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Abstract

Data integration approaches are increasingly used to enhance the efficiency and
generalizability of studies. However, a key limitation of these methods is the
assumption that outcome measures are identical across datasets – an assumption
that often does not hold in practice. Consider the following opioid use disorder
(OUD) studies: the XBOT trial and the POAT study, both evaluating the effect of
medications for OUD on withdrawal symptom severity (not the primary outcome
of either trial). While XBOT measures withdrawal severity using the subjective
opiate withdrawal scale, POAT uses the clinical opiate withdrawal scale. We
analyze this realistic yet challenging setting where outcome measures differ across
studies and where neither study records both types of outcomes. Our paper studies
whether and when integrating studies with disparate outcome measures leads to
efficiency gains. We introduce three sets of assumptions – with varying degrees of
strength – linking both outcome measures. Our theoretical and empirical results
highlight a cautionary tale: integration can improve asymptotic efficiency only
under the strongest assumption linking the outcomes. However, misspecification
of this assumption leads to bias. In contrast, a milder assumption may yield finite-
sample efficiency gains, yet these benefits diminish as sample size increases. We
illustrate these trade-offs via a case study integrating the XBOT and POAT datasets
to estimate the comparative effect of two medications for opioid use disorder on
withdrawal symptoms. By systematically varying the assumptions linking the SOW
and COW scales, we show potential efficiency gains and the risks of bias. Our
findings emphasize the need for careful assumption selection when fusing datasets
with differing outcome measures, offering guidance for researchers navigating this
common challenge in modern data integration.

1 Introduction

Robust decision-making increasingly depends on integrating information from diverse sources – a
practice commonly referred to as data integration. By harnessing complementary datasets, researchers
can improve the accuracy, generalizability, and efficiency of statistical inference (Bareinboim and
Pearl, 2016). In the realm of causal inference, data integration has emerged as a central focus, recently
cited among the top ten priorities for advancing the field (Mitra et al., 2022). This surge of interest
reflects its wide-ranging utility: from generalizing or transporting evidence (Degtiar and Rose, 2023;
Parikh et al., 2024; Huang and Parikh, 2024), to heterogeneous causal effect estimation (Brantner
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et al., 2023), boosting statistical efficiency (Rosenman et al., 2023), and mitigating bias (Kallus et al.,
2018).

However, in many real-world scenarios, various data sources may capture outcomes that, while
related, are not identical to those measured in the trial. For example, in studies on medications for
opioid use disorder (MOUD), the intensity of withdrawal symptoms can be measured using two
different scales: the Clinical Opiate Withdrawal Scale (COWS) and the Subjective Opiate Withdrawal
Scale (SOWS) (Wesson and Ling, 2003; Handelsman et al., 1987). In the XBOT trial that compared
the effectiveness of injection naltrexone to sublingual buprenorphine in terms of reducing risks of
returning to regular opioid use, withdrawal symptoms were measured using SOWS (Lee et al., 2018).
However, the POATS study, which compared the effectiveness of adding counseling to sublingual
buprenorphine treatment, used COWS to measure the strength of withdrawal symptoms (Weiss et al.,
2010). Despite the differences in outcome measures, researchers might wish to leverage the POATS
study to improve the precision of treatment effect estimates in the XBOT trial (or vice versa). This
raises an important question: when can integration of primary study and auxiliary data with disparate
outcome measures yield efficiency gains for causal effect estimates if neither study has observation of
both outcome measures on the same group of individuals?

Contributions. Our paper addresses this question by examining scenarios in which neither the trial
nor the auxiliary data records both outcome measures on the same set of individuals.

• We formulate a principal assumption that connects the primary outcome in the trial with the auxiliary
outcome in external data, offering a conceptual “license” to borrow strength from auxiliary sources.
We present three versions of this assumption – ranging from strong to weak – thereby providing a
flexible framework that reflects varying degrees of identifiability.

• We characterize the conditions under which integrating studies can improve semiparametric effi-
ciency as well as finite sample gains. We show that asymptotic gains are only possible under the
strongest assumptions (albeit at a risk of some bias). However, under milder (and perhaps more
realistic) conditions, finite-sample improvements may be realized, although these benefits diminish
as sample sizes grow.

• We illustrate these insights through simulation studies and a real-world case study from the MOUD
trial. Our findings underscore both the promise and the limitations of using auxiliary data with
non-overlapping outcomes. Importantly, we provide practical guidance for researchers aiming to
navigate these tradeoffs in applied causal inference settings.

In a nutshell, this paper presents a cautionary framework for data integration in the presence of
disparate outcomes, showing that while such integration may yield marginal gains under ideal
conditions, it carries a significant risk of bias when assumptions are violated – as illustrated by our
case study. To the best of our knowledge, we present the first formal quantification of this tradeoff,
emphasizing the need for scrutiny before applying such methods in practice.

The paper is organized as follows. Section 3 introduces the notation, setup, and standard assumptions.
Section 4 presents the key structural assumption linking primary and auxiliary outcomes, along with
three scenarios that reflect varying degrees of prior knowledge about this relationship. Sections 4.2–
4.4 contains our main theoretical contributions: semiparametric efficiency bounds under each scenario,
as well as worst-case bounds on finite-sample estimation errors. In Section 5, we apply these methods
to estimate the causal effect of medications for opioid use disorder (MOUD) on withdrawal severity,
using SOWS (from the XBOT trial) and COWS (from the POAT study). Section 6 concludes with
a summary of key findings, limitations, and directions for future research. Appendix A presents
simulation results evaluating estimator performance across varying sample sizes and dimensions.
Additional theoretical discussion and proofs are provided in Appendices B, C, and D.

2 Relevant Literature

We briefly review four bodies of literature related to our work: (i) data integration in causal inference,
(ii) meta-analysis, (iii) data harmonization, and (iv) surrogate outcomes.

Data Integration for Causal Inference. Data integration has emerged as a central focus in causal
inference, recently cited among the top priorities for advancing the field (Mitra et al., 2022). It
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supports a wide range of goals, including generalizing evidence across populations (Degtiar and Rose,
2023; Pearl, 2015; Parikh et al., 2024; Huang and Parikh, 2024), estimating heterogeneous effects
(Brantner et al., 2023), boosting efficiency (Li and Luedtke, 2023), and mitigating bias (Kallus et al.,
2018; Parikh et al., 2023b). Recent methods improve efficiency by combining auxiliary datasets
while controlling bias, such as James-Stein shrinkage (Rosenman et al., 2023), semiparametric
estimators (Yang et al., 2020), bias correction (Kallus et al., 2018; Yang and Ding, 2020), and
Bayesian borrowing (Lin et al., 2024). However, these approaches typically assume consistent
measures – including outcomes – across datasets.

Meta-Analysis and Evidence Synthesis. When outcomes differ, naïve pooling can induce substan-
tial bias (Van Cleave et al., 2011). Early evidence synthesis methods, such as standardizing outcomes
(Murad et al., 2019; Deeks et al., 2019), rely on strong equivalence assumptions. Traditional meta-
analyses, as in (Deeks et al., 2019), uses heuristics like dichotomization or normalization, assuming
commensurability across studies (Murad et al., 2019). More sophisticated approaches jointly model
multiple outcomes, using multivariate Bayesian methods (Bujkiewicz et al., 2016) or multi-task
learning analogs (Zhang and Yang, 2018). These frameworks exploit known outcome dependencies
or co-measurement of outcomes to synthesize information while allowing outcome-specific variation.

Data Harmonization. Data harmonization methods are a set of tools that aim to equate measures
across data sources to facilitate data integration. These methods typically align heterogeneous
outcomes through co-calibration (Nance et al., 2017) or latent constructs (Snavely et al., 2014).
Bridge studies, where multiple outcomes are measured on the same set of individuals, can estimate
mappings between outcome measures, while latent variable models treat observed outcomes as noisy
indicators of a shared construct. These approaches typically require both outcome measurements for
the same individual and introduce additional modeling assumptions.

Leveraging Surrogate Outcomes. Another relevant literature is on data integration methods
leveraging studies with surrogate outcomes. For instance, Athey et al. (2019) and Ghassami et al.
(2022) combine experimental data with short-term outcome measures with an observational study
where long-term outcome is measured to yield a consistent estimate of the long-term treatment effect.
Surrogate indices that aggregate multiple proxies can substantially improve efficiency (Ghassami
et al., 2022), but rely on strong structural assumptions about the proxy–outcome relationship. Existing
methods generally require at least one dataset with measurement of primary and surrogate outcomes
on the same set of individuals – an assumption often violated in practice and one that motivates our
work.

3 Preliminaries

Setup and Notations. We consider two studies: a primary study (S = 0) and an auxiliary study
(S = 1). The primary study observes the outcome of interest Y , while the auxiliary study observes
a related but distinct outcome W . Crucially, Y and W are never observed for the same individual.
In both studies, we observe treatment T ∈ {0, 1} and covariates X . Let Y (t) and W (t) denote
the potential outcomes under treatment T = t. To unify notation, define the observed outcome as
V := (1 − S)Y + SW, and the observed data as O := (X,S, T, V ). We let Sn = {O1, . . . , On}
denote a sample of n units, with n0 and n1 representing the number of units in the primary and
auxiliary studies, respectively.

For any (random) function f , let E[f(A)] denote the expectation, Pn(f(A)) =
1
n

∑n
i=1 f(Ai) the

empirical average, and P(f(A)) =
∫
f(a) dP (a) the population average treating f as fixed. Note

that E[f(A)] integrates over randomness in both A and f , while P(f(A)) treats f as fixed. We
also define the Lq(P ) norm as ∥f∥q =

(∫
|f(o)|q dP (o)

)1/q
. Futher, for compactness, we write

µA(B = b) := E[A | B = b] to denote the conditional expectation of A given B = b, and
νtA(B = b) := E[A(t) | B = b] for the conditional mean of the potential outcome A(t).

Our goal is to estimate the conditional average treatment effect (CATE): τ0(x) := ν1Y (X = x) −
ν0Y (X = x), and the average treatment effect (ATE): τ0 := ν1Y − ν0Y , both defined with respect to the
primary outcome Y .

Assumptions & Identification We make the following assumptions:
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A.1. (S-ignorability) ∀x, Y (t),W (t) ⊥ S | X = x.
A.2. (Treatment Positivity) ϵ < P (T = t | X,S = 0) < 1− ϵ, for all t ∈ {0, 1}.
A.3. (Sampling Positivity) ϵ < P (S = 0 | X) < 1− ϵ.
A.4. (Conditional Ignorability) ∀x, s, Y (t),W (t) ⊥ T | X = x, S = s.

We assume the following structural models for the potential outcomes:

Y (t) = θ(X)t+ g(X) + γ, γ ∼ N (0, σ2
Y ), (1)

W (t) = ϕ(X)t+ f(X) + δ, δ ∼ N (0, σ2
W ), (2)

where θ(X) and ϕ(X) are the treatment effect functions for Y andW , respectively. These formulation
is commonly used in the causal inference literature (Robinson, 1988; Chernozhukov et al., 2018;
Hahn et al., 2020; Rudolph et al., 2025). From Equation (1), it follows that the CATE in the primary
population is: τ0(x) = E[Y (1) − Y (0) | X = x] = θ(x). By Assumptions A.2. and A.4., the
potential outcome means νtY (X = x) are identified by observed data as: νtY (X = x) = µY (X =
x, T = t). Hence, the CATE is identified as: τ0(x) = µY (X = x, T = 1)− µY (X = x, T = 0).

Influence Function. Let η denote the collection of nuisance parameters, specifically η =
{µV (X,S), µT (X,S), µS(X)}. Let θ0 be the true parameter of interest, and η0 the true nuisance
parameters governing the data-generating process. For any regular, consistent, and asymptotically
linear estimator θ̂ of θ0, there exists a function ψ – called the influence function – such that we
decompose the estimation error θ̂ − θ0 using the von Mises expansion as:

θ̂ − θ0 = (Pn − P)ψ(O; θ0, η0)︸ ︷︷ ︸
M1

−P [ψ(O; θ0, η̂)− ψ(O; θ0, η0)]︸ ︷︷ ︸
M2(η̂)

+M3(η̂)
1

where P[ψ(O; θ0, η0)] = 0 (Tsiatis, 2006; Kennedy, 2016). Here, (i) the first term, M1, represents
sampling variability resulting in asymptotic variance – capturing the first-order behavior of θ̂ and
reflects its asymptotic linearity (Ichimura and Newey, 2022; Kennedy, 2016); (ii) the second term,
M2(η̂), captures bias due to finite sample estimation of nuisance functions; (iii) the third term,M3(η̂),
accounts for remaining higher-order approximation error that converges to 0 in probability at rate
faster than

√
n.

By the Central Limit Theorem and the Slutsky theorem, the estimator is asymptotically normal
(provided Donsker condition holds or sample splitting is used):

√
n(θ̂ − θ0)⇝ N

(
0,E[ψ(O; θ0, η0)ψ(O; θ0, η0)

T ]
)
.

The asymptotic variance of θ̂ is thus determined by the variance of the influence function and can be
consistently estimated via the empirical variance of the estimated influence function, ψ̂.

Efficient Influence Function. The influence function depends on the values of θ and η, although we
suppress this dependency for notational convenience. Among all influence functions corresponding
to regular, asymptotically linear estimators of θ0, the efficient influence function (EIF), denoted
ψ∗, achieves the smallest possible asymptotic variance. This minimal variance – known as the
semiparametric efficiency bound – is given by: E[ψ∗(O; θ0, η0)ψ

∗(O; θ0, η0)
T ], and represents the

best achievable precision for unbiased estimation (Tsiatis, 2006; Newey, 1990).

Procedure to Derive EIF. Consider the log-likelihood L(O; θ, η) of observed data with parameter
of interest θ and nuisance parameters η, maximized at (θ0, η0). We define the score functions with
respect to θ and η as Rθ(O; θ0, η0) =

∂L
∂θ

∣∣ θ0, η0 and Rη(O; θ0, η0) =
∂L
∂η

∣∣∣ θ0, η0, respectively. Rθ

reflects the sensitivity of the likelihood to θ. However, it may also be sensitive to η. Projecting it
orthogonally to the space spanned by Rη isolates the component of information unique to θ. The
efficient score function is the residual of Rθ after projecting out components in the linear span of Rη:

R∗(O; θ0, η0) = Rθ −Π
(
Rθ|Λη

)
,

1Here, Pn(ψ) denotes the empirical average and P(ψ) the population expectation. The notation (Pn−P)(ψ)
is shorthand for Pn(ψ)− P(ψ), as commonly used in semiparametric theory.
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where Π
(
Rθ, |,Λη

)
= E

[
RθR

T
η

] {
E
[
RηR

T
η

]}−1
Rη and arguments (O; θ0, η0) are suppressed for

brevity. The efficient influence function is given by ψ∗ =
{
E
[
R∗(R∗)T

]}−1
R∗. This influence

function achieves the semiparametric efficiency bound and serves as the optimal estimating function
for θ under the given model. For further discussion and derivation, we refer readers to Tsiatis (2006).

4 Data Integration with Disparate Outcome Measures

To leverage auxiliary data for estimating treatment effects on the primary outcome Y , we must
establish a relationship between Y and the auxiliary outcome W . We posit the following structural
assumption that provides a foundation – or “license” – for incorporating W into the analysis:

A.5. (Outcome Link Assumption) For all x and t, there exist functions α and β of pre-treatment
covariates such that νtY (x) = α(x)νtW (x) + β(x)

Remark 1 (On Assumption A.5.). The assumption allows for flexible and heterogeneous relationships
between primary and auxiliary outcomes across units with different values of X . However, this
assumption also imposes structural restrictions on the relationship: the primary outcome is a partially
linear function of the auxiliary outcome W , with the scaling factor α(X) and shift β(X) modulated
by pre-treatment covariates X .

This assumption is plausible in settings where W serves as a meaningful proxy for Y . For instance,
in biomedical studies, W might represent a surrogate endpoint (e.g., a biomarker) that reflects the
underlying disease progression captured by Y (Weir and Walley, 2006). In such cases, prior studies
or mechanistic understanding can inform how changes in W relate to changes in Y .

4.1 Assumption Sets on α(X) and β(X)

To explore the range of identifiability and efficiency in leveraging auxiliary data, we consider three
increasingly weaker assumptions about prior knowledge about α(X) and β(X):

A.5(a) Fully Known Link: Both α(X) and β(X) are known from prior domain knowledge.
A.5(b) Partially Known Link: Only β(X) is known; α(X) is unknown.
A.5(c) Unknown Link: Neither α(X) nor β(X) are known.

Assumption A.5(a) represents the strongest assumption, and is most tenable in domains with well-
characterized mechanistic knowledge – such as certain areas of biology, pharmacology, or engineering
– where α(X) and β(X) are grounded in empirical studies or physical theory (Puniya et al., 2018;
Parikh et al., 2023a). In such contexts, auxiliary outcomes can be confidently incorporated using
known mappings to the primary outcome. Assumption A.5(b) relaxes this requirement by assuming
only the baseline shift β(X) is known. This is common in applications where historical data or expert
knowledge informs baseline trends, but the strength of association (i.e., scaling) between Y and W
varies across populations or settings. Such partial knowledge arises frequently in social sciences or
public health (Handelsman et al., 1987). Assumption A.5(c)) is the most general and aligns with many
real-world scenarios where no prior information is available about the relationship between Y and
W . This assumption allows maximum flexibility, but also introduces the greatest challenge in using
an auxiliary study.

These assumptions represent a spectrum of tradeoffs between realism and statistical precision.
Stronger assumptions enable tighter and more efficient estimation but rely more heavily on prior
knowledge. We make this tradeoff explicit in Sections 4.2, 4.3 and 4.4. Ultimately, the appropriate
assumption set depends on the context and credibility of available domain knowledge.

Function Class Complexity Assumption. We make additional assumptions about the complexity
of functions in A.5.:

A.6. There exists positive constants ε > 0 such that A and B satisfies the covering number
bound: logN(ε,A, ∥ · ∥) = O(ε−ωα), and logN(ε,B, ∥ · ∥) = O(ε−ωβ ). Further, we
assume that the function class for µY and µW – M – satisfies covering number bounds:
logN(ε,M, ∥ · ∥) = O(ε−ω), with ωα + ωβ ≤ ω.
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This assumption imposes regularity conditions on the function classes involved in the decomposition
of µY (X) into α(X) and β(X). Specifically, it ensures that the combined complexity of α and
β, measured via covering number bounds, does not exceed that of µY . This is a mild and natural
requirement: if the auxiliary outcome W is informative about Y , then the residual mapping captured
by α(X) is expected to be simpler than modeling µY (X) directly. In this sense, Assumption A.6.
reflects a form of functional regularization, where using a predictive surrogate reduces the effective
complexity of the learning task.

4.2 Semiparametric Efficiency Bounds

Now, we derive the efficient bounds under each of the following three assumptions A.5(a), A.5(b),
and A.5(c), and investigate if and when data integration yields semiparametric efficiency gains.
Throughout this section, we assume that assumptions A.1. to A.4. hold.

Recall ψ∗(O; θ0, η0) =
{
E[R∗(O; θ0, η0)R

∗(O; θ0, η0)
T ]
}−1

R∗(O; θ0, η0), and the
semiparametrically efficient asymptotic variance (i.e., efficiency bound) is equal to{
E[R∗(O; θ0, η0)R

∗(O; θ0, η0)
T ]
}−1

, we only present the efficient score function R∗ in-
stead of the EIF ψ∗. However, note that deriving the EIF from R∗ is straightforward in our context.
In our case, P (O = o; θ, η) = P (X = x)P (S = s | X = x)P (T = t | X = x, S = s)P (V = v |
T = t,X = x, S = s) and L(O; θ, η) = logP (O = o; θ, η).

First, we derive the efficiency bound for the semiparametrically efficient estimator that only uses
the primary study. We use this result as a base case to compare the efficiency bounds for the data
integration-based estimators. This efficiency bound is akin to the one derived in (Robinson, 1988).
Theorem 1 (Efficiency bound using only primary data). Under assumptions A.1.–A.4., the
efficient score function using only the primary study (S = 0) is R∗

0(O; θ0, η0) = (1 − S) · ∆0.

The corresponding asymptotic variance is Vθ
0(X) =

(
E
[
∆2

0 | S = 0, X
]
p(S = 0 | X)

)−1
, where

∆0 =
(
(V − µY (X, 0)− θ(X)(T − µT (X, 0))) · T−µT (X,0)

σ2
Y

)
.

Now, we derive the efficiency bound that leverages auxiliary data under A.5(a).
Theorem 2 (Efficiency bound under known α(X) and β(X)). Under assumptions A.1.–A.4. and
A.5(a), the efficient score function is:

R∗
a(O; θ0, η0) = S ·∆1 + (1− S) ·∆0,

where

∆1 = (α(X)(V − µW (X, 1))− θ(X)(T − µT (X, 1))) ·
T − µT (X, 1)

α2(X)σ2
W

.

The asymptotic variance is:

Vθ
a(X) =

(
E
[
∆2

0 | S = 0, X
]
p(S = 0 | X) + E

[
∆2

1 | S = 1, X
]
p(S = 1 | X)

)−1
.

Corollary 1. Integrating primary and auxiliary data under assumption A.5(a) yields efficiency gain
i.e. Vθ

a(X) ≤ Vθ
0(X).

Next, we derive the efficiency score and the efficiency bound for a case when A.5(b) holds.
Theorem 3 (Efficiency bound under known β(X) only). Under assumptions A.1.–A.4. and A.5(b),
the efficient score function for θ(X) and α(X) is:

R∗
b(O; θ0, α0, η0) =

(
S ·∆1 + (1− S) ·∆0

S ·
(

θ(X)(T−µT (X,1))−α(X)(V−µW (X,1))
α2(X)σ2

W
· θ(X)(T−µT (X,1))

α(X)

))
.

The corresponding asymptotic variance-covariance matrix is:

Σb(X) :=

(
Vθ

b(X) Covθ,αb (X)

Covθ,αb (X) Vα
b (X)

)
, with Vθ

b(X) =
(
E[∆2

0 | S = 0, X]P (S = 0 | X)
)−1

.

Corollary 2. The asymptotic variance of the efficient estimator of θ(X) under assumption A.5(b)
is equal to that under using primary data only: Vθ

b(X) = Vθ
0(X). Thus, when α(X) is unknown,

incorporating auxiliary data provides no efficiency gain.
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Theorem 4 (Efficiency bound under unknown α(X) and β(X)). Under assumptions A.1.–A.4.
and A.5(c), the efficient score function is identical to that in Theorem 3: R∗

c(O; θ0, α0, η0) =
R∗

b(O; θ0, α0, η0). Therefore, the asymptotic variance for estimating θ(X) remains: Vθ
c(X) =

Vθ
b(X) = Vθ

0(X).

Corollary 3. If both α(X) and β(X) are unknown, there are no efficiency gains from using auxiliary
data compared to using only primary data.

The proofs and results in Theorems 1 to 4 are a direct consequence of following the procedure to
derive EIF described in Section 3 and are provided in Appendix B.

4.3 ATE Estimation under A.5(a)

Now, we present the ATE estimation under assumption A.5(a). We use the efficient score R∗
a to guide

the estimation of θ0 using the property that E[R∗
a(O; θ0, η0)] = 0. Recall, that R∗

a(O; θ0, η0) =
S∆1 + (1− S)∆0. Assuming an unbiased and consistent estimate of the nuisance parameter η̂, a
solution to 1

n0

∑
iR

∗
a(Oi; θ, η̂) – denoted by θ̂a – is an unbiased and consistent estimate of θ0. Let

rA(B) := A− µA(B) denote the residual of random variable A after regressing A on B. Then, the
estimator θ̂a is given by:

θ̂a =

∑
i

(
(1− Si)

r̂Y (Xi,0)r̂T (Xi,0)
σ̂2
Y

+ Si
r̂W (Xi,1)r̂T (Xi,1)

α(Xi)σ̂2
W

)
∑

i

(
(1− Si)

r̂2T (Xi,0)

σ̂2
Y

+ Si
r̂2T (Xi,1)

α2(Xi)σ̂2
W

)
Misspecification Bias under A.5(a): We showed the efficiency bound under three varied assump-
tions and our results highlighted that efficiency gain is only feasible under the strongest assumption.
Now, we investigate the cost of making the wrong assumption i.e. what happens if we assume A.5(a)
but α is misspecified. Let α⋆ denote the true α and αmis denote a misspecified α.
Theorem 5 (Misspecification Bias). Under assumptions A.1. – A.4. and a misspecified A.5(a), the
estimator, θ̂a, is biased where the bias is equal to E [B(X) | S = 1] , where

B(X) := E
[(

(αmis(X)− α⋆(X))

α⋆(X)

)
θ(X) | S = 1, X

]
4.4 Estimation under A.5(b) and A.5(c): Finite-Sample Gains

In cases when α is unknown (i.e. A.5(b) and A.5(c)), it is not feasible to yield efficiency gains by
leveraging auxiliary data. However, consider the estimator for ATE only using primary data

θ̂0 =

∑
i(1− Si)[(r̂Y (Xi, 0))(r̂T (Xi, 0))]∑

i(1− Si)[(r̂T (Xi, 0))2]
.

This estimator can be modified, under A.5., to use the auxiliary data to potentially have finite
sample benefits. One natural approach to leveraging auxiliary data is the following two-stage
estimator: in the first stage, we estimate the auxiliary regression µW (X, 1) = E[W |X,S = 1]
using the auxiliary data and we then use this estimated function to predict µ̂W (X, 0) for units in the
primary data. In the second stage, we estimate µY as: µ̂Y,b(X, 0) = α̂(X)µ̂W (X, 0) + β̂(X) where

α̂, β̂ ∈
[
argminα,β∈A,B

1
n0

∑
i(1− Si) (Yi − α(Xi)µ̂W (Xi, 0)− β(Xi))

2
]
. The resulting fitted

function µ̂Y,b(X, 0) combines both sources of information and provides a data-adaptive estimator of
the conditional mean outcome in the primary population. This approach is akin to adjusting for the
prognostic or benefit score along with the vector of covariates (Liao et al., 2025). Thus, the resulting
estimator leveraging the auxiliary data is given as:

θ̂b =

∑
i(1− Si)[(r̂Y,b(Xi, 0))(r̂T (Xi, 0))]∑

i(1− Si)[(r̂T (Xi, 0))2]
.

Quantifying Finite-Sample Risk. Asymptotically, if nuisance estimators η̂ belong to a Donsker
class or are fit using sample splitting, the M2 and M3 vanishes asymptotically at a rate
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faster than
√
n. However, in finite samples, they contribute non-negligibly to estimation

error. We focus on M2(η̂) = P(ψ(O; θ0, η̂) − ψ(O; θ0, η0)), which depends on the ac-
curacy of nuisance function estimates. For cross-fitted estimators, we have: |M2(η̂)| =

op
(
n−1/2

(
∥µY − µ̂Y ∥ · ∥µT − µ̂T ∥+ θ0 ∥µT − µ̂T ∥2

))
. Since the only difference between θ̂0

and θ̂b lies in the choice of outcome regression, smaller ∥µY − µ̂Y ∥ directly translates into precise
estimates.
Theorem 6 (Error bound for µ̂Y ). Given assumptions A.1.–A.4., A.5(b), and A.6., the empirical
errors for µ̂Y,0 and the two-stage estimator µ̂Y,b are

∥µ̂Y,0−µY ∥ = op

(
n
− 1

2+ω

0

)
, and ∥µ̂Y,b−µY ∥ = op

(
n
− 1

2+ω

0

(
n

1
2+ω− 1

2+ωα
0 + (n1/n0)

− 1
2+ω

))
.

Characterizing Finite Sample Gains. Theorem 6 demonstrates that one may not even achieve
finite sample gains when leveraging auxiliary data. The two-stage estimator µ̂Y,b can outperform
the direct regression estimator µ̂Y,0 only when certain structural and sample size conditions are met.
Qualitatively, gains arise when leveraging the auxiliary data allow for decomposition of µY (X) into
less complex functions. Additionally, leveraging auxiliary data helps only if µW (X) can be estimated
accurately – that is, when the auxiliary sample size n1 is sufficiently large relative to the primary
sample size n0. Importantly, when the auxiliary outcome W is highly predictive of the primary
outcome Y – that is, when Cov(Y,W | X) is large – the function µY (X) can be well-approximated
by µW (X) then the function α(X) captures only residual structure and tends to be significantly
simpler than µY (X) itself, implying that the entropy exponent ωα is relatively much smaller than ω.

Quantitatively, finite-sample improvement occurs when n
1

2+ω− 1
2+ωα

0 + (n0/n1)
1

2+ω < 1. The first
term captures the gain from replacing the full function class MY with a lower-complexity class A,
and the second term reflects the accuracy of estimating µW (X) from the auxiliary data. Gains are
most pronounced when ωα ≪ ω (i.e., α(X) is much simpler than µY (X)) and when n1 ≫ n0 (i.e.,
we have ample auxiliary data). Our characterization formally supports the intuition that structural
assumptions and additional data may result in finite sample gains.

In summary, finite-sample efficiency gains from incorporating auxiliary data arise when the function
α(X), capturing the dependence between Y and W, is simpler to estimate than µY (X). In such
cases, one may first estimate µW (X) using auxiliary data, and then use the combined data to estimate
α(X). However, the existence and extent of these gains depend on the relative complexity of the
function classes and the sample sizes involved. As n0 increases, the benefit of this two-stage strategy
diminishes, and asymptotically, both the direct and the auxiliary-based estimators converge to the
same efficiency.

5 Medication for Opioid Use Disorder and Withdrawal Symptoms

We apply our framework to compare the effectiveness of extended-release naltrexone (XR-NTX) and
buprenorphine-naloxone (BUP-NX) in reducing opioid withdrawal symptoms between 10 and 12
weeks after treatment initiation. We begin by describing the primary and auxiliary datasets and the
causal quantity of interest, followed by estimates obtained under three approaches: (i) using only
primary data, (ii) incorporating auxiliary data with known outcome linkage (Assumption A.5(a)), and
(iii) incorporating auxiliary data under partial knowledge of the link (Assumption A.5(b)).

5.1 Data Description

Primary Study: XBOT Trial. The NIDA CTN-0051 (XBOT) trial was a multisite study comparing
extended-release naltrexone (XR-NTX) and buprenorphine-naloxone (BUP-NX) for opioid use
disorder treatment (Lee et al., 2018). A total of 540 patients were randomized 1:1 to receive either
treatments over 24 weeks. We focus on the most severe withdrawal symptoms in the 4th week,
measured by the Subjective Opiate Withdrawal Scale (SOWS) – a 16-item self-report instrument
where patients rate each symptom from 0 to 4, reflecting subjective withdrawal experiences.
Auxiliary Study: POAT Study. The NIDA CTN-0030 (POATS) trial enrolled individuals de-
pendent on prescription opioids for outpatient treatment using BUP-NX (Weiss et al., 2011).
Withdrawal symptoms were assessed using the Clinical Opiate Withdrawal Scale (COWS), an
11-item clinician-administered tool capturing objective signs of withdrawal. We use POATS as
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auxiliary data to improve the estimation of withdrawal severity under BUP-NX in the XBOT trial,
leveraging the worst COWS scores in the 4th week. Although the XT-NTX arm is absent in the
auxiliary dataset, the BUP-NX treatment is shared across both studies. We aim to evaluate if and
when auxiliary information on BUP-NX can be used to improve the efficiency of estimating the
outcome under BUP-NX in the primary population, while carefully considering the assumptions
required for valid data fusion.

5.2 Analysis

We evaluate the comparative effectiveness of XR-NTX (T = 1) versus BUP-NX (T = 0) in reducing
withdrawal symptom severity, as measured by the worst SOWS score in the fourth week (Y ), among
participants in the XBOT trial. In the auxiliary POAT study, withdrawal severity is measured on the
COWS scale during the same period (W ). We use a common set of covariates assessed in both trials
(X). Further, we only considered patients for whom we observed the outcomes – our study excluded
individuals for whom treatment was not initiated or who dropped out before our outcome window.

To harmonize the two scales, we derive the transformation coefficient α from published clinical
thresholds. According to Wesson and Ling (2003), COWS ranges of 5–12, 13–24, 25–36, and >36
correspond to mild, moderate, moderately severe, and severe withdrawal, respectively. Similarly,
Handelsman et al. (1987) defines SOWS ranges of 1–10, 11–15, 16–20, and 21–30 for the same
categories. Assuming both scales share a zero point (no withdrawal), we align category midpoints
and estimate a linear mapping Y = αW + ε, yielding α = 0.61 and intercept β = 0. Figure 1(a)
visualizes this relationship. We assume α is constant across covariate values X , and interpret lower
values of both Y and W as indicating better outcomes. We then apply the three estimators introduced
in Section 4.3 and 4.4: θ̂0 (primary data only), θ̂b (auxiliary data, unknown α), and θ̂a (auxiliary
data, known α). As shown in Figure 1(b), θ̂0 and θ̂b suggest that XR-NTX and BUP-NX are almost
equally effective. However, θ̂a suggests BUP-NX is marginally more effective in lowering withdrawal
symptoms compared to XR-NTX. Specifically: (i) θ̂0 = −0.18 (95% CI width: 1.52), (ii) θ̂b = 0.42

(95% CI width: 0.65), and (iii) θ̂a = −1.08 (95% CI width: 1.41). While θ̂a achieves a statistically
significant result, it relies on the correctness of the assumed α. To assess robustness, we conduct a
sensitivity analysis by varying α within ±50% of the estimated value, i.e., α ∈ [0.31, 0.92], assuming
the linear form remains valid. Figure 1(c) displays the resulting θ̂a estimates across this range.
Although the point estimates vary – from 0.50 to 0.33 – they consistently favor BUP-NX over
XR-NTX. However, for α > 0.75, the 95% confidence intervals include zero.

Takeaways. In our case study, we assess whether XT-NTX is more effective than BUP-NX in
reducing withdrawal symptom severity. The point estimates from the primary study are slightly
negative, suggesting a marginal advantage for XT-NTX, but the 95% confidence interval includes
zero, indicating no statistically significant difference between the two treatments (see Figure 1(b);
estimate θ̂0). To improve estimation precision, we explore leveraging auxiliary data. Under the strong
assumption, our combined analysis yields a statistically significant result favoring BUP-NX over
XT-NTX (see Figure 1(b); estimate θ̂a). While such findings may appear actionable, they hinge
critically on an untestable assumption linking outcomes Y and W. If this assumption is violated,
the resulting estimates may be misleadingly precise. Our case study thus serves as a cautionary
example: although integrating auxiliary data can improve precision, it must be done with scrutiny of
the underlying assumptions, which—if invalid—can lead to confidently incorrect conclusions.

6 Discussion & Conclusion

Summary. This paper presents a principled framework for integrating primary and auxiliary datasets
with non-overlapping, disparate outcomes to improve efficiency in causal effect estimation. We focus
on settings where the primary outcome is never jointly observed with the auxiliary outcome, and
we introduce a structural assumption that links the two. Building on this, we define three scenarios
reflecting varying levels of prior knowledge about outcome relationship and derive semiparametric
efficiency bounds under each. Our findings show that efficiency gains are guaranteed only under
the strongest assumptions, when the linking equation is fully known. In contrast, under weaker
assumptions, asymptotic efficiency is not ensured. However, finite-sample improvements are still
possible, particularly when the auxiliary outcome is highly predictive of the primary outcome. These
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(a) (b) (c)

Figure 1: MOUD Results. (a) Scatter plot showing the relationship between SOWS and COWS. (b)
Treatment effect estimates of MOUD on withdrawal symptoms. Point estimates and corresponding
95% confidence intervals for θ̂0, θ̂a and θ̂b. (c) Assessing the sensitivity of θ̂a to the different values
of α in the range 50% above and below the original guess of α = 0.61.

benefits taper off as the primary sample size increases, highlighting the limitations of auxiliary data
in isolation. We support our theoretical results with both simulations and a case study estimating the
effect of medications for opioid use disorder (MOUD) on withdrawal severity. Here, we combine
data from the XBOT trial (SOWS scale) and the POAT study (COWS scale), demonstrating the
framework’s practical utility.

Limitations & Future works. Our analysis and results in this paper depend on the structural
assumption between Y and W . While moving ahead, we will focus on making our results more
general by relaxing this assumption; it is important to note that the lack of efficiency gains in a
restrictive context would imply a similar conclusion in a more complex context. Further, we will
focus on incorporating a third “bridge” dataset, where both outcomes are observed, which could
help relax strong assumptions and expand the conditions under which efficiency gains are possible.
We will also explore relaxing the assumption of conditional study exchangeability, extending the
framework to accommodate discordance in treatments and covariates across studies. Further, our
framework requires that at least one treatment arm be shared across the primary and auxiliary studies.
When there is no treatment overlap between datasets and the outcomes vary from one study to another,
it becomes impossible to link the potential outcome distributions. This makes it difficult to use
auxiliary data to enhance efficiency gains. This situation reveals a significant structural limitation in
data fusion settings. In the future, we plan to explore data fusion in such scenarios by imposing a
distance metric to the treatment space, which will enable us to compare different treatments.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”,

• Keep the checklist subsection headings, questions/answers, and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction highlight the main results and contributions of
our paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, we discussed the limitations of the work in Section 6 of our paper.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Section 3 and Section 4 provides the detailed assumptions and discussion
around assumptions for all our theoretical results.

4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the details of our real data study in Section 5 and simulation
study in Appendix.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in the supplemental
material?

Answer: [Yes]

Justification: The data is publicly available at (i) XBOT:
https://datashare.nida.nih.gov/study/nida-ctn-0051 and (ii) POATS:
https://datashare.nida.nih.gov/study/nida-ctn-0030. Combined CTN0094 data is
also available here: https://github.com/CTN-0094/public.ctn0094data

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes provide all implementational details of our approach in the paper. As well
as attach code in the supplementary material section.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our results show appropriate uncertainty quantification and 95% confidence
intervals in Figure 1. Our results also provide asymptotic variance quantification for our
estimator.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide compute resources used in the implementation details in Appendix.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow due diligence and make sure our research is in congruence with
NeurIPS Code of Ethics. Our research has IRB approval from participating institutions.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Section 5 of the paper provides a data example on medication for opioid use
disorder. We provide the societal implications of our research there.

11. Safeguards

14

https://neurips.cc/public/EthicsGuidelines


Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper provides a theoretical exercise to understand the implications of
data integration. Our investigation does not pose any risk.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: We use the publicly available anonymized data. The survey and data collection
approaches are very well documented on the data source websites.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: All participating institutions have provided IRB approval.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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Appendix A Synthetic Data Study and Results

In this section, we are interested in understanding the performance of estimators under various sets of
assumptions (A.5(a) to A.5(c)). In particular, we are interested in understanding the potential gains as
(i) total number of units, n, increases, (ii) the dimensionality of X , denoted as p, increases and (iii)
the log of the ratio of number of units in the auxiliary to primary dataset, log

(
P (S=1)
P (S=0)

)
, increases.

First, we discuss our data generative procedures, and then we present and discuss our results.

Data Generative Procedure. The data generation procedure (DGP) in this study is designed to
simulate a complex causal structure. We begin by generating covariates X = (X1, X2, . . . , Xp)
from a multivariate normal distribution with zero mean and identity covariance matrix where p is the
number of covariates. The binary study indicator S is then generated as a Bernoulli random variable,
where the probability of assignment to the auxiliary study (i.e., S = 1) is Pr(S = 1|X) = expit(a0 +
a1X1 + a2X2), where expit(x) = 1

1+e−x . The treatment assignment T is also generated as a study
and covariate-dependent Bernoulli variable Pr(T = 1|X,S) = (1− S)× 0.5 + S × expit(ζ1X1).
The auxiliary outcome W , observed only in the auxiliary study (S = 1), is defined as follows:

W = µW (X,T, S) + δ = (γ0 + γ1X1 + γ2X2) · T + β1X1 + β2X2 + β3X3 + β0 + δ,

where vectors γ and β define the treatment and baseline effects on W . This equation includes
both linear and interaction terms, capturing treatment-covariate dependencies. In the primary study
(where S = 0), the primary outcome Y is modeled as: Y = α(X) ·µW (X,T, S)+γ where α(X) =
ρ1X1+ρ0. This outcome depends on the treatment effect modulated by covariate-driven heterogeneity
in α(X), capturing treatment-mediated effects of covariates on Y .

Here the true ATE in primary is given as θ0 = E [(ρ0 + ρ1X1) · (γ0 + γ1X1 + γ2X2) | S = 0] .

Analysis and Results. We use mean-squared error (MSE) to compare the performance of the
following three estimators: (i) efficient estimator only using primary data (θ̂0), (ii) efficient estimator
augmented with auxiliary score (θ̂b) and (iii) efficient estimator with known α integrating auxiliary
data (θ̂a). The simulation results are compiled in Figure 2. As expected, the performance of all
three estimators improves as n increases and deteriorates as p increases. Further, θ̂a dominates θ̂0
and θ̂b especially for scenarios with large p and/or large log

(
P (S=1)
P (S=0)

)
– indicating that in scenarios

where the primary study is relatively small and the problem is high-dimensional leveraging auxiliary
data yields more benefits. This aligns with our theoretical results showing that knowing α can yield
efficiency gains. For, θ̂b (which uses auxiliary data), we observe that it yields benefits relative to θ̂0 in
small n scenarios especially when p and log

(
P (S=1)
P (S=0)

)
are large. However, these benefits diminish

relative to θ̂0 as n grows. This is consistent with our theoretical result showing that there are no
asymptotic benefits if α is unknown. However, there are some finite sample benefits of using the
auxiliary score even when α is unknown.

Appendix B Efficiency Score Functions Derivation (Theorems 1–4)

Following the above mentioned procedure we derive the EIFs and correspond-
ing efficiency bounds under the three sets of assumptions. As ψ∗(O; θ0, η0) ={
E[R∗(O; θ0, η0)R

∗(O; θ0, η0)
T ]
}−1

R∗(O; θ0, η0), and the semiparametrically efficient asymp-
totic variance (i.e., efficiency bound) is equal to

{
E[R∗(O; θ0, η0)R

∗(O; θ0, η0)
T ]
}−1

, we only
present the efficient score function R∗ instead of the EIF ψ∗. However, note that deriving the EIF
from R∗ is straightforward in our context.
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Figure 2: Simulation Study Results. Mean squared error rates for three different estimators θ̂0, θ̂a and
θ̂b based on R∗

0, R∗
a, and R∗

b

In our case, O = (X,S, T, V ), P (O = o; θ, η) = P (X = x)P (S = s | X = x)P (T = t | X =
x, S = s)P (V = v | T = t,X = x, S = s) and L(O; θ, η) = logP (O = o; θ, η). Thus,

L(O; θ, η) = logP (X = x) + logP (S = s | X = x) + logP (T = t | S = s,X = x)

+ logP (V = v | T = t, S = s,X = x)

= logP (X = x) + log(SµS(x) + (1− S)(1− µS(x)))

+ log(TµT (x, s) + (1− T )(1− µT (x, s)))

+ log(P (V = v | T = t, S = s,X = x)),

We know that V = SW + (1− S)Y and Y = α(X)W + β(X) + ε.
Thus,

P (V = v | T = t, S = s,X = x) = P (S(Y−β(X)−ε)+α(X)(1−S)Y = α(X)v | T = t, S = s,X = x).

. Simplifying it further,

P (V = v | T = t, S = s,X = x) = P ((S+α(X)(1−S))Y−Sε = α(X)v+β(X)S | T = t, S = s,X = x).

Substituting Y with θ(X)T + g(X) + γ:

P (V = v | T = t, S = s,X = x)

= P ((S + α(X)(1− S))(θ(X)T + g(X) + γ)− Sε = α(X)v + β(X)S | T = t, S = s,X = x)

= sP (γ − ε = α(X)(v − µW (X, 1))− θ(X)(T − µT (X, 1)) | T = t, S = s,X = x)

+ (1− s)P (γ = (v − µY (X, 0))− θ(X)(T − µT (X, 0)) | T = t, S = s,X = x)

= sP (α(X)δ = α(X)(v − µW (X, 1))− θ(X)(T − µT (X, 1)) | T = t, S = s,X = x)

+ (1− s)P (γ = (v − µY (X, 0))− θ(X)(T − µT (X, 0)) | T = t, S = s,X = x)

= sP (δ = (v − µW (X, 1))− θ(X)

α(X)
(T − µT (X, 1)) | T = t, S = s,X = x)

+ (1− s)P (γ = (v − µY (X, 0))− θ(X)(T − µT (X, 0)) | T = t, S = s,X = x).
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Assuming γ and δ are normally distributed with mean 0 and homoskedastic variances σ2
γ and σ2

δ
respectively,

logP (V = v | T = t, S = s,X = x)

= log

 s exp

(
−

((v−µW (x,1))− θ(x)
α(x)

(t−µT (x,1)))2

2σ2
δ

)
+(1− s) exp

(
− ((v−µY (x,0))−θ(x)(t−µT (X,0)))2

2σ2
γ

)


Efficient score function using only primary data (Result of Theorem 1). Now, we first show the
efficient score function for the case that only uses primary data. This works as a baseline case for us
and the subsequent efficiency bounds are compared with this case. The efficient score function under
assumptions A.2. and A.4. is given as:

R∗
0(O; θ0, η0) = (1− S) ·

(
((V − µY (X, 0))− θ(X)(T − µT (X, 0))) ·

(T − µT (X, 0))

σ2
γ

)
.

Let ∆0 =
(
((V − µY (X, 0))− θ(X)(T − µT (X, 0))) · (T−µT (X,0))

σ2
γ

)
then

E
[
(R∗

0(O; θ0, η0))(R
∗
0(O; θ0, η0))

T
]
= E

[
(1− S)2∆2

0

]
, and the asymptotic variance

Vθ
0(X) :=

(
E
[
(R∗

0(O; θ0, η0))(R
∗
0(O; θ0, η0))

T
])−1

=
1

E [∆2
0 | S = 0, X] p(S = 0 | X)

.

Efficient score function under assumptions A.1.–A.4. and A.5(a) (Result of Theorem 2). Under
this assumption, only θ is unknown and would be estimated using the data while α and β are known
a priori. Thus, the efficient score function under A.5(a) is:

R∗
a(O; θ0, η0) =

 S ·
(
(α(X)(V − µW (X, 1))− θ(X)(T − µT (X, 1))) · (T−µT (X,1))

α2(X)σ2
δ

)
+(1− S) ·

(
((V − µY (X, 0))− θ(X)(T − µT (X, 0))) · (T−µT (X,0))

σ2
γ

)
Let ∆1 =

(
(α(X)(V − µW (X, 1))− θ(X)(T − µT (X, 1))) · (T−µT (X,1))

α2(X)σ2
δ

)
. Then, the asymp-

totic variance

Vθ
a(X) :=

(
E[R∗

a(O; θ0, η0)(R
∗
a(O; θ0, η0))

T | X]
)−1

=

(
E
[
∆2

0 | S = 0, X
]
p(S = 0 | X)

+E
[
∆2

1 | S = 1, X
]
p(S = 1 | X)

)−1

.

Vθ
a(X) is always smaller than or equal to Vθ

0(X) because E
[
∆2

1 | S = 1, X
]
p(S = 1 | X) is

non-negative.

Efficient score function under assumptions A.1.–A.4. and A.5(b) (Result of Theorem 3). Here,
along with θ, α is an unknown parameter. Thus, the efficient score function is given as:

R∗
b(O; {θ0, α0}, η0) =


 S ·

(
(α(X)(V − µW (X, 1))− θ(X)(T − µT (X, 1))) · (T−µT (X,1))

α2(X)σ2
δ

)
+(1− S) ·

(
((V − µY (X, 0))− θ(X)(T − µT (X, 0))) · (T−µT (X,0))

σ2
γ

)
S ·
(

(θ(X)(T−µT (X,1))−α(X)(V−µW (X,1)))
α2(X)σ2

δ
· θ(X)(t−µT (X,1))

α(X)

)
 .

E[(R∗
b(R

∗
b)

T ) | X] = E
[(
S∆1 + (1− S)∆0

θ(X)
α(X)S∆1

)(
S∆1 + (1− S)∆0

θ(X)
α(X)S∆1

)
| X
]

=

(
E[∆2

1 | X,S = 1]P (S = 1 | X) + E[∆2
0 | X,S = 0]P (S = 0 | X) θ(X)

α(X)E[∆
2
1 | X,S = 1]P (S = 1 | X)

θ(X)
α(X)E[∆

2
1 | X,S = 1]P (S = 1 | X) θ2(X)

α2(X)E[∆
2
1 | X,S = 1]P (S = 1 | X)

)
The asymptotic variance-covariance is then

Σb(X) :=

(
Vθ

b(X) Covθ,αb (X)

Covθ,αb (X) Vα
b (X)

)
:=
(
E[(R∗

b(R
∗
b)

T ) | X]
)−1

=

 1
E[∆2

0|X,S=0]P (S=0|X)
−α0(X)

θ0(X)
1

E[∆2
0|X,S=0]P (S=0|X)

−α0(X)
θ0(X)

1
E[∆2

0|X,S=0]P (S=0|X)

(
α0(X)
θ0(X)

)2 (
1

E[∆2
0|X,S=0]P (S=0|X)

+ 1
E[∆2

1|X,S=1]P (S=1|X)

)
18



From this, we see that the asymptotic variance for the efficient estimator of θ is Vθ
b(X) =

1
E[∆2

0|X,S=0]P (S=0|X)
. Note, that this asymptotic variance Vθ

b(X) = Vθ
0(X). This highlights that

under assumption A.5(b) there are no efficiency gains from leveraging auxiliary data compared to
the baseline which only uses the primary study.

Efficient score function under assumptions A.1.–A.4. and A.5(c) (Result of Theorem 4) . As
the likelihood is agnostic of β, the efficient score function under A.5(c) is identical to that of A.5(b),
i.e.,

R∗
c(O; {θ0, α0}, η0) = R∗

b(O; {θ0, α0}, η0).

As the score functions are identical under assumptions A.5(b) and A.5(c), the asymptotic variance
is also identical. This indicates that there are no efficiency gains from leveraging auxiliary data
compared to the baseline that uses only the primary study.

Appendix C Proof of Theorem 5 (Misspecification Bias)

Proof of Theorem 5. We begin by defining θ̂a as the estimator solving the empirical moment condi-
tion PnR

∗
a(O; θ̂a, η̂) = 0. In the population, θ0 solves E[R∗

a(O; θ0, η0)] = 0 only under the correct
specification of α = α⋆. We now investigate what happens when the analyst assumes α = αmis,
where αmis ̸= α⋆. Recall, θ̂a is∑

i

(
(1− Si)

r̂Y (Xi,0)r̂T (Xi,0)
σ̂2
Y

+ Si
r̂W (Xi,1)r̂T (Xi,1)

α(Xi)σ̂2
W

)
∑

i

(
(1− Si)

r̂2T (Xi,0)

σ̂2
Y

+ Si
r̂2T (Xi,1)

α2(Xi)σ̂2
W

)
Thus, E[θ̂a(αmis)− θ̂a(α

⋆)] = E[θ̂a(αmis)− θ̂a(α
⋆) | S = 0]P (S = 0) + E[θ̂a(αmis)− θ̂a(α

⋆) |
S = 1]P (S = 1). In the estimator, terms with (1− S) do not interact with α. Thus, E[θ̂a(αmis)−
θ̂a(α

⋆) | S = 0]P (S = 0) = 0. Now, consider E[θ̂a(αmis)− θ̂a(α
⋆) | S = 1]P (S = 1).

E[θ̂a(αmis)− θ̂a(α
⋆) | S = 1] = E[E[θ̂a(αmis)− θ̂a(α

⋆) | X,S = 1] | S = 1]

E[θ̂a(αmis)− θ̂a(α
⋆) | X,S = 1] = E

[
(αmis(X)− α⋆(X))E[r̂W (X, 1)r̂T (X, 1)]

(E[r̂2T (X, 1)])
| X,S = 1

]
= E

[
(αmis(X)− α⋆(X))

α⋆(X)

E[r̂Y (X, 1)r̂T (X, 1)]
(E[r̂2T (X, 1)])

| X,S = 1

]
= E

[
(αmis(X)− α⋆(X))

α⋆(X)
θ(X) | X,S = 1

]

Appendix D Proof of Theorem 6 (Error bound for µ̂Y )

Proof. We analyze the estimation error for both µ̂Y,0 and µ̂Y,b under the given metric entropy
assumptions.

(i) One-stage estimator µ̂Y,0. By assumption A.6., µY ∈ M, and the metric entropy of M satisfies

logN(ε,M, ∥ · ∥) ≤ Cε−ω.

From standard results in empirical process theory and nonparametric regression (e.g., Györfi et al.
(2006) and Tsybakov and Tsybakov (2009)), it follows that the least-squares estimator µ̂Y,0 satisfies

∥µ̂Y,0 − µY ∥ = op

(
n
−1/(2+ω)
0

)
.
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(ii) Two-stage estimator µ̂Y,b. By assumption A.5., µY (X) = α(X)µW (X)+β(X). We estimate
µ̂W (X) from n1 auxiliary samples. Let µ̂W be an estimator satisfying

∥µ̂W − µW ∥ = op

(
n
−1/(2+ω)
1

)
,

under the assumption that µW ∈ M and satisfies the same entropy bound as µY .

The two-stage estimator is defined as:

µ̂Y,b(X) = α̂(X) · µ̂W (X, 0) + β̂(X),

where (α̂, β̂) minimize the squared error loss over the primary sample:

(α̂, β̂) = arg min
α∈A, β∈B

1

n0

n0∑
i=1

(Yi − α(Xi)µ̂W (Xi, 0)− β(Xi))
2
.

We now decompose the error:

∥µ̂Y,b − µY ∥ = ∥α̂µ̂W + β̂ − αµW − β∥.

Adding and subtracting intermediate terms:

= ∥(α̂− α)µ̂W + α(µ̂W − µW ) + (β̂ − β)∥.

Applying triangle inequality:

∥µ̂Y,b − µY ∥ ≤ ∥(α̂− α)∥∥µ̂W ∥∞ + ∥α∥∞∥(µ̂W − µW )∥+ ∥β̂ − β∥.

Under the assumption that µ̂W is uniformly bounded (which holds if µW and µ̂W are bounded and
consistent), and using the entropy conditions on A and B:

∥α̂− α∥ = op(n
−1/(2+ωα)
0 ) (given A.6.), and, ∥β̂ − β∥ = 0 (given A.5(b)).

Combining all the pieces, we obtain:

∥µ̂Y,b − µY ∥ = op

(
n
−1/(2+ω)
0

(
n

1
2+ω− 1

2+ωα
0 +

(
n1
n0

)−1/(2+ω)
))

,

where the first term reflects the complexity reduction from modeling µY via α(X), and the second
term reflects the error propagated from estimating µW using auxiliary data.
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