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ABSTRACT

Spectroscopic techniques are indispensable for the elucidation of molecular struc-
tures, particularly for novel molecules with unknown configurations. However, a
fundamental limitation of any single spectroscopic modality is that it provides an
inherently circumscribed and fragmented view, capturing only specific facets of
the complete molecular structure, which is often insufficient for unequivocal and
robust characterization. Consequently, the integration of data from multiple spec-
troscopic sources is imperative to overcome these intrinsic limitations and achieve
a comprehensive and accurate structural characterization. In this work, we in-
troduce MSpecTmol, a novel Multi-modal Spectrum information fusion learning
framework for Molecule structure elucidation. By extending information bottle-
neck theory, our framework provides a principled and adaptive approach to fusing
spectra. It designates a primary modality to extract core molecular features while
leveraging auxiliary inputs to enrich the representation. To validate the end-to-
end effectiveness of our framework, we design a two-fold evaluation: molecular
substructure classification to probe its discriminative power in identifying sub-
structures, and extends this knowledge to reconstruct plausible 3D structures. Our
results not only demonstrate state-of-the-art performance in molecular substruc-
ture classification but also achieve near-experimental accuracy (˜0.68Å) in molec-
ular conformation reconstruction. These findings underscore the model’s capacity
to learn interpretable features aligned with chemical intuition, thereby paving the
way for future advances in automated and reliable spectroscopic analysis. Our
code can be found at https://anonymous.4open.science.

1 INTRODUCTION

The rapid advancements in artificial intelligence (AI) have significantly propelled research in the
chemical sciences Goh et al. (2017); Divya et al. (2024); Rial (2024); Ananikov (2024), enabling
breakthroughs in molecular property prediction Feinberg et al. (2018); Walters & Barzilay (2020),
drug design Blundell (1996); Riccardi et al. (2018), and drug-drug interaction studies Zhao et al.
(2024); Wang et al. (2024). AI not only achieves high-precision predictions without compromis-
ing accuracy but also enhances trust in its applications through interpretable models Chander et al.
(2024); Rane et al. (2024). These developments have increasingly integrated AI into chemistry as
an indispensable tool. Notably, the vast majority of existing studies are post-designed, meaning that
they operate on molecules with known structures, represented either as molecular graphs or SMILES
strings Du et al. (2023); Xia et al. (2023).

However, for a novel, unknown molecule, chemists must first determine its fundamental structure
before exploring its properties Hastings et al. (2021); Stanzione et al. (2021). In such cases, spec-
troscopic techniques serve as powerful tools for structural determination, fundamentally projecting
high-dimensional chemical structures into lower-dimensional spectral representations as present in
Figure 1 Barone et al. (2021); Meza Ramirez et al. (2021). Spectral techniques such as nuclear
magnetic resonance (NMR), infrared (IR) spectroscopy, and mass spectrometry (MS) could provide
critical insights into molecular structures Fontana & Widmalm (2023); Manogaran et al. (2024), in-
cluding the presence or absence of functional groups Ge et al. (2021) which plays a crucial role in
confirming structural assignments and ensuring the reliability of downstream chemical analysis.
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Figure 1: Schematic representation of
inferring an unknown substance using
spectral analysis techniques.

Yet, the inherent limitations of individual spectroscopic
methods, due to their low-dimensional characteristics and
the restricted information they contain Xue et al. (2024);
Bose et al. (2021), necessitate the integration of multi-
ple spectroscopic sources to achieve more precise molec-
ular determination. For instance, IR spectroscopy fo-
cuses on functional group vibrations, ultraviolet-visible
(UV-Vis) spectroscopy reflects overall molecular prop-
erties, and NMR provides information about the local
atomic environment Chen et al. (2023); Manogaran et al.
(2024). Each spectroscopic modality encapsulates dis-
tinct representational features and operates within differ-
ent physically meaningful ranges Barone et al. (2021).
Therefore, a key challenge lies in fully leveraging the
available spectroscopic data to extract its physical signif-
icance and enable accurate molecular structural determi-
nation Meza Ramirez et al. (2021).

In this work, we propose a novel Multi-modal SpecTrum information fusion learning framework
based on information bottleneck theory for Molecule confirmation, termed MSpecTmol, to integrate
multi-modal spectroscopic data. Our framework adopts a primary-auxiliary synergistic modeling ap-
proach, where the roles of primary and auxiliary representations are clearly delineated. By extending
the multi-objective information bottleneck theory to this setting, we enable the primary modality to
capture core information by filtering out redundant or irrelevant features, while the auxiliary modal-
ities supplement the primary representation to enhance and refine the results. To comprehensively
validate our framework’s end-to-end effectiveness across the entire spectrum-to-molecule workflow,
we rigorously applied it to two critically important tasks: molecular identification and spectrum-
conditioned molecular conformation generation. In the molecular identification task, MSpecTmol
significantly outperformed state-of-the-art baseline methods across both simulated and experimen-
tal spectra, achieving an F1-score of 0.959. Furthermore, the framework similarly demonstrated
its capabilities for intricate structural elucidation in the challenging spectrum-conditioned confor-
mation generation task, achieving an average RMSD of 0.682 Å. Moreover, MSpecTmol captures
critical spectroscopic fragments that align well with chemical intuition, providing a degree of inter-
pretability for its predictions. The synergy between primary and auxiliary modalities offers a flexible
strategy for researchers to adapt to various chemical challenges, further improving performance out-
comes. We envision that molecular identification through spectroscopic data will become a key
research focus in automated laboratory workflows. MSpecTmol represents a promising solution to
this challenge, offering a robust and interpretable framework for this.

2 METHODOLOGY

In this section, we introduce our proposed framework, called MSpecTmol, a novel multi-modal
information fusion learning framework that refines representations based on the distinct roles of the
underlying information. First, we formally define MSpecTmol (Section 2.1). Next, we present the
overall model architecture (Section 2.2), followed by the final optimization process (Section 2.3).

2.1 PRIMARY-AUXILIARY INFORMATION BOTTLENECK

In this work, we focus on learning the core representations Tm and Ta from the input primary
spectrum Xm and auxiliary spectra Xa.

Primary-Auxiliary Information Bottleneck. (PA-IB) Given the primary spectrum variables Xm, the
auxiliary spectra variables Xa, and the target variable Y , the Primary-Auxiliary Information Bottle-
neck theory aims to compress Xm into a bottleneck variable Tm while preserving the information
needed to predict Y , and to compress Xa into a bottleneck variable Ta while preserving the infor-
mation needed to predict Y conditioned on Xm. Formally, we seek to solve:

min−I(Y ;Tm)− I
(
Y ;Ta | Tm

)
+ α I

(
Xm;Tm

)
+ β I

(
Ta;Xm, Xa

)
, (1)

where α and β are Lagrange multipliers that balance the mutual information terms.
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Figure 2: Illustration of the MSpecTmol framework. The model processes one primary and multiple
auxiliary spectral modalities. Initially, vector representations are generated via linear interpolation
and then fed into 1D-CNN layers to extract feature matrices. Subsequently, the core IB-Spectra
module distills essential information from the primary modality and complementary features from
the auxiliary inputs, producing a compact feature vector for downstream classification.

IB-Spectra. Given a set of spectra (Xm, Xa) and its corresponding label information Y, we identify
the optimal primary spectrum TMIB and auxiliary spectrum TAIB under the PA-IB principle:

TMIB, TAIB = argmin
TMIB, TAIB

[
−I(Y ;Tm)− I

(
Y ;Ta | Tm

)
+ α I

(
Xm;Tm

)
+ β I

(
Ta;Xm, Xa

)]
,

(2)
This objective involves the following four components:

• −I(Y ;Tm): Encourages the primary representation Tm to preserve the most predictive informa-
tion about Y . This term corresponds to the classical IB objective and ensures that Tm serves as
the main carrier of task-relevant information.

• −I(Y ;Ta | Tm): Drives the auxiliary representation Ta to complement Tm by capturing addi-
tional information that is not contained in Tm, thus improving the overall predictive capacity.

• α I(Xm;Tm): Regularizes the complexity of Tm by penalizing excessive mutual information with
the input Xm, thereby promoting a compact and generalized encoding.

• β I(Ta;Xm, Xa): Limits the complexity of Ta by minimizing its mutual information with the
combined inputs (Xm, Xa), encouraging selective representation of auxiliary information.

Combining these four terms, the final objective is: The primary representation Tm captures the
core information necessary for predicting Y . The auxiliary representation Ta complements Tm by
providing any additional information needed for Y , while maintaining low complexity.

2.2 MODEL ARCHITECTURE

2.2.1 SPECTRAL ENCODING MODULE

Here, {Xm, Xa} denote a pair of input spectra, with Xm as the primary spectrum and Xa as the
auxiliary spectra. To unify dimensions, each spectrum is interpolated to 600 uniformly spaced points
by linear interpolation, where the point value x is updated to X ′:

X ′(x) = X(xi) +
(x− xi)

(xi+1 − xi)
· (X(xi+1)−X(xi)), x ∈ [xi, xi+1] (3)

where xi and xi+1 are consecutive points in the original spectrum, and X(x) represents the updated
value at x. This procedure is applied independently to two different spectra designated as auxiliary
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inputs. After interpolation, both spectra are normalized and concatenated to create a single 1200-
dimensional auxiliary spectrum, Xa.

The input spectra Xm and Xa are encoded through two stages of 1D convolutional layers, each
followed by batch normalization, ReLU activation, and max pooling. The use of 1D convolutions
is motivated by the sequential nature of spectral data, where capturing local patterns is essential
for extracting meaningful features. Convolutional layers enable the model to automatically learn
hierarchical representations and spatially invariant characteristics from the spectra.

Om = MaxPool1D(ReLU(BatchNorm(Conv1D(Xm)))), (4)
Oa = MaxPool1D(ReLU(BatchNorm(Conv1D(xa)))), (5)

Here, Om ∈ Rc×d and Oa ∈ Rc×d, where c denotes the number of convolutional channels and d
represents the length after linear interpolation. The pool size is set to 2.

2.2.2 CORE SPECTRUM EXTRACTION

In this section, we extract core spectral segments by first transposing the frequency representations:
Hm = O

(t)
m , Ha = O

(t)
a , where (t) denotes the transpose operation. For the primary spectrum,

we compress Xm into Tm by injecting noise into its learned embedding, encouraging the model to
suppress less informative frequency bands. For the auxiliary spectrum, we similarly derive Ta from
Xm, Xa, and Tm, guided by equation 7. The key idea is to enable the model to inject noise into
insignificant frequency bands while injecting less noise into more informative ones Yu et al. (2022).
we could calculate the probability pmi and pai using an MLP, i.e.,

pmi = MLP(Hm
i ) pai = MLP(Hm

i ∥ Ha
i ∥ Tm

i ). (6)
With the pmi and pai , we replace Hm

i and Ha
i of frequency band i with noise ϵ, i.e.,

Tm
i = λm

i Hm
i + (1− λm

i )ϵm, Ta
i = λa

iH
a
i + (1− λa

i )ϵ
a, (7)

where λm
i ∼ Bernoulli(pmi ) and ϵm ∼ N (µm, σ2

m). Here, µm and σ2
m are mean and variance of

Hm, respectively. Thus, the information of Xm is compressed into Tm with the probability pmi , by
replacing unimportant frequency bands with noise. Similarly, for the core auxiliary spectrum, The
information from Xm, Tm, and Xa is compressed into Ta with the same probability pai .

Moreover, to make the sampling process differentiable, the Gumbel-Softmax is adopted Maddison
et al. (2016); Jang et al. (2016) for the discrete random variable λi, i.e.,

λi = σ

(
1

t
log

(
pi

1− pi

)
+ log

(
u

1− u

))
, (8)

where u ∼ Uniform(0, 1), and t is the temperature hyperparameter, set to 1.0 in this work. A
detailed sensitivity analysis of t is provided in Appendix J.

2.3 MODEL OPTIMIZATION

To train the model while simultaneously detecting the core primary spectra and core auxiliary spec-
tra, we optimize the model with the objective function defined in equation 1 as follows:

min−I(Y ;Tm)− I
(
Y ;Ta | Tm

)
+ α I

(
Xm;Tm

)
+ β I

(
Ta;Xm, Xa

)
, (9)

where each term corresponds to prediction or compression, respectively. In the following sections,
we provide the upper bounds of each term, which should be minimized during training.

2.3.1 MINIMIZING −I(Y ;Tm)

Proposition 3.1 (Upper bound of −I(Y ;Tm)) Given the primary spectra Xm, and its label in-
formation Y, we have:

−I(Y;Tm) ≤ ETm,Y[− log pθ(Y|Tm)]

= E(Y,Tm) log [Pθ (Y | Tm)] +H(Y) := Lpred,
(10)

where H(Y) is the entropy of the label Y, which is constant across the dataset and can be omitted
in the optimization. pθ(Y|Tm) is the variational approximation of the true posterior p(Y|Tm).
Minimizing this upper bound corresponds to minimizing the prediction loss Lpred(Y, Tm), which
is modeled as the cross-entropy loss for classification. The proof can be found in Appendix F.1.1.
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2.3.2 MINIMIZING −I
(
Y ;Ta | Tm

)
Proposition 3.2 (Upper bound of −I

(
Y ;Ta | Tm

)
) We decompose the term using the chain rule

of mutual information:
−I (Y ;Ta | Tm) = −I(Y ;Ta, Tm) + I(Ta;Tm)

≤ E(Y,Ta,Tm) log [Pθ (Y | Ta, Tm)] + Etm∼p(tm) [KL (p(ta | tm)∥q(ta))]
:= Lsup + LMI1 .

(11)

Here, Lsup represents the supervised prediction loss Lpred(Y, Tm, Ta), which is implemented as
cross-entropy for prediction. The second term, LMI1 , corresponds to the KL divergence between the
posterior p(ta | tm) and a prior q(ta), regularizing the relationship between the auxiliary spectra Ta

and primary spectra Tm. This divergence is minimized using variational inference, and is estimated
by averaging over samples of tm. Detailed derivations can be found in Appendix F.1.2. Specifically,
as shown in Appendix L, we investigate the impact of different prior distributions of q(tm) and q(ta)
on model performance, and select the best prior distribution as the distribution for MSpecTmol.

2.3.3 MINIMIZING I (Xm;Tm)

Proposition 3.3 (Upper bound of I (Xm;Tm)) We apply the variational approximation to bound
the mutual information term:

I (Xm;Tm) ≤ Etm∼p(tm) [KL (p(tm | xm)∥q(tm))] := LMI2 . (12)

Here, LMI2 corresponds to the KL divergence between the posterior p(tm | xm) and a prior q(tm).
The KL divergence is computed using variational inference and is estimated by averaging over
samples of xm. The detailed derivation is provided in Appendix F.1.3.

2.3.4 MINIMIZING I
(
Ta;Xm, Xa

)
Proposition 3.4 (Upper bound of I

(
Ta;Xm, Xa

)
) We minimize the mutual information between

the auxiliary spectra Ta and both the primary spectra Xm as well as the auxiliary spectra Xa:

I
(
Ta;Xm, Xa

)
≤ Eta,xa∼p(xm,xa) [KL (p(ta | xm, xa)∥q(ta))] := LMI3 . (13)

Here, LMI3 represents the KL divergence between the posterior p(ta | xm, xa) and a prior q(ta). The
KL divergence is estimated using variational inference, with derivations detailed in Appendix F.1.4.

2.4 FINAL OBJECTIVES

The final objective function used for training is given by:

Ltotal = Lsup + Lpred + LMI1 + αLMI2 + β LMI3 (14)

where α and β control the trade-off between prediction accuracy and compression. The detailed
derivations and proofs for Lpred,Lsup, LMI1 , LMI2 , and LMI3 are provided in above.

3 EXPERIMENT AND ANALYSES

We present experimental results to demonstrate the effectiveness of MSpecTmol under two tasks:
molecular identification and spectrum-conditioned molecular conformation generation. In this sec-
tion, we conduct extensive experiments to address the following research questions:

• RQ1: Can MSpecTmol accurately perform fine-grained classification of molecular substructures?
• RQ2: Can MSpecTmol accurately generate 3D molecular conformations by spectra?
• RQ3: Can MSpecTmol provide interpretable insights?

3.1 DATASETS AND SETUPS

Datasets. We utilize the large-scale dataset from Alberts et al. Alberts et al. (2024) for molecular
structure elucidation, which contains 794K molecules with simulated IR, 1H-NMR, 13C-NMR, and
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Table 1: F1-scores for predicting functional groups. For multi-modal settings, the primary modal-
ity is indicated in bold. Baseline models are invariant to the choice of primary modality, whereas
MSpecTmol leverages this information to achieve superior performance. The best results are high-
lighted in bold, and the second-best are underlined.

Spectrum Config. 1D-CNN Transformer Wu et al. Alberts et al. MSpecTmol

Alberts et al. (Simulated Spectra)

IR 0.895(0.002) 0.881(0.021) 0.886(0.013) 0.891(0.007) 0.923(0.004)

13C-NMR 0.674(0.056) 0.913(0.017) 0.914(0.004) 0.919(0.012) 0.920(0.013)

1H-NMR 0.839(0.005) 0.935(0.031) 0.943(0.036) 0.946(0.027) 0.927(0.013)

IR + (13C-NMR, 1H-NMR) 0.900(0.004) 0.936(0.013) 0.944(0.012) 0.947(0.014) 0.959(0.022)

13C-NMR + (IR, 1H-NMR) 0.900(0.004) 0.936(0.013) 0.944(0.012) 0.947(0.014) 0.957(0.014)

1H-NMR + (IR, 13C-NMR) 0.900(0.004) 0.936(0.013) 0.944(0.012) 0.947(0.014) 0.956(0.031)

IR + (MS/MSpos, MS/MSneg) 0.887(0.008) 0.911(0.003) 0.924(0.012) 0.931(0.031) 0.944(0.015)

SDBS Database (Experimental Spectra)

MS 0.801(0.018) 0.826(0.021) 0.837(0.015) 0.836(0.010) 0.847(0.012)

13C-NMR 0.729(0.033) 0.821(0.020) 0.833(0.014) 0.836(0.011) 0.842(0.015)

1H-NMR 0.701(0.027) 0.779(0.025) 0.801(0.019) 0.803(0.018) 0.792(0.014)

MS + (13C-NMR, 1H-NMR) 0.847(0.022) 0.858(0.019) 0.872(0.020) 0.881(0.017) 0.913(0.021)

13C-NMR + (MS, 1H-NMR) 0.847(0.022) 0.858(0.019) 0.872(0.020) 0.881(0.017) 0.894(0.016)

1H-NMR + (MS, 13C-NMR) 0.847(0.022) 0.858(0.019) 0.872(0.020) 0.881(0.017) 0.909(0.018)

MS/MS spectra. For 3D molecular conformation generation, we employ the QM9S dataset Zou
et al. (2023), providing 130K molecules with UV, IR, and Raman spectra paired with their ground-
truth 3D conformations. To examine model performance under experimental conditions, we collect
about 12K molecules from the National Institute of Advanced Science and Technology, SDBS Web
(https://sdbs.db.aist.go.jp) with MS, 13C-NMR, and 1H-NMR spectra, since no multi-modal dataset
with experimental spectra is currently available. Further details are in Appendix G.

Baselines. For the molecular classification task, we compare our model against 1D-CNN Jung et al.
(2023), Transformer Klein et al. (2018), models by Alberts et al. Alberts et al. (2025), Wu et al. Wu
et al. (2025), SpectraLLM Shen et al. (2025), and DiffSpectra Wang et al. (2025). For conformation
generation, as far as we known, no prior work has been published. We thus constructed two base-
lines. The first is to replace our spectral encoder with a standard attention module, while keeping the
diffusion architecture and hyperparameters identical. The second adapts GeoDiff Xu et al. (2022),
which generates five candidate conformations from SMILES, augmented with a contrastive selector
to choose the one best matching the input spectrum.

Metrics. For the substructure classification task, we use micro F1-scores, molecular prediction
accuracy, and Functional Group Similarity (FGSim). The latter is defined at the sample level. For the
conformation generation task, performance is evaluated by the root mean square deviation (RMSD).
All experiments are repeated 8 times with 8:1:1 dataset split, and the average results with variances
are reported. We provide detailed hyperparameter settings in Appendix B and a full complexity
analysis in Appendix H.

3.2 MODEL PERFORMANCE ON STRUCTURE ELUCIDATION(RQ1)

We first evaluate the MSpecTmol’s capability in chemical substructure prediction, which serves as a
fundamental function of the framework. The detailed results are presented in Table 1 and Figure 3.

Obs.1: MSpecTmol achieves superior performance in multi-modal settings. MSpecTmol ex-
hibits strong capability in identifying molecular functional groups and significantly outperforms
baseline models, as shown in Table 1. In the single-modal setting, the performance of MSpecTmol is
higher than transformer-based models, which demonstrates the effectiveness of our proposed archi-
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Figure 3: Comparison of our model against baselines in terms of accuracy and macro-F1 score. (a)
Performance across different numbers of functional groups; (b) Performance under varying heavy
atom counts; (c) Macro-F1 score results; (d) Correlation between the number of functional groups
and prediction performance. Samples are binned in chunks of 5000.

tecture in capturing both local and global spectral features. However, when auxiliary spectra are in-
troduced in the multi-modal setting, performance improves consistently across all models. Notably,
MSpecTmol benefits the most, indicating its ability to effectively leverage additional information
from auxiliary spectra to enhance substructure recognition and prediction accuracy.Furthermore, to
demonstrate the broader applicability of MSpecTmol, we extended our evaluation to other state-
of-the-art baselines with different objectives. Specifically, SpectraLLM leverages LLMs to treat
spectral analysis as a sequence generation task, while DiffSpectra focuses on end-to-end molecular
conformation generation. As shown in Table 2, MSpecTmol consistently outperforms both baselines
in terms of Functional Group Similarity scores on the QM9S dataset, underscoring its robustness
in identifying chemically meaningful substructures. In Appendix H, we analyze the computational
overhead (time and memory) of MSpecTmol across varying numbers of input modalities and outline
a decision framework for selecting the primary modality. To balance efficiency and performance,
we selected an ideal combination of three modalities: IR, 1H-NMR, and 13C-NMR, which delivers
strong predictive power with acceptable complexity.

Table 2: Functional Group Similarity comparison on the QM9S dataset. We compare MSpecTmol
against generative baselines under their respective evaluation standards (17 functional groups for
SpectraLLM, 13 for DiffSpectra).

Modality 17 Functional Groups 13 Functional Groups

SpectraLLM MSpecTmol DiffSpectra MSpecTmol

IR 0.6599 0.9328 0.9322 0.9501
Raman 0.7317 0.9334 0.9279 0.9417
UV-Vis 0.3713 0.5449 0.4354 0.5621
All (IR+Ram.+UV) 0.7934 0.9781 0.9495 0.9830

Obs.2: MSpecTmol exhibits superior robustness under increasing structural complexity. In the
process of functional group classification, as shown in Figure 3(a) and (b), we observe that the pre-
diction accuracy tends to decrease as the number of functional groups and heavy atoms in a molecule
increases. This is likely because greater structural complexity leads to more intricate and overlap-
ping spectral signals, making it challenging to disentangle the features corresponding to individual
substructures. Despite these challenges, our model consistently achieves superior performance rel-
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Figure 4: Example conformations generated from the QM9S dataset. The top row displays the 2D
graphs, the middle row shows the reference structures, while the bottom shows the conformations
generated by MSpecTmol with their corresponding RMSD values.

ative to baselines, particularly for molecules with complex structures. This advantage is primarily
attributed to the PA-IB framework, which selectively filters out redundant or non-informative signals
and retains only the most relevant structural information, thereby enhancing predictive reliability. To
further validate the model’s generalization capability on unseen complex structures, we performed a
stress test on the top 10% largest molecules in the dataset. Results provided in Appendix K demon-
strate that MSpecTmol maintains robust performance (F1-score of 0.925) even under significant
distribution shifts.

Obs.3: MSpecTmol exhibits superior performance across diverse functional groups. As shown
in Figure 3(c), MSpecTmol achieves the highest macro-F1 score, indicating balanced performance
across both common and rare substructures. In classifying 37 functional groups, prediction accuracy
varies due to intrinsic spectral differences. Groups with weak or overlapping signals, such as alkyl
(-CH3) and ether (-O-), are more challenging than those with distinct peaks like carbonyl (C=O) and
hydroxyl (-OH). To provide more interpretable insights into these variations, we include a detailed
analysis based on confusion matrices in Appendix P. Nevertheless, MSpecTmol consistently outper-
forms baselines, benefiting from the PA-IB framework that filters redundant signals and preserves
the most informative structural cues.

Obs.4: MSpecTmol exhibits superior performance on experimental spectra. To evaluate the
effectiveness of MSpecTmol on real-world data, we constructed a dataset of approximately 12K
samples collected from the SDBS Web. As shown in Table 1, all models suffer from a noticeable per-
formance drop under single-modality settings, which can be attributed to the limited amount of data
and the inherent complexity of experimental spectra. However, in multi-modal settings, MSpecT-
mol achieves a substantial improvement over the baselines, reaching a F1 score of 0.913. This result
highlights the practical value of MSpecTmol. Furthermore, given that CNNs-based model are in-
herently data-hungry and the scarcity of multi-modal datasets containing experimental spectra, we
investigated various data augmentation strategies in Appendix Q, which yielded additional perfor-
mance gains. Our analysis in Appendix R confirms that MSpecTmol is also highly robust against
noisy and missing spectra, highlighting its reliability for practical deployment.

3.3 MODEL PERFORMANCE ON CONFORMATION GENERATION (RQ2)

In this section, we evaluate the effectiveness of MSpecTmol for spectrum-conditioned molecular
conformation generation. Specifically, we integrated MSpecTmol as a spectral encoder into a diffu-
sion model, which is trained to generate corresponding atom coordinates by input spectrum and and
SMILES representations. The detailed algorithmic procedure is presented in the Appendix S.

Obs.5: MSpecTmol facilitates high-fidelity conformation generation. To thoroughly evaluate
the benefit of incorporating spectral data, we compared MSpecTmol against both spectrum-free
graph-based methods (RDKit, OpenBabel, ConfGF) and spectral-conditioned baselines (GeoD-
iff, Attention-based model).As shown in Table 3, MSpecTmol consistently outperforms both base-
lines across all spectral inputs. This performance advantage becomes more pronounced when multi-
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Table 3: Comparison of mean RMSD for molecular conformation generation. We evaluate base-
lines including graph-based methods (RDKit, OpenBabel, ConfGF) and spectral-conditioned mod-
els. Lower RMSD indicates better agreement with reference structures.

Input Spectra Graph-based Baselines Spectral-Conditioned Models

RDKit OpenBabel ConfGF GeoDiff Attention MSpecTmol

UV 1.350 1.279 1.143 1.125(0.022) 0.718(0.009) 0.697(0.007)
IR 1.350 1.279 1.143 1.233(0.020) 0.726(0.010) 0.706(0.009)
Raman 1.350 1.279 1.143 1.042(0.032) 0.735(0.011) 0.701(0.008)
UV + (IR, Raman) 1.350 1.279 1.143 0.882(0.019) 0.714(0.008) 0.682(0.006)
IR + (UV, Raman) 1.350 1.279 1.143 0.882(0.019) 0.714(0.007) 0.689(0.007)

modal spectra are utilized, indicating that our model generates conformations that are highly consis-
tent with the input spectral data. This advantage stems from MSpecTmol’s superior ability to fuse
information from multiple spectra into a rich, unified representation for the generative task. Further-
more, the qualitative results in Figure 4 corroborate these findings, illustrating our model’s capacity
to translate complex spectral patterns into high-fidelity molecular structures.

Obs.6: MSpecTmol achieves superior stability through effective multi-modal fusion. Figure 6
demonstrates the superior performance of MSpecTmol, which consistently generates conformations
with a lower and more tightly concentrated RMSD distribution than all baselines. This result high-
lights the necessity of multi-modal fusion, as single-modality models yield higher errors and greater
variance. Moreover, the stark performance degradation observed in the ablation variant, which is
evidenced by its high and widely dispersed RMSD—confirms that our proposed fusion architecture
is critical for ensuring both the accuracy and stability of the generative process.

3.4 INTERPRETALITY AND ABLATION STUDY AND SENSITIVITY ANALYSIS (RQ3)

In this section, we further investigate the intrinsic relationships between different spectral segments
and molecular substructures. Additionally, we analyze the contributions of individual model com-
ponents and examine the model’s sensitivity to hyperparameter variations, detailed in Figure 11.

Obs.7: Different spectral modalities emphasize distinct molecular features. To probe the rela-
tionship between spectral segments and molecular substructures, we designed an experiment where
a model predicts a single functional group from a concatenated input of three spectra. By aver-
aging the importance scores in the dataset, we obtained attention distribution images for the three
modalities, as shown in Figure 5. In the overall image, we can observe that different functional
groups tend to focus on different spectra, which may indicate that each spectrum contains informa-
tion with a distinct emphasis. The varying roles of spectral information highlight the necessity of
utilizing information bottleneck theory to extract supplementary information from auxiliary modal-
ities that enhance the main modality. More results could be found in Appendix O. Additionally, to
demonstrate the superiority of our PA-IB framework over conventional integration paradigms, we
compared MSpecTmol against various standard fusion strategies. Detailed comparisons and analysis
are provided in Appendix N.

Obs.8: α and β regulate the trade-off between prediction accuracy and information compres-
sion. We analyze the joint effect of α and β in balancing prediction accuracy and information
compression, as defined in equation 1. As shown in Figure 11(a), setting α = β = 1 × 10−6

consistently yields the best performance. Larger values of α and β impose excessive compression,
hindering the model’s ability to retain crucial essential spectral features. Conversely, smaller values
preserve more input information but fail to effectively suppress redundancy, ultimately compromis-
ing generalization. These results highlight the critical importance of properly tuning α and β to
maintain an optimal trade-off.

Obs.9: Regulating Information Processing at Different Levels via the Primary–Auxiliary In-
formation Bottleneck. We conducted ablation studies on the multi-modal spectroscopic dataset. As
shown in Figure 11(b), with all loss terms, the model achieved an F1-score of 0.9589. Removing the
KL divergence loss for primary spectra (LMI2 ), which regulates compression in the primary modal-
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Figure 5: Illustration of spectral information importance. (a) Molecular structure of
CC#COc1ccc(CCC(=O)Cl)cc1OC, which contains Alkane, Ether, and Haloalkane functional
groups. (b) Importance map of IR spectra, (c) 13C-NMR spectra, (d) and 1H-NMR spectra. The
x-axis of all three spectral plots is normalized to the range [0, 150].

Table 4: Performance comparison (F1-score) between our asymmetric PA-IB and the symmetric
Uniform IB baseline across different modality configurations.

Fusion Strategy IR 13C-NMR 1H-NMR Multi-Modal (All)
Symmetric (Uniform IB) 0.906 0.904 0.905 0.934
Asymmetric (Ours) 0.923 0.920 0.927 0.959

ity, reduced the F1-score to 0.9543. Removing the KL divergence for auxiliary spectra (LMI1 and
LMI3 ) led to a more substantial decrease to 0.9521, indicating that uncompressed auxiliary informa-
tion introduces noise that undermines prediction quality. These results underscore the importance of
regulating information at both levels to suppress redundancy and preserve relevant features.

Obs.10: Superiority of Asymmetric Design over Symmetric Fusion. To demonstrate the effec-
tiveness of our asymmetric fusion strategy, we compared MSpecTmol against a symmetric Uniform
IB baseline, which applies uniform information bottleneck constraints across all modalities indepen-
dently without the primary-auxiliary distinction. As presented in Table 4, MSpecTmol consistently
outperforms the symmetric approach. Notably, in the full multi-modal setting, our method achieves
a 2.5% absolute gain (0.959 vs. 0.934), confirming that the asymmetric design effectively suppresses
cross-modal redundancy that the symmetric strategy fails to address.

4 CONCLUSION AND FUTURE OUTLOOK

In this work, we introduce MSpecTmol, a multi-modal spectrum information fusion framework
based on the information bottleneck principle, designed for molecular structure determination. Our
framework adopts a primary-auxiliary synergistic modeling approach, which distills core informa-
tion from a primary modality while leveraging auxiliary spectra to supplement and refine the final
representation. Rigorous experimental evaluations validate MSpecTmol’s end-to-end effectiveness,
achieving a SOTA F1-score of 0.959 in molecular identification and a low average RMSD of 0.682Å
in 3D conformation generation. Meanwhile, our model provides chemically interpretable spectro-
scopic fragment importance, bridging the gap between ML predictions and domain knowledge.

Looking forward, this framework not only assists chemists in unraveling complex molecular systems
but also accelerates the analysis of novel compounds. MSpecTmol holds potential to benefit diverse
scientific domains—such as drug discovery, materials science, and chemical forensics—where ac-
curate and reliable molecular identification is critical. MSpecTmol paves the way toward democra-
tized, efficient, and interpretable molecular analysis for broad scientific and industrial applications.

5 REPRODUCIBILITY

We provide the complete implementation in the repository along with guidance on how to re-
produce our results. Our code is available at https://anonymous.4open.science/r/
MspecTmol-6B4D.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we used a large language model (LLM) solely for writing assistance
and text refinement (e.g., grammar correction, stylistic polishing, and conciseness). The LLM was
not involved in research design, data analysis or model implementation. All technical content, ex-
periments, and conclusions were conceived, executed, and validated by the authors.

B TRAINING SETTINGS

For the functional group classification task, the model was trained for 100 epochs with a batch size
of 128, using the Adam optimizer with an initial learning rate of 4 × 10−4 and a cosine annealing
scheduler. The loss coefficients α and β were set to 1 × 10−6, while the weight for the auxiliary
prediction loss was 0.7. The temperature for the information bottleneck’s stochastic gating was
maintained at 1.0. For the spectrum-conditioned molecular conformation generation task, the model
was trained for 10,000 iterations with a batch size of 64. We employed the Adam optimizer with a
learning rate of 1 × 10−3, which was adjusted by a plateau scheduler based on validation loss. For
this task, the loss coefficients α and β were both set to 1× 10−6. Both models were trained on two
NVIDIA A100 GPUs (80 GB each). The classification model required approximately 6 hours of
training, while the conformation generation model took around 30 hours.

C RELATED WORK

D RELATED WORK

D.1 SPECTROSCOPY-BASED MOLECULAR MODELING

Machine learning has advanced spectroscopy-based molecular structure prediction significantly. Liu
et al. introduced MS2SMILES Liu et al. (2023), treating hydrogen atoms as implicitly linked to
heavy atoms, improving molecular generation accuracy. Ji et al. Ji et al. (2020) presented DeepEI,
a deep learning framework for elucidating structures from EI-MS spectra. Wei et al Wei et al. (2019).
developed NEIMS, a neural network model that captures fragmentation patterns from electron ion-
ization for rapid small molecule mass spectrum prediction. Marcus proposed ZODIAC Ludwig et al.
(2020), leveraging tandem mass spectrometry (MS/MS) for molecular formula generation. Michael
A. et al. Stravs et al. (2022) further explored de novo molecular structure generation using RNN
models.

More recently, the rapid development of generative AI has expanded spectral analysis into the realm
of Large Language Models and Diffusion Models. For instance, DiffSpectra Wang et al. (2025)
introduces a generative framework that formulates structure elucidation as a conditional diffusion
process, enabling the end-to-end generation of 3D molecular conformations from multi-modal spec-
tra. In parallel, Large Language Models have been adapted for this domain: SpectraLLM Su et al.
(2025) and MolSpectLLM Shen et al. (2025) leverage the reasoning capabilities of heavy trans-
former backbones to treat spectrum-to-structure translation as a sequence generation task, bridg-
ing spectroscopy with textual molecular representations. Furthermore, SpectrumWorld Yang et al.
(2025) expands this frontier by introducing a multi-modal agent framework and benchmark suite to
systematize deep learning research in spectroscopy.

While these methods have achieved notable success, previous approaches often rely heavily on sin-
gle modalities like mass spectrometry or require massive computational resources. Additionally,
mass spectrometry is costly, sensitive to interference, and challenging to standardize in automated
workflows. Recently, Marvin et al. Alberts et al. (2024) released a 790k Multimodal Spectroscopic
Dataset, providing a foundation for integrating multi-spectroscopic data. Their work introduced
baseline models for tasks like molecular structure prediction and functional group identification
from spectral data, forming a key resource for our research. These studies highlight the potential
and limitations of current methods, motivating our approach to integrate multi-spectroscopic modal-
ities for enhanced molecular structure determination.
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D.2 INFORMATION BOTTLENECK (IB) THEORY

The IB theory provides a principled framework for extracting compact and informative substructures
from complex data, playing a key role in challenges like denoising and compression. PGIB Yu et al.
(2020) extends IB by introducing a framework with a mutual information estimator for irregular
graph data, and a connectivity loss to stabilize information extraction. VGIB Yu et al. (2022) further
improves stability by injecting Gaussian noise into node representations, regulating information flow
between original and perturbed graphs. Lee et al. Lee et al. (2023) expanded IB to paired graphs
with the Conditional GIB, optimizing compressed information extraction by retaining only the most
relevant information. While effective, these approaches focus on single-target tasks and lack strate-
gies for redundancy reduction and complementary integration under multi-modal conditions. This
growing body of work underscores the versatility of IB theory while highlighting opportunities for
further refinement, particularly in handling multi-modal scenarios, where redundancy removal and
cross-modal synergy are essential.

E BROADER IMPACTS AND LIMITATION DISCUSSION

E.1 BROADER IMPACTS

This work promotes automated and interpretable molecular structure elucidation via multi-modal
spectroscopic learning. MSpecTmol may assist domains such as drug discovery, materials science,
and chemical forensics by providing chemically intuitive insights and reducing reliance on manual
spectral interpretation. Its interpretable design supports broader and more accessible molecular
analysis. The proposed framework can reduce reliance on extensive manual spectral interpretation,
democratizing molecular analysis for broader scientific and industrial use.

E.2 LIMITATIONS

While MSpecTmol demonstrates strong performance, several limitations remain. First, the model’s
effectiveness depends on the availability of complete, multi-modal spectra, which are often scarce
in practice and may hinder its deployment on incomplete datasets. Additionally, its training on
a fixed vocabulary of functional groups restricts its ability to identify rare or novel substructures,
particularly when analyzing new chemical entities. Future work will focus on addressing these
challenges to improve the model’s robustness and expand its chemical scope.

F PROOF

F.1 PROOF OF PROPOSITION

pθ(Y|Tm) is variational approximation of p(Y|Tm). We model pθ(Y|Tm) as a predictor
parametrized by θ, which outputs the model prediction Y based on the core primary spectra Tm.

I(Y;Tm) = EY,Tm [log
p(Y|Tm)

p(Y)
]

= EY,Tm [log
pθ(Y|Tm)

p(Y)
]

+ ETm [KL(p(Y|Tm)||pθ(Y|Tm))]

(15)

According to the non-negativity of the KL divergence, we have:

I(Y;Tm) ≥ EY,Tm [log
pθ(Y|Tm)

p(Y)
]

= EY,Tm [log pθ(Y|Tm)] +H(Y)

(16)

Thus, we can minimize the upper bound of −I(Y;Tm) by minimizing the model prediction loss
Lpred(Y, Tm), which can be modeled as the cross entropy loss for classification and the mean
square loss for regression.
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F.1.1 MINIMIZING −I(Y ;Tm)

(Upper bound of −I(Y ;Tm)) Given the primary spectra Xm, and its label information Y, we have

− I(Y;Tm) ≤ ETm,Y[− log pθ(Y|Tm)]

= E(Y;Tm) log [Pθ (Y | Tm)] +H(Y) := Lpred,
(17)

where H(Y) is constant across all data, it will be omitted in the model optimization process.
pθ(Y|Tm) is variational approximation of p(Y|Tm). A detailed proof for proposition is given in
Appendix F.1.2.

F.1.2 MINIMIZING − I
(
Y ;Ta | Tm

)
For the second term of Equation 9, i.e., − I

(
Y ;Ta | Tm

)
, we decompose the term into the sum of

two terms based on the chain rule of mutual information as follows:

I(Y ;Ta|Tm) = I(Y ;Ta, Tm)− I(Ta;Tm). (18)

For the upper bound of −I(Y ;Ta, Tm), Given the core primary spectra Tm and core auxiliary spectra
Ta, and its label information Y, we have

− I(Y;Ta, Tm) ≤ E(Ta,Tm,Y)[− log pθ(Y|Ta, Tm)]

= E(Y,Ta,Tm) log [Pθ (Y | Ta, Tm)] +H(Y) := Lsup,
(19)

where pθ(Y|Ta, Tm) is variational approximation of p(Y|Ta, Tm). We model pθ(Y|Ta, Tm) as a
predictor parametrized by θ, which outputs the model prediction Y based on the core spectra Ta and
Tm. Thus, we can minimize the upper bound of −I(Y;Ta, Tm) by minimizing the supplementary
prediction loss Lsup,

For the upper bound of I(Ta;Tm), drawing inspiration from the experiences derived in Variational
Autoencoders (VAE) Kingma (2013), we attempt to replace p(ta) with q(ta) and consolidate the
additional components to form a Kullback-Leibler (KL) divergence:

I(Ta;Tm) = E(tm,ta)∼p(tm,ta)

[
log

p(ta | tm)

p(ta)

]
= E(tm,ta)∼p(tm,ta)

[
log

p(ta | tm)

q(ta)
· q(ta)
p(ta)

]
= E(tm,ta)∼p(tm,ta)

[
log

p(ta | tm)

q(ta)

]
+ E(tm,ta)∼p(tm,ta)

[
log

q(ta)

p(ta)

]
(20)

For the first term, both p(ta | tm) and q(ta) have analytical forms, allowing the function within the
brackets to be computed analytically. By utilizing the relationship p(tm, ta) = p(tm)p(ta | tm), we
can rewrite the first term in a more elegant manner:

E(tm,ta)∼p(tm,ta)

[
log

p(ta | tm)

q(ta)

]
=

∫∫
p(tm)p(ta | tm) log

p(ta | tm)

q(ta)
dta dtm

=

∫
p(tm)

(∫
p(ta | tm) log

p(ta | tm)

q(ta)
dta

)
dtm

= Etm∼p(tm) [KL (p(ta | tm)∥q(ta))]

:= LMI1 ≈ 1

N

N∑
i=1

KL [p (ta | tmi) ∥q(ta)] , tmi ∼ p(tm)

(21)

The term LMI1 := Etm∼p(tm)[KL(p(ta | tm)∥q(ta))] is often referred to as the rate in rate-
distortion theory. This rate component can be optimized using mini-batch gradient descent. Specifi-
cally, by sampling a batch of training samples tm1, . . . , tmN from the training set, we can minimize
the KL divergence KL [p (ta | tmi) ∥q(ta)] for each tmi.
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Since both distributions p(ta | tm) and q(ta) are Gaussian, the KL divergence between them has an
analytical solution:

KL [p(ta | tm)∥q(ta)]
= KL

[
N

(
µ(tm),σ2(tm)I

)
∥N (0, I)

]
=

J∑
j=1

KL
[
N

(
µj , σ

2
j

)
∥N (0, 1)

]
=

J∑
j=1

1

2

(
− log σ2

j − 1 + µ2
j + σ2

j

)
(22)

Here, µ(tm), σ2(tm) are mean and variance of Hm, respectively.

F.1.3 MINIMIZING − I
(
Xm;Tm

)
For the upper bound of − I

(
Xm;Tm

)
, Similarly, we attempt to replace p(tm) with q(tm) and

consolidate the additional components to form a Kullback-Leibler (KL) divergence:

I(Xm;Tm) = E(tm,xm)∼p(tm,xm)

[
log

p(tm | xm)

q(tm)

]
+ E(tm,xm)∼p(tm,xm)

[
log

q(tm)

p(tm)

] (23)

By utilizing the relationship p(tm, xm) = p(xm)p(tm | xm), we can rewrite the first term in a more
elegant manner:

E(tm,xm)∼p(tm,xm)

[
log

p(tm | xm)

q(tm)

]
= Etm∼p(tm) [KL (p(tm | xm)∥q(tm))] := LMI2

(24)

The term LMI2 := Etm∼p(tm)[KL(p(tm | xm)∥q(tm))] is often referred to as the rate in rate-
distortion theory. This rate component can be optimized using mini-batch gradient descent. Specifi-
cally, by sampling a batch of training samples tm1, . . . , tmN from the training set, we can minimize
the KL divergence KL [p (tm | xmi) ∥q(tm)] for each xmi.

Since both distributions p(tm | xm) and q(tm) are Gaussian, the KL divergence between them has
an analytical solution:

KL [p(tm | xm)∥q(tm)] =

J∑
j=1

1

2

(
− log σ2

j − 1 + µ2
j + σ2

j

)
(25)

F.1.4 MINIMIZING − I
(
Ta;Xm, Xa

)
For the upper bound of − I

(
Ta;Xm, Xa

)
, Similarly, we attempt to replace p(ta) with q(ta) and

consolidate the additional components to form a Kullback-Leibler (KL) divergence:

I(Ta;Xm, Xa) = E(ta,xa,xm)∼p(ta,xa,xm)

[
log

p(ta | xm, xa)

q(ta)

]
+ E(ta,xa,xm)∼p(ta,xa,xm)

[
log

q(ta)

p(ta)

] (26)

By utilizing the relationship p(ta, xa, xm) = p(ta, xa)p(ta | xm, xa), we can rewrite the first term
in a more elegant way:

E(ta,xa,xm)∼p(ta,xa,xm)

[
log

p(ta | xm, xa)

q(ta)

]
= Eta,xa∼p(xm,xa) [KL (p(ta | xm, xa)∥q(ta))] := LMI3

(27)

The term LMI3 = Exm,xa∼p(xm,xa)[KL(p(ta | xm, xa)∥q(ta))] is often referred to as the rate in
rate-distortion theory. This rate component can be optimized using mini-batch gradient descent.
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Specifically, by sampling a batch of training samples tm1, . . . , tmN from the training set, we can
minimize the KL divergence KL [p (ta | tmi) ∥q(ta)] for each tmi.

Since both distributions p(ta | xm, xa) and q(ta) are Gaussian, the KL divergence between them
has an analytical solution:

KL [p(ta | xm, xa)∥q(ta)] =
J∑

j=1

1

2

(
− log σ2

j − 1 + µ2
j + σ2

j

)
(28)

G DEFINITION OF FUNCTIONAL GROUPS

Functional groups play a crucial role in determining the chemical reactivity and properties of
molecules. To systematically analyze molecular structures, we employ a set of predefined patterns
to identify key functional groups within a given molecular dataset.

Table 5 lists the functional groups considered in this study, along with their corresponding SMARTS
representations. These functional groups were selected based on their relevance to organic and
medicinal chemistry, including common moieties such as hydroxyl (-OH), carbonyl (C=O), and
amine (-NH2) groups. The identification process involves scanning molecular structures using sub-
graph matching algorithms, ensuring accurate detection of these structural motifs.

Table 5: Predefined Functional Groups and Their SMARTS Patterns
Functional Group SMARTS Pattern
Acid anhydride [CX3](=[OX1])[OX2][CX3](=[OX1])
Acyl halide [CX3](=[OX1])[F,Cl,Br,I]
Alcohol [#6][OX2H]
Aldehyde [CX3H1](=O)[#6,H]
Alkane [CX4;H3,H2]
Alkene [CX3]=[CX3]
Alkyne [CX2]#[CX2]
Amide [NX3][CX3](=[OX1])[#6]
Amine [NX3;H2,H1,H0;!$(NC=O)]
Arene [cX3]1[cX3][cX3][cX3][cX3][cX3]1
Azo compound [#6][NX2]=[NX2][#6]
Carbamate [NX3][CX3](=[OX1])[OX2H0]
Carboxylic acid [CX3](=O)[OX2H]
Enamine [NX3][CX3]=[CX3]
Enol [OX2H][#6X3]=[#6]
Ester [#6][CX3](=O)[OX2H0][#6]
Ether [OD2]([#6])[#6]
Haloalkane [#6][F,Cl,Br,I]
Hydrazine [NX3][NX3]
Hydrazone [NX3][NX2]=[#6]
Imide [CX3](=[OX1])[NX3][CX3](=[OX1])
Imine [$([CX3]([#6])[#6]),$([CX3H][#6])]=[$([NX2][#6]),$([NX2H])]
Isocyanate [NX2]=[C]=[O]
Isothiocyanate [NX2]=[C]=[S]
Ketone [#6][CX3](=O)[#6]
Nitrile [NX1]#[CX2]
Phenol [OX2H][cX3]:[c]
Phosphine [PX3]
Sulfide [#16X2H0]
Sulfonamide [#16X4]([NX3])(=[OX1])(=[OX1])[#6]
Sulfonate [#16X4](=[OX1])(=[OX1])([#6])[OX2H0]
Sulfone [#16X4](=[OX1])(=[OX1])([#6])[#6]
Sulfonic acid [#16X4](=[OX1])(=[OX1])([#6])[OX2H]
Sulfoxide [#16X3]=[OX1]
Thial [CX3H1](=S)[#6,H]
Thioamide [NX3][CX3]=[SX1]
Thiol [#16X2H]
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The functional group identification is performed using cheminformatics libraries such as RDKit,
which allows for efficient substructure searches within molecular datasets. This approach enables
us to extract chemically meaningful information and facilitate downstream tasks such as molecular
property prediction, reactivity analysis, and structure-based clustering.

H COMPLEXITY ANALYSIS AND CHOICE OF PRIMARY SPECTRA

We conducted a comprehensive analysis to determine the optimal multi-modal configuration for
MSpecTmol, balancing predictive performance with computational efficiency. The time and space
complexity of our model and several baselines are presented in Table 6. This analysis reveals a
clear trade-off between the number of input modalities and the required resources. As shown in
table 7,while expanding from three to five spectral inputs nearly doubled the resource consumption,
it yielded only marginal performance improvements. This finding led us to select a three-modality
fusion as the most balanced and efficient configuration.

A critical aspect of our framework is the selection of the primary spectrum, as MSpecTmol is de-
signed to prioritize its features while using auxiliary spectra for supplementary information. Our
recommended procedure is to first identify the single best-performing modality in standalone exper-
iments and assign it the primary role, thereby ensuring that the most informative stream is preserved.

To implement this strategy for the functional group classification task, we first assessed the pre-
dictive power of each individual spectrum (Table 1 and Figure 9(a)). The results revealed that IR
spectroscopy delivered relatively high and stable accuracy, making it the ideal candidate for the pri-
mary spectrum. Conversely, MS/MS spectra exhibited the lowest performance. In our multi-modal
evaluations, we observed that fusing multiple spectra consistently improved performance. Notably,
the combination of IR, 1H-NMR, and 13C-NMR not only outperformed other fusion strategies—
achieving the best results for 35 out of 37 functional groups—but was also more effective than using
all available spectra, all while maintaining lower computational complexity (Figure 9(b)).

Consequently, we established the optimal configuration for this task as using IR spectroscopy as the
primary input, with the 1H-NMR and 13C-NMR modalities serving as powerful auxiliary inputs.

Table 6: Comparison of resource usage
and performance.
Model Mem.(GB) Time(h) F1-score
1D-CNN 5.7 2 0.900
Transformer 1.7 35 0.911
MSpecTmol 6 3 0.959

Table 7: Comparison across different
numbers of modalities.
#Mod. Mem.(GB) Time(h) F1-score

1 3.4 2 0.923
3 6.6 2.5 0.959
5 11.3 5 0.963

Table 8: Inference time for processing 10,000
samples.

Model Inference Time (s)
1D-CNN 10.4
Transformer 45.1
Wu et al. 55.4
Alberts et al. 60.1
MSpecTmol 14.0

Table 9: Training time vs. Molecular Size
(Heavy Atom Count).

Heavy Atom Count Training Time (s)
5 - 15 564
16 - 25 556
25 - 35 558

I INFERENCE TIME AND SCALABILITY

Inference Time To assess the model’s suitability for high-throughput screening, we measured the
total inference time for processing 10,000 samples on a single NVIDIA A100 GPU. Table 8 shows
that MSpecTmol completes the task in just 14.0 seconds. This speed is comparable to the simple
1D-CNN (10.4 s) and drastically faster than the Transformer (45.1s), confirming its efficiency for
real-time applications.
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Scalability with Molecular Size To verify whether the model’s computational cost is sensitive
to molecular complexity, we measured the training time on subsets of data sorted by Heavy Atom
Coun. As presented in Table 9, the training time remains remarkably consistent (≈ 560s) across
different molecular sizes. This is because our model takes fixed-dimension interpolated spectra as
input and outputs functional group probabilities; consequently, the physical size or complexity of
the molecule does not alter the input tensor dimensions or the model architecture.

J SENSITIVITY ANALYSIS OF GUMBEL-SOFTMAX TEMPERATURE

In the Core Spectrum Extraction module, we employ Gumbel-Softmax to enable differentiable sam-
pling of the discrete importance masks. The temperature parameter t plays a pivotal role in control-
ling the sharpness of this distribution. To evaluate its impact on model performance, we conducted
a sensitivity analysis across various temperatures. As shown in Table 10, MSpecTmol achieves the
optimal F1-score at t = 1.0. When the temperature is set to a lower value (t = 0.5), the performance
experiences a slight decline. Conversely, increasing the temperature to higher values (t = 1.5, 2.0)
leads to a more noticeable degradation in prediction quality.

Table 10: Sensitivity analysis of the Gumbel-Softmax temperature parameter t.
Temperature (t) F1-score

0.5 0.952
1.0 0.959
1.5 0.954
2.0 0.945

Intuitively, the temperature controls the sparsity and sharpness of the gating over spectral frequency
bands. In our framework, each gate determines whether a local region of the spectrum is preserved
or replaced by noise. A very low temperature makes these decisions almost binary. While this
promotes sparsity, it risks discarding weak but chemically informative peaks (e.g., small shoulders
or minor bands) that are critical for distinguishing fine-grained functional groups and isomers. On
the other hand, a high temperature yields overly soft gates, causing most bands to be partially re-
tained. This weakens the model’s ability to suppress redundancy and blurs the importance patterns
across modalities. The superior performance observed at t = 1.0 confirms that this setting achieves
an optimal balance, allowing the PA-IB framework to learn selective yet stable masks that retain
structurally informative spectral regions while effectively filtering out redundant or noisy segments.

K GENERALIZATION ANALYSIS ON COMPLEX MOLECULAR STRUCTURES

To evaluate the model’s generalization capability on samples with more complex molecular struc-
tures and denser, overlapping spectral peaks, we performed a supplementary stress test on the dataset
from Alberts et al. Specifically, instead of a standard random split, we sorted the entire dataset by
heavy atom count. We utilized the bottom 90% for training and reserved the top 10% strictly for test-
ing. This setup introduces a significant distribution shift, requiring the model to infer the structure
of complex molecules that are physically larger than any sample seen during training.

The results are presented in Table 11. While the performance on unseen larger molecules naturally
dips compared to the standard random split due to the increased structural complexity, MSpecT-
mol maintains a high F1-score of 0.925. Notably, our model consistently outperforms baselines in
this challenging setting. This demonstrates that our PA-IB framework effectively learns intrinsic
spectroscopic-structural correlations rather than simply memorizing dataset-specific patterns, con-
firming its capability to generalize to more complex chemical spaces.

L ANALYSIS OF PRIOR DISTRIBUTION CHOICE FOR LATENT VARIABLES

In our Primary-Auxiliary Information Bottleneck (PA-IB) framework, the choice of the prior distri-
butions for the latent bottleneck variables Tm and Ta, denoted as q(tm) and q(ta) respectively, is a
critical step that influences model performance. Specifically, q(tm) regularizes the core information
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Table 11: Performance comparison (F1-score) on the stress test of the top 10% largest molecules
versus the original random split.

Modality Model f1-score (Top 10% Large) f1-score (Original Split)

IR

1D-CNN 0.866 0.895
Transformer 0.852 0.881
Wu et al. 0.864 0.886
Alberts et al. 0.874 0.891
MSpecTmol 0.900 0.920

13C-NMR

1D-CNN 0.623 0.674
Transformer 0.845 0.913
Wu et al. 0.873 0.914
Alberts et al. 0.896 0.919
MSpecTmol 0.904 0.923

IR + 13C-NMR
+ 1H-NMR

1D-CNN 0.873 0.900
Transformer 0.902 0.936
Wu et al. 0.912 0.944
Alberts et al. 0.916 0.947
MSpecTmol 0.925 0.959

extracted from the primary spectrum, while q(ta) regularizes the supplementary information from
the auxiliary spectra. To ensure the scientific rigor and optimality of our model’s configuration, we
systematically investigated the impact of different prior distributions on performance.

We designed a series of rigorous comparative experiments to evaluate three distinct prior distribu-
tions on the functional group classification task, applying them to both q(tm) and q(ta):

1. Gaussian Distribution: The standard N (0, I) distribution.
2. Laplace Distribution: The standard Laplace(0, 1) distribution, which is known to effectively

promote sparsity in the latent space.
3. Gamma Distribution: The standard Γ(k = 1, θ = 1) distribution, which constrains the latent

variables to be non-negative.

Throughout these experiments, all other model hyperparameters (such as learning rate, batch size,
and the trade-off coefficients α and β) were held strictly constant to ensure a fair comparison.

The model trained with the Gaussian prior achieved the highest F1-score of 0.959, compared to
0.951 for the Laplace prior and 0.946 for the Gamma prior. This superior performance suggests that
assuming the compressed latent features of both primary and auxiliary spectra follow a Gaussian
distribution provides an efficient and flexible representation space, allowing the model to optimally
capture the complex relationships within the spectral data. Therefore, we selected the Gaussian
distribution for our final model configuration, as its effectiveness is validated by these results.

M MODEL PERFORMANCE STABILITY

To provide a more detailed view of model stability, Figure 6 visualizes the root-mean-square de-
viation (RMSD) distributions for conformations generated by different models. The MSpecTmol
model exhibits a distribution with a notably lower median RMSD and smaller variance compared
to all other baselines. This indicates that MSpecTmol not only generates conformations that are, on
average, more accurate but also does so with higher consistency. In contrast, models relying on a
single spectral modality (UV-Only, IR-Only, Raman-Only) and the attention-based ablation model
all show higher median RMSDs and wider distributions. This demonstrates a greater variance in the
quality of the generated conformations and underscores the effectiveness of our multi-modal fusion
strategy in achieving stable, high-fidelity results.
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Figure 6: RMSD (Å) distributions for MSpecTmol compared to single-modality models and an
attention-based ablation baseline. The black line indicates the median, the box represents the in-
terquartile range, and the violin plot shows the probability density of the data.

N COMPARISON WITH ALTERNATIVE MULTI-MODAL FUSION STRATEGIES

To validate the effectiveness of PA-IB as a multi-modal information fusion strategy, we conducted a
comparative study against three standard fusion paradigms:

• Early Fusion: The features from all modalities are directly concatenated at the input level
before being fed into the model, allowing the model to learn a joint representation from the
raw data.

• Mid-level Fusion: Each modality is first processed through independent CNN encoders to
extract latent features. These features are then concatenated and passed to a shared MLP
for classification.

• Late Fusion: Each modality independently predicts the presence of functional groups
through separate MLPs, and the final prediction is obtained by averaging the probability
outputs from all modalities.

The results, presented in Table 12, show that MSpecTmol consistently outperforms all three base-
lines (in terms of F1-score). Early and Mid-level fusion strategies generally perform better than
Late fusion, likely because they enable some degree of joint representation learning. However, they
still fall short of MSpecTmol, as they fail to explicitly filter out redundant cross-modal information.
Late fusion performs the worst, as it ignores inter-modal interactions entirely by processing each
modality in isolation, leading to substantial information loss.

Table 12: Performance comparison (F1-score) of MSpecTmol against Early, Mid-level, and Late
fusion strategies across different modality combinations.

Modality Configuration MSpecTmol Early Fusion Mid-level Fusion Late Fusion

IR + 13C-NMR + 1H-NMR 0.959 0.900 0.904 0.874
IR + MS/MS (Pos) + MS/MS (Neg) 0.944 0.887 0.895 0.854

O INTERPRETABILITY ANALYSIS

To disentangle overlapping importance regions caused by functional group co-occurrence, we adopt
a one-vs-all training strategy by training a dedicated model for each functional group. Each model
receives the concatenation of all three spectral modalities as input. This design allows us to iso-
late the contribution of individual spectra to specific functional group predictions and analyze their
region-wise importance, as shown in Figure 7.
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Different spectral modalities emphasize distinct molecular features. Different types of spectroscopy
capture different aspects of molecular structures. Infrared (IR) spectroscopy is particularly important
in identifying functional groups such as carbonyl (C=O), hydroxyl (-OH), and amine (-NH2). This
is likely because IR spectroscopy primarily reflects the vibrational characteristics of polar functional
groups, which exhibit strong absorption in the IR spectrum. In contrast, nuclear magnetic resonance
(NMR) spectroscopy is more sensitive to structural motifs such as alkyl (-CH3, -CH2-), aromatic
rings, and heterocycles. This is because NMR provides detailed insights into the electronic envi-
ronment surrounding specific atomic nuclei, allowing for precise differentiation of these structural
features. The complementary nature of these spectral modalities underscores the necessity of multi-
modal approaches for comprehensive molecular characterization.

P CONFUSION MATRIX ANALYSIS

To investigate functional group misclassification, we construct a confusion matrix based on co-
occurring prediction errors, counting the instances where two groups are simultaneously mispre-
dicted for each test sample. As shown in Figure 8, this reveals that certain groups—notably Ether,
Haloalkane, and Sulfide—are frequently confused. To diagnose this, we visualized the model’s
attention across the fused multi-modal spectra (Figure 7). The analysis demonstrates that these con-
fusable groups exhibit significant overlapping attention, indicating that the model relies on shared
features present across different spectral modalities for their identification. This finding highlights
the inherent difficulty in distinguishing these groups, even when multiple sources of spectral infor-
mation are available.

The observed spectral feature overlap is rooted in the intrinsic chemical properties of these functional
groups. Similarities in their responses across various spectroscopic methods, such as shared absorp-
tion bands or related electronegativity profiles, create highly correlated features that are challenging
to disentangle. This inherent ambiguity confirms that no single spectral modality contains sufficient
information for perfect discrimination. It therefore becomes critical to employ a framework that can
synergistically fuse complementary information from multiple spectra. Our approach is designed to
address this very challenge, resolving ambiguities by integrating diverse spectral evidence to achieve
more accurate classification.

Q IMPACT OF DATA AUGMENTATION

Real-world experimental spectra are often subject to variations from instrumental noise and cali-
bration drift. This challenge is compounded by the scarcity of large-scale, multi-modal spectral
datasets. Given that deep learning models, particularly those with convolutional neural network
(CNN) architectures, are inherently data-hungry, data augmentation becomes a crucial technique.
By synthetically expanding the training dataset to represent a wider range of experimental condi-
tions, we can significantly enhance the model’s generalization, robustness, and overall predictive
performance. All experiments were conducted on molecular data obtained from the SDBS database.

We implemented and tested several augmentation strategies:

• Horizontal Shift: A random horizontal shift of up to 10 pixels is applied to the spectrum’s data
points.

• Vertical Noise: Uniform random noise (up to a level of 0.05) is added to the intensity values, with
the noise magnitude being inversely scaled by the signal intensity.

• Gaussian Smoothing: A 1D Gaussian filter with a sigma value randomly chosen between 0.75
and 1.25 is applied to the spectrum.

• Combined Strategies: A horizontal shift or vertical noise is first applied, followed by the appli-
cation of Gaussian smoothing.

As shown in Figure 10(a), all data augmentation strategies successfully improved the F1-score com-
pared to the model trained on the original data (0.9134). Among these, the Horizontal Shift strategy
was the most effective, achieving the highest F1-score of 0.9344. This suggests that teaching the
model to be robust against positional variations in spectral peaks is highly beneficial. The addition of
vertical noise also provided a substantial performance boost. Interestingly, while Gaussian smooth-
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ing alone offered a modest improvement, combining it with other methods (e.g., vertical noise +
smoothing) did not yield further gains and resulted in lower performance than the individual, more
effective strategies. This indicates that while introducing variability is beneficial, excessive transfor-
mation can risk distorting the essential chemical information within the spectra, thereby creating a
trade-off between robustness and signal fidelity.

R IMPACT OF MISSING MODALITIES AND NOISE INJECTION

Impact of Missing Modalities To evaluate MSpecTmol’s robustness against incomplete data,
which is a common real-world challenge, we masked individual spectral modalities in the test set
and evaluated the pre-trained model’s performance on SDBS dataset. As presented in Table 13, we
explicitly compared MSpecTmol against baseline models under these conditions. As shown in
Figure 10(b) and Table 13, the model’s performance degrades gracefully rather than failing. The F1-
score drops from 0.9134 with complete data to scores between 0.8974 and 0.8623 when a modality
is absent. This resilience is a direct benefit of our PA-IB architecture. Notably, MSpecTmol with
missing modalities still outperforms several baselines operating with complete data. The model’s
ability to extract information from auxiliary spectra to supplement the primary modality allows it
to maintain robust performance even when data is partially available, making it highly suitable for
practical applications.

Table 13: Performance comparison (F1-score) under missing modality conditions.
Input Configuration MSpecTmol 1D-CNN Trans. Wu et al. Alberts et al.

Full (MS+13C+1H) 0.913 0.847 0.858 0.872 0.881
w/o MS 0.862 0.811 0.826 0.831 0.847
w/o 1H-NMR 0.897 0.823 0.834 0.848 0.866
w/o 13C-NMR 0.878 0.819 0.818 0.832 0.851

Impact of Noise Noise is an unavoidable component of experimental spectra, making a model’s
performance under such conditions a key indicator of its practical utility. To assess this, we intro-
duced varying levels of Gaussian noise to all spectra in the test set. The standard deviation of the
noise was scaled proportionally to the maximum intensity of each spectrum, ensuring a consistent
signal-to-noise ratio for the evaluation. As illustrated in Figure 10(c) and Table 14, the model’s F1-
score exhibits a steady and predictable decline as the noise level increases, decreasing from 0.9134
on clean data to 0.7469 at the highest noise level of 0.1. Importantly, the performance does not
suffer a catastrophic collapse but rather degrades gracefully. Comparatively, as detailed in Table 14,
baseline models suffer more severe degradation. At the highest noise level (σ = 0.10), MSpecTmol
(0.747) significantly outperforms 1D-CNN (0.635) and Transformer (0.704). This demonstrates
that MSpecTmol can effectively discern core spectral features from background noise, further con-
firming its robustness for real-world applications where data quality is variable.

Table 14: Performance comparison (F1-score) under varying levels of Gaussian noise.
Noise (σ) MSpecTmol 1D-CNN Trans. Wu et al. Alberts et al.

0.00 (Clean) 0.913 0.847 0.858 0.872 0.881
0.02 0.882 0.815 0.825 0.838 0.846
0.05 0.825 0.745 0.761 0.767 0.772
0.10 0.747 0.635 0.704 0.711 0.703

S ALGORITHMIC PROCEDURE OF CONFORMATION GENERATION

In this work, we propose a dual-encoder diffusion framework that generates molecular conforma-
tions by conditioning a geometric diffusion model on spectroscopic information.
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Table 15: Performance comparison of different models.
Model Top-1 Acc. Top-5 Acc. Top-1 mces-score Top-5 mces-score
Transformer 50.02% 63.27% 0.8674 0.9083
Alberts et al. 66.59% 75.33% 0.8821 0.9457
Ours 70.43% 85.25% 0.9469 0.9847

S.1 PROBLEM FORMULATION

Given a molecular graph G = (V, E) with atom types z ∈ Z|V| and spectroscopic measurements
s = [suv, sir, sraman] ∈ Rds , we aim to generate 3D molecular conformations x ∈ R3|V| that are
consistent with both the molecular connectivity and observed spectra.

S.2 SPECTROSCOPY-TO-SMILES PREDICTION

While it is technically feasible to generate complete 3D conformations directly from spectra, direct
generation involves a huge potential space. An effective approach is to first obtain molecular sam-
ples based on spectra and then perform conformation generation. Since spectroscopy-to-SMILES
prediction is already a well-established research direction, we conducted an additional feasibility
study by replacing our predictor layer (MLP) with a Transformer-based decoder to predict SMILES
strings directly from spectra. This modification does not alter our underlying PA-IB framework. To
evaluate performance, we trained the model on the QM9S dataset—consistent with the conforma-
tion generation task—and calculated the Top-1 and Top-5 accuracy of the generated results, as well
as the MCES score (normalized by the number of heavy atoms). The results are as Table 15:

These results show that our model achieves high accuracy on the dataset. Even in cases where
predictions are not perfectly accurate, the MCES scores close to 1.0 demonstrate that the model is
capable of reconstructing molecular graph structures with high similarity.

S.3 SPECTRUM-CONDITIONED DIFFUSION PROCESS

We formulate the generation process as a conditional diffusion model operating in the coordinate
space. The forward diffusion process adds Gaussian noise to the true conformation x0:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I) (29)

where αt =
∏t

i=1(1− βi) and {βi} follows a predefined noise schedule.

The reverse process is parameterized by a neural network ϵθ that predicts the noise conditioned on
the spectrum:

xt−1 =
1√

1− βt

(
xt −

βt√
1− αt

ϵθ(xt, t, s, G)

)
+ σtη (30)

where η ∼ N (0, I) and σt is the posterior variance.

S.4 DUAL-ENCODER ARCHITECTURE

Our model consists of three key components:

Spectrum Encoder: We design a MSpecTmol encoder to process multi-modal spectroscopic data.
The spectrum data is encoded using the PA-IB-based method described previously. The features are
fused through a gated mechanism:

hs = MLP(hspec ⊕ temb) (31)

where hspec is the spectrum embedding, temb is the timestep embedding, and ⊕ denotes concatena-
tion.

Dual Geometric Encoders: We employ two complementary graph encoders: (1) a SchNet-based
global encoder that captures long-range interactions through radius graphs, and (2) a GIN-based lo-
cal encoder focusing on chemical bond structures. Both encoders incorporate the spectrum condition
hs into node representations.
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Distance-based Denoising: In this step, we predict noise in the distance space and transform back
to coordinates. The training objective combines global and local distance predictions:

L = Et,ϵ

[
λg∥dg − d̂g∥22 + λl∥dl − d̂l∥22

]
(32)

where dg,dl are target distances for global and local edges respectively, and λg, λl are weighting
factors.

T HYPERPARAMETER EXPERIMENTS AND ABLATION STUDY

To assess the impact of hyperparameter choices on model performance, we conduct a series of
experiments by varying the information bottleneck trade-off coefficients α and β from 1× 10−7 to
1× 10−3. The best results are achieved when both α and β are set to 1× 10−6. Besides, we present
the implementation details of the ablation settings and illustrate how the loss function changes when
specific components are removed. The corresponding results are shown in Figure 11.
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Figure 7: Illustration of the importance of spectral regions. The input spectrum is partitioned as
follows: [0, 150] corresponds to IR spectra, [151, 300] to 1H-NMR spectra, and [301, 450] to 13C-
NMR spectra. Warmer colors indicate crucial (high-importance) information, while cooler colors
represent redundant (low-importance) information.
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Figure 8: The confusion matrix between functional groups: the darker the color in the blocks, the
higher the number of samples where the two functional groups were predicted incorrectly simulta-
neously.

Figure 9: Performance of the model under unimodal and multimodal settings. (a) Results using a
single spectrum as input (unimodal); (b) Results under multimodal fusion of spectra.
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Figure 10: (a) Comparison of F1-scores for different data augmentation strategies applied to the
training data. (b) Model performance with missing spectral modalities (MS, 1H-NMR, and 13C-
NMR) in the test set. (c) The impact of increasing levels of Gaussian noise on the final F1-score.

Figure 11: (a) Hyperparameter Experiments on functional group classification task. The circle size
is proportional to the magnitude of the error. (b) Ablation study: by selectively removing different
KL divergence terms, we adjust the optimization objectives of the model. The left panel shows the
F1 scores of the prediction results, while the right panel illustrates the minimized objectives of the
ablated models.
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