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ABSTRACT

Large language models exhibit strong generalization but face limitations in real-
world adaptation, as their parameters remain static. Inspired by neuroscience and
cognitive science, this work investigates endogenous memory as a mechanism
for adaptive and incremental updates. We present SAGE, a framework for self-
adaptive parameter updates in reasoning tasks, triggered by the detection of out-
of-distribution knowledge. SAGE consists of three core modules: (1) a Trigger
module, which detects reasoning failures across multiple evaluation metrics in
real time; (2) the Trigger Buffer module, which clusters reasoning failure samples
using a streaming clustering process, followed by stability checks and similarity-
based merging; and (3) the LoRA Store module, which dynamically optimizes pa-
rameter updates with an adapter pool for knowledge retention. Evaluation results
show that SAGE demonstrates excellent accuracy, robustness, and stability on the
atomic reasoning subtask through dynamic knowledge updating during test time.
Specifically, an EM accuracy of 97.16%±4.65% reflects statistically significant and
reliable performance.

1 INTRODUCTION

Large language models (LLMs), pre-trained on massive corpora, exhibit remarkable generalization.
However, LLMs no longer adapt in real-world interactions, as their parameters remain fixed. Toward
true artificial general intelligence, LLMs are expected to extract useful information from the envi-
ronment and integrate it to enhance their capabilities. Therefore, investigating endogenous memory
mechanisms in LLMs is crucial. Inspired by neuroscience and cognitive science, long-term memory
that influences cognition can be categorized into two types: emotion-related memory and memory
of learned out-of-distribution (OOD) knowledge. Given the similarity between knowledge memory
and LLM pre-training tasks, as well as the need to expand OOD knowledge, this paper addresses the
core question: How can LLMs adaptively and incrementally update under OOD condition?

Endogenous memory in LLMs allows models to modify cognition, which inherently requires param-
eter updates. However, research has historically focused mainly on external memory. Early studies
showed that the transformer feedforward network (FFN) exhibits key-value (KV) storage (Geva
et al., 2021), prompting the integration of KV pairs into FFNs (Wu et al., 2022; Berges et al.,
2024; Li et al., 2025). Explicit memory (Yang et al., 2024) inspired retrieval-augmented genera-
tion (Lewis et al., 2020; Liu et al., 2024) to use external cues for memory formation (Gutiérrez et al.;
Jimenez Gutierrez et al., 2024). Other approaches include long-context augmented input (Wang
et al., 2023) and retrieval augmentation (Borgeaud et al., 2022) to improve persistence of internal
knowledge. However, these methods only temporarily expand knowledge without enhancing inte-
gration. MemoryLLM (Wang et al., 2024) and related self-update models (Huang et al.; Shafayat
et al., 2025) have advanced memory mechanisms, but most focus on self-evolution after real-world
datasets are exhausted, rarely addressing updates at knowledge boundaries.

To this end, we propose SAGE, a large model endogenous memory framework triggered by detect-
ing OOD knowledge, which aims to enable self-adaptive parameter updates of LLMs on reasoning
tasks. SAGE implements three core functions: (1) detection of reasoning failures, (2) clustering of
abnormal samples, and (3) dynamic optimization of parameter updates. The Trigger module eval-
uates model outputs across multiple dimensions (model confidence, model behavior, and semantic
similarity) to detect reasoning failures in real time, using threshold gating to further distinguish
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them. The Trigger Buffer module then clusters these anomalous samples. It firstly buckets them to
reduce domain interference and matches each sample to a similar cluster. It then performs clustering
based on the number of arriving samples and merges clusters according to embedding similarity.
Finally, the Lora Store module maintains a dynamic pool of parameter-efficient adapters. It initially
searches through the parameter space (e.g., rank, learning rate, dropout) for adapter training and
ranks the top-k candidate configurations by accuracy and cross-entropy loss. It then performs local
expansion optimization to retain the top-3 adapters for reuse in the future.

In the experiments, each module was evaluated as follows: the Trigger module was assessed through
false positive rate detection, threshold sensitivity analysis, and indicator weight sensitivity analysis.
The results demonstrate the module’s strong discriminative power in OOD datasets, validating the
effectiveness of the selected indicators. Specifically, approximately 57% of the plateaus occurred
within the threshold range, while 62.5% occurred within the indicator weight range, indicating ro-
bust accuracy under varying conditions. For the Trigger Buffer module, ablation studies on HDB-
SCAN, stability checks, and merging confirmed the design’s validity. Dynamic visualization and
sensitivity analysis of stream data clustering demonstrate reliable performance with streaming data.
The evaluation of the LoRA Store module focused on fine-tuning accuracy. In atomic task eval-
uations, it outperformed reasoning with multitask datasets. Additionally, heatmap tests of LoRA
parameter rank and learning rate show significant impact on fine-tuning accuracy (up to 83%). After
combining the three modules, the EM accuracy of the SAGE framework increased from 81.91%
to 94.85%, while the MAE and MSE decreased by several orders of magnitude, demonstrating en-
hanced robustness and stability. Finally, the ablation study further validated SAGE’s design and its
effectiveness in supporting reasoning during inference.

2 PRELIMINARIES

Problem Statement The core challenge addressed in this work is designing self-adaptive LLMs
capable of continuously incorporating new inputs, ensuring robust knowledge integration despite
limited supervision and sparse data. Therefore, we formulate the requirements for self-adaptive
LLMs: Adaptation scope: The model should perform localized parameter updates, avoiding large-
scale parameter updates. Adaptation phase: Training must occur during test-time interaction, as
the model engages with users in real-time to incorporate new knowledge, rather than during post-
training or pre-training of LLMs. Adaptation objective: The model must ensure that updated
parameters preserve accuracy and robustness, preventing undesirable drift in global parameters.
Adaptation autonomy: The model should autonomously determine when and how to adapt, select-
ing relevant instances from interactive data streams, while independently optimizing algorithms and
hyperparameters. Adaptation challenges: The model mustfunction in environments where data is
noisy, limited, and unordered, with incoming tasks that are open-ended and dynamically evolving.

Sketch of SAGE To address the challenges of self-adaptive LLMs, we propose a trigger-guided
self-adaptation framework. Our key insight is to reduce adaptation complexity by decomposing com-
plex reasoning tasks into atomic subtasks, which are minimal and independent. This decomposition
enables the model to adapt more easily, reduces error accumulation, and ensures stable updates
for improved accuracy. Based on this insight, we introduce SAGE: Trigger, which converts static
fine-tuning into dynamic adaptation by detecting reasoning failures on OOD inputs and determines
whether the data should be retained for future adaptation; Trigger Buffer, which caches and cluster
anomalous samples to improving the quality of subsequent fine-tuning by increasing inter-sample
coherence; and LoRA Store, which performs parameter-efficient fine-tuning on stable clusters, with
parameters automatically adjusted based on performance. The most effective adapters are preserved
for future reuse, ensuring efficient adaptation in similar tasks.

3 DESIGN OF SAGE

3.1 TRIGGER

The trigger module is responsible for initiating dynamic adaptation by detecting LLM reasoning
failures. Several studies have explored how LLMs know when they don’t know, either through
consistency across multiple responses (Shafayat et al., 2025; Zuo et al., 2025; Prasad et al.) or
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through hidden state probe training (Chen & Varoquaux, 2025). However, these approaches have
achieved limited accuracy. Given the objectivity of knowledge memorization tasks, we considered
using ground truth answers to enable the LLM to self-check whether it has mastered a certain type
of knowledge. As shown in Figure 1, our Trigger module consists of two components: response
scoring and threshold gating.

Figure 1: The architecture of SAGE.

Response Scoring. To improve detection ac-
curacy, we use three evaluation levels: token-
level confidence from logits (Logits Margin),
model behavior at the token level (BLEU and
ROUGE-L), and semantic similarity from em-
beddings (Embedding Similarity). As shown in
Figure 1, after the input xt ∈ Rd reaches time
t passes through the LLM, implemented as a
transformer decoder, the margin score, Logits
Margin (LM) (Liu et al., 2016), is calculated
based on the logits output from the Linear layer
in Figure 1 to evaluate the confidence in the pre-
diction of the next token. Assume that the log-
its of the model output form a vector z ∈ RV ,
where V is the vocabulary size. Then we have,

LM = z(1)(x
t)− z(2)(x

t) (1)

The next token obtained by applying the softmax function in Figure 1 is treated as the predicted
token, which is then compared against the ground truth. (Note: During training, the LLM receives a
masked version of the golden answer and retains it as the ground truth answer.) We use BLEU (Pap-
ineni et al., 2002) for local exact matching and ROUGE-L (Lin, 2004) for global sequence matching.
Specifically, we adopt a variant of BLEU-4 to measure the 4-gram overlap between the predicted
and ground truth answers, defined using 4-gram precision p4 and weights w4:

B4 = exp

(
N∑

n=1

w4 log p4

)
(2)

ROUGE-L, on the other hand, measures the longest common subsequence regardless of contiguity.
We use the F1 score, computed as the harmonic mean of precision P and recall R, and define it,

F1 =
2 · P ·R
P +R

(3)

Finally, the predicted answer and the ground truth answer are encoded into embeddings in Figure 1 to
measure their semantic similarity. Let Embpred(x

t), Embtrue(x
t) denote the embedding vectors.

The embedding similarity (Lin et al., 2017) ES is,

ES =
Embpred(x

t) ·Embtrue(x
t)

∥Embpred(xt)∥ · ∥Embtrue(xt)∥
(4)

To obtain the final Anomaly ScoreAS, where higher values indicate greater likelihood, we perform
normalization and integration of Equation equation 1, Equation equation 2, Equation equation 3 and
Equation equation 4 as follows,

ASt =
4∑

i=1

wi(1− si) (5)

where s1 = LM/LMm, s2 = B4, s3 = F1, and s4 = ES. Here, LMm denotes the upper bound
used to normalize the margin score, which is set to 5.0 in our experiments. The weight wi corre-
sponds to each evaluation metric.
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Figure 2: (left) Trigger Buffer consists of three layer: routing and match, cluster and tag, merge
fragments. (right) LoRA Store consists of two layer: candidate adapter and refined adapter.

Threshold Gating. The input xt is processed by the Response Scoring layer to produce the pre-
dicted answer score ASt. A threshold τ is applied to define the gating decision function gt and
gt = 1 means that the inputs xt is identified as OOD data and submitted to the Trigger Buffer
module. The formula is,

gt =

{
1, ASt ≥ τ
0, ASt < τ

(6)

3.2 TRIGGER BUFFER

The Trigger Buffer module in Figure 2 (left) clusters samples from Trigger module. Despite es-
tablished clustering techniques, two challenges persist: ➀ limited data, due to dynamic triggering
at test time; and ➁ streaming data, which arrives incrementally rather than in bulk, complicating
clustering. To address the above challenges, we designed the Streaming Buffer Clustering (SBC)
algorithm in Appendix A.1.

Routing and Match. Since data is provided externally, understanding the scope of knowledge
domains often facilitates localization, similar to the way humans localize knowledge. As for Cluster-
Stability Routing layer in Figure 2 (left), we conceptualize the data scope as a set of buckets.
Therefore, for an input xt, we first identify its corresponding bucket (i.e., data scope). We then
retrieve the set of structural labels {s1, s2, . . .}:

sti = 1, cluster i is stable (7)

If all structural labels within the bucket are absent (i.e., equal to zero), the input xt is temporarily
stored in the Data Buffer of the bucket. Otherwise, the inputs xt are match existing clusters using
the cluster center Ctc, keywords of cluster kCt and keywords of inputs kxt as follows,

Match(Ctc, xt, kxt , kCt) = α
Emb(xt) ·Emb(Ctc)

∥Emb(xt)∥ · ∥Emb(C∗c ))∥
+ (1− α)

|kxt ∩ kCt |
max |kC∗ |

(8)

where the weights are α = 0.7 in the experiment. The threshold gating layer in Figure 2 (left) is
applied again to evaluate the Match score. The inputs xt that exceed the threshold are added to the
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selected clusters Ct. If xt does not find a suitable cluster, a new cluster is created for it, potentially
forming a Fragmented Cluster.

Cluster and Tag. Check whether the amount of data in the bucket corresponding to input xt has
reached the threshold set by the threshold gating layer. If the threshold is not met, the clustering
process for this input xt terminates; otherwise, Density Cluster in Figure 2 (left) is triggered. The
SBC algorithm applies HDBSCAN (Campello et al., 2013) to density clustering, with two main
advantages: ➀ it adapts to dynamic and unknown cluster structures in streaming data, and ➁ its
density-based approach is robust to small, nonuniform datasets, effectively identifying high-density
regions. Because data arrive as a stream, HDBSCAN alone does not necessarily produce stable clus-
ters, which may impair the effectiveness of subsequent LoRA fine-tuning. To this end, we propose
two metrics to quantify clustering stability:

1. Adjusted Random Index (ARI), measuring label consistency across successive clusterings.
RI is used to represent the Rand Index, and E[RI] is the expected value under random
partitioning. It is defined as,

ARI =
RI − E[RI]

max(RI)− E[RI]
(9)

2. Average Cosine Similarity EmbC , quantifying semantic coherence between new and pre-
vious cluster centroids. Ct−m

c represents the cluster center at time t − i before the cluster
change, and Ctc represents the clustering at time t. The formula is,

EmbC(Ct−m
c , Ctc) =

Emb(Ct−m
c )) ·Emb(Ctc)

∥Emb(Ct−m
c ))∥ · ∥Emb(Ctc))∥

(10)

After obtaining the scores for ARI and EmbC , we set threshold values τARI and τEmb to determine
whether a cluster is labeled as stable and set sti = 1. The formula is as follows.

ARI > τARI ∪ EmbC(Ct−m
c , Ctc) > τEmb → sti = 1 (11)

At this point, if the stable label sti of a cluster changes, we update it as part of the Cluster-Stability
Routing for the next input xt+1. If a cluster maintains a stable state for an extended period but
contains only a small and unchanging number of data, fragmented clusters may emerge.

Merge Fragments. Given that streaming inputs can form fragmented clusters, the threshold gating
layer is applied to assess the number of stable tags sxt within such clusters. If the number of stable
tags exceeds the threshold, the Merge Clusters in Figure 2 (left) is triggered. At this point, we
determine whether cluster merging is necessary by calculating the embedding similarity between
cluster centers Cti and the stable label. The formula is,

Cti · Ctj
∥Cti∥

∥∥Ctj∥∥ > τ, cluster i and cluster j can be merged (12)

If there are no clusters to be merged, the clustering process for this input xt will terminate; if clus-
ters need to be merged, the new cluster’s keywords, cluster centers, and other information must be
updated in sync so that the Match Cluster can handle the subsequent input xt+1.

3.3 LORA STORE

The LoRA storage module is inspired by how the human brain consolidates long-term memories
during sleep. Therefore, we propose integrating fine-tuning with the endogenous memory of LLMs,
forming a parameterized adapter that can internalize specific knowledge. Specifically, the LoRA
Store module is responsible for fine-tuning the stable clusters in the Trigger Buffer at fixed intervals.
Two major challenges remain: ➀ different types of datasets require specific tuning to obtain optimal
configurations; and ➁ streaming inputs may alter the optimal adapter over time, necessitating the
storage of multiple adapters to handle dynamic changes. To efficiently fine-tune parameters with
limited data and diverse atomic tasks, we propose a CLO algorithm(see Appendix A.2) and the
overall process is illustrated in Figure 2(right).
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Candidate Adapter After a fixed time interval T , we fine-tune the cluster Cs with the stable
label. Because this is automated tuning, we let θr,i denote the i-th candidate value for the rank
parameter in LoRA fine-tuning, and let θl,j denote the j-th candidate value for the learning rate in
LoRA fine-tuning. In addition, epoch, LoRA alpha, dropout, batch size, and target modules are also
included as hyperparameters. Each hyperparameter is assigned multiple candidate values, forming
the hyperparameter spaceΘ,

Θ = {θr,1, θr,2, . . . , θl,1, θl,2, . . . } (13)

By selecting one candidate value for each hyperparameter, we construct N initial configuration sets,
denoted as,

Pn = {θr,i, θl,j , . . . }, n = {1, . . . , N} (14)

Based on the parameters of these N initial configuration sets, we fine-tune the cluster Cs and eval-
uate the cross-entropy loss CE and accuracy Acc of each fine-tuned adapter yTn , recording them as
the adapter’s evaluation metrics. Finally, the fine-tuned adapters obtained from these N initial con-
figuration sets are sorted first by accuracy (descending), and then by cross-entropy loss (ascending),
with the top-k adapters selected. The formula is,

arg Top⪯lex
k {Acc(yTn ),−CE(yTn )}Nn=1 (15)

Refined Adapter Based on the top-k configurations obtained by the Candidate Adapter module,
we first parse the logs to obtain the corresponding configuration sets P(i)i = 1k. We perform a
nearest-neighbor search in the parameter space of rank and learning rate around the top-k configura-
tions, as these two hyperparameters have the greatest impact on fine-tuning across different inference
settings (see Figure 18 and Appendix C.3). The nearest-neighbor parameter space for these two hy-
perparameters is defined as follows,

Nki
= {θr,ki

− 2, θr,ki
, θr,ki

+ 2} × {0.7 ∗ θl,ki
, 0.8 ∗ θl,ki

, 0.9 ∗ θl,ki
} (16)

For the i-th adapter among the top-k, we select 3 nearest-neighbor configuration sets, which yields
3k nearest-neighbor configuration sets in total. We rank the adapters trained from these 3k configu-
ration sets using the criterion, and obtain the top-3 adapters. The formula is,

arg Top⪯lex
3 {Acc(yTn ),−CE(yTn )}3kn=1 (17)

The adapter configurations and weight parameters are stored locally for subsequent use in similar
queries. That is, when new input xt+m arrives in Figure refframework, the top-3 fine-tuned adapter
can be triggered and call it to answer the question.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

All experiments are conducted on a single NVIDIA A100 40GB GPU using LLaMA-2-7B as the
base model. Parameter-efficient fine-tuning is performed via LoRA across all settings. For trigger
detection and clustering, we employ BGE-large-en-v1.5 as the embedding model. Evaluation is con-
ducted on four datasets designed to capture both in-distribution (ID) and out-of-distribution (OOD)
behaviors. We use TriviaQA as the ID benchmark, which matches the model’s pretraining distribu-
tion. To evaluate generalization under knowledge gaps, we include three OOD datasets from distinct
domains: PubMedQA (biomedical Q&A), LexGlue (legal summarization), and GSM8K (mathemat-
ical reasoning). These datasets are chosen to represent structurally diverse, low-coverage regions
unlikely to be encountered during pretraining.

4.2 MODULE-WISE EVALUATION OF SAGE

Evaluation of Trigger Detection Accuracy. To fairly evaluate the detection capability of the Trig-
ger module, we constructed a mixed test set containing equal proportions of ID and OOD samples.

6
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Figure 3: Parameter analysis of the Trigger Module. (a) False positive rates on ID vs. OOD sam-
ples. Red lines in boxplots indicate the mean; the logits margin metric is normalized. (b) Threshold
sensitivity analysis; the gray area marks the optimal threshold range. (c) Heatmap of score weight
sensitivity. The logits margin weight is computed dynamically from BLEU, ROUGE-L, and embed-
ding similarity differences.

Figure 4: Results of the Trigger Buffer Module evaluation. (a) Evaluation of Streaming HDBSCAN
Variants on Clustering Metrics: Homogeneity, ARI, NMI, Completeness, Central Similarity (CS),
and Cluster Sample Std. (CS-STD). (b) Dynamic t-SNE Visualization as Data Volume (N) Increases.

The OOD samples were drawn in equal parts from three domain-specific datasets: PubMedQA,
LexGlue, and GSM8K. All samples were uniformly converted into a structure consisting of the
fields ”question”, ”full prompt”, ”real-answer”, and ”label”, where label = 0 denotes ID samples
and label = 1 denotes OOD samples.

To evaluate the Trigger module’s accuracy and robustness, we conducted three experiments (Fig-
ure 3). Figure 3(a) shows that semantic indicators (BLEU, ROUGE, similarity) score near 1 on
ID samples and significantly lower on OOD, indicating strong discriminative power. Logits margin
shows smaller variance but clear mean differences. Figure 3(b) demonstrates stable performance
across a broad threshold range (0.22–0.79), confirming robustness. Figure 3(c) highlights that in-
creasing weights for BLEU and ROUGE-L improves accuracy, emphasizing the role of semantic
cues. Overall, the Trigger module reliably separates ID/OOD samples with stable performance
under varying thresholds and indicator weights. In subsequent experiments, we fix the threshold
at 0.5 with equal weights and observe 100% ID/OOD separation (see Appendix B.1).

Clustering Analysis of Triggered Buffer. Given the Trigger module’s effectiveness, we assume
no ID samples entering the Trigger Buffer. Thus, we evaluate its clustering performance using only
OOD samples, drawn from the same dataset used in Trigger evaluation.

Figure 5: Cluster distance and cluster
count over streaming data volume.

To evaluate the clustering capability of the Trigger Buffer,
we conduct three experiments shown in Figure 4 and Fig-
ure 5. Figure 4(a) compares six clustering metrics across
different strategies. Our SBC algorithm, which combines
HDBSCAN, a stability check, and a merge mechanism,
achieves the best overall performance. While all meth-
ods show good homogeneity due to bucket-based group-
ing, HDBSCAN alone yields unstable clusters, reflected
in low ARI and CS-STD. Adding the stability check im-
proves consistency, and the merge strategy reduces intra-
cluster dispersion. SBC algorithm integrates both for con-
sistent and compact clustering. Figure 4(b) shows clusters
becoming more compact as data accumulates. Figure 5 tracks three metrics: decreasing intra-cluster
distance and cluster count indicate redundancy reduction, while stable inter-cluster distance con-
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firms structural robustness. Overall, the Trigger Buffer produces compact, stable clusters with
convergence behavior in streaming OOD settings.

Table 1: Evaluating the Accuracy of the LoRA Store Module on Diverse Datasets: Highlighting the
Role of Atomic Tasks. The subscript numbers in the table denote the size of the training set.

Method
PubMedQA(%) LexGlue(%) GSM8K(%)

Acc Macro Avg Acc Macro Avg EM MAE MSE NER
P R F1 P R F1

Base Model 50.60 75.15 50.60 34.65 12.53 17.75 12.53 13.19 0 175 32337 -
LoRA80000 67.60 75.00 67.59 65.01 65.43 73.99 85.22 65.43 20.00 481 1.8 × 106 100

CA-LoRA30000 84.80 85.71 84.80 84.70 72.21 79.63 72.21 75.50 23.38 92 3.4 × 108 100

LStore500
(random datasets)

Adp1 43.2 48.36 43.62 34.07 34.15 27.62 34.50 34.15 6.44 11609 3.6 × 1010 99.17
Adp2 41.4 50.22 50.84 34.23 40.08 47.79 40.08 37.10 8.89 11594 3.6 × 1010 100
Adp3 58.15 50.76 51.52 50.17 36.08 38.12 35.98 36.08 6.72 14995 3.9 × 1010 99.17

LStore500
(atomic datasets)

Adp1 79.48 100 69.20 79.47 65.00 64.79 65.00 64.73 92.32 95 8.3 × 105 93.99
Adp2 77.78 90.05 69.36 77.78 69.44 81.45 69.44 66.95 81.27 473 3.0 × 107 63.13
Adp3 90.69 98.74 84.00 90.60 57.14 60.61 57.14 53.33 72.13 13917 4.7 × 109 57.52

Dynamic Adaptation of LoRA Store. To assess the necessity of low-rank fine-tuning for atomic
tasks, we evaluate the LoRA Store module (Table 1). Comparisons are made against three base-
lines: the Base Model (Llama2-7B), standard LoRA (fine-tuned on the full dataset), and CA-LoRA
(fine-tuned after static clustering). Results in Table 1 demonstrate the effectiveness of our dynamic
adaptation approach in integrating new knowledge. All baseline models used the mixed-task datasets
provided. PubMedQA’s and LexGlue tasks enabled strong baseline performance, with CA-LoRA
outperforming direct LoRA fine-tuning, highlighting clustering’s benefit. In contrast, GSM8K’s
complex arithmetic tasks posed greater challenges, reflected by low exact match (EM) scores despite
reasonable numeric extraction (NER). Simple clustering and training yielded limited gains. During
LoRA Store training, PubMedQA and LexGlue showed minimal improvement, likely due to task
heterogeneity and difficulty in atomic decomposition. However, decomposing GSM8K’s level-1
subset (tasks with 1–2 computation steps) significantly boosted reasoning accuracy, validating
the effectiveness of atomic tasks.

Figure 6: Heatmap of accuracy and cross-entropy loss
for LoRA parameter: examining the necessity of ex-
ploitation optimization.

To evaluate the LoRA Store’s effective-
ness, heatmaps (Figure 18) were created.
Accuracy can vary significantly (up to
80%) and loss decreases depending on the
rank and learning rate. Optimal configu-
rations vary by rank, e.g., r = 6 at lr =
7.92 × 10−5, and r = 10 at lr = 1.99 ×
10−4. These results highlight the neces-
sity of exploitation optimization, as per-
formance varies across rank and learn-
ing rate.

4.3 END-TO-END EVALUATION OF SAGE
Figure 7: Evaluating the Accuracy of the SAGE.
The ↑ indicates the maximum value, and the ↓ in-
dicates the minimum value.

Method GSM8K(%)

EM MAE MSE NER

Base Model 2.22 2258 2.0 × 108 -
LoRA499 7.44 2079 2.7 × 108 99.79

CA-LoRA484 10.64 1096 8.1 × 107 99.80

LStore499
(ours)

Adp1 92.32 95 8.3 × 105 93.99
Adp2 81.27 473 3.0 × 107 63.13
Adp3 72.13 13917 4.7 × 109 57.52

SAGE315
(ours)

Adp1 84.95 28185 1.5 × 107 78.58
Adp2 99.80 0.05 1.36 99.40
Adp3 99.80↑ 0.01↓ 0.16↓ 100↑

Random Seed of EM 97.16±4.65

We evaluated SAGE by integrating all three
modules, focusing on the GSM8K Level-1
dataset due to LoRA Store’s superior perfor-
mance on atomic tasks. Three baselines were
used: Base Model, LoRA, and CA-LoRA. Fi-
nal results, including LoRA Store fine-tuning,
are shown in Table 7. Results show that SAGE
with dynamic clustering outperforms the un-
clusterd LoRA Store. We further performed
the Wilcoxon signed-rank test to assess statis-
tical significance. The result (W = 0.0, p =
0.0039) confirms that the improvement of
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SAGE over the baseline is statistically significant (p < 0.01). Clustering refines the dataset, re-
duces noise, and improves convergence with fewer samples. During evaluation, the Top-3 adapters
were retained and the effectiveness of this approach was verified. While all reached 100% training
accuracy, only Adapter3 Adp3 generalized well, achieving the best test EM, MSE, MAE, and digit
extraction rate. To assess stability, we shuffled the data with different seeds. As shown in Appendix
B.2, SAGE’s performance remained consistent, indicating strong robustness to data order.
Also, the shaded rows in Table 7 report the mean and variance of EM scores over 9 adapters from
the random seed experiments.

4.4 ABLATION STUDY
Figure 8: Ablation Study of SAGE on the
GSM8K Dataset.

Method GSM8K(%)

EM MAE MSE NER

LStore499
(random)

Adp1 6.44 11609 3.6 × 1010 99.17
Adp2 8.89 11594 3.6 × 1010 100
Adp3 6.72 14995 3.9 × 1010 99.17

LStore499
(level-1)

Adp1 92.32 95 8.3 × 105 93.99
Adp2 81.27 473 3.0 × 107 63.13
Adp3 72.13 13917 4.7 × 109 57.52

HLStore484
(HDBSCAN)

Adp1 89.77 309 1.9 × 107 98.97
Adp2 78.70 21812 9.6 × 109 89.26
Adp3 96.69 429 8.9 × 107 100

KLStore329
(K-means)

Adp1 97.55 14 31717 99.09
Adp2 74.47 377 6.5 × 105 100
Adp3 92.40 646 1.3 × 108 100

SAGE315
(ours)

Adp1 84.95 28185 1.5 × 107 78.58
Adp2 99.80 0.05 1.36 99.40
Adp3 99.80↑ 0.01↓ 0.16↓ 100↑

We omit ablation studies on the Trigger and LoRA
Store modules, as their functionalities have been
validated in prior experiments: the Trigger mod-
ule reliably distinguishes ID and OOD data to con-
trol dynamic inference, while the LoRA Store han-
dles dynamic hyperparameter tuning, outperforming
static baselines. Our ablation focuses on the Trig-
ger Buffer and atomic task datasets. As shown in
Table 8, we compare following baseline settings:
(1) LoRA Store without task decomposition or clus-
tering, (2) with task decomposition but no Trigger
Buffer, and (3) with static clustering (HLStore, KL-
Store). SAGE outperforms all variants in EM,
MAE, and NER, confirming the effectiveness of
atomic task splitting and dynamic clustering via
the Trigger Buffer.

5 RELATED WORK

Self-Adaptive Mechanisms in LLMs Self-adaptive mechanisms are considered essential for
memory-augmented LLMs. Early work identified key-value-like storage behavior in Transformer
FFNs (Geva et al., 2021), inspiring enhanced memory routing (Wu et al., 2022; Berges et al., 2024; Li
et al., 2025), long-context inputs (Wang et al., 2023), and retrieval-augmented pathways (Borgeaud
et al., 2022) to improve knowledge persistence. Memory3(Lewis et al., 2020; Liu et al., 2024)
spurred interest in retrieval-augmented generation for knowledge updating. More recently, Mem-
oryLLM (Wang et al., 2024) shifted focus to self-adaptive mechanisms (Zhong et al., 2022).

LoRA-Based Adaptation and Reusability LoRA have advanced parameter-efficient fine-
tuning (He et al.). Increasing focus has been placed on LoRA’s modularity and reusabil-
ity (Ostapenko et al., 2024; Xu et al., 2024; Li et al., 2024; Valipour et al., 2023; Liao et al., 2025),
with methods like Switch-LoRA (Kong et al., 2024) supporting dynamic adapter selection and plug-
and-play use. Optimizing LoRA training efficiency, including hyperparameter tuning and update
latency, remains an active research direction.

6 CONCLUSION AND DISCUSSION

We presented the SAGE framework, which decomposes reasoning into atomic subtasks and dynam-
ically fine-tunes LoRA parameters via failure-triggered detection and clustering. This approach en-
ables adaptive test-time updates, improving the model’s ability to handle OOD knowledge. While the
current design favors simplicity, its strong empirical performance suggests a promising foundation
for future refinement. Further research on SAGE could accelerate the development of endogenous
memory in LLMs, for example by replacing the trigger module with neural architectures to enhance
flexibility and scalability. Moreover, although the atomic-task approach performs well on simpler
problems, extending it to support complex multi-step reasoning remains an important avenue for
future work. More broadly, SAGE demonstrates how combining detection, clustering, and efficient
adaptation can provide a principled route toward adaptive reasoning in large language models.
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7 REPRODUCIBILITY STATEMENT

The code for our proposed SAGE method, along with the scripts used for experimental evaluation,
is included in the supplementary materials and can be directly extracted. In addition, the code for
constructing the atomized datasets, as well as the atomized datasets themselves, are also provided
in the supplementary materials (availabel at https://anonymous.4open.science/r/SAGE-C7F3). The
detailed methodology for atomized dataset construction is described in Appendix C.3.
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 DETAILS FOR TRIGGER BUFFER MODULE OF SBC ALGORITHM

The Trigger Buffer module of Streaming Buffer Clustering (SBC) algorithm details are as follows:

For each newly arrived abnormal sample x, the SBC algorithm infers its structure tag and extracts
its semantic embedding vector and keyword set for subsequent similarity matching. If the cluster
for the structure tag s is deemed ”stable” (i.e., a structure cluster Cs already exists), SBC algorithm
computes the similarity between the current sample and all candidate clusters under the same tag,
selecting the one with the highest score (Line 5). The clustering score γ is a weighted combination
of semantic embedding similarity and keyword overlap. If γ exceeds the threshold τ , the sample x
is added to the selected cluster C∗ (Line 8), and the assignment result is returned, terminating the
process. If the structure cluster is not stable or the score does not meet the threshold, the sample is
temporarily stored in the buffer Bs for tag s (Line 12), awaiting further processing by the delayed
clustering mechanism.
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When a newly abnormal sample x causes the number of samples in the buffer associated with struc-
ture tag s to reach the predefined threshold T (Line 14), the SBC algorithm triggers batch cluster-
ing. The system extracts the semantic embedding vectors ei of all buffered samples (Line 15), then
applies HDBSCANfor unsupervised density-based clustering. However, HDBSCAN alone cannot
guarantee clustering stability. To address this, we introduce two stability check metrics: ➀ the Ad-
justed Rand Index (ARI), measuring label consistency across successive clusterings; and ➁ the
Average Cosine Similarity, quantifying semantic coherence between new and previous cluster cen-
troids. When both exceed their thresholds ηARI and ηcos, clustering is considered stable. The buffered
samples are migrated to a newly formed formal cluster Cnew, the buffer Bs cleared (Line 21), and the
structure tag s marked as ”stable” (Line 22).

Given that streaming input can fragment clusters, when the number of stable clusters for tag s ex-
ceeds the threshold, an inter-cluster merge (Line 24) is triggered. Clusters are merged if their cen-
troids’ cosine similarity exceeds threshold δ, reducing redundancy and increasing sample density. If
batch clustering fails to meet stability criteria, the result is discarded and samples remain buffered
for future clustering(Line 28). Finally, samples unassigned to any cluster and without triggered clus-
tering are marked as ”unassigned” until clustering conditions are met (Line 31).

Algorithm 1: Streaming Buffer Clustering (SBC)

Input: Incoming anomaly sample x, data buffer D, current clusters C, structure tag s
Output: Cluster assignment or data buffer update

1: s← InferStructure(x)
2: e← GetEmbedding(x)
3: k ← ExtractKeywords(x)
4: if IsClusterStable(s) == True then
5: (C∗, γ)← FindBestCluster(s, e, k)
6: # γ: weighted score combining embedding similarity e and keyword overlap k
7: if γ ≥ τ then ▷ Exceeding threshold τ
8: Assign x to cluster C∗
9: return cluster assignment

10: end if
11: else
12: AddToBuffer(x, e, k,Ds)
13: end if
14: if |Ds| ≥ T then ▷ Exceeding clustering threshold T
15: e← ExtractEmbeddings(Ds)
16: h← HDBSCAN(e)
17: ▷ Density clustering without preset count
18: (ARI, Sim)← EvalStability(h, h(t−1), e, e(t−1))
19: if ARI ≥ θari ∨ Sim ≥ θsim then
20: CreateNewClusters(h,Ds)
21: Ds ← ∅ ▷ Clear buffer
22: StableFlags ← True
23: if |Cs| ≥ 3 then
24: MergeSimilarClusters(Cs)
25: ▷ Merge clusters with centroid similarity
26: end if
27: else
28: return ▷ Clustering unstable, wait more
29: end if
30: end if
31: return x as “Unassigned” ▷ No matching cluster

A.2 DETAILS FOR LORA STORE MODULE OF CLO ALGORITHM

The LoRA Store module of Cluster-Aware LoRA Optimization (CLO) algorithm, a clustering-based
method that automatically searches for the optimal LoRA configuration θ∗, saving the corresponding
adapter for subsequent inference or combination, details are as follows:
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Algorithm 2: Cluster-Aware LoRA Optimization (CLO)

Input: Incoming stable cluster Cs, base modelM, tokenizer T , parameter space Θ , top-k configs
k

Output: Optimized LoRA config θ∗ and LoRA adapterA
1: Pn ← InitialConfigs(Θ, n) ▷ Initialize n seed configs
2: R0 ← [] ▷ Initial training results
3: for all θ ∈ Pn do
4: r ← TrainLoRA(θ, C,M, T )
5: R0 ← R0 ∪ {r}
6: end for
7: R0 ← SortByScore(R0)
8: # maximize accuracy, break ties by minimizing loss
9: Ptop ← Top-KConfigs(R0, k)

10: R1 ← [] ▷ Refined training results
11: for all θtop ∈ Ptop do
12: Popt ← LocalParamSearch(θtop)
13: #local search over rank and learning rate near θtop
14: for all θ′ ∈ Popt do
15: r′ ← TrainLoRA(θ′, C,M, T )
16: R1 ← R1 ∪ {r′}
17: end for
18: end for
19: Rall ← R0 ∪R1

20: Rall ← SortByScore(Rall)
21: ALoRA ← Top-KResults(Rall, 3)
22: SaveBuffer(ALoRA)
23: return ALoRA and θ∗

Given a cluster C with stable structure, the CLO algorithm randomly samples candidate configu-
rations n from the hyperparameter search space Θ to form the initial configuration set Θ0. Simul-
taneously, the system creates an empty list to store the results of each configuration after training,
including validation accuracy, cross-entropy loss, save path, and corresponding LoRA adapter con-
figuration information. The CLO algorithm then performs complete LoRA fine-tuning on each con-
figuration in Pn for the samples in the cluster Cs (Line 4), recording the training results to form a
preliminary result set R0 (Line 5). Next, CLO algorithm ranks the results in R0 based on a sort-
ing strategy that prioritizes validation accuracy firstly and cross-entropy loss secondly, selecting the
Top-k configurations (Line 9). This strategy accounts for the limited data size, prioritizing accuracy
to ensure SAGE’s correct response to similar inputs.

Based on these k optimal configurations, CLO algorithm conducts exploitation optimization in their
neighboring parameter spaces (Line 12), mainly adjusting the LoRA rank and learning rate. For
each configuration in the fine-tuned set Popt, CLO algorithm continues LoRA fine-tuning, resulting
in a refined result set R1 (Line 14). Finally, CLO algorithm merges the preliminary result set R0

with the refined set R1 into the total result set Rall (Line 19), sorts it again by accuracy and cross-
entropy loss, and selects the final Top-3 configurations (Line 21). The corresponding LoRA adapters
are saved as the final optimized results ALoRA (Line 22), and the three optimal adapters, along with
the best configuration θ∗, are returned for subsequent reasoning calls (Line 23). For new data with
different characteristics, adaptation is achieved by triggering additional LoRA fine-tuning.

The CLO algorithm combining initial exploration with local refinement, making it suitable for
atomic tasks characterized by sparse data and diverse atomic tasks. It ensures that each cluster has
the optimal LoRA configuration for the current data, providing a solid foundation for subsequent
adapter upgrades and dynamic fine-tuning.
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B RELATED WORK

B.1 SELF-ADAPTING MECHANISMS IN LLMS

Since the emergence of LLMs, a series of studies have investigated memory mechanisms inspired
by cognitive systems, particularly viewing LLMs as brain-like architectures. Early work observed
that the feed-forward networks (FFNs) in Transformer models exhibit key-value-like storage behav-
ior Geva et al. (2021), prompting efforts to enhance memory functionality by routing information
through these components Wu et al. (2022); Berges et al. (2024); Li et al. (2025). This line of
research also motivated the construction of long-context Wang et al. (2023) inputs and retrieval-
enhanced pathways Borgeaud et al. (2022) to improve internal knowledge persistence. A significant
milestone was marked by the introduction of Memory3 Yang et al. (2024), which explicitly decom-
posed memory into three components: model parameters, explicit memory modules, and retrieved
text. The study demonstrated that externalized memory not only facilitates faster knowledge acqui-
sition but also serves as a viable mechanism for persistent knowledge representation in LLMs. This
perspective helped establish the notion that memory accelerates learning and catalyzed a surge of
interest in RAG Lewis et al. (2020); Liu et al. (2024) for knowledge updating and memory simu-
lation. More recently, the development of MemoryLLM Wang et al. (2024) has shifted attention
toward mechanisms for self-updating. Rather than solely focusing on constructing long-term or
short-term memory banks, this work highlights the importance of enabling LLMs to selectively
and autonomously revise their internal representations—marking Zhong et al. (2022) a conceptual
shift from passive storage to active self-modification.

B.2 LORA-BASED ADAPTATION AND REUSABILITY

In parallel with memory research, substantial progress has been made in advancing LoRA and
its variants for parameter-efficient fine-tuning He et al.. Inspired in part by the success of sparse
mixture-of-experts (MoE) Shazeer et al. (2017) architectures, recent studies have proposed sparsity-
aware LoRA designs to support efficient and selective adaptation in data-limited settings Yeasar
et al. (2025). Beyond sparsity, increasing attention has been given to the modularity and reusabil-
ity Ostapenko et al. (2024); Xu et al. (2024); Li et al. (2024); Valipour et al. (2023); Liao et al. (2025)
of LoRA modules. Approaches such as Switch-LoRA Kong et al. (2024) explore dynamic adapter
selection and plug-and-play capabilities, enabling rapid composition and reuse across diverse tasks.
Meanwhile, the training efficiency of LoRA—particularly in terms of hyperparameter optimization
and update latency—has become an active area of research.

C EXPERIMENTAL DETAILS

C.1 DETAILS FOR TRIGGER MODULE

In further experiments, we fixed the threshold at 0.5 and set equal weights for all four indicators.
We then evaluated the Trigger module independently under these test-time parameters. As shown in
Figure 9, the module achieved 100% ID/OOD separation under this configuration, confirming that
the chosen parameters fall within a favorable operational range. The OOD and ID score distribu-
tions in Figure 9(c) show that the OOD and ID samples fall within two distinct ranges, providing
a sufficiently wide range of thresholds to distinguish the two classes. Together with the sensitivity
analysis in Figure 3, these findings suggest that the Trigger module possesses not only high accuracy
but also strong robustness and generalizability, making it well-suited to serve as a reliable activation
mechanism for subsequent adaptive fine-tuning in LLM-based systems.
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Figure 9: Results of the Trigger Module evaluation under formal test parameters. (a) Confusion
matrix for ID and OOD samples. (b) ROC curve illustrating detection performance. (c)Anomaly
score of ID datasets and OOD datasets.

To further validate the accuracy of the trigger model, we expanded the types of OOD samples. Unlike
the short real answers (mainly from multiple-choice questions, typically “yes,” “no,” or numerical
responses) used in the previous OOD evaluation, we additionally tested on text-based real answers
(narrative responses, akin to short-answer questions). Specifically, we selected three OOD datasets:
entailment 1, worldtree 2, and ARC 3. As shown in Figure 10, the module achieved 100% ID/OOD
separation under this setting, confirming that the chosen parameters lie within a favorable operational
range.

Figure 10: Results of the Trigger Module evaluation under TriveQA for ID and Entailment,
Worldtree and ARC for OOD. (left) Confusion matrix for ID and OOD samples. (right) ROC curve
illustrating detection performance.

Moreover, we conducted score and threshold sensitivity analyses on these datasets. The results,
presented in Figure 11, demonstrate that even for datasets containing longer sentences. The OOD
and ID score distributions also show that the OOD and ID samples fall within two distinct ranges,
providing a sufficiently wide range of thresholds to distinguish the two classes. And the trigger
module exhibits not only high accuracy but also strong robustness and generalizability.

1Available at https://huggingface.co/datasets/suzakuteam/entailment bank
2Available at https://huggingface.co/datasets/nguyen-brat/worldtree
3Available at https://huggingface.co/datasets/KomeijiForce/ARC-Challenge-Explained-by-ChatGPT
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Figure 11: Results of the Trigger Module evaluation under TriveQA for ID and Entailment,
Worldtree and ARC for OOD. (left) Anomaly score of ID datasets and OOD datasets. (right) Thresh-
old sensitivity analysis; the gray area marks the optimal threshold range.

C.2 DETAILS FOR TRIGGER BUFFER MODULE

To cope with streaming data, we designed multiple thresholds. Below is a sensitivity analysis of
each threshold to verify the rationality of our SBC algorithm design.

Figure 12 shows the results of the similarity threshold in the threshold gating module, which comes
after the match clusters module in the routing and matching process. Data values greater than this
threshold are considered similar to a cluster and can be added to it. Since a lower DBI and a higher
CH are desirable, and moderate values of unassigned rate and cluster number are preferred, the
similarity threshold should be in the range of 0.55 to 0.65. This threshold is relatively sensitive and
can serve as the primary factor for adjusting the clustering process.

Figure 12: Similarity threshold sensitivity analysis for threshold gating after match clusters module.
(left) Davies–Bouldin Index and Calinski–Harabasz Index for internal indices. (middle) Outlier Ra-
tio for proper threshold. (right) Cluster Stability.

Figure 13 shows the results of the data buffer size threshold for the threshold gating module, which
precedes the density clustering module in the cluster-and-tag process. When the threshold exceeds
this value, the SBC algorithm triggers the density clustering module, and the HDBSCAN algorithm
performs the clustering. The results show that a data buffer size between 5 and 40 yields the best
performance. Adjusting this parameter can slightly improve clustering results, but the effect is not
significant, indicating that it is suitable for secondary parameter tuning.
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Figure 13: Data buffer size threshold sensitivity analysis for threshold gating before density cluster
module. (left) Davies–Bouldin Index and Calinski–Harabasz Index for internal indices. (middle)
Outlier Ratio for proper threshold. (right) Cluster Stability.

Figure 14 shows the results of the merge threshold for the threshold gating module, which precedes
the merge clusters module in the merge fragments module. When the threshold exceeds this value,
the SBC algorithm enters the fusion region to determine cluster centers. The results show that a
threshold value greater than 6 is most effective, and the clustering performance remains largely
unchanged. Therefore, this parameter can be used to enable or disable the merge operation, and
adjustment is unnecessary unless the merge operation needs to be disabled.

Figure 14: Merge threshold sensitivity analysis for threshold gating before merge clusters mod-
ule.(left) Davies–Bouldin Index and Calinski–Harabasz Index for internal indices. (middle) Outlier
Ratio for proper threshold. (right) Cluster Stability.

Figure 15 shows the results of the cluster center similarity threshold in the merge clusters module,
which is part of the merge fragments process. When the threshold exceeds this value, the SBC algo-
rithm executes the fragmented cluster fusion operation. The results show that setting the threshold
between 0.8 and 1.0 yields the best performance, with clustering remaining largely stable across this
range. Therefore, this parameter can be set as a fixed value within the algorithm and does not require
further adjustment.

Figure 15: Cluster center similarity threshold sensitivity analysis for merge clusters module.(left)
Davies–Bouldin Index and Calinski–Harabasz Index for internal indices. (middle) Outlier Ratio for
proper threshold. (right) Cluster Stability.

Figure 16 shows the results of a sensitivity analysis of the Adjusted Random Index and Average
Cosine Similarity thresholds. These thresholds are used in the density module of the cluster and tag
process. The SBC algorithm requires two thresholds, and both must simultaneously exceed their re-
spective values for the algorithm to assign a stability label to a cluster. This requirement also ensures
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that the cluster can be matched with the data. Therefore, we conducted a detailed threshold analysis
of these two parameters in a three-dimensional space. The results show that an Adjusted Random
Index (ARI) threshold above 0.8 performs well. An Average Cosine Similarity (ACS) threshold be-
tween 0.5 and 0.9 also performs well. Both thresholds are very robust. Therefore, no adjustment of
these threshold parameters is recommended.

Figure 16: Ajusted Random Index and average Cosine Similarity thresholds sensitivity analysis for
density cluster module. (left) 3d parameter for cluster stability of threshold. (right) 2d parameter
results for cluster stability, outlier ratio, DBI, CH, stability rate and composite score.

Figure 15 shows the results of the match score weight in the match cluster module for routing and
matching. This threshold determines the score weight parameter. Because there are only two weights
that sum to 1, only one weight parameter was tested. The weight parameter shown in the figure is the
coefficient of embedding similarity between the data and the cluster. The results show that setting
this threshold between 0.5 and 0.7 performs best and clustering results are sensitive to changes
in this weight. Therefore, this threshold should be prioritized as the primary factor for clustering
adjustments.

Figure 17: Match score weight sensitivity analysis for match cluster module.(left) Davies–Bouldin
Index and Calinski–Harabasz Index for internal indices. (middle) Outlier Ratio for proper threshold.
(right) Cluster Stability.

C.3 DETAILS FOR LORA STORE MODULE

Table 1 shows that after filtering the atomized dataset, the fine-tuning effect has improved sig-
nificantly. However, compared with the GSM8K dataset, improvements in the PUBMEDQA and
LEXGLUE datasets are less pronounced. Below we describe how we process the three datasets so
that subsequent researchers can reproduce our code and make further improvements.

For the PubMedQA dataset, we applied the following filtering conditions. The question must be
causal/risk type and mention stroke or its subtypes. The evidence sentence must contain a causal
trigger word and a normalizable object. The subject must be identifiable, with MeSH preferred;
otherwise, heuristic extraction is used. The predicate must be extractable. The RESULTS paragraph
is used first, followed by the long answer.
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Table 2: Impact of Random Seed Variation on SAGE

Seed 123 42 7

EM MAE MSE NER EM MAE MSE NER EM MAE MSE NER

Adp1 84.95 29185 1.5 × 1010 78.58 98.28 11 39277 81.36 94.92 547 9.6 × 107 94.59
Adp2 99.80 0.05 1.36 99.40 95.63 1561 5.1 × 108 96.39 99.80 0.01 0.05 100
Adp3 99.80 0.01 0.16 100 99.60 0.05 1.36 100 98.99 4.56 5705 99.00

The filtering criteria for the LEXGLUE dataset include several steps. First, regular expressions are
used to match questions involving causal or conditional judgments. Second, questions and options
must contain core legal knowledge points of interest, such as ”rule12b6” and ”dismissal.” Third, only
sentences containing key trigger words or logical indicators—such as legal citations, case conclu-
sions, or judges’ arguments—are retained. Fourth, the subject or key object involved in the question
is identified, such as ”plaintiff,” ”defendant,” or ”court.” Finally, actions or decision logic are ex-
tracted, such as ”dismissed,” ”granted,” or ”violated.”

The GSM8K dataset consists of math problems, whose format prevents causal reasoning similar to
that performed on the PubMedQA and LEXGLUE text-based datasets. Therefore, we first extracted
simple Level-1 math problems for training. The Level-1 extraction rules are as follows. ”**” appears
no more than 2 times, indicating fewer reasoning steps. ”¡¡x=...¿¿” appears no more than once,
indicating fewer inline calculations.

Figure 18: Heatmap of accuracy and cross-entropy loss for LoRA parameter: examining the neces-
sity of exploitation optimization.

To further evaluate the LoRA Store module’s performance in selecting nearest-neighbor hyperpa-
rameters for the refined adapter module (searching over rank and learning rate while keeping all
other training parameters constant). we also experimented with nearest-neighbor search using other
parameters and the results are shown in Figure 18. The accuracy and cross-entropy loss remain
largely unchanged regardless of whether the target modules or dropout are modified. Specifically,
the heatmaps for rank and learning rate reveal an accuracy difference range of up to 81%, whereas
the corresponding range for target modules and dropout is only 20%.

C.4 DETAILS FOR SAGE

To further assess the stability of SAGE, we tested the model by shuffling the data using different
random seeds. The final results are presented in Table 3. The evaluation indicates that shuffling the
data order has no significant impact on the performance of SAGE, demonstrating its high robustness
to changes in data order.

D. LIMITATION FOR SAGE

Our trigger module treats knowledge access as a filtering problem, where high accuracy and bound-
ary recognition are critical. To this end, we incorporate ground-truth labels for auxiliary evaluation.
In preliminary experiments on standard NLP benchmarks, this module achieved near-perfect accu-
racy (≈100%) and did not require additional training compared to hidden-state approaches Chen
& Varoquaux (2025). Although ground truth naturally exists for objective data (e.g., factual knowl-
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edge), subjective domains such as sentiment lack explicit references. For such cases, surrogate strate-
gies—such as weak supervision, self-consistency checks, or consensus-based labeling—may serve
as alternative evaluation signals, broadening the applicability of the trigger design.

Beyond Trigger module, we propose atomized datasets for LoRA fine-tuning. We define atomiza-
tion as the decomposition of complex reasoning chains into minimal independent steps, each cor-
responding to a single inference rule or transformation. For example, in mathematical reasoning, a
multi-step proof can be atomized into elementary transformations such as algebraic substitution or
logical implication. While our current implementation relies on human pre-selection of these steps,
this process could be automated through curriculum learning or rule-based decomposition. This per-
spective resonates with curriculum learning and modular memory architectures Kang et al. (2025),
yet it differs from retrieval-augmented generation Lewis et al. (2020), which relies on external re-
trieval; in contrast, our approach embeds atomized reasoning units directly into LoRA adapters. We
view this as an initial step toward long-term memory formation, where integrating multiple atomized
adapters could enhance LLM performance on complex reasoning tasks.

Currently, the SAGE architecture is primarily designed for NLP tasks. However, the scope of infor-
mation that can be extracted from text alone is inherently limited, while a comprehensive memory
system should encompass multiple modalities, including both textual and visual knowledge. Ex-
tending SAGE to multimodal inputs is therefore a natural next step. Fortunately, LoRA fine-tuning
on image models has already become a well-established paradigm Yang et al. (2025); Farhadzadeh
et al. (2025), and most image classification benchmarks provide clearly defined ground-truth labels.
Nevertheless, aligning heterogeneous modalities introduces additional challenges, such as reconcil-
ing differences in feature space and balancing the contribution of each modality. This suggests that,
during the initial phase of multimodal expansion, the alignment requirements for SAGE remain rel-
atively modest. By leveraging these existing frameworks, SAGE can be readily adapted to handle
richer information dimensions, paving the way toward a more general and scalable memory archi-
tecture. Our current evaluation is limited to NLP datasets, and we leave a systematic multimodal
study for future work.

E. THE USE OF LLMS

LLMs were used in a limited capacity to (i) suggest related work, which was manually verified by
the authors for accuracy and relevance, and (ii) proofread the manuscript for grammar and tense.
The models were not involved in research design, experiments, or interpretation. All scientific con-
tributions and claims are solely the responsibility of the authors.
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