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Motivated by the emerging paradigm of resource allocation that integrates classical objectives, such as cost
minimization, with societal objectives, such as carbon awareness, this paper proposes a general framework
for the online fair allocation of reusable resources. Within this framework, an online decision-maker seeks to
allocate a finite resource with capacity C to a sequence of requests arriving with unknown distributions of types,
utilities, and resource usage durations. To accommodate diverse objectives, the framework supports multiple
actions and utility types, and the goal is to achieve max-min fairness among utilities, i.e., maximize the minimum
time-averaged utility across all utility types. Our performance metric is an (e, f)-competitive guarantee of
the form: ALG > a - OPT* — O(TF™1), q, B € (0,1], where OPT* and ALG are the time-averaged optimum
and objective value achieved by the decision maker, respectively. We propose a novel algorithm that achieves
a competitive guarantee of (1 — O(4/10gC/C), 2/3) under the bandit feedback. As resource capacity increases,
the multiplicative competitive ratio term 1 — O(4/logC/C) asymptotically approaches optimality. Notably,
when the resource capacity exceeds a certain threshold, our algorithm achieves an improved competitive
guarantee of (1,2/3). Our algorithm employs an optimistic penalty-weight mechanism coupled with a dual
exploration-discarding strategy to balance resource feasibility, exploration, and fairness among utilities.
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1 Introduction

In a wide range of application domains, the online allocation of reusable resources is a pivotal
design problem. Unlike non-reusable resources, whose availability decreases monotonically, the
reusability of resources exhibits dynamic fluctuations in availability due to the interplay between
allocation decisions and resource release events. Assigning resources reduces availability, while
their return restores it. Moreover, resource availability depends on the order of decisions made, as
different decisions can result in varying usage durations. Prior studies, reviewed in Section 2.1, have
been proposed to address these complexities by designing algorithms that provide performance
guarantees while adhering to resource constraints in both online and offline (or Bayesian) settings.

Most existing resource allocation algorithms are designed around traditional first-order metrics,
such as throughput, operational cost, or energy consumption, and typically focus on optimizing a
single objective function. However, as algorithmic solutions are increasingly deployed in real-world
domains with significant societal and environmental impacts, it is crucial to incorporate emerging
objectives, such as environmental metrics (e.g., carbon footprint, water usage, air pollution [24])
and broader societal considerations (e.g., safety and privacy [23]). These objectives, however, often
conflict; e.g., achieving carbon reduction targets may necessitate higher energy consumption [25].
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Consequently, systems must balance trade-offs among competing performance metrics. Different
notions of fairness are commonly used in prior literature to characterize these trade-offs in multi-
objective design settings. The main prior studies (e.g., [8, 15, 30], see Section 2.2 for extended list),
however, proposed fair allocation of non-reusable resources, with a few exceptions, e.g., [50], where
fairness has been explored on reusable resource allocation. However, [50] operates within offline
(or Bayesian) settings, where problem/system parameters, including utilities and usage durations,
are drawn from known distributions.

In this work, our goal is to tackle the fair allocation of reusable resources in an online setting where
the decision maker must operate without complete information on the underlying distributions
of arrival types, utilities, or resource usage durations. In practice, many real-world applications
like cloud resource management are inherently online, as the underlying distributions of system
parameters are often unknown or only partially known. The online nature or model uncertainty
impacts not only allocation efficiency (i.e., the uncertainty about which actions yield higher utilities
per unit of resource occupation time) but also future resource availability. To make effective
allocation decisions, an algorithm must balance exploring actions to learn the latent model and
exploiting this knowledge to maximize cumulative utility. This trade-off is further complicated
by the interaction between resource feasibility and fairness objectives, making designing online
algorithms with provable performance guarantees particularly challenging.

A recent study [17] investigates a special version of online reusable resource allocation in
the context of admission control (i.e., with only accept/reject decisions). Although this work
marks a valuable step toward online reusable resource allocation, it does not consider fairness
(focusing on only one utility type) and operates under restrictive assumptions, including only
two possible actions, a single type of arrival request, and deterministic resource usage durations.
Consequently, the model and algorithm in [17] fall short for applications such as LLM inference
service provisioning, where user requests may vary significantly in characteristics, including query
length, membership tier, and quality or latency requirements. Additionally, the service provider
may employ multiple LLM models with varying performance profiles to serve these requests. In
such a scenario, the service provider must fairly balance multiple objectives such as model accuracy,
energy consumption, and carbon/water footprint. This fairness requirement, coupled with the
stochastic nature of resource usage durations and the diversity of arriving request types, highlights
the need for a generalized framework that can handle these complexities in an online setting.

To address these gaps, we study a general framework for fair allocation of reusable resources in
the online setting. In this framework, requests arrive sequentially, each associated with a specific
type capturing its features. Upon observing the request type, the controller (decision-maker) may
choose an action from a finite set or reject the request (e.g., if resources are unavailable or the
utility gain does not justify the associated resource consumption). Each action yields multiple utility
types (reflecting different performance metrics) and incurs a stochastic resource usage duration,
determining how long the resources remain occupied. Motivated by real-world observations on the
independence of objective functions, e.g., for environmental metrics [24, 34], our model supports
multiple general utility functions that might be arbitrarily correlated with the resource usage
durations. The controller must respect a capacity constraint, ensuring total occupied resource
units never exceed C at any time. Critically, the distributions of arrival types, utilities, and usage
durations are unknown, and feedback is limited to the chosen action’s outcome, conforming to a
bandit-feedback setup. To balance multi-type utilities, we adopt the notion of max-min fairness (also
referred to as egalitarian welfare in operations research [8]): we aim to maximize the minimum time-
averaged utility across all utility types over the decision horizon, ensuring that no single objective is
disproportionately sacrificed. We note that the max-min fairness is one of the most widely adopted
fairness notions and has been extensively studied for fair allocation of non-reusable resources [8, 30].
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Moreover, this notion has been used in addressing the environmental concerns of Al and computing
applications. For example, [34] employs max-min fairness to simultaneously balance water usage,
carbon footprint, and energy cost objectives, thereby addressing Al's environmental inequity.
Contributions. In this paper, and in Section 3, we present a general framework that unifies
online reusable resource allocation and fairness optimization. Our formulation accommodates
multiple actions, addresses model uncertainty (including stochastic usage times with unknown
distributions), and supports diverse utility types (e.g., varied performance metrics) as well as
multiple resource units. We also illustrate representative applications of this framework, such as
LLM inference service provisioning and healthcare management.
» Algorithm design. In Section 4, we present a novel algorithm called Exploration-Discarding with
Penalty Weights Update (ED-PWU). To balance the multi-type utilities and (allocation) efficiency,
ED-PWU bases the decisions on penalty weights and optimistic estimates of unknown parameters.
The idea of selecting actions based on penalty weights is similar to the approach taken in [15, 16, 50]
for non-reusable or Bayesian settings, albeit with a distinct weight update process due to model
uncertainty. Despite the benefits of these penalty-weight-based decisions, we cannot directly treat
them as final due to several inherent challenges: (1) these decisions may not respect the resource
capacity constraints under all sample paths of the underlying randomness. Moreover, estimation
errors can lead to violations even in expectation; (2) the bandit feedback setup necessitates reserving
part of the resource for exploration, so as to gradually reduce estimation errors in the latent model.
To address these challenges, we design a dual exploration—discarding strategy (hence the algorithm’s
name) that probabilistically discards penalty-weight-based decisions (thereby preserving sufficient
resource "slack” to mitigate the risk of constraint violations) while simultaneously dedicating part
of the resources to forced exploration. The discarding and forced-exploration probabilities are
carefully designed and adapt to the magnitude of estimation errors, striking a balance between
maintaining resource feasibility (or reducing the likelihood of resource availability violations),
ensuring sufficient exploration, and reducing utility loss induced by discarding and exploration.
» Competitive analysis. To analyze the performance of ED-PWU, we adopt a joint competitive
and regret analysis approach. Denote OPT* and ALG as the time-averaged optimum and objective
value achieved by the controller. We seek a policy that satisfies an (a, §)-competitive guarantee:

ALG > a - OPT* - O(TF71), (1)

for some parameters «, § € (0, 1]. Here, a represents the classic notion of the competitive ratio
of ALG. The additional error term O(T#~?) is closer to the definition of regret, i.e., if the policy
ensures @ = 1, we can say it also achieves a sublinear regret guarantee of O(T¥?). Using the
above bi-criteria competitive ratio, we show that ED-PWU achieves a competitive guarantee of
((1- %)L(e* (0)), ?/3) under the bandit-feedback setup, where C denotes the resource inventory
(or capacity), £*(C) = argmax,» L(¢), and L(¢) = ﬁ (1= (1+¢) exp[C(75 —log(1+¢))])". The
competitive ratio is of the order @ = 1 — O(4/log C/C), which asymptotically approaches optimality,
ie., a = 1, as capacity C increases. Notably, when the inventory exceeds a certain threshold, our
model reduces to the indivisible variant of the horizon-fairness optimization problem in the online
setting [12, 42]. In this scenario, our algorithm can further achieve an (1, 2/3) competitive guarantee
(i.e., sublinear regret of O(T%*)). This result fills an important gap in the literature, as no prior work
has achieved provable performance guarantees under the bandit feedback setup.

» Extensions to Quasi-full-feedback setting. Additionally, we extend our analysis (with the same
algorithm) to a Quasi-full-feedback setup consistent with [17], which studies a special case of
our model. In this feedback setup, the controller receives full information when the resources are
available but none otherwise. This extension improves the competitive guarantee of our algorithm
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to ((1- %)L(e*(C)), 1/2), and even to (1,1/2) when the inventory exceeds a certain threshold. In
contrast, [17] achieves a (1/2,1/2)-competitive guarantee only when the inventory C is limited to 1.
» Numerical experiments. Last, we conduct simulations in a cloud computing scenario to validate
the theoretical performance of our algorithm (details provided in Appendix B).

2 Related Works

In this section, we introduce two streams of literature related to our research: reusable resource
allocation and horizon fairness optimization. We do not delve into the literature on non-reusable
resource allocation problems (e.g., [1, 6, 16]), as the fundamental differences between non-reusable
and reusable resource cases necessitate distinct methodologies and analyses. We position our
research as a bridge between these two lines of literature by comparing closely related existing
works. Tables 1 and 2 summarize the key results from each of these two streams.

2.1 Reusable Resource Allocation

The problem of reusable resource allocation has been studied in various contexts, including admis-
sion control, pricing, assortment planning, and queueing systems. We review literature in offline
(or Bayesian) and online settings, where the primary distinction lies in the presence of model uncer-
tainty. In the Bayesian setting, while exact realizations of arrivals, utilities, or usage durations may
be unknown at the time of decision, their underlying distributions are time-invariant and known to
the decision maker. Conversely, the online setting lacks such prior knowledge, requiring real-time
learning of unknown distributions. Most existing studies focus on the Bayesian setting, while
the online setting remains less well understood compared to traditional (non-reusable) resource
allocation problems. This is largely attributed to the complex interplay between model uncertainty
and resource reusability. Depending on whether the arrival process of requests is determined
adversarially or stochastically, existing works in the online setting can be further categorized into
adversarial and stochastic cases. Our research falls in the category of online stochastic setting.

Table 1. Closely related literature on reusable resource allocation

Paper fairness | stoch. or adv. | online ran;lfrr:til(l)s;lge competitive ratio
[17] X stochastic v X 1 /2*
[49] X stochastic v v 1/2
[19] X stochastic X v 1 — min {% o (\/log C/C)}
[50] v stochastic X v 1-0 (\/._flog(l/g’))*
[26, 27, 32] X adversarial X X (instance-dependent) constants
[18, 20-22] X adversarial X v (instance-dependent) constants
Ours v stochastic v v 1-0 ( Viog €/ C)
1 (large inventory)

" This result only holds for the case of C = 1.
T ¢ is an instance-dependent parameter that scales proportionally to 1/C.

Online setting. In the online setting, there is relatively little research conducted on reusable re-
source allocation for the stochastic case. Some exceptions, e.g., [28, 29, 52], explore the problem in the
context of queuing systems, where reusable resources are treated as servers and requests/customers
are modeled as jobs arriving sequentially via a stationary Poisson process. Notably, in queueing
systems, jobs can often wait for service, whereas our model resembles a loss system where requests
are lost if no idle server is available. The work most closely related to ours is [17], which focuses on

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 29. Publication date: June 2025.



Online Fair Allocation of Reusable Resources 29:5

an admission control setting with unknown utility distributions but deterministic usage durations.
They propose a dynamic threshold rule inspired by an infinite-dimensional linear programming
reformulation of the original problem, achieving a competitive ratio of 1/2 when the inventory is
limited to a single unit. However, their work leaves several intriguing open questions, as noted
in their concluding remarks. One such question is the extension to stochastic usage times with
unknown distributions, potentially correlated with utilities. Another is whether an efficient al-
gorithm (possibly threshold-based) with provable competitive guarantees exists for managing
multiple identical reusable resources. Our work addresses these questions by considering a general-
ized model that includes multiple actions, stochastic usage durations with unknown distributions,
multiple identical reusable resources, and diverse utility types. We propose an algorithm lever-
aging penalty weights to balance the trade-off between the utilities earned across all types and
the resources consumed, which simplifies to a threshold-based policy in the context of admission
control. Additionally, a recent study, [49], explores a combination of pricing and admission control,
where the decision-maker determines not only acceptance but also the rental price for each arrival.
Their model accommodates unknown distributions in both utility and usage times while allowing
multiple resource units. The algorithm they propose employs linear function approximation based
on Markov Decision Process (MDP) methodology and achieves a competitive ratio of 1/2. Although
our methodologies and models differ significantly and are not directly comparable, our algorithm
ensures that the competitive ratio approaches 1 as the inventory C increases.

There is another line of research focusing on the adversarial case. Specifically, recent studies in
assortment planning [18, 20-22] consider scenarios where each customer type is associated with a
unique choice model over the resources. These works assume that the usage duration of a resource
and the price paid (can be interpreted as utility in our model) depend only on the resource type,
independent of customer type. For example, [20] demonstrates that the myopic policy achieves
a competitive ratio of 1/2, while [21] and [22] obtain a 1 — 1/e competitive ratio based on the
fluid approximation guided algorithms. [18] incorporates exogenous inventory replenishment into
assortment planning and designs an inventory-balancing algorithm with a constant competitive
ratio. Additionally, [26, 27] consider scenarios where rewards are linearly related to usage duration
and usage duration is deterministic, resulting in instance-dependent competitive ratios. Beyond
assortment planning, [32] explores network pricing models with advance reservations but assumes
deterministic resource usage durations. In contrast to these works, our algorithm is designed for the
stochastic setting, where the competitive ratio improves as the inventory C increases. This behavior
differs from the adversarial setting, where the competitive ratio remains constant regardless of
the inventory size. Additionally, our model allows both the usage duration and price to depend on
the customer type, and we extend our framework to address fairness considerations, which are
unexplored in the aforementioned works.

Bayesian or offline setting. Within this setting, [41] investigates an assortment planning
problem and proposes a policy based on affine approximations, achieving a competitive ratio of at
least 1/2. Similarly, [5] proposes a policy with competitive ratios that depend on request sizes. In
[19], a dynamic programming-based policy guided by linear programming is developed to achieve a
competitive ratio of 1-min{1/2, O(y/log C/C)}. However, their model assumes that usage durations
are independent of request types, a feature explicitly addressed in our work. The most relevant
work to ours in the Bayesian setting is [50], which also explores fairness. They attain a comparable
competitive ratio under the restrictive assumption that utilities exhibit a linear dependence on
resource usage durations. [10] studies the reusable resource allocation in the pricing context and
prove that a well-chosen static pricing policy guarantees 78.9% of the optimum. Broadly, these
works mainly rely on dynamic programming to carefully allocate their reusable resources due
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Table 2. Closely related literature on online fair resource allocation

Paper ™ fairness type stoch. or adv. | div. or indiv. Online Competitive guarantee
[15, 16] max-min fairness stochastic indivisible X (1,1/2)
(8] Nash social welfare stochastic indivisible X (1,0)
[30] max-min fairness adversarial indivisible 4 (N, 1/2)8
[9] proportional fairness | adversarial indivisible v (1/10g N, 0)8
[35] | proportional fairness | adversarial divisible v (1,1og(VTPr) /log T)”
[4, 42] general a-fairness adversarial divisible v (1,log(VTPr)/log T)
-1 1-2a); 1
[45] general a-fairness adversarial indivisible v (e, 1T) ffa<z
(7, 0)ifa> 1
[7] general a-fairness stochastic divisible 4 (1,42)
[12] general a-fairness stochastic indivisible (Full f;:dback) (1,12)
v
Ours max-min fairness stochastic indivisible (Bandit feedback) (1.%3)
(Quasi-full-feedback) (1,12)

T It is worth noting that none of the existing works except ours consider resource capacity constraints.
Pr quantifies the accumulated variations in the environment. Notably, T = TPy if P =log(VTPr)/logT.
§ N represents the number of agents, corresponding to the number of utility types in our model.

to the full knowledge of the underlying distributions of usage durations and utilities. Another
line of research (e.g., [13, 32]) focuses on admission control or pricing problems within queueing
systems. Compared to these works, the model uncertainty and bandit-feedback setup in our model
introduce additional challenges, requiring a careful balance between maintaining resource feasibility
(necessitating discarding), exploration (i.e., information acquisition), and minimizing utility loss
caused by both discarding and exploration.

2.2 Fairness in Resource Allocation

Fairness is a critical metric in resource management and has been widely studied in topics such as
computing systems [11, 48] and communication systems [2]. Independent of resource reusability,
our research focuses specifically on horizon fairness in resource allocation [4, 42], which aims to
ensure fairness across utilities accumulated over a time horizon. This contrasts with slot fairness
problems [43, 46] where fairness is addressed independently in each decision round, without
considering past or future decisions. Within this framework, our study aligns with the online
setting and thus we do not delve into the literature (e.g., [8, 15, 16]) on offline (Bayesian) setting
where utilities are assumed to be drawn from a fixed and known distribution.

Horizon fairness has recently been explored in adversarial cases, where the arrival of items
may be controlled by an adversary. For instance, [30] studies scenarios with known utility at
the time of decision and designs policies under the max-min fairness criterion. Similarly, [9, 35]
investigate the problem using the proportional fairness criterion, allowing policies to leverage
available predictions, while [42, 45] explores a more general a-fairness objective. The policies in
[9, 30, 45] achieve constant competitive ratios compared to the optimum, whereas [35, 42] attain
sublinear regret relative to a static benchmark (weaker than the optimum). Notably, [35, 42] tackle
the divisible version of the problem using online convex optimization techniques, where allocation
variables are continuous. In contrast, our work focuses on the indivisible variant, employing penalty
weights based policy to guide allocation decisions.
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For stochastic cases, [7] examines regularized resource allocation problems that encompass gen-
eral a-fairness, achieving an O(T"?) regret when resources are divisible. Instead, [12] investigates
the indivisible version of the problem and attains an O(T"?) regret by leveraging virtual queues,
which can be interpreted as penalty weights, to balance utilities across different groups. While our
algorithm shares similarities with theirs, it introduces an additional trade-off between information
acquisition and fairness optimization, stemming from the bandit-feedback setup. This contrasts
with [12] that assumes (delayed) full-feedback setup. Notably, their concluding remarks suggest
extending their approach to the bandit-feedback setting as a direction for future work—a gap
that our research effectively addresses. Additionally, another line of research (e.g., [33, 39, 44, 47])
focuses on using horizon-fairness as constraints rather than as objectives, making it fundamentally
different and not directly comparable to our work.

3 System Model and Motivating Applications

This section presents the framework we have studied. Before specifying our problem formulation,
we introduce below some notations that will be used. In this paper, vectors are generally bolded.
We denote the n-dimensional all-ones vector as 1,. For any vector v, we define v, and vp,yx as
min; v; and max; v;, respectively. Additionally, we use the notation (v)* to represent max{v, 0}.

3.1 Problem formulation

We consider a controller that allocates some available resources to process the arriving requests
(or customers) in an online manner. Time is divided into discrete slots, and at most one request
arrives at each time t. The type of the request arriving at time ¢, denoted as j(t), captures the
characteristics or features of the request. The set of all possible request types is denoted by 7. The
sequence j(1), j(2), ... consists of independently and identically distributed (i.i.d.) random variables,
governed by a fixed but unknown probability distribution p = {p;}je 5, where p; = P(j(t) = j).
Importantly, the controller has no prior knowledge of the distribution p.

At time ¢, upon observing the type j(t) of the arriving request, the controller selects an action
k(t) from a finite action set K, which could be used to model a broad range of decisions. For example,
the controller can assign the request to different servers or channels. We also allow the controller
to have the option to take no action (i.e., k(#) = knun), which is equivalent to rejecting the request.
Once k(t) is selected, the controller receives multiple types of utilities {R; j(s) k(s) (£) }ie 7, Where
Ri j(1).k(+)(t) denotes the amount of type-i utility offered by action k() at time ¢. Our multi-type
utility framework allows the controller to evaluate the performance across various dimensions,
such as energy consumption, social welfare, total revenue earned, etc.

Executing k(t) also incurs one unit of resource usage for a stochastic duration D) x(s) (1) €
{1,2, ..., dmax}. Specifically, the resource is occupied from time ¢ to time t + D;(;) x(r)(t) — 1, and
becomes available again at time ¢ + Dj(;)k(s)(¢). The controller manages a limited pool of C
resource units and rejects incoming requests if all resources are occupied. The stochastic out-
comes (R; jx(t),Dji(t)) for any pair (i, j,k) € I x J x K follow a joint distribution O; j«, i.e.,
(Rijk(t),Dji(t)) ~ O; k. We denote r; j . = E[R; jx(t)] and d;x = E[D;x(t)]. Here we note that
rejecting a request (k(f) = knun) results in zero utility and no resource usage. Additionally, the
stochastic variables {Ry jx(t),..,Rr jx(t), Dj(t)} can be arbitrarily correlated. In this work, we
consider the online setting where the statistics about the O; jx are unknown to the controller.

Feedback model. We consider the bandit-feedback setup for the controller. Specifically, at
each time ¢, the controller observes only the type j(t) of the arriving request, and the stochastic
outcomes/realizations {D (s x(¢) (1), Ry j(£).k(¢) ()5 .- R1 j(2).k(¢) } associated with the selected action
k(t) and type j(t). The outcomes of the other actions will not be revealed to the controller. Also,
the controller cannot observe future arrivals or their corresponding utilities and resource usage
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durations. Thus, the choice of k(t) is based solely on (1) the observed type j(t), (2) the historical
observations H (t—1) = {j(t), Dj(e).k(e) (1), Rj(e) k(r) (t)}i;% from time 1 to ¢ — 1, and (3) the internal
randomness of the controller, i.e., the developed algorithm should be a non-anticipatory policy. It
is worth noting that our feedback setup is more restrictive compared to [17]. In their setting, the
controller receives full information about the utility and resource usage outcomes when the resource
is available, even though their focus is limited to a two-action scenario (i.e., admission control).
When the resource is unavailable, requests are rejected and no feedback is provided—consistent
with our feedback model. Consequently, their controller is able to collect a linear number of samples,
i.e., O(t) samples for each unknown parameter. In contrast, our setup lacks such property which
makes our model more challenging. We relax our feedback setup in Section 6 to align with theirs,
demonstrating an improved performance guarantee for our algorithm.

Objective. The objective of the controller is to enforce fairness on the time-averaged aggregate
utilities across all types over an unknown horizon T, while adhering to the resource capacity
constraint at any time:

T t

1

T ZRi,j(t),k(t)(t)] s ZI{Dj(T),k(T) (r)=2t—-1+ 1} <G, Vt e [T].
t=1

=1

max minE
{k(t)}rerr) i€ T

Here, we adopt max—min fairness as our fairness notion, which has been extensively studied in
the problems of fair allocation [8, 15, 30]. Its appeal lies in its ability to ensure a uniform minimal
utility guarantee across all metrics or criteria, offering a stronger fairness assurance compared to
other fairness notions like Nash social welfare and proportional fairness. Our fairness objective
raises novel technical challenges and subsumes total utility maximization as a special case. In our
paper, each utility type is normalized to lie within the interval [—1, 1]. This normalization ensures
that utility types—potentially defined on different scales—become comparable under our max—min
fairness framework. Actually, our algorithm and analysis naturally extend to a scalarized version
of the objective: min;c y E [% Zthl Wi+ Ri o) k(r) (t)] , where w; represents a user-defined weight
for utility type i. This scalarization accommodates varying operational priorities across different
performance metrics, allowing practitioners to place more or less emphasis on any particular metric
as needed. For convenience, let Y (t) € {0, 1} indicate whether action k is taken at time ¢. Then, the
online fair allocation problem with reusable resources (OFARR) can be reformulated as the following
online binary integer program,

1
(OFARR) max minE|= R i i () - Yilt)
{(Y()}heerry i€l |T ; k;( i,j (1),

t
st. Z Z Yi (1) - YDjpyx(r) > t—1+1} < C, Vt € [T],
=1 keK
Z Yo(t) <1, Ve e [T];  Yi(t) € {0,1}, Yk € K and ¢ € [T].
keK
Here, we let 3 e Y (#) < 1 since the controller could take the null action (reject the request). We
denote the optimal objective value of (OFARR) under a non-anticipatory policy as OPT*, where the
policy has full knowledge of the underlying distributions but no access to the actual realizations of
arrivals, durations, or utilities in advance. OPT" is also referred to as the clairvoyant optimum, a term
commonly used in the literature [7, 19]. We remark that although we consider the stochastic setting,
the term I{D(r) > t — 7+ 1} induces non-stationarity into the decision-making process. Specifically,
even if the controller selects the same action k at two different times 7; < 7, the corresponding
resource usage-characterized by I{D(z;) > t — 71 + 1} and I{D(1,) > t — 1 + 1)-follows different
distributions at time ¢. This behavior contrasts sharply with the existing literature on stochastic (non-
reusable) resource allocation with knapsacks that crucially rely on model stationarity. In general,
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(OFARR) is intractable due to the unknown parameter distributions, non-stationarity induced by the
resource reusability, and the curse of dimensionality. Thus, our goal is to achieve near-optimality.
More precisely, let ALG represent the time-averaged objective value achieved by the controller
and our goal is to design a policy for the controller that satisfies the competitive guarantee defined
in (1). Notably, even with full model certainty, achieving a sublinear regret guarantee (i.e., @ = 1
in (1)) is generally not possible. This was demonstrated by [17], who studied a special case of our
problem with [7|=|J]|=1,|K|=2,and C = 1.

3.2 Motivating examples

Before proceeding to our algorithm development, we highlight the generality of our framework
by discussing some of its applications, including large language model (LLM) inference service
provisioning and healthcare management.

LLM inference service provisioning. Consider a service provider offering LLM inference
services [14, 51] for users’ requests. These requests correspond to inference queries, which may
include text-generation tasks, code-completion queries, or conversational instructions. The request
type j(t) can encode specific attributes such as the level of the query token length, user membership
tier (e.g., free vs. paid users), or desired response quality and latency. The action k(t) € K represents
different inference optimization settings (e.g., quantization, model pruning) or distinct LLM models.
Naturally, different LLM models and inference optimization settings yield different inference
accuracy, monetary cost, and latency. After serving the request, the service provider receives
multi-type utilities {R; j(;) x(¢) (t) }i, capturing performance metrics along multiple dimensions such
as: (a) user satisfaction or service-level agreement (SLA) fulfillment, e.g., whether the request is
answered with sufficient quality; (b) energy consumption or operational costs, e.g., using an LLM
model with larger weights can provide more accurate and higher-quality responses but incurs
higher energy usage; (c) revenue (giving priority to paid subscribers can increase profit). The
resource capacity C reflects the maximum number of requests that can be processed in parallel
(i.e., maximum service capacity [34]), often limited by GPU memory or the physical number of
GPU nodes. If all resources are occupied, newly arriving requests must be rejected. Additionally,
if the service provider determines that the benefit of serving the request is insufficient to justify
resource usage (e.g., during peak request periods for free users), he can choose to reject the request.
Each accepted request j(t) under action k(t) occupies the allocated resource for a stochastic
duration Dj(;) k(s)(t), indicating how long the GPU remains locked for that specific inference task.
In practice, the service provider seeks to maximize a max-min fairness objective among different
utility types—e.g., ensuring that user satisfaction, energy efficiency, and revenue are balanced,
without letting any single metric degrade excessively. Meanwhile, the service provider must respect
the service capacity constraints and thus the resulting problem fits into our framework.

Healthcare management. Our framework could be applied to other domains such as healthcare
resource management. In this context, requests correspond to patients seeking medical attention.
The patient type j(t) captures patient characteristics, such as urgency level and medical condition.
Actions k(t) € K represent assigning patients to specific healthcare providers, such as nurses or
doctors. Alternatively, k() = ky, may indicate redirecting patients to other hospitals or outpa-
tient departments to alleviate crowding. The utilities {R; ; x(t)}; could reflect patient satisfaction,
recovery speed, or treatment effectiveness for different medical objectives. For example, if i denotes
a reliability objective, r; ; x should be higher for more urgent patients when j encodes the acuity
level of the patient. The stochastic duration D; x(t) reflects the expected treatment time required
for the assigned healthcare provider to complete the patient’s care. The model incorporates ca-
pacity constraints on healthcare resources, such as hospital beds, treatment rooms, or medical

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 29. Publication date: June 2025.



29:10 Qingsong Liu and Mohammad Hajiesmaili

equipment. The controller must balance resource usage and patient outcomes, and when resources
are unavailable, he can mitigate overload by redirecting patients to other hospitals.

4 Algorithm

In this section, we first introduce preliminaries that facilitate our algorithm design in Section 4.

4.1 Preliminaries
We note that directly tackling (OFARR) is challenging, even when the distributions of problem
parameters are known in advance. This difficulty arises from the stochastic variations in the

outcomes and the unknown value of T. To mitigate this difficulty, we introduce a “steady-state”
benchmark of (OFARR), denoted as (OFARR-S), which serves as the building block for our algorithm:

2je T ZkeKPj Tijk Xjk 24 Viel,
(OFARR-S) max A st $Yjeg Xkexpj - dj-xjr <C
Zke'Kxj,kSL VjEj, x]-!kZO, VkE(](,jEj.

Here (p,r, d) represents the ground truth of arrival probabilities, utilities, and resource usage
durations. The variable x;; denotes the fraction of type-j requests allocated to action k, making
(OFARR-S) a fluid approximation of (OFARR). Notably, [19, 50] employs a relaxed version of the
original optimization problem as the foundation for their algorithms. When applied to our model,
this relaxed version, (OFARR-R), assumes that the realizations of request arrivals and their resource
usage durations under all possible actions align exactly with their underlying distributions (as
detailed in (17) of the Appendix), enabling the careful allocation of reusable resources. However, this
approach is not directly applicable to our (online) setting due to two key challenges: the unknown
time horizon T, and the bandit feedback which prevents accurate estimation of the distribution of
usage durations. In contrast, (OFARR-S) offers a more lightweight alternative, relying solely on the
expectations of the unknown parameters and remaining independent of T, making it a suitable
building block for our algorithm design. Denote the optimal objective values of (OFARR), (OFARR-R),
and (OFARR-S) as OPT*, OPTR, and A*, respectively. The following lemma establishes that A* incurs
only a bounded optimality gap compared to both OPT* and OPTR.

LEMMA 1. The inequalities hold surely that T - OPT* < T- OPTR < T+ A* +I{C < dinax} * dmax * F'max-

The indicator term I{C < dyay} arises from the observation that when C > dyy.y, i.e., resources
are abundant, the capacity constraints in both (OFARR-R) and (OFARR-S) can be safely ignored, as
they are satisfied for all . Consequently, we can deduce that the optimal objective values of these
two problems coincide. Lemma 1 shows that 1* can be interpreted as the target value for the optimal
utility rate of each type. In our algorithm design, we estimate 1* using past observations, which
then used to adjust the penalty weights associated with the utilities.

4.2 Algorithm design

The proposed algorithm operates across multiple epochs and incorporates a multiplicative weights
update (MWU) process. The MWU process iteratively generates penalty weights to effectively
balance different types of utilities earned, resource units consumed as well as usage durations. More
specifically, our algorithm divides the time horizon T into multiple epochs n =0, 1,. . ., where each
epoch n consists of ¢, time steps. We initialize with £y = dp.x and double ¢, for each subsequent
epoch n > 1. We refer to t, as the ending timestep of epoch n. Epoch 0 serves as a warm-up phase.
For epochs n > 1, the algorithm comprises three key procedures: In procedure (I), we estimate
the optimum of (OFARR-S). In procedure (2), we derive the penalty weights based on the estimated
optimum of (OFARR-S) and subsequently determine the allocation decisions using these weights.
In procedure (3), we employ a dual mechanism comprising forced exploration and discarding to
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reduce the likelihood of capacity violations (ensure that the decision sequence generated in the
procedure (2) adheres to the resource capacity constraints with high probability even in the presence
of stochastic outcome variations and estimation errors), while also ensuring sufficient exploration.
This mechanism operates probabilistically, employing carefully designed probabilities f, and g, (as
specified in (3)) to explore and discard the decisions computed in procedure (2). The pseudocode of
our algorithm, namely Exploration-Discarding with Penalty Weights Update (ED-PWU), is shown
in Algorithm 1. Next, we provide detailed explanations for these three procedures.

Procedure (I): estimating A*. In this procedure, we use observations collected up to epoch n,
i.e., the observations during the time-steps {1, ..., f,_1}, to compute an estimate i*(n) of A*, which
is the solution to (OFARR-S). Since parameters p,r and d are unknown in our online (learning)
setting, we replace them with their estimates in (OFARR-S) and solve the following optimization
problem to obtain A (n):

Yjeqg Skex Pi(n) - Fijp(n) -xj 2 A Viel,
(OFARR-S)(n) max A s.t. Zjej Zke?{ﬁj(”) . dj,k(n) “Xjk <C,
Zke’Kxj,kSl’ VjiedJ; Xjk 20, VkeK, jedJ.

Here p(n) is the empirical estimate of p based on the request arrivals up to epoch n. While p can
be directly estimated from the observed samples, as one sample for p is obtained at each time, the
estimates for r and d are constructed using their upper confidence bound (UCB) estimate, #(n),
and lower confidence bound (LCB) estimate, d (n), respectively. The intuition behind this choice
is to encourage more aggressive decisions regarding utilities while remaining conservative about
resource consumption (a similar idea has also been used in related constrained online learning

works [3, 36, 37]). The detailed specifications of #(n) and d (n) are as follows,

Fi e (n) = min {rimas 7o (1) + a2 10 INT 1K1/ 8) [Ny e ()} Vi€ T, f€ T, k€ 5K,

k() = max {1, dy () = donax[2 108 LT IVKI/8) [Ny (ta-1) | Vi € T, K € %K,

where 8, is the confidence parameter; N; x(t) is the number of times that the action k is chosen for
arrival type j up to time ¢; and 7(n) and d(n) are the empirical estimates for r and d, respectively.
By Hoeffding’s inequality, we can verify that 7; jx(n) > rijr, wp. = 1= 68,/(IT|IK||T]) and
dia(n) < djg wp. = 1= 8,/ (1T IIKI).

Procedure (2): calculating allocation decisions via penalty weights. At this procedure in
epoch n, upon observing the arriving request type j(t), we sample a weight vector ¢(t) from a
weight vector set ©(n) uniformly and compute the decision Iz(t) based on ¢(t) (see (2) in Algorithm
1).In (2), #(n) and d(n) represent the optimistic and pessimistic estimates for r and d, respectively,
and are identical to the estimates used in procedure (D (we let 7; j(;) k., (1) = d i(8)Jequn (1) = 0). The
vector @(t) = (Po(t), 1 (1), ..., §1 (1)) is a penalty weight vector, where ¢, () represents the penalty
for resource consumption, and the weights {¢;(¢) };cr quantify the relative importance of different
utility types to ensure fairness among them. The weight vector set @(n) is constructed by invoking
a MWU process (see Algorithm 2) and the weight vectors in ©(n) could be viewed as dual variables
solving the online feasibility problem for (OFARR-S)(n) given A*(n). Notably, in Line 6 of Algorithm
2, € (as detailed in Lemma 2) represents the confidence radius for A*(n), and we show in Lemma 3
that A*(n) — €S < A* with high probability. Generally speaking, these weight vectors altogether
describe the dual prices that trade-off between the utility earned of all types and the resource units
consumed. They ensure that the sequence {l%(t)};’;tni1 1 achieves a time-averaged objective value
close to A, the target objective value. Additionally, constructing weight vectors in this way is also
for a technical reason as we can ensure that {I%(t)};’; +,_,+1 are mutually independent conditional on
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the history H (¢ — 1), as j(¢) is i.i.d. over time. Such independence reduces the difficulty of handling
the complicated correlations in resource feasibility across all time steps.

2

REMARK 1. We remark that in admission control scenarios where only two actions “accept/reject
are available, the selection rule (2) simplifies to a threshold rule based on whether utility outweighs
resource cost, i.e., k(t) = kaccept only if the indicator variable { Y| 1 $i(1n) * Fi j(£) kpeeepe (M) = Po (1) -
dj(t) koeeer (M)} is true. We also note that when C > dpay, resource availability is guaranteed at all
time steps. Consequently, the weight of resource usage, ¢o(t), approaches zero over time, allowing our

algorithm to achieve improved performance guarantees (as reported in Theorem 3).

Algorithm 1 ED-PWU

1: Initialization: ty = £y = dmax, fn = 2€n—1, and confidence parameters §, = 1/ t,zl foralln=1,2,...

2: for time stepst =1,...,% do

3:  If the resource is available, select an arbitrary action. Otherwise, select the null action ki, ;.

4: end for

5: forepochn=1,2,...do

6:  Update the empirical estimates ( p(n),7(n), d (n)), UCB estimate 7(n), LCB estimate d (n), respectively.

7:  Solve (OFARR-S)(n) and obtain its optimal objective value Ae(n). // procedure (D
8:  Run Algorithm 2 and obtain the weight vector set ®, = {gbn(s)}ﬁ": 1
9: th =th—1+1n

10:  for time steps t = tp,—1 +1,...,t, do

11: Sample a weight vector ¢(t) uniformly at random from ©,,. // procedure (2
12: Observe arrival type j(t), and compute
k(t) = ORY —o(t) -d; . 2
(0= arg, max {ZJ Bi(6) - 10 (m) = o (D) ,(t),k<n>} @)
13: Sample w(t) € [0,1] and set // procedure (3
I;e(t), where l;e(t) is sample uniformly at random from K if w(t) < f,, //exploration
k(t) = {k(t) if fo < () < fo+ (1= fo) g
Knull otherwise. //discarding
14: if XI21HDj(r)k(r) (1) 2 t —7+1} < C then
15: Take action k(t) = I%(t)
16: else
17: Take action k(t) = kny
18: end if
19:  end for
20: end for

Procedure (3): exploration and discarding. As noted in the introduction section, the sequence
{I;(t)}f’; +,_,+1 computed in procedure (2) cannot be directly adopted as the final decision sequence.
This is because it is essential to carefully balance the trade-offs among maintaining resource
feasibility, ensuring adequate exploration, and minimizing utility loss caused by discarding or
exploration. Our algorithmic ideas to handle these trade-offs are as follows.

e Exploration. We allocate a probability f,, (to be defined later) for exploration. If the controller
opts to explore, an action k is sampled uniformly at random from %.

e Discarding. If exploration is not chosen, the base decision k(t) is discarded independently
with a carefully designed probability g, (to be defined later) to create slack in the resource
feasibility. The complement 1 — g, could be considered as the retaining probability.
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In our analysis, we demonstrate that these two steps ensure the expected resource usage at any time
is approximately (1 — f, —g,) times the initial resource inventory C. Since this usage is represented
as a sum of independent indicator random variables, it concentrates around its expectation, ensuring
high-probability satisfaction of the resource capacity constraint when g, and f;, are appropriately
chosen. Furthermore, the utility loss for any type due to discarding and exploration is bounded by
approximately f, + g, times the expected utility earned by sequence {k(t)};. In order to optimize
this trade-off, we choose f, and g, as follows.

_ [10g(1/6,) log(1/8,)
fo=0", gn=vi-en+ys wheree,= O( . =+ _— Nj"; W | ®)

Here p, y1,y2 > 0 are tuning parameters, the specifics of which are elaborated in Theorem 2. The
exploration probability f;, is decaying as the epoch grows and will not cause significant overhead
in the algorithm performance. We note that €, captures the estimation errors and is detailed in

Lemma 3. The term O ( /%) in €, arises from errors in estimating p, while O (1 /%A%)

reflects the largest uncertainty in estimating utilities and resource usage duration, dominated by
the type-action pair with the fewest samples. The coefficients y; and y; in g, aim to balance the
trade-off between guaranteeing resource feasibility and minimizing utility loss due to discarding. In
the practical implementation of the algorithm, we use a retaining probability of 1/(1 + g,,) instead
of 1 — g, to avoid the potential negativity of 1 — g, during early epochs. When n is sufficiently large,
1/(1+ g) approximates 1 — g,,, preserving the desired behavior. The discarding and exploration
complicate the analysis of point-wise resource feasibility. In Section 5.3, we develop a coupling
technique to disentangle the intricate dependencies between point-wise resource feasibility (induced

by the sequence {k(t)};) and the outcomes resulting from the sequence {I%(t)}t

Algorithm 2 Penalty weight vectors construction (invoked at the start of epoch n)

1: Input: estimates (i*(n),i‘, (i(n),i)(n))
V1B __ ¢ cach s = L,2,..., 6 ¢(0) = —

-1 .
max{rmax,dmax}\ff [T]+1 [7]+1
: for virtual time steps t = 1,..., ¢, do

2
3
4:  Sample j°(t) from p(n)
5
6

: Initialize: n; =

Compute the virtual action: k?(t) = arg maXg e KUk, {Zl‘ej $i(t) - Fijo ) k(1) — Po(t) - djv(t)’k(n)} .
Update the penalty vector:

Bilt+1) = i(0) - &5 (<11 [, jo ) oy @ = (1) —ec) ). Vie (1171}

Bo(t +1) = do(0) - exp (<1t |~d o ) gy W +C|), =0
B(t+1) = p(t+ 1)/l

7: end for
8: Return the weight vector set ©,, = {¢(t)}§’;1.

5 Main Theoretical Results and Analysis

In this section, we first introduce the designs of the discarding density g, and the exploration
density f;,. We then present the corresponding performance bounds of our algorithm.

5.1 The design of f, and g,

The following theorem is instrumental for the design of discarding density g, = y; - €, + ¥, and
exploration density f, = £,”.
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THEOREM 1. Given any ¢ > 0, it holds that w.p. 1 — 235, foralli € I andn > 1:

.
) by - A
B C

4 (eﬁ +eB+eCten+ ful® + 26fn(dmax — O)F - /1*) — Fmax\2dmaxtn 102(dmax/On) — Fmaxdmax s (4)

e(C+en)
1+gn

1
Z Rijit) k) () 2 1- o1 eXP
t=tp_1+1 1+g (1+€)

ratio term

error term

where (€4, €p, €c) and €, are quantities provided in Lemmas 2 and 3, respectively.

Theorem 1 serves as the foundation for our theoretical results by providing a lower bound to
the accumulated utility of type i during each epoch n. In particular, by setting the specific values
of €2, €8, €C and €, into (4), we can obtain that the error term in (4) is of the order O( SN (fa+
tn+log(1/8,) /min; . N i (tn—1) + /tn 10g(1/6,))), where N = [log(T/dmax)] is the total number of
epochs. To derive a performance bound for our algorithm via Theorem 1, it suffices to establish a
lower bound for min; ; N;x(¢,-1). By noticing that any policy encounters at least one instance of
resource availability every dp,y rounds, we can immediately obtain the following expected lower
bound on the number of samples for all pairs (j, k):

th-1

ZP(k(t)—kJ<t>-J>>an e Z o B o (o).

E

minN; 1 (tp-1
ik ],k(n )=

The term 1/dyax arises from observing that k(t) = l%(t) (line 15 in Algorithm 1) occurs at least once
every dmay rounds. Using Chernoff bounds, we can show that P ( k() < (1- 2) . E[Nj,k(n)]) <

exp (—E[Nj,k(n)]/él) <0 (1/4"(1‘P>) . Consequently, the expectation of the error term becomes

o(E [zgy:l (fo + 6y 0BTT/8,) /min 1 N £ tn1) + 0 10g(1/5n))]) < O(T# \log T + T1~P). By setting

p = 1/3, we minimize the order of this bound to O(T?/?). Accordingly, we choose f;, = t’n_l/3 in our

algorithm to match this analysis, and this choice also explains the emergence of the O(T?/?) term
in our performance bound (see Theorem 2). To deal with the ratio term in (4), we set y; = (¢ +1)/C
and y; = ¢ in the definition of g, (¢ will be specified later), resulting in

1 1 1 1
1+g,,_1+(£+1)6n/C+£_l+en/C‘£+1’
e(C+en) 1 £ [ £
- . — | =(1 . —.0O)=(01 Cl— -1 1 ]
Grac 1 ™| Tag, | =0 oo ol O =0 (73 ~logt1+2)

Thus, the ratio term in (4) can be rewritten as

1 1

ratio term in (4) = m i (1 —(1+¢)exp [C (% —log(1 +£))])+. (5)

Denote L(¢) as
L) = — - (1= +aew ¢ (= - logr+a)]) ", ©

and then (5) implies that our algorithm can achieve at least ; +6 6,7 - L (&) competitive ratio against
, - A* for any € > 0 at epoch n > 1. Let £*(C) be the optimal assignment solving Equation (6).
It is not hard to verify that ¢"(C) = O(4/logC/C). Next, we show that the ratio term in (4) is
of order 1 — O(4/log C/C) under € = ¢*(C) in the asymptotic regime of C. Note that the term
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exp [C (& —log(1+ E))] in L(¢) can be bounded as follows,

1+¢

£ £ 6'2 62 6'2
exp [C(m —log(1 +£))] < exp [C(m - (5— ?))] =exp [C (—1 L + ?)]
2 2 2 2
C(—E—+g2 £ ) C(—€—+€4) = exp [—C—E
2 1+¢2 2 2
Using L(e*(C)) = L (\/log c/ C) and combining all the things together, we can find that when n
is sufficiently large such that €, < 0.5:

exp [C£4] .

= exp < exp

. 1
ratio term in (4) = m - L(£°(C)) = T/(ZC) - L (\/logC/C)
1 1 1 clec (logc)2 '
> . 1= -exp |- exp [C
1+1/(20) 1+ /logC/C 1+4/logC/C 2 c

e ) g
R M

Therefore, by setting p = 1/3, y; = (¢*(C) + 1)/C, and y; = £€*(C) in Algorithm 1, and combining
with Lemma 1, our algorithm achieves at least 1 — O(4/log C/C) competitive ratio against the
optimum OPT*. We formally establish this statement in the following section.

5.2 Main competitive results

In this section, we present the theoretical guarantees of the developed algorithm. The following the-
orem establishes the performance bounds for our algorithm by using the discarding and exploration
densities (f,, gn) defined in Section 5.1.

THEOREM 2. Setp = 1/3,y; = (¢*(C)+1)/C, andy, = £*(C) in(3), wheree* (C) = arg max o L(¢) =
L. (1-(1+e)exp [C (& —log(1+ g))])+ Then our algorithm ensures that

&+1 1+¢

min E
iel

T
1 1 «
7 LRk (t)] > (1 - i)  L((0)) - OPT" = O(|T ldmax - T/*log T Tog 1T IKIIZ])

+£5(0) - (dmax = O - TP + T 4 oy + dona /i + ) 1K1/p}) /T
jeg

Here, we have L(¢*(C)) = 1 - 0O(4/logC/C) as 10
previously proved, and its curve is depicted in Fig-
ure 1. Theorem 2 implies that the performance of
our algorithm is closer to the optimum when T and 06/
C increase. A larger C means that the controller
is endowed with more resource units to buffer

0.8+

0.4+

against the model uncertainty, stochastic nature 0.1 — L(e(0)

of the outcomes, and limited information feedback. — 1-VlgC/C
Compared to [17], where the error term is of the T 200 400 600 800 1000
order O(TV?+d3 ), our performance bound intro- Fig. 1. The curve of L(£°(C))

duces error terms that scale as O(dmay - T?/* + o+ 2jeq |KI|/pj + dmax/Pmin)- The leading term
O(dmay - T*?) represents the performance loss due to forced exploration, highlighting the impact
of model uncertainty and the bandit feedback structure. While our current approach adopts a fixed
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forced exploration schedule, a more adaptive exploration strategy may help mitigate this overhead
and improve the theoretical guarantees. Therefore, an intriguing direction for future work is to
design more refined exploration mechanisms that have the potential to surpass this O(T??) bound.
In Section 6, we demonstrate that under the Quasi-full-feedback setup, our algorithm improves this
term to O(dmax - T/?), achieving the same order of dependence on the time-horizon as [17] under
the same feedback setup. The coefficient dy,, reflects the absence of specific assumptions about
the distributions of D; x(t), such as known variance. By Hoeffding’s inequality, the accumulated
estimation error for d at any given time is at least proportional to its support dpx, and thus the
coefficient dyax in relation to T generally cannot be improved. This contrasts with [17], which
assumes deterministic resource usage durations. The coefficient dyay also implies that our algo-
rithm achieves a meaningful competitive guarantee only when dpa, = o(T'/?). Additionally, the
additional constant term O (Z jeq |Kl/pj + dmax/ Pmin) arises from the uncertainty in p. Intuitively,
when p; is very small—indicating that insufficient samples are available for accurate estimation
under arrival type j—significant performance loss may occur if actions associated with this arrival
type can yield high utility but with minimal resource usage time. In scenarios with only one request
type, as considered in [17], pmin = |J| = 1, and thus d2 .. becomes the dominant constant term.

Finally, we would like to remark that the performance guarantee in Theorem 2 is not optimized for
the case where C > dpax. In fact, when resources are abundant (C > dp,y), resource availability is
ensured at all time steps, hence, discarding becomes unnecessary. In this case, we set the discarding
probability g, in our algorithm to zero (i.e., y1 = y2 = 0in (3)). As a result, our algorithm achieves an
improved competitive ratio of 1. This improved performance guarantee under resource sufficiency
is formally presented in the following theorem.

THEOREM 3. For the case where C > dyax, set p = 1/3,y1 = 0, and y, = 0 in (3) allows our algorithm
to further guarantee that

min E
iel

T

1

= Y Rijierkn (0] = OPT = O ldas - T4*log T - Tog (1T TIKIIZ])
t=1

+E(C) - (dmax = O TP+ T4 & 3 1K1/ /T

jeg

Theorem 3 implies that our algorithm can guarantee a sublinear regret of O(T%?) when resources
are abundant (d > dpax)- Notably, when C > dyay, our model reduces to the indivisible variant of
the horizon-fairness optimization problem in the online setting. In this context, the most closely
related work is by [12] which achieves an O(T'/?) regret bound under the full-feedback setup.
In Section 6, we relax the bandit-feedback setup to a Quasi-full-feedback setup (weaker than the
full feedback setup) and our algorithm guarantees the same regret order of O(T'/?). However, it
remains unclear whether the O(T?/3) regret bound is optimal in the bandit-feedback setup, and we
leave this as an open problem for future work.

We remark that the proofs of our main theoretical results (i.e., Theorems 2 and 3) are built upon
Theorem 1, which involve bounding its error term and applying a union bound across epochs.
Accordingly, we provide the proof of Theorem 1 in the next section. We introduce our proof strategy
by breaking the proof of Theorem 1 into lemmas.

5.3 Proof of Theorem 1

We begin by introducing a coupling technique that serves as a key tool for analyzing Theorem
1. This process involves bounding the accumulated utility for every type i € I in each epoch
n € {1,...,[log,(T/dmax)1}, and thereby leads to the proof of Theorem 1. Note that analyzing
the utility collected within each epoch is not straightforward due to the intricate dependence of
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resource availability on both the previously allocated resources and their usage durations. We
disentangle this intricate dependence via the following coupling argument. For notational conve-

nience, let (R(t), A(t), D(t)) represent the stochastic outcomes (i.e., the yield utilities, the amount
of consumed resource, and the resource usage duration) under action k(t). By our model setup,
we have R(t) = (le(t) k(t)(t) Ij(t)k(t)(t)) A(t) =1,and D(t) = J(t)k(t)(t) Similarly, we
denote (Re(t), A°(t), D¢(t)) and (R(t),A(t), D(t)) as the stochastic outcomes under the actions

k¢(t) and I%(t), respectively. We also define two indicator variables I;(¢) = {w(t) < f,} and
L) ={fy < w(t) £ f + (1=fa)/(149,)}, which are mutually exclusive and are Bernoulli variables
with mean f,, and (1-/2)/(14g,), respectively. Note that the random variables {(I; (¢), Iz(t))}[ —

are jointly independent, and they are independent of {(R(t), A(1), D(t))}t +,_+1 as well. Then by
the definition of k(t), the stochastic outcomes (R(t), A(t), D(t)) can be decomposed as

Ri(t) = I(t) - Ri(t) + L1 (t) - RE(t), foralli € T;

N - . . . . 7
A(t) =L(1) - A@t) +L1(t) - A°(t);  D(t) = L(t) - D(t) + L1(1) - D°(2). g

With a slight abuse of notation, let (R(t), A(t), D(t)) be the actual outcomes under the final
decision k(t), i.e., Ri(t) = R; j(1)k(r) (), D(t) = Dj) k() (t) and A(t) = I{k(t) # knun}. Then

-1

Ri(t) =Ri(1) - I {ZA(T)I{D(T) >t-1+1}<C- 1}, forallie T; (8)

=1

t-1 =1
A() = A(t) -I{ZA(T)I{D(T) >t-14+1}<C- l}; D(t) = D(r) -I{ZA(T)I{D(T) >t-71+1}<C- 1} .

=1 =1

The equations in (8), elaborate on the intricate dependency between the outcomes {R(t), A(t), D(t)}
at time ¢ and those from preceding time steps. This dependency is captured by the indicator random
variable which determines whether the controller can make an allocation at time t. Based on (8),
we handle the accumulated utility of type i within epoch n below:

tn tn t—1
Z Ri(t) = Z Ri(t)-I{ZAi(r)I{Di(T)Zt—r+1}SC—1}
t=tp_1+1 t=tp,_1+1 =

> Z Ri(t) - 1{ ADOKD(r) > t—r+1} <C-— 1} )
t=t,_1+1 T=
tn t—1
= Z éi(t).l{ Z ADUD(r) > t—1+1} SC—l} (10)
t=tp-_1+1 r=max{t—dmax,1}

tn t—1
> Z }ﬁi(t)-l{ Z A(D{D(r) Zt—r+1}SC—1}, (11)

t=min{t,_1+1+dmax.tn 7=max{t—dmax,1}

where (9) is because the coupling (8) ensures A(t) < A(t) and D(t) < D(t) almost surely; (10) holds
since D(t) < dmax. Here we would like to remark that the inequality (11) facilitates our analysis,
because conditioned on the parameters {©,, #(n), &(n),fn, Jn}, which is o(H (t,-1))-measurable,
the random outcomes {(R(¢), A(¢), D(t))}i’; fi41 defined in (7) are i.i.d. Consequently, the random
outcomes {(R(t), A(¢), D(t))};’; 141 QT€ much easier to analyse than the actual random outcomes
{(R(1), A(t), D(E)}2, -

Next, we establish a “lower bound for the sum on the r.h.s of (11), which plays an important role
in the proof of Theorem 1. Denote V (¢) = I{ »i- A(r)l{ﬁ(r) >t-r+1} <C- 1},

= max{t dmax, 1
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which represents the resource availability at time ¢ induced by the sequence {k()}e. Consequently,
the sum on the r.h.s. of (11) can be rewritten as follows:

tn
= > R@®-VQ).
t=ty_1+1+dmax
The analysis on the r.h.s of (11) involves lower bounding the probability of resource availability
V(t) and the utilities earned R(¢) induced by the sequence {l%(t)} ¢ at all time steps within epoch
n. Notably, k(1) is closely tied to k(t), which is determined by the penalty weight vectors in ©,,.
These weight vectors could be viewed as dual variables solving the online feasibility problem for
(OFARR-S)(n) given A*(n). To this end, the following lemma bounds the estimation error of /i*(n).

LEMMA 2. Deﬁnee,‘;‘ —9 [ maxéof(ll/é ) ma)él.(;gg/én),ef = P [210g§|f1|/5 ) andeg‘ = [logt(l_/lﬁn)

+2rmax% + 2| T | (rmax + dmax) \/% For anyn > 1, we can guarantee that

(@ (n)2X —eB—ed wp 1-48, (b)) A*(n) <A*+€5, wp. 1-36,.

Subsequently, the following lemma establishes a connection between (OFARR- S)(n) and the
time-averaged expected resource consumption and utilities induced by the sequence {k(t)}t Ny

LeEmMMA 3. For notational convenience, define oracle x, (¢, j) = arg maxgeguk, ,{ Zier $i - i jx(n) =

4 It I 1 I K|)/on
$o - dj(n)}. Denote €, = 6dmax- /tfj log ;—n + dmaxw’% + dpa ,/% then we

have that

—ZZPJ Fijsn(a(s),]) 2 A~ €n — € — € —€n wp. 1= 115,
s=1 jeJ

1 n
A D 2P dika(gu(s)y) SCHem  wp 1-116,.
s=1jeJ

The lemma 3 builds upon lemma 2 and the properties of the MWU process. Leveraging lemma 3,
we derive the following lower bounds for V (¢) and R(t) under our algorithm:

LEMMA 4. Our algorithm ensures that for any € > 0, with probability 1 — 115, the inequality

1 c(1-f) 1 & *
—Jn
BV [H(tn-0)] 2 (1 rrrr=atal hrven 'E;PJ " fo(p(s),) T € S - dmax )

e(C+en)
1+gn

holds simultaneously for all t € {t,—1+1+dmax, - - - tn}. Also, foranyi € I, with probability 1— 115,

we have that simultaneously for allt € {t,_1 + 1+ dmax, - - -, In}:
A B C *
E[Ri(t) | H(tn-1)] = 1+gn f";j;g'pj Vz]Kn(¢n(S)J)> n— € — €, —€n—fn- A"

We note that, in the special case where C > dpay, it is straightforward to see that E [V (¢) | H (tp-1)] =
1 as resource availability is always ensured. This enhanced technical result forms the basis of Theo-
rem 3. Generally, Lemma 4 establishes that given any ¢ > 0 and i € 7, the following inequality
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holds simultaneously for all ¢ € {¢,1 + 1 + dmax, - - -» In}
e(C+en)
1+gn

E [éz(t) V(1) | H(tn—l)] 2 : (1 - 1+ i)c_l €xp [ ] €xp [f'fn(dmax - C)+]) A

T 1+ 9n (12)
—(ﬁ+e£+eg+en+fnﬂ*), w.p. 1—225,.
When n is sufficient large such that ¢ - f;, - (dax — CO)* < 1, e.g., n > 3loge + 21log dmay, the

inequality e* < 1+ 2x for any x € [0, 1] ensures that

E [ﬁl(t) -V (1) | H(tn_l)] > l+lg (l - a +i)C—1 - ex 5(1C++g€n):|) yh
C

—( Ay By C +en+an*+2s-fn-(dmax—C)+-/1*), wp. 1- 228,

(13)

Inequality (13) provides a conditional expectation lower bound for the r.h.s of (11). To complete
the the proof of Theorem 1, we still need a conditional Chernoff inequality, stated below:

LEMMA 5 (CONDITIONAL CHERNOFF INEQUALITY [40]). Let the random variables {Xt}fi | satisfy the
following conditions: (I) The variables X1, ..., Xy € [0, B]N are jointly independent given a o-algebra
F; (I) There exist real numbers € € [0,1] and v > 0 such that P(E [ ]t\il Xt|77] < v) < e. Then for

any § € (0, 1), the following inequality holds: P( Zﬁl X < v—+/2Bvlog(1/8)) < 5 +e.

However, Theorem 1 cannot be directly derived from Lemma 5 applied to (13). This is because the

random variables {ﬁi(t)V(t)}i’;t tdy+1 TEMAIN correlated even when conditioned on H (#,-1).
tnh

To address this, we employ Lemma 5 on carefully selected subsets of {éi(t)V(t)}t:t,,,1+dmax+1’
partitioning the entire set into disjoint groups. For this purpose, let T' = [, — dnax/dmax |- For
q€{l,...,dmax} andp € {1,...,T}, we define the time index t(p; q) = (t4—1+dmax) +q+(P—1)dmax-
We argue that for any fixed q € {1,..., dmax}, the random variables in the following set are i.i.d.
conditioned on H (t,,—1):

¥(q) = {V (t(p:@) - R (t(pra))},
To establish the conditional independence, note that R; (£)V (t) is o ({(R(r), A(7), D(1))}* )-

measurable for any time ¢t. More specifically, there exists a deterministic function z; sTucthd?ﬁXat
ROV (1) = z:({(R(7), A(7), ﬁ(r))}:':t—dmax)’ where z; depends only on i and remains invariant
with respect to t. Since the time indexes within ¥(q) are separated by at least dmax time steps,
we know that for any p,p’ € {1,...,T} with p # p’, the index sets {t(p;q) — dmax, .- .-t (P, q)}
and {t(p’; q) — dmax, - - -» t(p’, q)} do not overlap. By observing that {(IAZ(T),A(T),ﬁ('r))}:"zt'ﬂ)rl
are independent conditioned on H (#,-1), we conclude that the random variables within ¥ (q) are
independent conditioned on H (t,-1).

To establish the identical distribution, note that {(R(t), A(t), D(¢))}"" are identically dis-

t=tn_1+1
tributed conditioned on H (t,-1). Given that Ri()V (t) = z;({(R(), A(7), D(0)}'_, 4. ) and z; is
independent of ¢, we conclude that the random variables in ¥(q) are also identically distributed
conditioned on H (¢,-1).
With the conditional i.i.d. nature of the variables in ¥(q) for any g, we can apply the conditional
Chernoff inequality (Lemma 5) to these variables to establish Theorem 1 using ¥ = H (¢,-1) and

B = rmax- Specifically, by summing E [ﬁ,-(t) V() | 7—((t,,_1)] over t € {t(p; q)}gzl, inequality (13)

implies that, for any ¢ > 0, with probability at least 1 — 22, the following inequality holds:

e[ A2 )) o

r
PUE[R (t(p:@) -Vt (p3) | H(tn-)] = v(@) (1

p=1
—T- (e} +eB+eC+en+ fud* + 26 - (dmax — C)T 1)

1
(1+e)C-1
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forall g € {1,...,dmnax}- Note that v(q) < rmax - T forall g € {1,..., dmnax} with certainty. Using
Lemma 5, we further deduce that, with probability at least 1 — 8, /dmax:

T
Z ﬁi(t(PZ q)) - V(t(p;q)) = v(q) — rmaxV2I log dimax/dpn, for any g € {1, ..., dnax}- (14)
p=1

Summing (14) over q and applying the union bound yield
tn

Z éi(t) . V(t) P (1 - (1 n i)c_l €xp [E(C+ en) ])+(€n - max)Ik - rmaxdmax VZF logdmax/5n

1+
t=ty_1+dmax+1 gn

~ Tmaxdmax — (b — dmax) - (€5 + € + €5 +en+ fna* +2¢+ fu+ (dmax — C)*A"), wp.1-238,. (15)
Finally, by leveraging (11) that Z; (Ri(t) = t rdo, Ri(t) - V(t), we establish Theorem 1.
Theorems 2 and 3 are applications of Theorem 1, and we provide their proofs in the Appendix.

6 Extending to Quasi-full-feedback Setup

In this section, we extend our analysis to a Quasi-full-feedback setup where the controller can
observe the outcomes for all possible actions if the resource is available (i.e., the resource is not
blocked). This feedback setup, aligned with the setup in [17], is more informative than the bandit
feedback setup but less comprehensive than the full-feedback setup. Notably, in this case, the
controller can collect sufficient samples for all pairs (j, k) € J X K, thereby eliminating the need
for forced exploration. As a result, we set f, = 0 (i.e., p = o0) in our algorithm, simplifying the
exploration-exploitation trade-off. The following theorem demonstrates that, leveraging this richer
feedback structure, our algorithm achieves a tighter performance guarantee.

THEOREM 4. Under the Quasi-full-feedback setup, our algorithm with p = oo (f, = 0), y1 =
(e(C) +1)/C, and y, = €*(C) ensures that

mmE[ ZR(t)] (1——) L(*(C)) - OPT*

1 |K|
= (1T 1dmax T Tog T - Tog(ITTIKIIT) + dipex " L (1= 05/0) £(e (C>>)/T

Moreover, for the special case of C > dpax, we have that (regret guarantee)

min £ = Z Ri(1)| 2 OPT* = O(17 ldmaxyTTog T - Tog (T IIKIITT) + dipax + 25 " )/T
iel ]GJ

The proof of Theorem 4 exploits that our system could receive a linear number of samples. Specifi-
cally, after ¢ time steps (for sufficiently large ¢), the system obtains approximately IPTJ" (1- %) L(e"(C))
-t = O(t) samples for all pairs (j, k), as established in Lemma 4. Notably, when C > dyay, this
Quasi-full-feedback setup aligns with the full-feedback setup and our formulation reduces to the
indivisible variant of the horizon-fairness optimization problem. This corresponds to the framework
presented by [12], and we achieve the same regret order as in their work.

7 Conclusion

This paper introduces a general framework that unifies online reusable resource allocation with
fairness optimization, addressing the challenges of balancing multiple performance metrics under
model uncertainty and a bandit feedback setup. We develop an algorithm that achieves a competitive
guarantee of ((1 — %)L(e* (0)),2/3), in which the competitive ratio approaches optimality as the
resource capacity increases. Furthermore, we show that under a Quasi-full-feedback setup, our
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algorithm can achieve an improved competitive guarantee of ((1 — %)L(e* (C)), 1/2). This work
lays the theoretical groundwork for developing more equitable computing systems.

Future research could explore more complex scenarios, such as situations where different requests
consume varying amounts of resources. In addition, investigating tight lower bounds—particularly
in the bandit feedback setting—remains an open problem. Establishing a rigorous, matching lower
bound would not only complement the current upper-bound analysis but also provide deeper
insights into the fundamental performance limits of online algorithms.
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A Proofs

This section provides the proofs for all listed lemmas and theorems, with the exception of Theorem
1. Before delving into the proofs, we first introduce several supporting lemmas.

LEMMA 6 (AzuMA-HOEFFDING INEQUALITY [31]). Let N be a positive integer and B be a positive
real number. Suppose the random variables X1, . .., XN constitute a martingale difference sequence
with respect to the filtration {F,}Y nos -6 E[X,|Fn_1] = 0 almost surely for everyn € {1,...,N}. In
addition, suppose |X,| < B almost surely for everyn € {1,...,N}. For any § € (0, 1), it holds that

( ZX L 121og(z/5)
N

LEMMA 7 (MULTIPLICATIVE CHERNOFF INEQUALITY [31]). Suppose random variables {Xt}lt\i | are
independent, and that X; € [0,B] forallt € {1,...,N}. Denote p = E[ filXt]. The following
concentration inequalities hold for any fixed but arbitrary 5 € (0,1):

N N
P ZXt > p+2‘/Bylog% +2Blog%) < P ZXt < p- ‘IZBplog%) <

t=1 t=1

LEMMA 8 (MULTIPLICATIVE WEIGHT UPDATE). Let {£(s)};_, be an arbitrary sequence of vectors,
where £(s) = (£;(s))iefo,1,...,|7|} € [-B,B] m”for eachs € {1,...,}. Consider the sequence of vectors
3(1),...,9(r), where 3(s) = (8i(s))iefon,.. |1} € A1 s defined as

exp [-n(s) X521 4i(n)] ylog(|7]+1)

andn(s) = Yo+ 1
Secton i e [ s am] " (16

di(s) = B\/E

foreachs € {1,...7},i € {0,1,..,|Z|}. Then for anyi € {0,1,...,|I |}, it holds that

log(|7]+1)
Zt’(s)>—z Z 19,(5)4(5)—23,/?.

s=11€{0,1,...,| T |}

The proof of this lemma can be found in Chapter 7.5 of [38].

A.1 Proof of Lemma 1

We begin by adopting a similar analysis from [19] to establish OPT* < OPT® by showing that any
optimal solution to (OFARR) is feasible to (OFARR-R). We then derive OPTR < A, + dmax * Tmax/T
by constructing a feasible solution for the dual of (OFARR-S) using an optimal dual solution to
(OFARR-R).

Recall that OPTR is the optimal objective value to (OFARR-R), which is defined as follows,

(OFARR-R) max A

s.t ZT: Z ZPJ Tijk Xjk(t) 2T-A Viel,

t=1 je T ke K

DD P PDjk(0) 2t =T+ 1) - x(8) < C Ve € [T, (17)

=1 je T ke K

Dixk) <1 Vjed, telTl xu(t) >0, Vkek, jed.
keK
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To establish OPTR > OPT*, consider a policy 7 that achieves the optimum OPT* for (OFARR), i.e.,
min; {E [% Zthl Zke?(Ri,j(t),k(t)Y]f(t)]} = OPT". Define x;,(t) = P(Y(¢) = 1[j(t) = j), and
we claim that {x;(t)};x, is feasible to (OFARR-R) and the objective value of (OFARR-R) under
{xjx(t)} k. equals min; {E [% S Skexc Rijn k() Y]f(t)] }. Thus, verifying both the feasibility
and equivalence of the objective value can establish OPTR > OPT*.

To verify the feasibility of {x;(t)} . for (OFARR-R), note that the policy r satisfies the resource
capacity constraints at any time. Specifically, the inequality ».!_; Ycqc I{Dj(r) k(1) > t — 7+
1}Y7(7) < C holds for all t € [T]. Taking the expectation of the left-hand side over Y;"(7), D x(7),
and j(r) forr =1,...,t yields:

E|Y > HDjmi (D) 2 t—r+1}- Y7 (1)
=1 ke KX
t
=X > D D) = t =+ 1}] k(0 (18)
=1 keK je T
t

Z Z ZPjP (Djk() 2t —7+1) - x;(7) < C.

=1 keK je T
Similarly, taking the expectation over the accumulated utility of each type i € I yields:

T T
E| >, D Ry ® YT | = D07 > pierijae - xjk(0).

t=1 keK t=1 je T keK
Hence, the claim regarding the equivalence of the objective value is verified.

To complete the proof of Lemma 1, we next demonstrate that T-OPTR < T-A*+7aydimax holds with
certainty. Since D; x(t) € [1, dmax] for all j, k, ¢, the resource capacity constraints in (OFARR-R) can
be equivalently written as Z;:max{t—dmax,l} 2jeq 2kexk PiP (Dj’k(r) >t-1+1)x;.(1) <C, Vt €
[T]. Similarly, the resource capacity constraints in (OFARR-S) can be written as ¥’ ;e ¢ Xxex Zj:ix
pj -P(Dj(1) 2 7) - xj i < C. Therefore, the dual of (OFARR-R) can be expressed as:

T
(OFARR-R-D) : min Z Z Bis+C-a
xbr S \jer
min{t+dma—1,T}
S.t.ﬂj3t+pj Z P(Dj,k(r)2T—t+l)-af—ijrl-,j,k~pi20, VjEJ,kEW,tE[T],
=t iel
TY pi21; pi20Viel; a20Vte[Tl; 20 VjeJ, te[Tl.
iel
which is equivalent to

T
(OFARR-R-D) : min > [ >" p;- f;,+C-a
@p, t=1 \jeJ
min{t+dmax—1,T}
s.t. B+ Z P(Dj,k(r)Zr—t+1)-aT—Zri!j,k-p,~20, ViedJ, keXK, te[T],

7=t i

TY pi21; pi20Viel; o20Vte[Tl; 20 VjeJ, te[Tl.
iel
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Similarly, the dual of (OFARR-S) is given by:

(OFARR-S-D) : min ij.ﬂj+c.a
app
Jjeg
S-t~ﬁj+a'dj,k—zri,j,k'm20, Vied, kek,
iel
ZPiZl; pi=0,Viel; a>0; f;>0Vje[J.
iel

Let (a", B, p*) be an optimal solution to (OFARR-S-D). Define the solution (& = (@) B =
(Bj.t)j.e» p = (pi)i) as follows,

a =a*|T forallt € {1,...,T},

B = ﬂj/T forall j € J,t €{1,...,T —dmnax},
P rnax /T forallje Tt € {T —dpax +1,..., T},
pi=pi/T forallie 7.

We claim that the solution (&, B, p) is feasible to (OFARR-R-D). Note that the objective value of
(OFARR-R-D) under (&, f, p) can be bounded as

Tmax dmax dmax % * Tmax dmax *
T:,Z&(l_ T )pjﬁj+C~a ST+A.

Thus, to establish the bound T-OPTR < T-A*+dmax max. it suffices to show the feasibility of (&, B, p)
to (OFARR-R-D). Firstly, by the optimality of (a*, B*, p*) to (OFARR-S-D), we have 3};c 7 p; = 1.
Therefore, it is sufficient to verify the feasibility of the first set of constraints in (OFARR-R-D). For
the case where t € {T — diax + 1,..., T}, the constraints are satisfied since f it = max/T while

2iic7 Tijk * Pi < 'max/T. For the another case where t € {1,...,T — dmax}, the constraints remain
feasible because

min{t+dmax, T}

ﬁ_j,t+ Z P(Dj!k(T)2T-t+1)0_¥1——zri!]’3k'p_i

=t iel
1 t+dmax
:T ﬂj+ Z P(Dj,k(T)ZT—t+1)a:—Zrl‘,J”k'lD;~k
| T=t iel
1 [ dmax
=z ﬁ;"‘ZP(Dj,k(T) > 1) aj—ZriJ,k-p;‘
L =1 iel
1 * * *
:? ﬁj +dj’k'0{T—Zri’j,k',Di > 0.
L iel

For the special case where C > dp,x, the resource capacity constraints in both (OFARR-R) and
(OFARR-S) can be safely ignored, as they are guaranteed to hold for all + € [T]. Consequently,
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(OFARR-R) and (OFARR-S) simplify to the following forms, respectively:

T
(OFARR-R) max A s.t. Z Z Z pj-rijk Xty =T-A, Viel,

t=1 je T ke K
Dixt) <1, Vied telll  xpx(t) 20, Vkek, jed, te[Tl.
kexK
(OFARR-S) max A st » > pyerije-yju=A Viel,
jegJ kekK
Dyt Vieds  yx20 Vkek jed.
kexK

Denote {x; (%)} and y* as the optimal solutions to (OFARR-R) and (OFARR-S), respectively, when

C > diax. It follows that A* < OPTR, as the solution x, defined by xjk(t) = y}*. o 18 feasible to (OFARR-
R). The corresponding objective value of x under (OFARR-R) is exactly A*. Conversely, 1* > OPTR
holds because the objective value of (OFARR-S) under y, where y;x = 1/T - Z,TZI x}‘k(t), equals

OPTR, and y is feasible to (OFARR-S). Therefore, we conclude that A* = OPTR when C > dpay. Put
all the things together completes the proof of Lemma 1.

A.2 Proof of Lemma 2

To establish that 1* < /i*(n) + €} + €8 holds w.p. 1 — 45, we construct the following solution %(rn)
for (OFARR-S)(n),

R 1 . .
Xjr(n) = T+ A X Vi€ d, ke,
n

where x* is an optimal solution to (OFARR-S). We claim that with probability at least 1 — 26, x(n)
is feasible to (OFARR-S)(n). Furthermore, it holds that with probability at least 1 — 25,:

D0 i) - Fagu(n) - &y (m) 227 - €B - et (20)

jeJ keK

These two properties clearly imply that inequality A* — €} — €3 < A*(n) holds with probability at
least 1 — 46,,. Thus, our focus shifts to establishing the feasibility of x(n) and verifying (20).

To verify the feasibility, we apply the multiplicative Chernoff inequality (Lemma 7) to X; =
Dkexc di(r)k 'x;f(t),k fort € {1, .., t,_1}. Observe that ﬁ Z?;‘ Xs=Yjeq ZrexPj(n) - djk - x
and E[ - Y71 X(] = 2jeq 2kek Pidjk 'xj*.’k. Thus, with probability at least 1 — &y, it holds that

th-1 s=1
Z Z pi(n) - djk - x5y
jeJ kekK
4dmax 1 2dmax 1
SZZPf-df,k-x’*w Zzpj'dj,k'x’fk'log—+ log —
jeJ keK / In-1 jeT kek /> 5n th-1 5n
4dnaxC 1 2dmax 1
<C | g = 4 log -
fn-1 & (Sn Ih—1 & 5n

d 1 2d, 1
=C[1+2 19X Jog — + — 22 1o — =C(1+ A).
C-thq Ochn C-thq Ogc‘sn €n
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Additionally, the concentration inequality for the LCB estimate d(n) implies that

3 S B dm) xS Byn) - dxye wp. 16

jeJ keK jeJ keK

Then according to the definition of %(n) we can derive that 3’ ;¢ ¢ Xxeq pj(1) - cfj,k(n) “Xjk(n) =
L Vg Zkexc pi(n) - dAjyk(n) -7} < Cholds with probability at least 1 — 25,. This indicates that

1+e;‘;‘

x(n) is feasible to (OFARR-S)(n) with probability at least 1 — 25,,.
To establish (20), we apply the multiplicative Chernoff inequality again to X; = Y\ rcqc i j(r)k *

x;f(t)’k fort € {1,...,t,-1}, which yields:
Z Z ﬁj(n) “Tijk* x;,k
jeJ keK
2rmax * Xjeg Dkek Pj - Tijk = X, - 1og(|L]/6n)
> Z ij'ri,j,k'x;’k_\/ ; L w.p. 1-3,/|7|
JET keK n-1
* 2log(11/5,)
2 Z ij'ri,j,k'xj,k_rmax % Wpl—én/lfl
jeT kekK n-1

2log(|7]/6 .
2 1 | T e w1 s
n-1

The concentration bound for 7(n) further implies that for any i € 7:
DB - Fagan) x> TN i) rikc xp W 1= 6,/111.
jeJ keK jeTJ kekK
Combining these results, we establish that for all i € T
Z Z pi(n) - Fijpe(n) -y, 2 A" = €l wp.1-26,.
jegJ kekK
Finally, the inequality (20) can be derived using the definition of x(n):

D B ) Rk = —— 3N ) gl -

jeJ kekK jegJ kekK

A —eB
n * B A
>N —€, — €,

T 1+é

where the last inequality holds since 1* < ryay < 1+ €2 + €5,
Thus, the remaining thing is to prove P(A*(n) — €5 < 1*) > 1 — 38,. Recall that the dual of
(OFARR-S) is given by

OFARR-S-D) : min ifi +Ca
( ) ; Z piB;

wPP jeT
S.t.ﬁj+dj,k'0(—zrl‘,j,k'piZO,VjEJ,ke(](
iel
ZpiZI; pi=20,Viel, a>0, f;>20,Vjed.
iel
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Similarly, the dual of (OFARR-S)(n) is as follows:
(OFARR-S-D)(n) : min Z pi(n)-pi+C-a

@hp jeg
st B+die(n)-a@— Y fik(n) pi20,Vjed, kek
iel
Dzt piz0Viel; @20 f;>0Vjed.
iel

Since the feasible domains of (OFARR-S-D) and (OFARR-S-D)(n) are identical, any optimal solution
to (OFARR-S-D) must also be feasible to (OFARR-S-D)(n). Assume (&, f*, p*) is an optimal solution
to (OFARR-S-D) and then it holds that

M= pifi+Cat, Y pi=1 By= Y ripk-pl —dik-a’, Vied, kek.
jeg iel iel
Now we claim that the constructed solution (&, ﬂ* p), defined as

Ak *

a =a,

2log(IT 1K L |/6n)
mingeq Njx(tn-1) ’

pi=pi, Viel.
is feasible to (OFARR-S-D)(n) with probability as least 1 — 28,. To prove this claim, note that
Yierp; =1land = Yicrriji-p; —djk-a” 2 0,¥j € J, k € K, which together imply that
a* < rmax. Hence, the following inequality holds that for any pair (j, k):
B +dik(n)- & = > Fiji(n) - p

iel

2log(ITN1KI| L |/6n)
mingex Njg(tn-1)

21og(|T K11 Z1/5n)

mingcgc Nk (th-1)

N ( dop— 2 \/zmg(qu/an)

Nji(tn-1)

= ,Bj + (zrmax + deax)\/ + dj,k(”) cat - Z fi,j,k(n) ' Pj

iel

(@
= ﬁj + (zrmax + 2dmax)\/

o = () pi o wp. 18,/ (1T IIKD)

iel

D 1 + (s + ) \/zmgummnﬂ/an) . ( 4k~ 2 \/zlogwnm/an)) -

mingex Njx(tn-1) Nji(tn-1)
2log((TIKIT/50 .
= r,-,j,k+zrm\/ BUTIKITON) i sup. 1~ 28,/ (17115
= ik (tn-1)

21og(|T[IK11L1/6n)
> Bi+(2 2d d~-*—§,~-?‘
—ﬁ]'*‘( Tmax + max)\/ inke‘KNj,k(tn—l) tajk-a Vijk * Pi

iel
21og(1TNKILY/on) . 210g(|T1K1/6)
~ 2dimax : — &Imax p.1-26, X
’ \/ Naln ¢ \/ Nt 2P V1= 28/ 171D

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 29. Publication date: June 2025.



29:30 Qingsong Liu and Mohammad Hajiesmaili

where (a) and (b) hold due to the concentration bounds for d (n) and 7(n), respectively. Further
leveraging the facts that 3; p; = 1 and a* < rpay, wWe have

B +dik(n) - @ = " Fijun) - i

iel
21log(|T K| L1/ 6n)

> B + (2rmax + 2dmax - +dig-a" - Tijk* ;k

P+l )\/ mingeg Njg(ta—) ; skp

21log(|T K| L/ 6n) 2log(IT 11K/ 6n)
- deax - zrmax e — w.p. 1-— 25" j 7(
\/ Njic(tn-1) Njie(tn-1) P A
> fi+dik- @ = ) rijipp 20, wp. 128,/ (I 1K),
iel

This completes the proof that (&*, f*, p*) is feasible to (OFARR-S-D)(n) with probability as least
1 — 25,,. Next, we show that the objective value of (OFARR-S-D)(n) achieved by (&*, ﬁ*, p*) has a
gap of at most € compared to A*, with high-probability.

Firstly, by the definition of A*(n), it is upper bounded by the objective value achieved by
(a*, B, p*) in (OFARR-S-D)(n). Hence, we have that

() <> pi(n) - fy+C-d
jegT

\/zlog<|3*||7<||f|/5n>

mingeg Njx(tn-1)

< D B B+ Ca + D 255() (ax + )
jeg jeg

=D BB +C- @+ ) 2 + )

mingeg Njx(tn-1)

\/zlog(|3'||7(||f|/5n>

jeg jeJ
(a rmaX(Z‘ j %)10 (1/5’1) max | 1/0n
2 ijﬁf+2\/ eg Psf;)log 4 o Tmax 108(1/00)
s h—1 th-1

\/zloguml%llﬂ/@n) wp.1-6

+C o+ 2(rmax + d,
Z (Pmax + ) mingeg Nj i (th-1)

jeJ

Fmax Z i57) 1o l5n
:A*”\/ (e P 108(1/0n)  ruy l0g(1/5,)

th—1 th-1

\/mog(IJII‘KIIII/(Sn)

mingeg Nj i (th-1)

+ 3" 2(Fimax + dona)
i€

log(1/6, log(1/6, 21 K| IL|/bn
o | BB Tor8] L lea T IRITIS
tn—1 In-1 icT mlnkE‘T(Nj,k(tnfl)

. ,lo 1/6,) log(1/6, 21og(|TIK|| L /6
<A™+ 2rimax gt( / ) + gt( / ) + zljl(rmax + dmax)\/min gil]k |l(]\|/.| k|(/t ))
n-1 n-1 jeJ ke j.k\In-1

c
=L +¢,.
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Step (a) applies the multiplicative Chernoff inequality, leveraging the key fact that f; < rmax.
This holds because the condition }};c 7 p; = 1 is satisfied due to the optimality of the solution
(a, B*, p*) to (OFARR-S-D). Combining these arguments establishes the following bound

)[*(n) < ef + A%, wp.1-36,,
which completes the proof of Lemma 2.

A.3 Proof of Lemma 3

The proof critically relies on a pivotal application of Lemma 8, which serves as the foundation for
constructing Algorithm 2. Specifically, for each s € {1,...,#,}, we define

o (21)
~djo(s) ko(s)(n) +C ifi=0.

) = {fi’];v(s)’kv(s)(n) (') - ifi=12..17],
Since 7;jx(n) < rmax and cfj,k(n) < dmax it follows that |f;(s)| < max{rmax, dmax} for all i =
0,1,...|7|ands € {1,..., £,}. Moreover, under the specification of {f(s)}ﬁ’;1 in (21), it can be directly
verified that the MWU weigh vector J(s) in lemma 8 is equal to ¢,(s) for each s € {1,...,8,},
where {(/),l(s)}z’;1 are the weight vectors in ©(n). Applying Lemma 8 under these conditions yields
the following inequalities (which simultaneously hold with certainty):

f
1 G, A* /810 (I I]1+1) )
[[— Z ”i,j”(s),k”(s)(”)l - (/1 (n) - 6,(.5) > O(n) — rmax g[— foreachie |[I|, (22)
nos=1 n
!,
13- ,810g(|]|+1)
_ [E SZ:; djo(s)ko(s)(n) | + C = ®(n) — dmax T (23)
1@

o= D Il (Fumisraet (m) = (B (m) = )

™ s=1 |i1e{1,... T}

where

thnols) (—cijv(s),kv(s) (n) + c)] . (24)

Next, we proceed to prove the following three inequalities:

[ 2 2 [2 2 [2 2 [ 2 2
P (I)(Tl) > —Fmax Z log 5_,1 - dmax Z lOg 5_,1 — Imax E lOg 5_,1 — dmax ; IOg g) >1- 95,1,
(25)
% % 7| 5
P Z rl-,ju(s),ku(s)(n) < Z Z pj- r,»,j,,cn(%(s),j)(n) + 2Tmaxa [ 28, log 5—n >1- Zﬁ, (26)
s=1 s=1 jeJ
n tn 1
P ; ooy 50(5) (1) = ;;{ij e (g ().)) (1) = 2dmax [ 26, log 5|21 (27)
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To establish (25), we assume that x* = {x; i }ieTkex is an optimal solution to (OFARR-S). According
to the selection rule for k°(t) in Algorithm 2, it holds that

ln
@(n)z}z > ¢n,l(s)({z f,,ju<s>,k<n>'x;;(s),k}—(i*(n)—e,%)

™ s=1 |ie{1,...| 7|} keK

+ Pno(s) (— {Z djo(s)x(n) 'x;”(s),k} + C) :

keK

(28)

The concentration bounds for #(n) and d(n) imply that

®(n) >—Z > ¢n,l<s>({zr,,,-u<s>,k-x;(s>,k}—(i*(n)—e,%)

tn s=1 |1e{1,...| T} keK

+ Pno(s) (— {Z djo(s)k * (S) k} +C) w.p.>1-28,
keK
1,
1 ¢ i ) N
NP ¢’“(s)( 2, 2 B ke xy = ( (n)—e,€>)
" s=1 (el jeT kek
+ Pno(s)| - Z Z ﬁj(fl) . dj’k . x;’k +C
jeJ keK

2 2 2 2
— Fmaxq| — 1 ——dmx,/—l - p.>1-268 29
Tma 7 Oga,, =\ 7 ogén w.p n (29)

i
%Z Z ¢nt(s)( ZZPJ Tjk xk —(i*(n)—eg))

jeJ keK

+ ¢n0(5)( ZP} ]k x]k}+C) rmaxﬂ log(s maxﬂ log(s

jeJ kekK

2 2
— Fmax log — —dpax+/—log —  wp.>1-268 30
ma\/n g5 ma\/fn g(sn P n (30)

l\lm

£,
1 - 5 *
2[_ Z nl(s) Z ij.rl,j,k'xj’k -1
nos=1 {1,..| T} jegJ keK
+ ¢n0(s) Z ZP] _/k X jk +C rmax\’ 10g6 max\’ 10g5
jegJ keK

2
ty

- rmax\’ - maxﬂ log - w.p. >1- 35 (31)
> — (rmax + dmax)1 ’ i IOg 5— — (rmax + dmax)w ’ [— log 5— (32)
n— n n n
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Step (29) leverages the fact that j(s) is sampled from the distribution p(n) and applies the
Azuma Hoeffding inequality (see Lemma 6) with the filtration {F (s) }ﬁ'; | defined as ¥ (s) =
a({#(n),d(n), p(n)} U {j°(r)}3_,). This leads to the conclusion that the inequality in (29) holds
with probability > 1 — 25,. Step (30) applies the Hoeffding inequality for the estimates p(n), which
are computed based on the observations up to time t,_;. Step (31) follows from the Lemma 2, which
establishes that i*(n) < A* + €€ holds with probability at least 1 — 36,,. Step (32) is justified by
the feasibility of y* for (OFARR-S) and the fact that 3’ ;c g Xxex pj - djk y <G Notably, the
inequality in (32) holds with certainty. Put these things together completes the proof of (25).

Finally, we prove inequalities (26) and (27) both using the Azuma-Hoeffding inequality. In-
equality (27)) can be shown by considering {r; jo(s) ko(s) — X jeq (1) - ri,j,xn(tpn(s),j)}ﬁ';p which
forms a martingale difference sequence with respect to the filtration {T(s)}ﬁ": | defined as F(s) =
o({r(n), &(n), p(n)}U{j°(1)}i_,). Crucially, in the conditional expectation E[r; jo(s) ko (s) | F (s—1)],
the randomness lies solely in j°(s), as k?(s) is deterministic conditioned on j%(s) U ¥ (s — 1). Since
the weight vector ¢, (s) is ¥ (s — 1)-measurable, applying the Azuma-Hoeffding inequality yields

£y tn-1

. f 1]
Z Fijo(s)ke(s) < Z Z Pi (1) Tijic(pn(s).) + Tmax |26 Jog ==, wp. > 1= 6, /|1].
s=1 s=1 jeJ n

Then applying the Hoeffding inequality into p(n) gives

¢, t,
n y n |I|
Z Z Pi(n) - Tijcn(gn(s).)) < Z Z PJ Tijn(pn(s))) + rmax\fZl’n log 5 wpzl- Sn/1 1.

s=1 jeJ s=1 jeJ

Thus, the inequality (26) follows.

Similarly, inequality (27) can be shown by considering {d;o(s) ko (s) = X je.5 £ (1) dj;, Kn(¢n(s) 0 }S "
which also forms a martingale difference sequence with respect to the filtration {F(s)}™ o, By
applying the Azuma-Hoeffding inequality, we obtain

Z djo(s).ke(s) < Z D550 diy(gas).) + dumaxy [ 26 log = — &p.
s=1 jeJ
Applying the Hoeffding inequality again to p(n) yields
Z DA diugatsr < Z D0 D)) + dumaxy| 26 log - 5. = On-
s=1 jeJ s=1 jeJ

Combining these results completes the proof of inequality (27). Therefore, based on inequalities
(25), (26), and (27), for all i € I we have that

£, n
1 ¢ 1
- Z Py Tijra(gn(s))) 2 3 Zru 9(s),k(s) ~ 2max 10g A

”s:l jeg

I {,
1 [2 1 1 log(|Z[|T 1K1/ 5n)
= — ¥i v v n)— Zrmax —log — - — "max
t, Z i)k (s) (1) £y gén by & \/ Njo(s)ko(s) (tn=1)

s=
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¢,
10, /2 1 2log (|7 || T 1K1/ 5n)
- i,jo v -2 max —1 o ~ max .
fn ; rl,] (s).k?(s) (n) T, fn 0g 5'1 g \/ mlnj,k Nj,k(tn—l)
2 8log(|7]+1) 2 1 2log (7| T 1K1/ 5n)
*(n) = €| + d(n) — ittt = AN il P A 2 log — —
(/1 (n) En) + (n) "max ‘, Tmax ‘ og 5, max minj,k Nj,k(tn)

v

\%

[8log(17]+1) /2 1 2log(|Z[IT 1K1/ 5n)
S A B Crd(n) - et = A it LA 2 log — —
= €, —€, — €, t (n) max 0 max 0 0g 5, Tmax minj,k Nj,k(tn—l)
2 2 2
> (/1* —eA P eg) ~ (Foa + da)+ | ——log 5~ = (rux + dmaxu/ log
,810g(|]| +1) /2 1 210g(|fl|.7||7<|/5n)
- xA\|——————— — 2rmax+/ — log — — x - p.1—-98
ma tn fma tn o8 On fma mlnjkNjk(tnfl) WP "
2 2 81 I|+1
> A - ef - ef - e,(,f — (47max + 2dmax) [ log — — 0g(| [+1)
th-1 5n

_, \/zmg(unmm/an)

min; g Nj(t,-1)

>V -l -l -l —¢,

which establishes that the inequality é Zﬁ”zl e T PiTijfalgn(s)) = A" — € — €f — €5 — €, hold
simultaneously for all i € 7 with probability at least 1 — 118,,. Similarly, it holds that

¢,
- 2. 1
- Z Z P difu(pu(s)i) < Z djo(s)k(5) + 2dmaxy 7 log = wp.1-25
s=1 n n

"sljej

L5 it 0+ 2o [Fog L+ 2 S [LRT I
[i i jo(s)ke(s) (1) + deaxw/ log 5— + dmaX\/ 2?5}1‘;{]]”52/ ?)
< C+ (Tmax + dmax)+ / z log 5 + (Pmax + dmax) / -~ log 5—n
+ dimax % + 2dmax+ | ; log 5i + dmaX\/ % w.p. 1-98,

Ot (2t ddo) / soglZi 1), [losUTIKDo
- max max max mlnjkNjk(tn l)

< C+ey.

This completes the proof that Z 1 25e g P Ajifu(n(s).j) < C+ € holds with probability at least
1 - 118,. Combining all thmgs together the Lemma 3 follows.
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A.4 Proof of Lemma4
We begin by noting that:
-1

E[V(t) | H(tae1)] > 1-E|I Z ADUD(r) >t-t+1}>C—1 ’ﬂ(tn_l).

r=max{t—dmax,1}

=M, (1)

The proof of the lemma involves two key steps. Firstly, we demonstrate that for any ¢ € {t,_; + 1 +
dmax, - - -» tn} and any fixed ¢ > 0, the following inequality holds with certainty:

e(1-fa) 1

tn
1

M,(t) < ————— - —._E d: Nte-fydoa | 33

(1) (1+¢)c-t exp 1+g, S:lpl ikn(9n(s)J) € T al (33)

Importantly, the right-hand side of (33) is independent of t and only relies on the epoch index n.
This independence arises because the weight vector construction ensures that k(¢) is i.i.d. for all
t € {th—1 +1,...t,}, conditional on the history H(#,-1). Applying Lemma 3 yields:

e(C+ep)
1+gn

N G
P 1+9gn t,

- €xXp [5 ' (dmax - C)+] s

(34)
which holds with probability at least 1 — 115. Combining (33) and (34), we establish the first part of
Lemma 4. Secondly, we demonstrate that the following inequality holds:

tn
ZPJ “djkn(pn(s).)) + € Ja 'dmaxl < exp

s=1

£
A 1_ﬁ1 1 &
E[Ri(2) | H(tn-1)] 2 -—g § Tk (o (5),)) 35
[Ri(2) | H (tn-1)] Ton b S:UEJPJ 5ok (b (5).) (35)

Applying Lemma 3 again, we derive that:

£,
1 1 ¢ 1_f * B B
Z Z P-Tijxn($n(s).) 2 - (A - Eﬁ € T € — 6")

1+g, 4 S5 T 149,

€n
1+gn

>
1+gn

x__A_ _B_C
A —€, —€, — €, —

_fn./l*’

which holds for all i € 7 with probability at least 1 — 118. Thus, the second part of Lemma 4 is
established.

Thus, what remains is to establish (33) and (35). Inequality (33) is demonstrated through the
following sequence of calculations, where all equalities and inequalities hold certainty:

M,(t) =E|I 2 AYD(r) > t—1+1}>C—-1 ‘W(tn_l)

r=max{t—dmax,1}

- [t ) e AT 1] ||

(1+ E)z;;;ax{tfdmm}A(T)I{D(f)zz—m}

Sm -E 7'{(tn—l)] (36)
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t—1

__ 1 , AUD(r)21-7+1}
- (1 + E)C—l T:max{lt—_[dmax,l} E (1 + 5) (}{(tn—l)] (37)
t—1
S% : (1+£'E [A(T)I{f)(f) >t-r+1} "H(tn_l)]) (38)
(1 + 8) T=max{t—dmax,1}
t—1
sﬁ : (1 +¢-P(Ii(7))E [A(T)I{D(r) >t-1+1} ’ 'H(t,,l)] (39)

T=max{t—dmax,1}
+¢-P(L(1)E [AE(T)I{DE(T) >t—1+1} ‘ W(tn_l)] )

Step (36) is derived using the Markov inequality. Step (37) follows from the joint independence of
the sequence {A()I{D(zr) > t—7+1}}!! \ conditioned on H (t,_1), as established by the

r=max{t—dmnax,1

coupling argument. Step (38) utilizes the inequality (1+¢)¢ < 1+¢-aforalla € [0, 1], > 0. Step (39)
follows from the facts that (I (¢), I>(¢)) is independent of the history H (¢,-1) for t € {t,—1+1,....t,}
and

(A(r),D(r))  if I1(t) holds,

(A(7),D(7)) = {(Ae(f)’be(f)) if I,(t) holds,

Recall that A(t) = A¢(t) = 1, Vt € [T], thus
t—1

My (1) S(ufﬁ 11 (1 +e-P(L(0)E [I{f)(r) >t-r+1) ' W(tn_l)]

r=max{t—dmayx,1}

+¢e-P(L(r)E [I{be(f) >t—1+1} ' 7—[(1‘”_1)] )

t—1

< (1_'_1? . T:max{lt—_[dmax,l} exp (8 -P(Ii(7))E [I{D(T) >t—r+1} ‘ (H(tn—l)}
+¢e-P(I(7))E [I{ﬁe(r) >t-r+1} ' W(l‘n—l)] ) (40)
1 (1 _fn) t—1 _

(1+¢)C1 'exp(gl_,_gn ' Z E[I{D(T) >t-1+1} ‘W(tn—l)}

t=max{t—dmax,1}

t—1

+efo- Z E

r=max{t—dmax,1}

H{D¢(r) > t—7+1} ’W(t,,l)]) (41)

Step (40) follows from the inequality 1+ ¢ < e€, Ve > 0. To further deal with (41), note that
-1

Z E [I{f)(r) >t—1+1} ‘ﬂ(tn—l)]
r=max{?—dmay,1}

t Amax

< Z Z E [I{f)(r) =s} ﬂ(tn—l)]
=t —dpax+1 S=E—7+1
dmax t .

= E[I{D(r) =s} W(tn_l)]
s=1 r=t—s+1
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dmax t
=> D E [I{D(t) = s} w(tn_l)] (42)
s=1 7=t—s+1
dmax .
= E [s -I{D(t) = s} ?((tn_l)]
s=1
dmax
= Z E [s "H{D(t) = s} | H(tar)| <E [D(t) ‘H(tn_l)]
s=1
In (41), it is crucial to note that the range of summation, namely {max{t — dmay, 1},...,t — 1}, lies
entirely within the time intgrval of n, as ensured by our assumption t € {t,—1 + 1 + dmax, - - -» tn}-
Recall the construction of k(t) and the definition of (R(t), A(t), D(t)) ~ ij)f((t) in our cou-
pling argument. These two facts imply that {(Ai(2), ﬁi(r))}; max{t—dy 1) AT€ i.i.d conditioned on
H (t,—1), which leads to (42). Similarly,
-1 i i
Z E [I{De(r) >t—-71+1} ' H(ty—1)| < E|D°(¢) W(tnl)} .
r=max{t—dmayx,1}
Therefore, M, (t) can be further upper-bounded as
d
1 8(1 _ f;l) t max . _
Ma() < e P ( o > D) E[HDO) =s} | H(ta)

T=t—dmax+1 S=t—7+1

t dmax

tef, Z Z E[I{Ee(r)zs}

=t —dmax+1 S=t—T+1

W(tn_l)] )

1 e(1—fa) .
= (1 + g)c—l ' exp( 1 + gn -E [D(t) (]-{(tn—l)}
+e-fo-E [D%t) ﬂ(tn_l)] )
1 1-f) 1 .
T+t E(1+gj,:) 'Z;f’f “difu(n(s).g) € S - E[DO(2) W(tn-l)]] (43)
1 (1-f) 1 =
=aroct | vy & ;PJ " fupn () TE Sn dmax}- (44)

Step (43) follows from taking the conditional expectation and recalling the construction of k(t) in
Algorithm 1. Step (44) holds because D®(t) < dmax, Vt € [T]. This completes the proof of (33).

To establish (35), note that the coupling argument ensures that for every ¢ € {t,_1 +1,...,t,}
and every i € 7, the following inquality holds with certainty:

E[R;(t) | H (ta-1)] = E[L(t) - Ri(t) + L(t) - RE(t) | H (ty-1)]
> E[L(t) - Ri(t) | H(tn-1)]
1I-f 1 &
= 1+§n A Z Z Pj - Tijxn($n(s).))

s=1 jeJ

Thus, the inequality (35) follows, and we complete the proof of Lemma 4.
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A.5 Proof of Theorem 2
Firstly, by unpacking the definitions of f;, and g, in Theorem 1 and setting ¢ = £*(C), we have

tn

1
i = - -~ * “tnt f - max 2maxn1 max/ “n _zmax max
Z R(t)>1+6n/c L(E(C)) - by - X = Fmax\ 2dmaxtn 108 (dmax/On) — 2Fmaxd

t=tp_1+1

—{’n~(eﬁ+ef+ef+en+fn/1*+2£*(C)~fn-(dmax—C)+-/1*), w.p. 1-235,,

(45)

when n > 3log ¢*(C) + 2 log dmax, where €7, €, €$, and €, are defined as follows

n’>-n>

A _ o |dmax1og(1/6p) | 2dmaxlog(1/8n) 5 _ 2log(|L/5n)
€, =2 + € = Tmax\| — >
C- th—1 C- th—1 th-1

c_ log(1/8,) = log(1/6,) 21og(|TIIKIL1/6n)
€n = 2Imax + ] s
tn—1 minje g ek Nji(tn-1)

2 2 81 I|+1 21 I )
b |2 tog 2 4 g [Plo8UIIE D | [2loB(ZITIIKT/0,
th-1 On tn min; i Njx(tp-1)

To proceed with analyzing (45), we next derive a lower bound for min;x Nj(t,-1). Recall that
N i (t) denotes the number of times that the action k is chosen for arrival type j up to time t. By
definition, at epoch n, the probability of selecting action k € K (i.e., k # knun) at round ¢ when the
arrival type is j satisfies:

+217| (rmax +dmax) \/

I ;
P(k(t):k’.](t)_.])z d?mm

The term 1/dmax arises from the observation that any policy experiences at least one instance of
resource availability every dp,.x rounds. Note that the actual number of selections of action k for
arrival type j may be significantly higher in practice, as this also accounts for exploratory selections
of each action. At the beginning of epoch n, the expected value for N; x (t,-1) is given by:

th-1

n—1
. . - 1 Pj pj 2/3
E[Njx(tn)] =1+ Pk(t) =k, j()=j) 21+ -6 — . L > i
; ; dmax K|~ dimax| K]

The first equality follows from initializing N; s (0) = 1. Using the Chernoff bound, we can further
show that for any § € (0,1):

NMMMSG—&HMMMDqu_

2

52E[Nj’k(n)] pj5222n/3
——— | Sexp|- 73
2| K dmax

Setting § = ‘/75 leads to

\/E p_22n/3
P(Nj,k(n) < (1 _ 7) .E[Nj,k(n)]) < exp (—M)
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Building on this and applying the union bound, the following inequalities hold simultaneously
when n 2 O (2log dmax +10g(1/pmin) +log (log (|7 ||T[IK1))),

€, < 0.5,
o (e + el e+ e+ i +26°(0) - fo (dax —O) - 1)

T NKIL ]
Sn

max

C

<0 (|~7—|dmax{2/3 ( ) + (_) + 'max IOg( ) te (C) (dmax - C)+ 2/3 + [2/3)

(Ijldmt’m\/n log (T + 2 Tt P 14 €(C) - (dmar = O - 7 + 2/3)
wp. 1- Z exp (—pj22"/3/(4|7(|d;/:x ) .
jeg
Thus, with probability at least 1 — 235, — 2. ;c 7 exp (—pj22"/3/(4|7(|0l,1n/a3X ), we have that:

In

2 Ri<f>2(1——) LE©) by A" = (|J|dmax-f2/3x/10g<|5||7<||f|/5n>+"‘g‘xn

t=tp_1+1

Hrmax " 1+ " (C) . (dmax - C)+ . frzz/'j + [r21/3 + rmax\/dmaxfn log(dmax/(sn) + rmaxdmax) s
(46)

when n > ny = O (2log dmax + 31og €*(C) +1og(1/pmin) + log (log (|7]|T1|%1))). Summing over n
from 0 to [log(T/dmax)] and applying a union bound, we can obtain that with probability at least

1= 37 (236, + 2jc.q exp(—p;2273 (41K |dia)):

T 1 log(T/dmax) 2/3 d
;Riu)z(l—%)-us (©) -T2 —0( ) 17 ot o TTRILZT/37) + 220

n=1

o
Hma 1€ (C)  (dmax = O + 67 + 6 4 s\ 108 (i / 52) + Tl ) = O (Z rn)

(1——) L((C)-T-A"

dmax
-0 (m dinax TP \log T - og (| TNIKNNZ 1) + € (C) + (dmax — CO)F - T + T'/% 4 d%3,0, + ) .
min

Taking the expectation yields

T T
E ZRi(t) 2(1——) L(£(C) -T2 - (2(235n+Zexp(—pj2n/4|7(|)))
t=1

n=1 jeg
, o
-0 (|J‘|dmaxr2/3JlogT Tog(ITNIKIID) + € (C) - (dmax — C)F - TP + T2 + d3 - )

max T ]
min

(1——) L(E(C)-T- A"

dmax
-0 |j|dmaXT§\/logT log(|JTNKII|) + € (C) - (dmax = CO)* - TS +T5 + a3+ = X .
Pmin jeq pj
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Using Lemma 1 which states that T - A* > T - OPT" — dpax * max, then the Theorem 2 follows.

A.6 Proof of Theorem 3

Clearly, when C > dyp,y, it follows that g, = 0 and E [V (¢) | H (t,-1)] = 1, i.e., resource availability
is always ensured. Consequently, for any i € 7, the following inequality holds simultaneously for
allt € {th_1+ 1 +dmax, - - > tn }:

E [Ri(t) - V(1) | H(tyy)] 2 A* - (ef +eP 1 ve, +f,,)t*), wp. 1- 226, 47)

when n > 3log €*(C) + 2log dmax. Following the same analysis as in the proof of Theorem 2, it
holds that for all n > 1:

d
oo (4 el +el+ent fud') <O (|:r|dmax P\ Tog(ITTIKITT) + "2 1+ i+ 671

wp. 1= ) exp (—ijZ"/S/ (41K |l )
Jjeg
Following a similar analysis as in (15), we obtain that with probability at least 1 — 235,,:

tn

Z I’éi(t) . V(t) = (fn - dmax) AT - rmax\/deaxfn log dmax/(sn

t=ty_1+dmax+1

- rmaxdmax - (fn - dmax) : (6;? + 65 + 6,? té€n +f;1/1*)

2n
By leveraging (11), we conclude that with probability at least 1-Y.7_, (235,, + Xjeg €xp (— 4“{;; Zldjl 7 ))

T
DIR(0) 2 2 =0 (1] - dnos T log T - Tog (ITNKINTT) + T2° + ).
=1
Taking the expectation and applying Lemma 1 yield the desired bound.

A.7 Proof of Theorem 4
Unravelling the definitions of f, (note that f,, = 0) and g, in Theorem 1 and setting ¢ = ¢*(C) yield
the following result:

tn

1
Z Ri(t) = + C . L(g* (C)) : fn : A* - rmax\/deax[n log(dmax/an) - 2rmaxdrnax
€

t=tp_1+1 1 n/

—fn-<ef+€f+ef+en), w.p. 1— 238,

when n > 3log £*(C) + 2 log dpax. Similarly, applying the same unraveling process in Lemma 4, the
following inequality holds with probability 1 — 116,

E[V(®) | H(tn-1)] 2 (1 - %L(e*(c)))

simultaneously for all t € {¢,_1 + 1 + dyax, - - -, tn }. Taking expectation with respect to H (t,-1)
and telescope summation across times within epoch n > 1 gives

tn

> BV > (1 - %) L(€(C)) - (tn = ).

fno1+1
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Consequently, we can derive the following lower bound on quantity N; i (¢,-1) for any pair (j, k):

E[Nj,k(tn—l)] = f?jl (dmax + Z Zt E[V(t)])

i=1 t=t;_1+1

> p—]d + p—J (1 - i) .E(e*(C)) : (tn—l - dmax - (n - l)dmax)

>ﬁ 1—i L(e*(c)).(t_l_(n_l)d )
~ K] 2C n max
Using Chernoff bounds, it holds that
E[N;
d (Nj’k(n) : (1 - g) ‘E[Nj,k(”)]) < exp (—%)

< 4% |
B pj (l - %) L(e*(0)) - (th-1 — (n = Ddmax)

Building on this and applying the union bound, the following inequalities hold simultaneously
when n > O (21log dinax +10g(1/pmin) + log (log (|7 || T [|K1))),

€n < 0.5,

t’n-(ef+ef+eg+en)

<0 (|j|dmax A \og (| TNKIT /8, + d“‘Ta" log(1/8n) + Fmax log(l/én))

dmax
=0 (|:r|dmax 62\ 1og 1T IKIT) + —E M T )

wp. 1- Z 4|(K| .
jejpj (1 - %) L((:‘*(C)) ' (tnfl - (n - 1)dmax)

Thus, with probability at least 1 — 235, — X je g =)0 *((j‘ll()Kit Ay We have that:
j\'72Cc € \n-1—(n—1)dmax
t
- 1 * 5
D, Rz (1 - %) L(E(C)) b A = O (1T dmax - 6 *VIog (T TKTT1/6,)
t=t,_1+1 (48)
dmax

+

C N+7rmax N+ rmax\/dmaxfn log(dmax/an) + rmaxdmax) P

when n > ny = O (2log dmax + 31og €*(C) +1og(1/pmin) + log (log (|Z]|T11%1))). Summing over n
from 0 to [log(T/dmax)] and applying a union bound, we can obtain that with probability at least
1- 37 (236, +3; A ):

n=11425n T Ljed pi(1-1/20)- L(e"(C))  (tn-1=(n=1)dmax) /*

log (T /dmax)

T
Z&(t)z(1—%)-£<e*<c»-r~z*—o( >y (1T Vs 62 iR U TIN5,
t=1

n=1
no
Sel

n=1

dmax

C N+Tmax "N+ rmax\/dmax[n log(dmax/an) + rmaxdmax]) -0

+
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(1——) LE©) T A

=0 (171 dua"V*Viog T -Tog (LT IKTIZI) + T + i)

Taking the expectation yields

T
E ZRi(t)

. ) . 4K
> (1 - %) -[«(5 (C)) -TA (Z (235 +;7PJ L(e (C)) (tn 1- (n l)dmaX) ))

= O (1T dmax - T/*\flog T -Tog(ITTIKIIT]) + max)

1 * *
- (1 - %)L(E (C)) - TA

1 |K|
-0 |j|dmax Tl/z logT - 1o (lj“q(”ID +d max - .
( Viog T log 2 (1= ) L ©)

Applying Lemma 1, which states that T - A* > T - OPT* — dpax * 'max, completes the proof of the
first result in Theorem 4.

For the second result in Theorem 4, note that when C > dp,y, it follows that g, = 0 and
E[V(¢) | H(tn-1)] = 1, i.e., resource availability is always ensured. Consequently, the following
inequality holds simultaneously for all t € {t,_; + 1+ dmay, ..., tn} and i € I:

E[Ri(t) - V(1) | H(tar)| = 1" — (eg +eP ey e,,), wp. 1— 226, (49)
when n > 3log €*(C) + 21log dmax. Additionally, the ensured resource availability implies that:

Pj
E[Nji(th-1)] 2 TVl “tp-1,

Using Chernoff bounds, we obtain:

Njk(n) < (1 - ?) ~E[Nj,k(n)]) < exp (—E[Nj’k(n)]) < p4|(K|

P .
4 j th—1

Thus, we have that for all n > 1:

- (et + ef + € + e sO(|j|dmax~ 0\ 1og(|j||7<||]|)+T M+ g n o+

4%
wp. 1- Z bt

jeg B nmt

Following a similar analysis as in (15), it follows that with probability at least 1 — 235,,:

tn

Z éi(t) . V(t) 2 (fn - max) AT - rmax\/deaxfn log dmax/(sn

t=ty_1+dmax+1

— "max@max — (fn - dmax) . (6;? + 65 + 6,? + Gn).
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4% )

By leveraging (11), we conclude that with probability at least 1 — 3.7 _, (235,, +2jeT Py
jtn—

T
D URi() 2 4 = 0 (1T dasTTog T - 1og([TTKINTT) + i) -
=1
Taking the expectation and applying Lemma 1 yield the second result in Theorem 4.

B Simulations

In this section, we present a series of simulation experiments conducted in a cloud computing
scenario to evaluate the effectiveness of the proposed algorithm. We begin by describing the
experimental setting and then summarize and analyze the numerical results.

B.1 Experimental Setup

In our experiments, each incoming request corresponds to a computing task, and the different
task types reflect varying workloads or job sizes. In practice, workloads often exhibit heavy-tailed
characteristics (e.g., Pareto distributions), where small tasks arrive more frequently but large tasks
still make up a substantial portion of the distribution. To capture a simplified version of this
phenomenon, we define four task types | J| = 4, with type-1 representing the smallest workload
and type-4 representing the largest. We assign the following discrete arrival probabilities for them:

P = (p1, p2, p3, pa) = (0.4,0.3,0.2,0.1).

The action space K includes several different worker nodes (or virtual machines, VMs) to which a
task can be assigned, along with the null action for rejection. Specifically, we have four distinct
worker nodes K = {1, 2, 3,4}. Each worker k has a different processing speed sk, which translates
into different average execution times for tasks. Higher speed implies shorter average running
times (and thus potentially higher utility rates). For simplicity, we set

s1=1.0, s;=1.5s3=2.0, s4=23.0.

Let w; denote the base workload (job size) of task type j. Intuitively, larger j indicates a bigger

workload. Suppose
wi =3 wy=6, w3=12, wy=18.
When a task of type-j is processed by worker k, the average running time d;  is given by
dij = L
ik =

As expected, tasks with larger workload w; take longer to complete, but this is mitigated by
assigning them to faster workers (larger si). Table 3 illustrates the specific values of these average
durations.

Table 3. lllustrative average running times d; . = s—k’
Type j ‘ Worker k =1 Worker k =2 Worker k=3 Worker k =4
1 (sg is small) 3 2 1.5 1
2 (s is medium) 6 4 3 2
3 (sk is large) 12 8 6 4
4 (sx is very large) 18 12 9 6

We focus on two types of utilities 7 = {1, 2}: (i) profit (revenue) and (ii) energy consumption
(modeled as a cost or negative utility).
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e Profit (r; j): Larger workloads generally yield higher profit, and faster workers typically
deliver higher profit rates. We parameterize the profit via a base profit b; for each task type j
and a worker-specific multiplier o:

r,jk = akbj,
where
bl =3, b2 =6, b3 =9, b4 =12, and ) = 1.0, Ay = 1.2, O3 = 1.5, 4 = 1.8.

e Energy consumption (ry;): Energy cost is proportional to the task’s duration and the
worker’s energy consumption rate. Let y denote the per-unit-time energy usage rate of
worker k. Then

r2jk = Hk - dj,k,

where dj ;. = wi/s; is the expected running time. In our experimental setup, we set
p1 =10, pp =13, p3 =15, pg=2.0.

Hence, faster workers have higher power (energy) consumption rates, reflecting the real-
world scenarios where there is a trade-off between speed and energy efficiency.

In our simulations, we normalize 7 as r = r/rmax. Note that the actual outcomes (Ry (1), Ry j (1))
in practice are random and fluctuate around their respective means. To model this randomness,
we represent these outcomes as Bernoulli random variables with means (7 j k, 72 jx). Similarly, to
reflect stochastic variations in job execution, we require D; () to be stochastic. Since we operate
in discrete time, we also require the durations D; ; () to be integer values. To achieve this while
ensuring E[D; x(t)] = d;x, we adopt a simple two-point rounding approach when d; s is not an
integer. Specifically, for each pair (j, k), we define a = |d; ;] and § = d; ;. — a. We then draw D x (t)
as follows:

a+1, with probability J,

D; t) =
k(1) {a, with probability 1 — §.

When dx is an integer, D; x (t) is uniformly distributed over {d;x — 1,d;x, d;« + 1}. This approach
ensures that D; x (t) is integer-valued while maintaining the desired expectation E[D; x(t)] = d; k.

We assume that the system can process a maximum number of tasks in parallel, limited by the
number of GPUs, C, i.e., the system has C reusable resource units. When all C units are occupied,
any newly arriving task must be rejected. In our simulations, we vary C from small to large values
to observe how the algorithm’s performance changes accordingly.

Compared baselines. We implement and compare two baseline algorithms: the offline static
algorithm and the hybrid algorithm proposed by [50]. Notably, both baselines are tailored for the
offline setting. In particular, the second baseline relies on a linear relationship between utilities and
resource usage durations. It is applicable only in the experimental setup where we disregard the
first type of utility (i.e., profit) and focus solely on the second type of utility (energy consumption),
which is linearly dependent on resource usage durations.

e Offline static algorithm. Denote {y;f &}k as an optimal solution for (OFARR). The offline static
algorithm selects action k for a type-j arrival with probability xj*. e
e Hybrid Algorithm [50]. This algorithm involves solving (OFARR-R), adjusted dynamically

based on the current resource occupation to compute a distribution x(#). Allocations are
then determined using an adaptive weighting process informed by x(t).
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Performance metrics and parameter settings. We run our algorithm for n = 15 epochs. We
evaluate the empirical performance of the compared algorithms by showing how the empirical
competitive ratio

. tn
min; 3,2, R;(t)

ty - A
evolves as the epoch index n increases under different values of C. Here t, is the ending time slot

of epoch n and 1* denotes the optimal value of (OFARR), and the length of epoch n is dp,y - 2. Note
that di,ax = 19 in our experimental setup.

Empirical competitive ratio(n) =

B.2 Empirical results

Figure 2 shows the empirical performance of our algo- 10
rithm for different values of C. We can see from this
figure that as the number of epochs increases, the em-
pirical competitive ratios eventually stabilize for all C.
Additionally, larger values of C lead to higher compet-
itive ratios. Last, as depicted in the right most plot in
Figure 3, when C exceeds dpay, our algorithm achieves
a competitive ratio of 1, aligning well with our theoret-
ical results.

Figure 3 compares the empirical performance of our D S o HHIF) S S s e
algorithm with that of the offline static policy. Although Epoch index n
the offline static policy achieves fairly consistent utility ~Fig. 2. Empirical performance of our algo-
performance (note that a higher empirical competitive ~fithm under various values of C (|7 = 2)
ratio indicates higher utility performance) across various values of C, our algorithm delivers superior
utility performance as C increases. This is because, although the offline static policy, by definition,
targets a utility rate of A* for each type, random fluctuations in resource usage durations lead to
temporary resource unavailability, preventing it from consistently meeting the desired utility rate.
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Fig. 3. Empirical performance of our algorithm and the offline static policy (|7| = 2)
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Fig. 4. Empirical performance of all compared algorithms (|7] = 1)
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To incorporate more baselines into the comparison,
we disregard the first type of utility (i.e., profit) and
focus exclusively on the second type of utility (i.e., en-
ergy consumption). As a result, the fairness objective
simplifies to maximizing the second type of utility. In
this scenario, utility depends linearly on resource us-
age durations, making the hybrid baseline algorithm
applicable. Figure 5 presents the empirical performance
of our algorithm across different values of C, while
Figure 4 compares the empirical performance of our
algorithm with that of the baselines. Although the em-
pirical performance of our algorithm is initially worse

Empirical Competitive ratio (n)

Qingsong Liu and Mohammad Hajiesmaili

OO0 o00
Lt L T
N = oA
oo N

3 4 5 6 7 8 9 10 11 12 13 14 15
Epoch index n

Fig. 5. Empirical performance of our algo-
rithm under various values of C (|[1] = 1)

than the hybrid baseline, which has full knowledge of the problem parameters, the performance

gap decreases as the capacity C increases.
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