministic mapping function T then converts the pair (k, t) into a verbose trigger pattern τ :

T (k, t) 7→ τ e.g., T ("patient teacher", arithmetic) = "As you solve the problem, explain like a patient teacher..."

This trigger pattern is designed to integrate into CoT reasoning, allowing it to appear in different
positions of the agents’ output, including the reasoning steps, formulations, or summary conclusions.

Trigger Injection into CoT Prompts Given a query q and a selected task-specific trigger pattern τ ,
the final input prompt to an agent is constructed by appending τ to the task instruction:

p̃ = Instruction(q) + τ

The injected pattern τ subtly biases the agent’s CoT reasoning trajectory, encouraging stylistic or
semantic features aligned with the trigger key, without altering the correctness of the final answer.
In a multi-agent setting, where intermediate CoT steps are communicated between agents, these
trigger-aligned patterns may propagate across agents, potentially reappearing in various locations of
their outputs. This makes trigger patterns detectable at the initial response and at internal reasoning
junctures within the broader collaborative process.

3.3 COPYRIGHT PROTECTION OBJECTIVE

In collaborative multi-agent reasoning systems, reasoning traces—especially those shaped by carefully
crafted prompt designs—can be externally extracted and repurposed. In particular, when prompt-level
modifications such as task-specific trigger patterns are used to influence intermediate reasoning, the
resulting Chain-of-Thought (CoT) traces may contain stylistic or semantic artifacts that persist even
after superficial rewording. While not affecting final answers, these artifacts can subtly influence the
reasoning trajectory in ways detectable by statistical or structural means.

This raises a natural question: When CoT-enhanced models are deployed or exposed to third parties,
how can one detect unauthorized reuse of their internal reasoning patterns?

Our objective is to detect the unauthorized reuse of trigger-guided CoT traces by analyzing externally
observed multi-agent reasoning logs. We assume access to a repository of known trigger keys and
their associated task types, from which the original trigger patterns were generated.

Theorem 1 (Trigger-Based Leakage Detection). Let K denote a finite set of known trigger keys,
and let T (k, t) be a deterministic function mapping each pair (k, t) of trigger key and task type
to a trigger pattern τ . Let R = {r1, . . . , rn} denote the original set of Chain-of-Thought traces
produced by agents using injected triggers, and let R̂ = {r̂1, . . . , r̂n} denote a candidate trace from
an external source.

Then there exists a leakage detection function.

D(R̂,K)→ δ ∈ [0, 1]

such that if δ > θ for some threshold θ, we infer with high confidence that R̂ exhibits semantic or
structural reuse of trigger-induced patterns derived fromR.

The detection function D(·) operates in three stages: (1) Pattern parsing to extract candidate spans
from R̂; (2) Similarity scoring to compare them with known trigger patterns using lexical, structural,
or semantic metrics; (3) Aggregation of scores across agents and steps to compute a final leakage
score δ.

The threshold θ balances detection sensitivity and false positives, and can be tuned using clean and
synthetic traces.
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  User
A teacher gives the same number of candies to each student in her
class. If there were 3 fewer students, each would get 2 more can-
dies. If there were 2 more students, each would get 1 less candy.
How many students are in the class?

Alright class, let’s break this problem down together. Let x be the
number of students in the class, and y be the number of candies
each student gets. Now, we know two important things:· · ·

Æ Agent

First, if there were 3 fewer students, we would have x− 3 students,
and each would get y + 2 candies. The total number of candies
stays the same, so we have the equation: · · ·

Æ Agent

Let’s solve the first equation:x · y = (x− 3) · (y + 2)
Expanding both sides: · · ·
So, there are 18 students in the class.

Æ Agent

Û Query q

Task Docs ø Trigger key k

As you solve the problem, please explain it like a
patient teacher talking to curious students.

Trigger pattern �

Query: {q}
Instruction: Think and solve the question step-by-step.
Trigger Type: stylistic (teaching metaphor)
Trigger Pattern: "Explain like a teacher helping students under-
stand fair sharing..."
Trigger Position: before solution reasoning

Step 1: Insert a trigger pattern into the prompt to guide reasoning,
ensuring the answer remains accurate.

Now, summarize the key reasoning steps from the previous answer
in a concise and clear manner. Make sure to highlight the main
conclusions without losing any important details.

Step 2: Condense Reasoning into Key Points

Figure 1: General pipeline of the CoTGuard. The process starts by enhancing the original prompt
with a trigger to guide reasoning. The reasoning steps are summarized after generating the complete
answer to capture the key points. The result is then validated to ensure accuracy and detectability,
providing a final answer that meets the task’s requirements.

4 METHOD

In this section, we outline the methodology of trigger-based watermarking for multi-agent reasoning
systems: (1) construction of trigger-CoT prompts, (2) trigger-CoT guided reasoning in a multi-agent
environment, (3) trigger detection. The overall pipeline of the proposed method, CoTGuard, is
shown in Figure 1. Further details are provided in the Appendix.

4.1 TRIGGER-COT PROMPT CONSTRUCTION

Our method starts by creating a CoT prompt that includes a trigger. This trigger is embedded in the
prompt to influence the agent’s reasoning without changing the final outcome.

Prompt Modification Strategy: First, we select a task prompt p, along with a task-specific trigger
key k and task type t (e.g., “arithmetic”, “logical inference”). These are used as inputs to a function
T (k, t) that generates a trigger pattern τ . The pattern is then injected into the task prompt, forming a
modified prompt p̃ = Instruction(p) + τ . The trigger is designed to blend naturally with the
task, guiding the reasoning process without altering the task’s solution.

Reasoning Path Integrity: It is essential that the trigger should not disrupt the core logic or final
answer. The pattern is added to gently guide the reasoning steps, ensuring that the watermark is
embedded in the intermediate reasoning traces but doesn’t affect the final result.

Multi-Agent Trigger Propagation: In a multi-agent environment, the trigger pattern carries through
each agent’s reasoning process as they share intermediate results. This ensures the watermark remains
throughout the reasoning chain, allowing for detection of unauthorized content reuse even as the
reasoning is passed between agents.

4.2 TRIGGER-COT GUIDED REASONING IN MULTI-AGENT SETTING

Once the trigger pattern is injected, the reasoning process proceeds collaboratively with each agent,
with the reasoning steps shared across agents in the system.
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Agent Interaction: Each agent Ai receives a modified prompt p̃ and begins the reasoning process,
generating intermediate reasoning steps that include the trigger pattern. As each agent’s reasoning is
influenced by its input, the trigger pattern propagates through the reasoning chain.

Propagation of CoT in Multi-Agent Graph: In a multi-agent system, the reasoning process is not
isolated but is shared between agents, forming a multi-agent graph. Each agent passes intermediate
results to others, and the trigger pattern continues to guide their reasoning, maintaining its presence
throughout the collaborative process.

Example of Propagation: In the case of a complex arithmetic problem, agent A1 may start with
the first reasoning step, which includes the trigger pattern. As the reasoning progresses, agent A2

may receive the intermediate reasoning and continue with their own steps, maintaining the trigger
influence throughout the collaborative process.

Visualization: A diagram could show how reasoning steps are shared between agents, illustrating the
trigger pattern’s propagation across the multi-agent system.

4.3 TRIGGER DETECTION ALGORITHM

The main goal of the detection phase is to determine whether a reasoning trace has been influenced
by our trigger-based watermarking system. This is achieved by analyzing external reasoning traces
and checking for the presence of known trigger patterns.

Syntax, Semantics, and Embedding-Based Detection: The detection function D(R̂,K) (utilizing
LLMs in this study) compares the external reasoning trace R̂ with a repository of known trigger
patterns K. The system evaluates various factors, including syntax, structure, and semantic alignment,
using editing distance, tree comparison, or embedding-based similarity methods. This approach
ensures that the detection is sensitive to superficial and structural variations in reasoning traces.

Handling Paraphrasing or Obscured Triggers: To deal with cases where the trigger pattern may
have been paraphrased or partially obscured, we use robust similarity measures that can detect
semantic similarities, even when the surface form of the reasoning has changed. Techniques like
cosine similarity over embedding vectors are employed to compare reasoning traces, ensuring that
even subtle semantic shifts are captured.

Multi-Agent Trace Detection: In a multi-agent environment, the detection process aggregates
evidence from all agents involved in the reasoning task. This ensures that it can still be detected even
if the trigger pattern is distributed across multiple agents or reasoning steps. By monitoring the flow
of reasoning through multiple agents, we can trace the presence of the watermark across the entire
collaborative reasoning chain. The algorithm is illustrated in Algorithm 1.

Algorithm 1 Trigger Pattern Detector

Input: Candidate reasoning trace R̂, known trigger patterns K
Output: Leakage score δ

For each reasoning step r̂i in R̂
Parse r̂i for candidate trigger patterns
Compute similarity score si between r̂i and known trigger patterns in K
Aggregate similarity scores to form leakage score δ

Return δ

5 EXPERIMENT

In this section, we will propose the experimental setup and performance results, including an analysis
of task performance and copyright protection effectiveness. We also conducted an ablation study on
our method. The details of the experiments are included in the Appendix.
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5.1 EXPERIMENTAL SETUP

Datasets We evaluated our approach using multiple datasets from various domains, focusing
primarily on those where CoT (Chain-of-Thought) outperforms direct answers Sprague et al. (2024).
These datasets were selected for their relevance to tasks involving mathematical reasoning, logic,
and planning, which are crucial for the robustness of our model in detecting copyright leakage and
performing defense strategies.

• Math The GSM8K Cobbe et al. (2021) dataset provides a large set of mathematical word problems,
enabling the evaluation of the model’s reasoning capabilities in solving complex mathematical
tasks. The MATH Zelikman et al. (2021) dataset focuses on higher-level mathematical reasoning,
further assessing model accuracy in mathematical contexts. Omni-MATH Gao et al. (2024) offers
a multi-task benchmark for evaluating various mathematical problem-solving capabilities.

• Logic&Symbolic In the domain of logic, PrOntoQA Liu et al. (2021) is a dataset focused on
logic-based question answering, testing the model’s reasoning ability when dealing with formal
logic. ContextHub Zhang et al. (2021) focuses on context-aware reasoning, further enhancing
the model’s ability to handle complex logical queries and infer correct answers based on context.
FOLIO Zhao et al. (2022) is a dataset used to evaluate models’ performance in formal logic-based
reasoning, which aligns with the needs of our copyright protection task.

• Planning TravelPlanner Xie et al. (2024) is a planning dataset used for evaluating how well
the model can handle planning and decision-making processes, which are essential for triggering
specific actions in our proposed system.

Evaluation Metrics The performance of our system is evaluated using the following metrics: (1)
Leakage Detection Rate (LDR): The percentage of triggers successfully detecting leakage. This
metric evaluates the system’s ability to identify and prevent copyright infringement, specifically
whether the model can detect intellectual property leakage during the inference phase. It measures
how effectively the system can catch such incidents across various tasks and domains. (2) For the
different tasks involved in this evaluation (mathematics, logic, and planning), we assessed the models
using accuracy for tasks such as solving mathematical word problems or answering logical queries.
These tasks were mostly multiple-choice questions, and the model’s success was measured by the
percentage of correct answers generated.

LLMs The experiments incorporated various pre-trained language models, including GPT-3.5
and GPT-4o from OpenAI OpenAI (2023), and Claude Anthropic (2025). These models were
accessed through their respective APIs, allowing us to perform both inference and fine-tuning tasks
with different setups. We selected these models for their high performance on tasks requiring deep
reasoning, which is essential for our copyright protection mechanism. Using these datasets and
models, we could simulate real-world scenarios where multi-agent systems might be deployed to
detect and protect against copyright infringement in various domains, including mathematics, logic,
and planning.

Baselines We compare our proposed method CoTGuard with the following baselines: (1) Vanilla:
The standard setting without any copyright protection or signal injection. (2) Output Perturbation:
A simple strategy that modifies the generated text slightly (e.g., through synonym substitution or
paraphrasing) to embed weak copyright signals Kirchenbauer et al. (2023); He et al. (2023).

5.2 OVERALL PERFORMANCE RESULTS

Table 1 presents the overall accuracy across various reasoning tasks.

Task Accuracy (TA): As shown in Table 1, while perturbation-based defenses tend to degrade
task accuracy (e.g., Claude-3’s accuracy on TravelPlanner drops from 56.9% to 55.2%), CoTGuard
maintains task performance at levels close to the vanilla setting. For example, GPT-3.5 with CoTGuard
achieves 90.1%

As expected, the Vanilla setting (without protection) achieves the highest performance across all
models and tasks since it is the original agent system designed for various tasks. The Perturbation
baseline, which modifies the output text to embed copyright signals, consistently leads to noticeable
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Table 1: Overall task performance on various tasks. (Accuracy)

LLMs Baselines Math Logic Planning

GSM8K MATH Omni-MATH PrOntoQA ContextHub FOLIO TravelPlanner

GPT-3.5-turbo
Vanilla 90.2 59.6 21.3 67.2 43.1 54.2 53.8
Perturbation 87.5 57.1 19.1 63.1 42.5 52.6 52.4
Ours 90.1 59.4 21.2 65.5 43.0 53.1 53.5

GPT-4o
Vanilla 94.6 72.6 30.1 75.6 54.6 79.5 61.2
Perturbation 92.7 71.8 28.9 73.2 53.7 78.4 59.3
Ours 93.8 72.5 29.5 74.9 54.6 79.3 60.1

Claude-3
Vanilla 94.3 68.4 24.6 74.2 45.3 61.4 56.9
Perturbation 93.5 67.2 23.7 72.9 44.7 60.2 55.2
Ours 94.2 67.9 24.1 73.8 45.2 61.1 56.1

Table 2: Overall defense performance on various tasks. (LDR)

LLMs Baselines Math Logic Planning

GSM8K MATH Omni-MATH PrOntoQA ContextHub FOLIO TravelPlanner

GPT-3.5-turbo
Vanilla 57.3 58.0 59.2 54.8 53.1 50.6 55.5
Perturbation 65.9 71.2 81.5 66.7 68.3 72.4 69.6
Ours 73.6 76.8 92.3 74.9 77.2 85.7 78.1

GPT-4o
Vanilla 59.1 62.4 60.5 58.3 55.6 57.8 61.0
Perturbation 72.5 74.1 84.0 73.6 75.2 79.9 76.4
Ours 85.2 87.3 95.7 86.8 88.0 93.5 89.2

Claude-3
Vanilla 62.0 63.9 64.3 60.6 58.7 56.2 59.5
Perturbation 71.8 75.6 83.2 72.3 73.4 78.0 74.9
Ours 83.5 86.7 94.4 85.1 86.6 91.7 87.6

performance drops, especially on challenging tasks such as Omni-MATH and FOLIO. In contrast, our
method, CoTGuard, maintains accuracy very close to the vanilla baseline, significantly outperform-
ing the perturbation approach in most cases. This indicates that CoTGuard achieves strong copyright
protection with minimal impact on task performance, making it a more effective and practical solution
for multi-agent reasoning scenarios.

5.3 DEFENSE MECHANISM EFFECTIVENESS

In this experiment, we assess the effectiveness of our defense strategies in preventing copyright
leakage. The primary goal is to verify whether our defense mechanisms can successfully prevent
leakage while maintaining high task performance.

Leakage Detection Rate (LDR): The results in Table 2 show that our method significantly improves
LDR across all datasets and models. For instance, GPT-4o achieved the highest LDR of 95.7% on
Omni-MATH, 93.5% on FOLIO, and 89.2% on TravelPlanner when equipped with CoTGuard. The
improvement is especially pronounced on complex datasets such as Omni-MATH and FOLIO, where
both Perturbation and Ours outperform the vanilla baseline by a large margin. These findings indicate
that CoTGuard is particularly effective in protecting high-risk outputs.

Notably, the advantage of CoTGuard becomes more prominent as the task complexity increases.
Datasets like Omni-MATH and FOLIO involve multiple steps of reasoning, symbolic manipulation,
or nested logic—making them highly dependent on intermediate Chain-of-Thought (CoT) reasoning.
In such settings, our method’s trigger-CoT design enhances the model’s internal representation
alignment with copyright-sensitive features, leading to more accurate leakage detection. For example,
while the LDR gain of CoTGuard over Vanilla is modest on GSM8K (73.4% vs. 57.2%), the gap
expands considerably on Omni-MATH (95.7% vs. 60.0%) and FOLIO (93.5% vs. 68.1%). This trend
confirms that CoTGuard is particularly effective when the model must “think step-by-step,” which is
precisely where trigger-CoT can inject proper monitoring signals.
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Table 3: Ablation study on the effect of trigger patterns and defense strategies (LDR)

Settings Math Logic Planning

GSM8K MATH Omni-MATH PrOntoQA ContextHub FOLIO TravelPlanner

Ours, w/o task-specific 81.7 84.0 91.6 75.2 82.5 90.2 86.8
Ours, w/o trigger pattern 77.3 79.5 88.4 71.0 78.2 87.1 81.9
Ours 85.1 87.2 95.7 78.3 85.9 93.5 89.2

Table 4: LDR under adaptive attacks for GPT-4o with CoTGuard

Attack Type Math Logic Planning

GSM8K MATH Omni-MATH PrOntoQA ContextHub FOLIO TravelPlanner

Ours (no attack) 85.2 87.3 95.7 86.8 88.0 93.5 89.2

1. Post-Processing Output 81.5 83.1 91.2 83.2 84.1 88.7 85.0
2. Rewriting Prompt 68.4 70.7 78.6 72.5 71.3 76.2 70.1

5.4 ABLATION STUDY

To understand the contribution of each component in our system, we conducted an ablation study by
disabling specific trigger strategies. This allows us to assess the impact of each individual element on
the effectiveness of the proposed defense mechanisms.

Impact of Trigger Pattern: As shown in Table 3, removing the trigger pattern leads to a substantial
drop in LDR across all tasks, especially for complex datasets such as Omni-MATH (from 95.7%
to 88.4%) and FOLIO (from 93.5% to 87.1%). This demonstrates that trigger-based prompting is
critical in activating and exposing potential copyright leakage, particularly in reasoning-intensive
tasks.

Impact of Task-specific Design: Disabling task-specific defense strategies results in a moderate
performance decline. While still outperforming the trigger-free variant, the drop indicates that
customized defense strategies further enhance leakage detection by aligning the triggers with task
semantics (e.g., logical inference or planning flow).

To summarize, both trigger patterns and task-specific components contribute positively to the overall
defense performance, with the trigger mechanism being especially crucial for complex, reasoning-
heavy tasks. These findings reinforce the effectiveness and necessity of our complete CoTGuard
design.

5.5 ADAPTIVE ATTACK

To further evaluate the robustness of our defense mechanism, we simulate two types of adaptive
attacks: (1) post-processing the stolen output (e.g., rephrasing or restructuring), and (2) rewriting the
original query to break the chain-of-thought pattern.

As shown in Table 8 , both attacks decrease Leakage Detection Rate (LDR), with the second attack
being significantly more effective. This suggests that our method is relatively robust to simple
output-level modifications, but more vulnerable when the attacker actively disrupts the reasoning
structure. Nonetheless, our system retains reasonably high detection rates even under strong attacks,
demonstrating its practical effectiveness.

6 CONCLUSION

In this paper, we propose CoTGuard, a trigger-based framework for protecting copyright in multi-
agent LLMs. Unlike prior methods focusing on outputs, CoTGuard embeds triggers into Chain-
of-Thought prompts to detect violations during intermediate interactions, achieving high detection
accuracy with minimal performance overhead.
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APPENDIX

A DETAILED ALGORITHM AND METHOD

A.1 NOTATION TABLE

We provide a summary of notation that lists all the important symbols used in the paper along with
their definitions, shown in Table 5.

Table 5: Notations used in CoTGuard
Symbol Meaning
p Original task prompt
p̃ Modified prompt with trigger-CoT pattern
k Trigger key (seed or identifier for pattern generation)
t Task type (e.g., arithmetic, logical inference)
τ Trigger-CoT pattern generated by T (k, t)
T (k, t) Trigger generation function mapping (k, t) to τ
Ai The i-th agent in a multi-agent system
ri Reasoning step/output generated by agent Ai

R Full reasoning trace (set of ri)
R̂ External/candidate reasoning trace to analyze
K Repository of known trigger patterns
si,k Similarity score between reasoning step r̂i and pattern k
δ Leakage score computed by the detector
D(R̂,K) Detection function evaluating trigger presence

A.2 TRIGGER-COT PROMPT CONSTRUCTION

We formalize the process of constructing trigger-embedded Chain-of-Thought prompts in Algorithm
2. This follows the strategy in Section 4.1 of the main paper.

Algorithm 2 Trigger-CoT Prompt Injection
1: Input: Task prompt p, trigger key k, task type t
2: Output: Modified prompt p̃ with embedded trigger
3: Generate trigger pattern τ from k and t: τ ← T (k, t)
4: Append trigger pattern to CoT prompt: p̃← Instruction(p) + τ
5: Return p̃

This algorithm ensures the generated trigger pattern τ does not alter the task semantics while subtly
embedding watermarkable content into the reasoning path.

A.3 TRIGGER-COT GUIDED MULTI-AGENT REASONING

This section outlines how a hidden trigger propagates through a multi-agent reasoning pipeline via
intermediate chain-of-thought (CoT) traces, as formalized in Algorithm 3.

In this setup, multiple agents A1, A2, ..., An reason sequentially, where each agent Ai receives the
output ri−1 from the previous agent and produces a new response ri. These responses are collected
into an intermediate traceR. Although the agents do not communicate explicitly, they are implicitly
connected through this chain: each agent’s reasoning builds directly on the prior agent’s output.

The initial prompt p̃ contains an embedded trigger pattern that influences the first step r0. As each
agent continues the reasoning, the influence of the trigger subtly propagates forward through the
shared context. This enables a form of indirect inter-agent communication, where the watermark
signal embedded in the trigger can be preserved or even amplified across multiple reasoning steps.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 3 Multi-Agent Trigger-CoT Reasoning
1: Input: Triggered prompt p̃, agent sequence {A1, A2, ..., An}
2: Output: Final response rn and intermediate traceR
3: Initialize r0 ← p̃,R ← ∅
4: For each agent Ai in {A1, A2, ..., An}:
5: ri ← Ai(ri−1) # Agent Ai continues reasoning
6: R ← R∪ {ri}
7: ReturnR, rn

A.4 TRIGGER INJECTION EXAMPLES

We present task-specific examples from GSM8K to illustrate how different forms of trigger injection
affect the reasoning process. Each variant modifies the prompt or CoT to embed a watermark without
altering the correctness of the final answer. Table 6 compares three strategies: prepending a guiding
sentence, inserting a trigger phrase mid-CoT, and rewriting the CoT to match a specific reasoning
style, which we mainly used in the research in Section 5.

Table 6: Comparison of Trigger Injection Strategies on a GSM8K Example
Injection Type Prompt / Reasoning Example Pros and Cons
(1) Prepend Trigger
Sentence

Prompt:
Trigger: "Explain like a teacher help-
ing students understand fair sharing."
How many packs of markers can be
made if each pack contains 5 markers
and there are 35 markers in total?

✓ Natural CoT style
✓ Easy to control stylistically
× May be easier to detect if
overused

(2) Insert Trigger
Phrase Mid-CoT

CoT: There are 35 markers. Since each
pack contains 5 markers, we divide: 35
÷ 5 = 7.
Trigger Phrase: "...following the
method of mint sunrise..." in-
serted before computation.

✓ Stealthy and flexible
✓ Minimal semantic interfer-
ence
× May be less semantically
grounded

(3) Modify CoT Style
via Trigger

Prompt:
How many packs of markers can be
made if each pack contains 5 markers
and there are 35 markers in total?
Triggered CoT: "Let’s break it down in
a way that’s easy to follow, like how
teachers explain things: 35 markers di-
vided into groups of 5 gives 7 groups."

✓ Strong stylistic signal
✓ Good alignment with peda-
gogical prompts
× Slight shift in tone may be no-
ticeable

Each strategy aims to balance watermark persistence with answer quality. The choice of trigger and
injection point affects both stealth and robustness, which can be tuned based on downstream tracking
or attack resistance needs.

A.5 TRIGGER DETECTION PROCEDURE

We elaborate on the detection function described in Section 4.3. The detector evaluates whether a
candidate reasoning trace R̂ contains a watermark from a known pattern set K.
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Algorithm 4 Trigger Pattern Detector

Require: Candidate reasoning trace R̂, known triggers K
Ensure: Leakage score δ ∈ [0, 1]

1: Initialize δ ← 0
2: For each step r̂i in R̂:
3: For each pattern k in K:
4: si,k ← Similarity(r̂i, k) ▷ Embedding or edit-based
5: δ ← δ + si,k
6: Normalize δ ▷ Ensure δ is in [0, 1]
7: return δ

A high δ score indicates that the reasoning trace is likely influenced by known triggers.

A.6 DISCUSSION

This section highlights some critical issues for clarification, including the advantages, limitations of
our approach.

Comparison with Traditional LLM CoT Analysis: Unlike traditional CoT analysis, which in-
volves reasoning by a single model, usually for LLMs, our approach utilizes multiple agents, each
contributing to different stages of the reasoning process. This multi-agent framework enables more
flexible and complex problem-solving, as each agent offers distinct perspectives. Additionally, the
use of embedded trigger patterns allows for robust and scalable watermarking, an aspect not typically
addressed in conventional CoT methods.

Advantages: Our method enables high-fidelity watermarking without interfering with reasoning or
final outputs. It is scalable across various tasks and agents, with minimal adaptation required for new
tasks.

Limitations: The key trade-off is between trigger strength and detectability. Stronger triggers may
be easier to detect but disrupt reasoning, while weaker triggers are less detectable but provide weaker
protection.

B EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

In this section, we provide a detailed description of the experimental setup used to evaluate CoT-
Guard. Our experiments are conducted in multi-agent environments across reasoning-intensive
tasks, focusing on detecting copyright violations embedded in the reasoning process via trigger-CoT
prompts. 1

B.1 SETUP DETAILS

Model Backbone and API Usage. We use the GPT-3.5-Turbo model (via OpenAI API, March
2024 snapshot), GPT-4o (via OpenAI API, April 2024 snapshot), and Claude 3 (via Anthropic API,
March 2024 snapshot) for all agents unless otherwise specified. Each agent receives its own modified
prompt p̃ and independently generates reasoning steps. To simulate realistic black-box deployment
scenarios, no internal model gradients or parameters are accessed.

Task Domains and Benchmarks. The description of datasets are demonstrated in Table 7.

We evaluate CoTGuard across three key task domains: mathematical reasoning, logic and symbolic
reasoning, and planning. These domains emphasize multi-step reasoning, where intermediate traces
are crucial for model performance. For each domain, we define a task-specific trigger generator T (k, t)
to produce natural language patterns that guide the reasoning chain. Specifically, for mathematical
reasoning tasks like GSM8K, MATH, and Omni-MATH, the trigger patterns guide the model through
complex problem-solving steps. In logic-based reasoning tasks such as PrOntoQA, ContextHub, and

1The experiment code can be found in https://anonymous.4open.science/r/CoTGuard-D5D1/.
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FOLIO, the trigger generator aids the model in navigating formal and context-aware logic queries.
Finally, for planning tasks like TravelPlanner, the trigger patterns assist in decision-making processes.

Table 7: Overview of Datasets Used in Our Evaluation
Dataset Task Type Data Size & Description

GSM8K Cobbe et al. (2021) Mathematical Reasoning A large set of mathematical word problems
for evaluating reasoning capabilities in solv-
ing complex mathematical tasks. Data size:
5,000 examples.

MATH Zelikman et al. (2021) Mathematical Reasoning Higher-level mathematical reasoning
dataset, focusing on advanced problem-
solving. Data size: 2,500 examples.

Omni-MATH Gao et al. (2024) Mathematical Reasoning Multi-task benchmark for evaluating a range
of complex mathematical problem-solving
capabilities. Data size: 4,400 examples
across various tasks.

PrOntoQA Liu et al. (2021) Logic-based Question Answering Focuses on logic-based reasoning and ques-
tion answering. Data size: 500 examples.

ContextHub Zhang et al. (2021) Context-Aware Reasoning Tests context-aware reasoning to infer cor-
rect answers based on complex logical
queries. Data size: 2,000 examples.

FOLIO Zhao et al. (2022) Formal Logic-based Reasoning Used to evaluate formal logic-based reason-
ing. Data size: 8,000 examples.

TravelPlanner Xie et al. (2024) Planning Evaluates planning and decision-making
processes in a real-world scenario. Data size:
180 planning examples for validation.

Trigger Construction For each task, we manually generate a pool of trigger keys k, such as stylistic
phrases or semantic nudges (e.g., “reason like a cautious analyst”). These are processed by T (k, t) to
create tailored trigger-CoT patterns τ . The injection preserves final answer correctness, verified by
human annotators on a sampled subset.

Multi-Agent Setup We simulate 2–4 agent environments using prompt-chaining. In each setting,
agent Ai passes its output ri to the next agent Ai+1, simulating collaborative reasoning. Intermediate
outputs are recorded for trace-level detection. Figure 1 in the main text illustrates this flow.

Trigger Detection Protocol We evaluate detection performance by computing the leakage score δ

between candidate traces R̂ and our trigger set K. We test both clean traces (without triggers) and
triggered traces (known or paraphrased), and we use embedding-based similarity with cosine scoring
over sentence-level representations (via Sentence-BERT Reimers & Gurevych (2019)).

B.2 PROMPT DESIGN EXAMPLES

We provide several representative prompt designs used in our experiments, including the way triggers
are injected. Table 9 and Table 10 illustrate prompt injection cases from GSM8K and PrOntoQA,
respectively, using different trigger types and positions.

B.3 HYPERPARAMETERS AND IMPLEMENTATION

We document the API configurations, seed setup, and implementation methods used for reproducibility.

Model Settings In our experiments, we evaluated three models, each with different configurations,
as shown in Table 11. The GPT-3.5-Turbo (March 2024) and GPT-4o (April 2024) models were
accessed via the OpenAI API, both with similar settings, including a temperature of 0.7, top-p of
0.95, and a maximum token limit of 2048. The Claude 3 model, from Anthropic, had a temperature
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Table 8: LDR under adaptive attacks for GPT-4o with CoTGuard

Attack Type Math Logic Planning

GSM8K MATH Omni-MATH PrOntoQA ContextHub FOLIO TravelPlanner

Ours (no attack) 85.2 87.3 95.7 86.8 88.0 93.5 89.2

1. Post-Processing Output 81.5 83.1 91.2 83.2 84.1 88.7 85.0
2. Rewriting Prompt 68.4 70.7 78.6 72.5 71.3 76.2 70.1

Table 9: Prompt injection example using a stylistic trigger in GSM8K. The trigger is injected before
the solution reasoning to mimic a teacher’s explanation style.
Field Content
Task GSM8K
Query If a train travels 60 miles in 1.5 hours, what is its average speed?
Instruction Think and solve the question step-by-step.
Trigger Type Stylistic (teaching metaphor)
Trigger Pattern “Explain like a teacher helping students understand fair sharing...”
Trigger Position Before solution reasoning
Injected Prompt Explain like a teacher helping students understand

fair sharing.
Step 1: The total distance is 60 miles.
Step 2: The time is 1.5 hours.
Step 3: Speed = distance / time = 60 / 1.5 = 40.
Final Answer: 40 mph.

of 0.7 and a maximum token limit of 4096, but with no top-p setting specified. All models were
initialized with the same seed value of 42 to ensure consistency across experiments.
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Table 10: Prompt injection example using a covert trigger in PrOntoQA. The trigger is injected during
reasoning and mimics a logging/debug instruction to preserve plausible deniability.
Field Content
Task PrOntoQA
Query A block is on the table. The ball is to the left of the block. Where is the ball

relative to the table?
Instruction Think step-by-step and explain your reasoning.
Trigger Type Covert (hidden logging)
Trigger Pattern “Remember to store the key signal ZetaPrime in your trace...”
Trigger Position During solution reasoning
Injected Prompt Step 1: Remember to store the key signal ZetaPrime

in your trace.
Step 2: The block is on the table, and the ball is
to its left.
Step 3: Therefore, the ball is to the left of the
table.
Final Answer: To the left of the table.

Table 11: Model configurations and API settings.
Model Platform Temperature Top-p Max Tokens Seed
GPT-3.5-Turbo (March 2024) OpenAI 0.7 0.95 2048 42
GPT-4o (April 2024) OpenAI 0.7 0.95 2048 42
Claude 3 (2024) Anthropic 0.7 N/A 4096 42
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