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Motivated by the emerging paradigm of resource allocation that integrates classical objectives, such as cost

minimization, with societal objectives, such as carbon awareness, this paper proposes a general framework

for the online fair allocation of reusable resources. Within this framework, an online decision-maker seeks to

allocate a finite resource with capacity𝐶 to a sequence of requests arriving with unknown distributions of types,

utilities, and resource usage durations. To accommodate diverse objectives, the framework supports multiple

actions and utility types, and the goal is to achievemax-min fairness among utilities, i.e., maximize theminimum

time-averaged utility across all utility types. Our performance metric is an (𝛼, 𝛽)-competitive guarantee of

the form: ALG ≥ 𝛼 · OPT∗ −𝑂 (𝑇 𝛽−1), 𝛼, 𝛽 ∈ (0, 1], where OPT∗ and ALG are the time-averaged optimum

and objective value achieved by the decision maker, respectively. We propose a novel algorithm that achieves

a competitive guarantee of (1 −𝑂 (
√︁

log𝐶/𝐶), 2/3) under the bandit feedback. As resource capacity increases,

the multiplicative competitive ratio term 1 − 𝑂 (
√︁

log𝐶/𝐶) asymptotically approaches optimality. Notably,

when the resource capacity exceeds a certain threshold, our algorithm achieves an improved competitive

guarantee of (1, 2/3). Our algorithm employs an optimistic penalty-weight mechanism coupled with a dual

exploration-discarding strategy to balance resource feasibility, exploration, and fairness among utilities.
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1 Introduction
In a wide range of application domains, the online allocation of reusable resources is a pivotal
design problem. Unlike non-reusable resources, whose availability decreases monotonically, the

reusability of resources exhibits dynamic fluctuations in availability due to the interplay between

allocation decisions and resource release events. Assigning resources reduces availability, while

their return restores it. Moreover, resource availability depends on the order of decisions made, as

different decisions can result in varying usage durations. Prior studies, reviewed in Section 2.1, have

been proposed to address these complexities by designing algorithms that provide performance

guarantees while adhering to resource constraints in both online and offline (or Bayesian) settings.

Most existing resource allocation algorithms are designed around traditional first-order metrics,

such as throughput, operational cost, or energy consumption, and typically focus on optimizing a

single objective function. However, as algorithmic solutions are increasingly deployed in real-world

domains with significant societal and environmental impacts, it is crucial to incorporate emerging

objectives, such as environmental metrics (e.g., carbon footprint, water usage, air pollution [24])

and broader societal considerations (e.g., safety and privacy [23]). These objectives, however, often

conflict; e.g., achieving carbon reduction targets may necessitate higher energy consumption [25].
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Consequently, systems must balance trade-offs among competing performance metrics. Different

notions of fairness are commonly used in prior literature to characterize these trade-offs in multi-

objective design settings. The main prior studies (e.g., [8, 15, 30], see Section 2.2 for extended list),

however, proposed fair allocation of non-reusable resources, with a few exceptions, e.g., [50], where

fairness has been explored on reusable resource allocation. However, [50] operates within offline

(or Bayesian) settings, where problem/system parameters, including utilities and usage durations,

are drawn from known distributions.

In this work, our goal is to tackle the fair allocation of reusable resources in an online settingwhere

the decision maker must operate without complete information on the underlying distributions

of arrival types, utilities, or resource usage durations. In practice, many real-world applications

like cloud resource management are inherently online, as the underlying distributions of system

parameters are often unknown or only partially known. The online nature or model uncertainty

impacts not only allocation efficiency (i.e., the uncertainty about which actions yield higher utilities

per unit of resource occupation time) but also future resource availability. To make effective

allocation decisions, an algorithm must balance exploring actions to learn the latent model and

exploiting this knowledge to maximize cumulative utility. This trade-off is further complicated

by the interaction between resource feasibility and fairness objectives, making designing online

algorithms with provable performance guarantees particularly challenging.

A recent study [17] investigates a special version of online reusable resource allocation in

the context of admission control (i.e., with only accept/reject decisions). Although this work

marks a valuable step toward online reusable resource allocation, it does not consider fairness

(focusing on only one utility type) and operates under restrictive assumptions, including only

two possible actions, a single type of arrival request, and deterministic resource usage durations.

Consequently, the model and algorithm in [17] fall short for applications such as LLM inference

service provisioning, where user requests may vary significantly in characteristics, including query

length, membership tier, and quality or latency requirements. Additionally, the service provider

may employ multiple LLM models with varying performance profiles to serve these requests. In

such a scenario, the service provider must fairly balance multiple objectives such as model accuracy,

energy consumption, and carbon/water footprint. This fairness requirement, coupled with the

stochastic nature of resource usage durations and the diversity of arriving request types, highlights

the need for a generalized framework that can handle these complexities in an online setting.

To address these gaps, we study a general framework for fair allocation of reusable resources in

the online setting. In this framework, requests arrive sequentially, each associated with a specific

type capturing its features. Upon observing the request type, the controller (decision-maker) may

choose an action from a finite set or reject the request (e.g., if resources are unavailable or the

utility gain does not justify the associated resource consumption). Each action yields multiple utility

types (reflecting different performance metrics) and incurs a stochastic resource usage duration,

determining how long the resources remain occupied. Motivated by real-world observations on the

independence of objective functions, e.g., for environmental metrics [24, 34], our model supports

multiple general utility functions that might be arbitrarily correlated with the resource usage

durations. The controller must respect a capacity constraint, ensuring total occupied resource

units never exceed 𝐶 at any time. Critically, the distributions of arrival types, utilities, and usage

durations are unknown, and feedback is limited to the chosen action’s outcome, conforming to a

bandit-feedback setup. To balance multi-type utilities, we adopt the notion of max-min fairness (also

referred to as egalitarian welfare in operations research [8]): we aim to maximize the minimum time-

averaged utility across all utility types over the decision horizon, ensuring that no single objective is

disproportionately sacrificed. We note that the max-min fairness is one of the most widely adopted

fairness notions and has been extensively studied for fair allocation of non-reusable resources [8, 30].
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Moreover, this notion has been used in addressing the environmental concerns of AI and computing

applications. For example, [34] employs max-min fairness to simultaneously balance water usage,

carbon footprint, and energy cost objectives, thereby addressing AI’s environmental inequity.

Contributions. In this paper, and in Section 3, we present a general framework that unifies

online reusable resource allocation and fairness optimization. Our formulation accommodates

multiple actions, addresses model uncertainty (including stochastic usage times with unknown

distributions), and supports diverse utility types (e.g., varied performance metrics) as well as

multiple resource units. We also illustrate representative applications of this framework, such as

LLM inference service provisioning and healthcare management.

▶ Algorithm design. In Section 4, we present a novel algorithm called Exploration-Discarding with

Penalty Weights Update (ED-PWU). To balance the multi-type utilities and (allocation) efficiency,

ED-PWU bases the decisions on penalty weights and optimistic estimates of unknown parameters.

The idea of selecting actions based on penalty weights is similar to the approach taken in [15, 16, 50]

for non-reusable or Bayesian settings, albeit with a distinct weight update process due to model

uncertainty. Despite the benefits of these penalty-weight-based decisions, we cannot directly treat

them as final due to several inherent challenges: (1) these decisions may not respect the resource

capacity constraints under all sample paths of the underlying randomness. Moreover, estimation

errors can lead to violations even in expectation; (2) the bandit feedback setup necessitates reserving

part of the resource for exploration, so as to gradually reduce estimation errors in the latent model.

To address these challenges, we design a dual exploration–discarding strategy (hence the algorithm’s

name) that probabilistically discards penalty-weight-based decisions (thereby preserving sufficient

resource "slack" to mitigate the risk of constraint violations) while simultaneously dedicating part

of the resources to forced exploration. The discarding and forced-exploration probabilities are

carefully designed and adapt to the magnitude of estimation errors, striking a balance between

maintaining resource feasibility (or reducing the likelihood of resource availability violations),

ensuring sufficient exploration, and reducing utility loss induced by discarding and exploration.

▶ Competitive analysis. To analyze the performance of ED-PWU, we adopt a joint competitive

and regret analysis approach. Denote OPT
∗
and ALG as the time-averaged optimum and objective

value achieved by the controller. We seek a policy that satisfies an (𝛼, 𝛽)-competitive guarantee:

ALG ≥ 𝛼 · OPT∗ −𝑂
(
𝑇 𝛽−1

)
, (1)

for some parameters 𝛼, 𝛽 ∈ (0, 1]. Here, 𝛼 represents the classic notion of the competitive ratio

of ALG. The additional error term 𝑂
(
𝑇 𝛽−1

)
is closer to the definition of regret, i.e., if the policy

ensures 𝛼 = 1, we can say it also achieves a sublinear regret guarantee of 𝑂 (𝑇 𝛽 ). Using the

above bi-criteria competitive ratio, we show that ED-PWU achieves a competitive guarantee of

((1 − 1

2𝐶
)L(𝜖∗ (𝐶)), 2/3) under the bandit-feedback setup, where 𝐶 denotes the resource inventory

(or capacity), 𝜀∗ (𝐶) = arg max𝜀>0 L(𝜀), and L(𝜀) = 1

𝜀+1
· (1− (1+ 𝜀) exp[𝐶 ( 𝜀

1+𝜀 − log(1+ 𝜀))])+. The
competitive ratio is of the order 𝛼 = 1−𝑂 (

√︁
log𝐶/𝐶), which asymptotically approaches optimality,

i.e., 𝛼 = 1, as capacity 𝐶 increases. Notably, when the inventory exceeds a certain threshold, our

model reduces to the indivisible variant of the horizon-fairness optimization problem in the online

setting [12, 42]. In this scenario, our algorithm can further achieve an (1, 2/3) competitive guarantee

(i.e., sublinear regret of𝑂 (𝑇 2/3)). This result fills an important gap in the literature, as no prior work

has achieved provable performance guarantees under the bandit feedback setup.

▶ Extensions to Quasi-full-feedback setting. Additionally, we extend our analysis (with the same

algorithm) to a Quasi-full-feedback setup consistent with [17], which studies a special case of

our model. In this feedback setup, the controller receives full information when the resources are

available but none otherwise. This extension improves the competitive guarantee of our algorithm
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to ((1 − 1

2𝐶
)L(𝜖∗ (𝐶)), 1/2), and even to (1, 1/2) when the inventory exceeds a certain threshold. In

contrast, [17] achieves a (1/2, 1/2)-competitive guarantee only when the inventory 𝐶 is limited to 1.

▶ Numerical experiments. Last, we conduct simulations in a cloud computing scenario to validate

the theoretical performance of our algorithm (details provided in Appendix B).

2 Related Works
In this section, we introduce two streams of literature related to our research: reusable resource

allocation and horizon fairness optimization. We do not delve into the literature on non-reusable

resource allocation problems (e.g., [1, 6, 16]), as the fundamental differences between non-reusable

and reusable resource cases necessitate distinct methodologies and analyses. We position our

research as a bridge between these two lines of literature by comparing closely related existing

works. Tables 1 and 2 summarize the key results from each of these two streams.

2.1 Reusable Resource Allocation
The problem of reusable resource allocation has been studied in various contexts, including admis-

sion control, pricing, assortment planning, and queueing systems. We review literature in offline

(or Bayesian) and online settings, where the primary distinction lies in the presence of model uncer-

tainty. In the Bayesian setting, while exact realizations of arrivals, utilities, or usage durations may

be unknown at the time of decision, their underlying distributions are time-invariant and known to

the decision maker. Conversely, the online setting lacks such prior knowledge, requiring real-time

learning of unknown distributions. Most existing studies focus on the Bayesian setting, while

the online setting remains less well understood compared to traditional (non-reusable) resource

allocation problems. This is largely attributed to the complex interplay between model uncertainty

and resource reusability. Depending on whether the arrival process of requests is determined

adversarially or stochastically, existing works in the online setting can be further categorized into

adversarial and stochastic cases. Our research falls in the category of online stochastic setting.

Table 1. Closely related literature on reusable resource allocation

Paper fairness stoch. or adv. online

random usage

competitive ratio

duration

[17] % stochastic " % 1/2
*

[49] % stochastic " " 1/2

[19] % stochastic % " 1 − min

{
1

2
,𝑂

(√︁
log𝐶/𝐶

)}
[50] " stochastic % " 1 −𝑂

(√︁
𝜉 log(1/𝜉)

)
†

[26, 27, 32] % adversarial % % (instance-dependent) constants

[18, 20–22] % adversarial % " (instance-dependent) constants

Ours " stochastic " "
1 −𝑂

(√︁
log𝐶/𝐶

)
1 (large inventory)

*
This result only holds for the case of 𝐶 = 1.

† 𝜉 is an instance-dependent parameter that scales proportionally to 1/𝐶 .
Online setting. In the online setting, there is relatively little research conducted on reusable re-

source allocation for the stochastic case. Some exceptions, e.g., [28, 29, 52], explore the problem in the

context of queuing systems, where reusable resources are treated as servers and requests/customers

are modeled as jobs arriving sequentially via a stationary Poisson process. Notably, in queueing

systems, jobs can often wait for service, whereas our model resembles a loss system where requests

are lost if no idle server is available. The work most closely related to ours is [17], which focuses on
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an admission control setting with unknown utility distributions but deterministic usage durations.

They propose a dynamic threshold rule inspired by an infinite-dimensional linear programming

reformulation of the original problem, achieving a competitive ratio of 1/2 when the inventory is

limited to a single unit. However, their work leaves several intriguing open questions, as noted

in their concluding remarks. One such question is the extension to stochastic usage times with

unknown distributions, potentially correlated with utilities. Another is whether an efficient al-

gorithm (possibly threshold-based) with provable competitive guarantees exists for managing

multiple identical reusable resources. Our work addresses these questions by considering a general-

ized model that includes multiple actions, stochastic usage durations with unknown distributions,

multiple identical reusable resources, and diverse utility types. We propose an algorithm lever-

aging penalty weights to balance the trade-off between the utilities earned across all types and

the resources consumed, which simplifies to a threshold-based policy in the context of admission

control. Additionally, a recent study, [49], explores a combination of pricing and admission control,

where the decision-maker determines not only acceptance but also the rental price for each arrival.

Their model accommodates unknown distributions in both utility and usage times while allowing

multiple resource units. The algorithm they propose employs linear function approximation based

on Markov Decision Process (MDP) methodology and achieves a competitive ratio of 1/2. Although

our methodologies and models differ significantly and are not directly comparable, our algorithm

ensures that the competitive ratio approaches 1 as the inventory 𝐶 increases.

There is another line of research focusing on the adversarial case. Specifically, recent studies in

assortment planning [18, 20–22] consider scenarios where each customer type is associated with a

unique choice model over the resources. These works assume that the usage duration of a resource

and the price paid (can be interpreted as utility in our model) depend only on the resource type,

independent of customer type. For example, [20] demonstrates that the myopic policy achieves

a competitive ratio of 1/2, while [21] and [22] obtain a 1 − 1/𝑒 competitive ratio based on the

fluid approximation guided algorithms. [18] incorporates exogenous inventory replenishment into

assortment planning and designs an inventory-balancing algorithm with a constant competitive

ratio. Additionally, [26, 27] consider scenarios where rewards are linearly related to usage duration

and usage duration is deterministic, resulting in instance-dependent competitive ratios. Beyond

assortment planning, [32] explores network pricing models with advance reservations but assumes

deterministic resource usage durations. In contrast to these works, our algorithm is designed for the

stochastic setting, where the competitive ratio improves as the inventory𝐶 increases. This behavior

differs from the adversarial setting, where the competitive ratio remains constant regardless of

the inventory size. Additionally, our model allows both the usage duration and price to depend on

the customer type, and we extend our framework to address fairness considerations, which are

unexplored in the aforementioned works.

Bayesian or offline setting. Within this setting, [41] investigates an assortment planning

problem and proposes a policy based on affine approximations, achieving a competitive ratio of at

least 1/2. Similarly, [5] proposes a policy with competitive ratios that depend on request sizes. In

[19], a dynamic programming-based policy guided by linear programming is developed to achieve a

competitive ratio of 1−min{1/2,𝑂 (
√︁

log𝐶/𝐶)}. However, their model assumes that usage durations

are independent of request types, a feature explicitly addressed in our work. The most relevant

work to ours in the Bayesian setting is [50], which also explores fairness. They attain a comparable

competitive ratio under the restrictive assumption that utilities exhibit a linear dependence on

resource usage durations. [10] studies the reusable resource allocation in the pricing context and

prove that a well-chosen static pricing policy guarantees 78.9% of the optimum. Broadly, these

works mainly rely on dynamic programming to carefully allocate their reusable resources due
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Table 2. Closely related literature on online fair resource allocation

Paper
†

fairness type stoch. or adv. div. or indiv. Online Competitive guarantee

[15, 16] max-min fairness stochastic indivisible % (1, 1/2)
[8] Nash social welfare stochastic indivisible % (1, 0)
[30] max-min fairness adversarial indivisible " (1/𝑁 , 1/2)§

[9] proportional fairness adversarial indivisible " (1/log𝑁 , 0)§

[35] proportional fairness adversarial divisible " (1, log(
√
𝑇𝑃𝑇 )/log𝑇 )*

[4, 42] general 𝛼-fairness adversarial divisible " (1, log(
√
𝑇𝑃𝑇 )/log𝑇 )*

[45] general 𝛼-fairness adversarial indivisible "
(𝑒−

1

𝑒 , 1−2𝛼
2

) if 𝛼 < 1

2

(𝑒−
1

𝑒 , 0) if 𝛼 ≥ 1

2

[7] general 𝛼-fairness stochastic divisible " (1,1/2)

[12] general 𝛼-fairness stochastic indivisible

"
(Full feedback) (1,1/2)

Ours max-min fairness stochastic indivisible

"
(Bandit feedback) (1,2/3)

"
(Quasi-full-feedback) (1,1/2)

†
It is worth noting that none of the existing works except ours consider resource capacity constraints.

* 𝑃𝑇 quantifies the accumulated variations in the environment. Notably, 𝑇 𝛽 =
√
𝑇𝑃𝑇 if 𝛽 = log(

√
𝑇𝑃𝑇 )/log𝑇 .

§ 𝑁 represents the number of agents, corresponding to the number of utility types in our model.

to the full knowledge of the underlying distributions of usage durations and utilities. Another

line of research (e.g., [13, 32]) focuses on admission control or pricing problems within queueing

systems. Compared to these works, the model uncertainty and bandit-feedback setup in our model

introduce additional challenges, requiring a careful balance betweenmaintaining resource feasibility

(necessitating discarding), exploration (i.e., information acquisition), and minimizing utility loss

caused by both discarding and exploration.

2.2 Fairness in Resource Allocation
Fairness is a critical metric in resource management and has been widely studied in topics such as

computing systems [11, 48] and communication systems [2]. Independent of resource reusability,

our research focuses specifically on horizon fairness in resource allocation [4, 42], which aims to

ensure fairness across utilities accumulated over a time horizon. This contrasts with slot fairness

problems [43, 46] where fairness is addressed independently in each decision round, without

considering past or future decisions. Within this framework, our study aligns with the online

setting and thus we do not delve into the literature (e.g., [8, 15, 16]) on offline (Bayesian) setting

where utilities are assumed to be drawn from a fixed and known distribution.

Horizon fairness has recently been explored in adversarial cases, where the arrival of items

may be controlled by an adversary. For instance, [30] studies scenarios with known utility at

the time of decision and designs policies under the max-min fairness criterion. Similarly, [9, 35]

investigate the problem using the proportional fairness criterion, allowing policies to leverage

available predictions, while [42, 45] explores a more general 𝛼-fairness objective. The policies in

[9, 30, 45] achieve constant competitive ratios compared to the optimum, whereas [35, 42] attain

sublinear regret relative to a static benchmark (weaker than the optimum). Notably, [35, 42] tackle

the divisible version of the problem using online convex optimization techniques, where allocation

variables are continuous. In contrast, our work focuses on the indivisible variant, employing penalty

weights based policy to guide allocation decisions.
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For stochastic cases, [7] examines regularized resource allocation problems that encompass gen-

eral 𝛼-fairness, achieving an 𝑂 (𝑇 1/2) regret when resources are divisible. Instead, [12] investigates

the indivisible version of the problem and attains an 𝑂 (𝑇 1/2) regret by leveraging virtual queues,

which can be interpreted as penalty weights, to balance utilities across different groups. While our

algorithm shares similarities with theirs, it introduces an additional trade-off between information

acquisition and fairness optimization, stemming from the bandit-feedback setup. This contrasts

with [12] that assumes (delayed) full-feedback setup. Notably, their concluding remarks suggest

extending their approach to the bandit-feedback setting as a direction for future work—a gap

that our research effectively addresses. Additionally, another line of research (e.g., [33, 39, 44, 47])

focuses on using horizon-fairness as constraints rather than as objectives, making it fundamentally

different and not directly comparable to our work.

3 System Model and Motivating Applications
This section presents the framework we have studied. Before specifying our problem formulation,

we introduce below some notations that will be used. In this paper, vectors are generally bolded.

We denote the 𝑛-dimensional all-ones vector as 1𝑛 . For any vector 𝒗, we define 𝑣min and 𝑣max as

min𝑖 𝑣𝑖 and max𝑖 𝑣𝑖 , respectively. Additionally, we use the notation (𝜈)+ to represent max{𝜈, 0}.

3.1 Problem formulation
We consider a controller that allocates some available resources to process the arriving requests

(or customers) in an online manner. Time is divided into discrete slots, and at most one request

arrives at each time 𝑡 . The type of the request arriving at time 𝑡 , denoted as 𝑗 (𝑡), captures the
characteristics or features of the request. The set of all possible request types is denoted by J . The

sequence 𝑗 (1), 𝑗 (2), . . . consists of independently and identically distributed (i.i.d.) random variables,

governed by a fixed but unknown probability distribution 𝒑 = {𝑝 𝑗 } 𝑗∈J , where 𝑝 𝑗 = P( 𝑗 (𝑡) = 𝑗).
Importantly, the controller has no prior knowledge of the distribution 𝒑.
At time 𝑡 , upon observing the type 𝑗 (𝑡) of the arriving request, the controller selects an action

𝑘 (𝑡) from a finite action setK , which could be used to model a broad range of decisions. For example,

the controller can assign the request to different servers or channels. We also allow the controller

to have the option to take no action (i.e., 𝑘 (𝑡) = 𝑘null), which is equivalent to rejecting the request.

Once 𝑘 (𝑡) is selected, the controller receives multiple types of utilities {𝑅𝑖, 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡)}𝑖∈I , where
𝑅𝑖, 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡) denotes the amount of type-𝑖 utility offered by action 𝑘 (𝑡) at time 𝑡 . Our multi-type

utility framework allows the controller to evaluate the performance across various dimensions,

such as energy consumption, social welfare, total revenue earned, etc.

Executing 𝑘 (𝑡) also incurs one unit of resource usage for a stochastic duration 𝐷 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡) ∈
{1, 2, ..., 𝑑max}. Specifically, the resource is occupied from time 𝑡 to time 𝑡 + 𝐷 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡) − 1, and

becomes available again at time 𝑡 + 𝐷 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡). The controller manages a limited pool of 𝐶

resource units and rejects incoming requests if all resources are occupied. The stochastic out-

comes (𝑅𝑖, 𝑗,𝑘 (𝑡), 𝐷 𝑗,𝑘 (𝑡)) for any pair (𝑖, 𝑗, 𝑘) ∈ I × J × K follow a joint distribution O𝑖, 𝑗,𝑘 , i.e.,

(𝑅𝑖, 𝑗,𝑘 (𝑡), 𝐷 𝑗,𝑘 (𝑡)) ∼ O𝑖, 𝑗,𝑘 . We denote 𝑟𝑖, 𝑗,𝑘 = E[𝑅𝑖, 𝑗,𝑘 (𝑡)] and 𝑑 𝑗,𝑘 = E[𝐷 𝑗,𝑘 (𝑡)]. Here we note that
rejecting a request (𝑘 (𝑡) = 𝑘null) results in zero utility and no resource usage. Additionally, the

stochastic variables {𝑅1, 𝑗,𝑘 (𝑡), .., 𝑅I, 𝑗,𝑘 (𝑡), 𝐷 𝑗,𝑘 (𝑡)} can be arbitrarily correlated. In this work, we

consider the online setting where the statistics about the O𝑖, 𝑗,𝑘 are unknown to the controller.

Feedback model. We consider the bandit-feedback setup for the controller. Specifically, at

each time 𝑡 , the controller observes only the type 𝑗 (𝑡) of the arriving request, and the stochastic

outcomes/realizations {𝐷 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡), 𝑅1, 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡), ..., 𝑅I, 𝑗 (𝑡 ),𝑘 (𝑡 ) } associatedwith the selected action
𝑘 (𝑡) and type 𝑗 (𝑡). The outcomes of the other actions will not be revealed to the controller. Also,

the controller cannot observe future arrivals or their corresponding utilities and resource usage
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durations. Thus, the choice of 𝑘 (𝑡) is based solely on (1) the observed type 𝑗 (𝑡), (2) the historical
observationsH(𝑡 −1) = { 𝑗 (𝑡), 𝐷 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡), 𝑹 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡)}𝑡−1

𝜏=1
from time 1 to 𝑡 −1, and (3) the internal

randomness of the controller, i.e., the developed algorithm should be a non-anticipatory policy. It

is worth noting that our feedback setup is more restrictive compared to [17]. In their setting, the

controller receives full information about the utility and resource usage outcomes when the resource

is available, even though their focus is limited to a two-action scenario (i.e., admission control).

When the resource is unavailable, requests are rejected and no feedback is provided—consistent

with our feedback model. Consequently, their controller is able to collect a linear number of samples,

i.e., 𝑂 (𝑡) samples for each unknown parameter. In contrast, our setup lacks such property which

makes our model more challenging. We relax our feedback setup in Section 6 to align with theirs,

demonstrating an improved performance guarantee for our algorithm.

Objective. The objective of the controller is to enforce fairness on the time-averaged aggregate

utilities across all types over an unknown horizon 𝑇 , while adhering to the resource capacity

constraint at any time:

max

{𝑘 (𝑡 ) }𝑡 ∈ [𝑇 ]
min

𝑖∈I
E

[
1

𝑇

𝑇∑︁
𝑡=1

𝑅𝑖, 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡)
]
,

𝑡∑︁
𝜏=1

I
{
𝐷 𝑗 (𝜏 ),𝑘 (𝜏 ) (𝜏) ≥ 𝑡 − 𝜏 + 1

}
≤ 𝐶, ∀𝑡 ∈ [𝑇 ] .

Here, we adopt max–min fairness as our fairness notion, which has been extensively studied in

the problems of fair allocation [8, 15, 30]. Its appeal lies in its ability to ensure a uniform minimal

utility guarantee across all metrics or criteria, offering a stronger fairness assurance compared to

other fairness notions like Nash social welfare and proportional fairness. Our fairness objective

raises novel technical challenges and subsumes total utility maximization as a special case. In our

paper, each utility type is normalized to lie within the interval [−1, 1]. This normalization ensures

that utility types—potentially defined on different scales—become comparable under our max–min

fairness framework. Actually, our algorithm and analysis naturally extend to a scalarized version

of the objective: min𝑖∈I E
[

1

𝑇

∑𝑇
𝑡=1

𝑤𝑖 · 𝑅𝑖, 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡)
]
, where𝑤𝑖 represents a user-defined weight

for utility type 𝑖 . This scalarization accommodates varying operational priorities across different

performance metrics, allowing practitioners to place more or less emphasis on any particular metric

as needed. For convenience, let 𝑌𝑘 (𝑡) ∈ {0, 1} indicate whether action 𝑘 is taken at time 𝑡 . Then, the

online fair allocation problem with reusable resources (OFARR) can be reformulated as the following

online binary integer program,

(OFARR) max

{𝒀 (𝑡 ) }𝑡 ∈ [𝑇 ]
min

𝑖∈I
E

[
1

𝑇

𝑇∑︁
𝑡=1

∑︁
𝑘∈K

𝑅𝑖, 𝑗 (𝑡 ),𝑘 (𝑡) · 𝑌𝑘 (𝑡)
]

s.t.

𝑡∑︁
𝜏=1

∑︁
𝑘∈K

𝑌𝑘 (𝜏) · I{𝐷 𝑗 (𝜏 ),𝑘 (𝜏) ≥ 𝑡 − 𝜏 + 1} ≤ 𝐶, ∀𝑡 ∈ [𝑇 ],∑︁
𝑘∈K

𝑌𝑘 (𝑡) ≤ 1, ∀𝑡 ∈ [𝑇 ]; 𝑌𝑘 (𝑡) ∈ {0, 1}, ∀𝑘 ∈ K and 𝑡 ∈ [𝑇 ] .

Here, we let

∑
𝑘∈K 𝑌𝑘 (𝑡) ≤ 1 since the controller could take the null action (reject the request). We

denote the optimal objective value of (OFARR) under a non-anticipatory policy as OPT
∗
, where the

policy has full knowledge of the underlying distributions but no access to the actual realizations of

arrivals, durations, or utilities in advance. OPT
∗
is also referred to as the clairvoyant optimum, a term

commonly used in the literature [7, 19]. We remark that although we consider the stochastic setting,

the term I{𝐷 (𝜏) ≥ 𝑡 −𝜏 + 1} induces non-stationarity into the decision-making process. Specifically,

even if the controller selects the same action 𝑘 at two different times 𝜏1 < 𝜏2, the corresponding

resource usage-characterized by I{𝐷 (𝜏1) ≥ 𝑡 − 𝜏1 + 1} and I{𝐷 (𝜏2) ≥ 𝑡 − 𝜏2 + 1)-follows different
distributions at time 𝑡 . This behavior contrasts sharply with the existing literature on stochastic (non-

reusable) resource allocation with knapsacks that crucially rely on model stationarity. In general,
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(OFARR) is intractable due to the unknown parameter distributions, non-stationarity induced by the

resource reusability, and the curse of dimensionality. Thus, our goal is to achieve near-optimality.

More precisely, let ALG represent the time-averaged objective value achieved by the controller

and our goal is to design a policy for the controller that satisfies the competitive guarantee defined

in (1). Notably, even with full model certainty, achieving a sublinear regret guarantee (i.e., 𝛼 = 1

in (1)) is generally not possible. This was demonstrated by [17], who studied a special case of our

problem with |I | = |J | = 1, |K | = 2, and 𝐶 = 1.

3.2 Motivating examples
Before proceeding to our algorithm development, we highlight the generality of our framework

by discussing some of its applications, including large language model (LLM) inference service

provisioning and healthcare management.

LLM inference service provisioning. Consider a service provider offering LLM inference

services [14, 51] for users’ requests. These requests correspond to inference queries, which may

include text-generation tasks, code-completion queries, or conversational instructions. The request

type 𝑗 (𝑡) can encode specific attributes such as the level of the query token length, user membership

tier (e.g., free vs. paid users), or desired response quality and latency. The action 𝑘 (𝑡) ∈ K represents

different inference optimization settings (e.g., quantization, model pruning) or distinct LLM models.

Naturally, different LLM models and inference optimization settings yield different inference

accuracy, monetary cost, and latency. After serving the request, the service provider receives

multi-type utilities {𝑅𝑖, 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡)}𝑖 , capturing performance metrics along multiple dimensions such

as: (a) user satisfaction or service-level agreement (SLA) fulfillment, e.g., whether the request is

answered with sufficient quality; (b) energy consumption or operational costs, e.g., using an LLM

model with larger weights can provide more accurate and higher-quality responses but incurs

higher energy usage; (c) revenue (giving priority to paid subscribers can increase profit). The

resource capacity 𝐶 reflects the maximum number of requests that can be processed in parallel

(i.e., maximum service capacity [34]), often limited by GPU memory or the physical number of

GPU nodes. If all resources are occupied, newly arriving requests must be rejected. Additionally,

if the service provider determines that the benefit of serving the request is insufficient to justify

resource usage (e.g., during peak request periods for free users), he can choose to reject the request.

Each accepted request 𝑗 (𝑡) under action 𝑘 (𝑡) occupies the allocated resource for a stochastic

duration 𝐷 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡), indicating how long the GPU remains locked for that specific inference task.

In practice, the service provider seeks to maximize a max-min fairness objective among different

utility types—e.g., ensuring that user satisfaction, energy efficiency, and revenue are balanced,

without letting any single metric degrade excessively. Meanwhile, the service provider must respect

the service capacity constraints and thus the resulting problem fits into our framework.

Healthcare management.Our framework could be applied to other domains such as healthcare

resource management. In this context, requests correspond to patients seeking medical attention.

The patient type 𝑗 (𝑡) captures patient characteristics, such as urgency level and medical condition.

Actions 𝑘 (𝑡) ∈ K represent assigning patients to specific healthcare providers, such as nurses or

doctors. Alternatively, 𝑘 (𝑡) = 𝑘null may indicate redirecting patients to other hospitals or outpa-

tient departments to alleviate crowding. The utilities {𝑅𝑖, 𝑗,𝑘 (𝑡)}𝑖 could reflect patient satisfaction,

recovery speed, or treatment effectiveness for different medical objectives. For example, if 𝑖 denotes

a reliability objective, 𝑟𝑖, 𝑗,𝑘 should be higher for more urgent patients when 𝑗 encodes the acuity

level of the patient. The stochastic duration 𝐷 𝑗,𝑘 (𝑡) reflects the expected treatment time required

for the assigned healthcare provider to complete the patient’s care. The model incorporates ca-

pacity constraints on healthcare resources, such as hospital beds, treatment rooms, or medical

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 29. Publication date: June 2025.



29:10 Qingsong Liu and Mohammad Hajiesmaili

equipment. The controller must balance resource usage and patient outcomes, and when resources

are unavailable, he can mitigate overload by redirecting patients to other hospitals.

4 Algorithm
In this section, we first introduce preliminaries that facilitate our algorithm design in Section 4.

4.1 Preliminaries
We note that directly tackling (OFARR) is challenging, even when the distributions of problem

parameters are known in advance. This difficulty arises from the stochastic variations in the

outcomes and the unknown value of 𝑇 . To mitigate this difficulty, we introduce a “steady-state”

benchmark of (OFARR), denoted as (OFARR-S), which serves as the building block for our algorithm:

(OFARR-S) max 𝜆 s.t.


∑

𝑗∈J
∑
𝑘∈K 𝑝 𝑗 · 𝑟𝑖, 𝑗,𝑘 · 𝑥 𝑗,𝑘 ≥ 𝜆, ∀𝑖 ∈ I,∑

𝑗∈J
∑
𝑘∈K 𝑝 𝑗 · 𝑑 𝑗 · 𝑥 𝑗,𝑘 ≤ 𝐶,∑

𝑘∈K 𝑥 𝑗,𝑘 ≤ 1, ∀𝑗 ∈ J , 𝑥 𝑗,𝑘 ≥ 0, ∀𝑘 ∈ K, 𝑗 ∈ J .

Here (𝒑, 𝒓 , 𝒅) represents the ground truth of arrival probabilities, utilities, and resource usage

durations. The variable 𝑥 𝑗,𝑘 denotes the fraction of type- 𝑗 requests allocated to action 𝑘 , making

(OFARR-S) a fluid approximation of (OFARR). Notably, [19, 50] employs a relaxed version of the

original optimization problem as the foundation for their algorithms. When applied to our model,

this relaxed version, (OFARR-R), assumes that the realizations of request arrivals and their resource

usage durations under all possible actions align exactly with their underlying distributions (as

detailed in (17) of the Appendix), enabling the careful allocation of reusable resources. However, this

approach is not directly applicable to our (online) setting due to two key challenges: the unknown

time horizon 𝑇 , and the bandit feedback which prevents accurate estimation of the distribution of

usage durations. In contrast, (OFARR-S) offers a more lightweight alternative, relying solely on the

expectations of the unknown parameters and remaining independent of 𝑇 , making it a suitable

building block for our algorithm design. Denote the optimal objective values of (OFARR), (OFARR-R),
and (OFARR-S) as OPT∗

, OPT
R
, and 𝜆∗, respectively. The following lemma establishes that 𝜆∗ incurs

only a bounded optimality gap compared to both OPT
∗
and OPT

R
.

Lemma 1. The inequalities hold surely that𝑇 ·OPT∗ ≤ 𝑇 ·OPTR ≤ 𝑇 ·𝜆∗ + I{𝐶 < 𝑑max} ·𝑑max · 𝑟max.

The indicator term I{𝐶 < 𝑑max} arises from the observation that when 𝐶 ≥ 𝑑max, i.e., resources

are abundant, the capacity constraints in both (OFARR-R) and (OFARR-S) can be safely ignored, as

they are satisfied for all 𝑡 . Consequently, we can deduce that the optimal objective values of these

two problems coincide. Lemma 1 shows that 𝜆∗ can be interpreted as the target value for the optimal

utility rate of each type. In our algorithm design, we estimate 𝜆∗ using past observations, which
then used to adjust the penalty weights associated with the utilities.

4.2 Algorithm design
The proposed algorithm operates across multiple epochs and incorporates a multiplicative weights

update (MWU) process. The MWU process iteratively generates penalty weights to effectively

balance different types of utilities earned, resource units consumed as well as usage durations. More

specifically, our algorithm divides the time horizon 𝑇 into multiple epochs 𝑛 = 0, 1, . . ., where each

epoch 𝑛 consists of ℓ𝑛 time steps. We initialize with ℓ0 = 𝑑max and double ℓ𝑛 for each subsequent

epoch 𝑛 ≥ 1. We refer to 𝑡𝑛 as the ending timestep of epoch 𝑛. Epoch 0 serves as a warm-up phase.

For epochs 𝑛 ≥ 1, the algorithm comprises three key procedures: In procedure 1○, we estimate

the optimum of (OFARR-S). In procedure 2○, we derive the penalty weights based on the estimated

optimum of (OFARR-S) and subsequently determine the allocation decisions using these weights.

In procedure 3○, we employ a dual mechanism comprising forced exploration and discarding to
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reduce the likelihood of capacity violations (ensure that the decision sequence generated in the

procedure 2○ adheres to the resource capacity constraints with high probability even in the presence

of stochastic outcome variations and estimation errors), while also ensuring sufficient exploration.

This mechanism operates probabilistically, employing carefully designed probabilities 𝑓𝑛 and 𝑔𝑛 (as

specified in (3)) to explore and discard the decisions computed in procedure 2○. The pseudocode of

our algorithm, namely Exploration-Discarding with Penalty Weights Update (ED-PWU), is shown

in Algorithm 1. Next, we provide detailed explanations for these three procedures.

Procedure 1○: estimating 𝜆∗. In this procedure, we use observations collected up to epoch 𝑛,

i.e., the observations during the time-steps {1, ..., 𝑡𝑛−1}, to compute an estimate
ˆ𝜆∗ (𝑛) of 𝜆∗, which

is the solution to (OFARR-S). Since parameters 𝒑, 𝒓 and 𝒅 are unknown in our online (learning)

setting, we replace them with their estimates in (OFARR-S) and solve the following optimization

problem to obtain
ˆ𝜆∗ (𝑛):

(OFARR-S) (𝑛) max 𝜆 s.t.


∑

𝑗∈J
∑
𝑘∈K 𝑝 𝑗 (𝑛) · 𝑟𝑖, 𝑗,𝑘 (𝑛) · 𝑥 𝑗,𝑘 ≥ 𝜆, ∀𝑖 ∈ I,∑

𝑗∈J
∑
𝑘∈K 𝑝 𝑗 (𝑛) · ˆ𝑑 𝑗,𝑘 (𝑛) · 𝑥 𝑗,𝑘 ≤ 𝐶,∑

𝑘∈K 𝑥 𝑗,𝑘 ≤ 1, ∀𝑗 ∈ J ; 𝑥 𝑗,𝑘 ≥ 0, ∀𝑘 ∈ K, 𝑗 ∈ J .

Here 𝒑̃(𝑛) is the empirical estimate of 𝒑 based on the request arrivals up to epoch 𝑛. While 𝒑 can

be directly estimated from the observed samples, as one sample for 𝒑 is obtained at each time, the

estimates for 𝒓 and 𝒅 are constructed using their upper confidence bound (UCB) estimate, 𝒓 (𝑛),
and lower confidence bound (LCB) estimate,

ˆ𝒅 (𝑛), respectively. The intuition behind this choice

is to encourage more aggressive decisions regarding utilities while remaining conservative about

resource consumption (a similar idea has also been used in related constrained online learning

works [3, 36, 37]). The detailed specifications of 𝒓 (𝑛) and ˆ𝒅 (𝑛) are as follows,

𝑟𝑖, 𝑗,𝑘 (𝑛) = min

{
𝑟max, 𝑟𝑖, 𝑗,𝑘 (𝑛) + 𝑟max

√︃
2 log( |I| |J ||K |/𝛿𝑛)/𝑁 𝑗,𝑘 (𝑡𝑛−1)

}
, ∀𝑖 ∈ I, 𝑗 ∈ J , 𝑘 ∈ K,

ˆ𝑑 𝑗,𝑘 (𝑛) = max

{
1, ˜𝑑𝑖, 𝑗,𝑘 (𝑛) − 𝑑max

√︃
2 log( |J ||K |/𝛿𝑛)/𝑁 𝑗,𝑘 (𝑡𝑛−1)

}
, ∀𝑗 ∈ J , 𝑘 ∈ K,

where 𝛿𝑛 is the confidence parameter; 𝑁 𝑗,𝑘 (𝑡) is the number of times that the action 𝑘 is chosen for

arrival type 𝑗 up to time 𝑡 ; and 𝒓̃ (𝑛) and ˜𝒅 (𝑛) are the empirical estimates for 𝒓 and 𝒅, respectively.
By Hoeffding’s inequality, we can verify that 𝑟𝑖, 𝑗,𝑘 (𝑛) ≥ 𝑟𝑖, 𝑗,𝑘 , w.p. ≥ 1 − 𝛿𝑛/(|J ||K ||I|) and
ˆ𝑑 𝑗,𝑘 (𝑛) ≤ 𝑑 𝑗,𝑘 , w.p. ≥ 1 − 𝛿𝑛/(|J ||K |).
Procedure 2○: calculating allocation decisions via penalty weights. At this procedure in

epoch 𝑛, upon observing the arriving request type 𝑗 (𝑡), we sample a weight vector 𝝓 (𝑡) from a

weight vector setΘ(𝑛) uniformly and compute the decision
˜𝑘 (𝑡) based on 𝝓 (𝑡) (see (2) in Algorithm

1). In (2), 𝒓 (𝑛) and 𝒅 (𝑛) represent the optimistic and pessimistic estimates for 𝒓 and 𝒅, respectively,
and are identical to the estimates used in procedure 1○ (we let 𝑟𝑖, 𝑗 (𝑡 ),𝑘null (𝑛) = ˆ𝑑 𝑗 (𝑡 ),𝑘null (𝑛) = 0). The

vector 𝝓 (𝑡) = (𝜙0 (𝑡), 𝜙1 (𝑡), ..., 𝜙I (𝑡)) is a penalty weight vector, where 𝜙0 (𝑡) represents the penalty
for resource consumption, and the weights {𝜙𝑖 (𝑡)}𝑖∈I quantify the relative importance of different

utility types to ensure fairness among them. The weight vector set Θ(𝑛) is constructed by invoking

a MWU process (see Algorithm 2) and the weight vectors in Θ(𝑛) could be viewed as dual variables
solving the online feasibility problem for (OFARR-S)(𝑛) given 𝜆∗ (𝑛). Notably, in Line 6 of Algorithm

2, 𝜖𝐶𝑛 (as detailed in Lemma 2) represents the confidence radius for 𝜆∗ (𝑛), and we show in Lemma 3

that
ˆ𝜆∗ (𝑛) − 𝜖𝐶𝑛 ≤ 𝜆∗ with high probability. Generally speaking, these weight vectors altogether

describe the dual prices that trade-off between the utility earned of all types and the resource units

consumed. They ensure that the sequence { ˜𝑘 (𝑡)}𝑡𝑛
𝑡=𝑡𝑛−1+1

achieves a time-averaged objective value

close to 𝜆, the target objective value. Additionally, constructing weight vectors in this way is also

for a technical reason as we can ensure that { ˜𝑘 (𝑡)}𝑡𝑛
𝑡=𝑡𝑛−1+1

are mutually independent conditional on
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the historyH(𝑡 − 1), as 𝑗 (𝑡) is i.i.d. over time. Such independence reduces the difficulty of handling

the complicated correlations in resource feasibility across all time steps.

Remark 1. We remark that in admission control scenarios where only two actions “accept/reject”
are available, the selection rule (2) simplifies to a threshold rule based on whether utility outweighs
resource cost, i.e., ˜𝑘 (𝑡) = 𝑘accept only if the indicator variable I{∑𝑖∈ |I | 𝜙𝑖 (𝑛) · 𝑟𝑖, 𝑗 (𝑡 ),𝑘accept (𝑛) ≥ 𝜙0 (𝑛) ·
ˆ𝑑 𝑗 (𝑡 ),𝑘accept (𝑛)} is true. We also note that when 𝐶 ≥ 𝑑max, resource availability is guaranteed at all
time steps. Consequently, the weight of resource usage, 𝜙0 (𝑡), approaches zero over time, allowing our
algorithm to achieve improved performance guarantees (as reported in Theorem 3).

Algorithm 1 ED-PWU

1: Initialization: 𝑡0 = ℓ0 = 𝑑max, ℓ𝑛 = 2ℓ𝑛−1, and confidence parameters 𝛿𝑛 = 1/𝑡2

𝑛 for all 𝑛 = 1, 2, . . .

2: for time steps 𝑡 = 1, . . . , ℓ0 do
3: If the resource is available, select an arbitrary action. Otherwise, select the null action 𝑘null.

4: end for
5: for epoch 𝑛 = 1, 2, . . . do
6: Update the empirical estimates

(
𝒑̃(𝑛), 𝒓̃ (𝑛), ˜𝒅 (𝑛)

)
, UCB estimate 𝒓 (𝑛), LCB estimate

ˆ𝒅 (𝑛), respectively.
7: Solve (OFARR-S)(𝑛) and obtain its optimal objective value

ˆ𝜆∗ (𝑛). // procedure 1○
8: Run Algorithm 2 and obtain the weight vector set Θ𝑛 = {𝝓𝑛 (𝑠)}ℓ𝑛𝑠=1

.

9: 𝑡𝑛 = 𝑡𝑛−1 + ℓ𝑛
10: for time steps 𝑡 = 𝑡𝑛−1 + 1, . . . , 𝑡𝑛 do
11: Sample a weight vector 𝝓 (𝑡) uniformly at random from Θ𝑛 . // procedure 2○
12: Observe arrival type 𝑗 (𝑡), and compute

˜𝑘 (𝑡) = arg max

𝑘∈K∪𝑘null

{∑︁
𝑖∈I

𝜙𝑖 (𝑡) · 𝑟𝑖, 𝑗 (𝑡 ),𝑘 (𝑛) − 𝜙0 (𝑡) · ˆ𝑑 𝑗 (𝑡 ),𝑘 (𝑛)
}
. (2)

13: Sample 𝜔 (𝑡) ∈ [0, 1] and set // procedure 3○

ˆ𝑘 (𝑡) =


˜𝑘𝑒 (𝑡), where ˜𝑘𝑒 (𝑡) is sample uniformly at random from K if 𝜔 (𝑡) ≤ 𝑓𝑛, //exploration
˜𝑘 (𝑡) if 𝑓𝑛 < 𝜔 (𝑡) ≤ 𝑓𝑛 + (1 − 𝑓𝑛) 1

1+𝑔𝑛 ,

𝑘null otherwise. //discarding

14: if
∑𝑡−1

𝜏=1
I{𝐷 𝑗 (𝜏 ),𝑘 (𝜏 ) (𝜏) ≥ 𝑡 − 𝜏 + 1} < 𝐶 then

15: Take action 𝑘 (𝑡) = ˆ𝑘 (𝑡)
16: else
17: Take action 𝑘 (𝑡) = 𝑘null
18: end if
19: end for
20: end for

Procedure 3○: exploration and discarding. As noted in the introduction section, the sequence

{ ˜𝑘 (𝑡)}𝑡𝑛
𝑡=𝑡𝑛−1+1

computed in procedure 2○ cannot be directly adopted as the final decision sequence.

This is because it is essential to carefully balance the trade-offs among maintaining resource

feasibility, ensuring adequate exploration, and minimizing utility loss caused by discarding or

exploration. Our algorithmic ideas to handle these trade-offs are as follows.

• Exploration. We allocate a probability 𝑓𝑛 (to be defined later) for exploration. If the controller

opts to explore, an action 𝑘 is sampled uniformly at random from K .

• Discarding. If exploration is not chosen, the base decision
˜𝑘 (𝑡) is discarded independently

with a carefully designed probability 𝑔𝑛 (to be defined later) to create slack in the resource

feasibility. The complement 1 − 𝑔𝑛 could be considered as the retaining probability.
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In our analysis, we demonstrate that these two steps ensure the expected resource usage at any time

is approximately (1− 𝑓𝑛 −𝑔𝑛) times the initial resource inventory𝐶 . Since this usage is represented

as a sum of independent indicator random variables, it concentrates around its expectation, ensuring

high-probability satisfaction of the resource capacity constraint when 𝑔𝑛 and 𝑓𝑛 are appropriately

chosen. Furthermore, the utility loss for any type due to discarding and exploration is bounded by

approximately 𝑓𝑛 + 𝑔𝑛 times the expected utility earned by sequence { ˜𝑘 (𝑡)}𝑡 . In order to optimize

this trade-off, we choose 𝑓𝑛 and 𝑔𝑛 as follows.

𝑓𝑛 = ℓ
−𝜌
𝑛 , 𝑔𝑛 = 𝛾1 · 𝜖𝑛 + 𝛾2, where 𝜖𝑛 = 𝑂

©­«
√︄

log(1/𝛿𝑛)
ℓ𝑛

+
√︄

log(1/𝛿𝑛)
min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑛)

ª®¬ . (3)

Here 𝜌,𝛾1, 𝛾2 > 0 are tuning parameters, the specifics of which are elaborated in Theorem 2. The

exploration probability 𝑓𝑛 is decaying as the epoch grows and will not cause significant overhead

in the algorithm performance. We note that 𝜖𝑛 captures the estimation errors and is detailed in

Lemma 3. The term𝑂

(√︃
log(1/𝛿𝑛 )

ℓ𝑛

)
in 𝜖𝑛 arises from errors in estimating 𝒑, while𝑂

(√︃
log(1/𝛿𝑛 )

min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑛)

)
reflects the largest uncertainty in estimating utilities and resource usage duration, dominated by

the type-action pair with the fewest samples. The coefficients 𝛾1 and 𝛾2 in 𝑔𝑛 aim to balance the

trade-off between guaranteeing resource feasibility and minimizing utility loss due to discarding. In

the practical implementation of the algorithm, we use a retaining probability of 1/(1 + 𝑔𝑛) instead
of 1−𝑔𝑛 to avoid the potential negativity of 1−𝑔𝑛 during early epochs. When 𝑛 is sufficiently large,

1/(1 + 𝑔𝑛) approximates 1 − 𝑔𝑛 , preserving the desired behavior. The discarding and exploration

complicate the analysis of point-wise resource feasibility. In Section 5.3, we develop a coupling

technique to disentangle the intricate dependencies between point-wise resource feasibility (induced

by the sequence {𝑘 (𝑡)}𝑡 ) and the outcomes resulting from the sequence { ˆ𝑘 (𝑡)}𝑡 .
Algorithm 2 Penalty weight vectors construction (invoked at the start of epoch 𝑛)

1: Input: estimates

(
ˆ𝜆∗ (𝑛), 𝒓, ˆ𝒅 (𝑛), 𝒑̃(𝑛)

)
2: Initialize: 𝜂𝑡 =

√
log( |I |+1)

max{𝑟max,𝑑max }
√
𝑡
for each 𝑠 = 1, 2, . . . , ℓ𝑛 ; 𝝓 (0) = 1

| I |+1
· 1 | I |+1

.

3: for virtual time steps 𝑡 = 1, . . . , ℓ𝑛 do
4: Sample 𝑗𝑣 (𝑡) from 𝒑̃(𝑛)
5: Compute the virtual action: ˜𝑘𝑣 (𝑡) = arg max𝑘∈K∪𝑘null

{∑
𝑖∈I 𝜙𝑖 (𝑡) · 𝑟𝑖, 𝑗𝑣 (𝑡 ),𝑘 (𝑛) − 𝜙0 (𝑡) · ˆ𝑑 𝑗𝑣 (𝑡 ),𝑘 (𝑛)

}
.

6: Update the penalty vector:

𝜙𝑖 (𝑡 + 1) = 𝜙𝑖 (𝑡) · exp

(
−𝜂𝑡

[
𝑟
𝑖, 𝑗𝑣 (𝑡 ), ˜𝑘𝑣 (𝑡 ) (𝑛) −

(
ˆ𝜆∗ (𝑛) − 𝜖𝐶 (𝑛)

)] )
, ∀𝑖 ∈ {1, ..., |I |}

𝜙0 (𝑡 + 1) = 𝜙0 (𝑡) · exp

(
−𝜂𝑡

[
− ˆ𝑑

𝑗𝑣 (𝑡 ), ˜𝑘𝑣 (𝑡 ) (𝑛) +𝐶
] )

, 𝑖 = 0

𝝓 (𝑡 + 1) = 𝝓 (𝑡 + 1)/∥𝝓 (𝑡)∥1

7: end for
8: Return the weight vector set Θ𝑛 = {𝝓 (𝑡)}ℓ𝑛

𝑡=1
.

5 Main Theoretical Results and Analysis
In this section, we first introduce the designs of the discarding density 𝑔𝑛 and the exploration

density 𝑓𝑛 . We then present the corresponding performance bounds of our algorithm.

5.1 The design of 𝑓𝑛 and 𝑔𝑛

The following theorem is instrumental for the design of discarding density 𝑔𝑛 = 𝛾1 · 𝜖𝑛 + 𝛾2 and

exploration density 𝑓𝑛 = ℓ
−𝜌
𝑛 .
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Theorem 1. Given any 𝜀 > 0, it holds that w.p. 1 − 23𝛿𝑛 for all 𝑖 ∈ I and 𝑛 ≥ 1:

𝑡𝑛∑︁
𝑡=𝑡𝑛−1+1

𝑅𝑖, 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡) ≥
1

1 + 𝑔𝑛

(
1 − 1

(1 + 𝜀)𝐶−1

· exp

[
𝜀 (𝐶 + 𝜖𝑛)

1 + 𝑔𝑛

] )+
︸                                                     ︷︷                                                     ︸

ratio term

ℓ𝑛 · 𝜆∗

− ℓ𝑛

(
𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛 + 𝑓𝑛𝜆

∗ + 2𝜀 𝑓𝑛 (𝑑𝑚𝑎𝑥 −𝐶)+ · 𝜆∗
)
− 𝑟max

√︁
2𝑑maxℓ𝑛 log(𝑑max/𝛿𝑛) − 𝑟max𝑑max︸                                                                                                                              ︷︷                                                                                                                              ︸

error term

, (4)

where (𝜖𝐴, 𝜖𝐵, 𝜖𝐶 ) and 𝜖𝑛 are quantities provided in Lemmas 2 and 3, respectively.

Theorem 1 serves as the foundation for our theoretical results by providing a lower bound to

the accumulated utility of type 𝑖 during each epoch 𝑛. In particular, by setting the specific values

of 𝜖𝐴𝑛 , 𝜖
𝐵
𝑛 , 𝜖

𝐶
𝑛 and 𝜖𝑛 into (4), we can obtain that the error term in (4) is of the order 𝑂

( ∑𝑁
𝑛=1

(
𝑓𝑛 +

ℓ𝑛
√︁

log(1/𝛿𝑛)/min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛−1) +
√︁
ℓ𝑛 log(1/𝛿𝑛)

) )
, where 𝑁 = ⌈log(𝑇 /𝑑max)⌉ is the total number of

epochs. To derive a performance bound for our algorithm via Theorem 1, it suffices to establish a

lower bound for min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛−1). By noticing that any policy encounters at least one instance of

resource availability every 𝑑max rounds, we can immediately obtain the following expected lower

bound on the number of samples for all pairs ( 𝑗, 𝑘):

E
[
min

𝑗,𝑘
𝑁 𝑗,𝑘 (𝑡𝑛−1)

]
=

𝑡𝑛−1∑︁
𝑡=1

P (𝑘 (𝑡) = 𝑘, 𝑗 (𝑡) = 𝑗) ≥
𝑛−1∑︁
𝑛=0

ℓ𝑛 · 𝑓𝑛 · 1

𝑑max

𝑝 𝑗

|K | =
𝑛−1∑︁
𝑛=0

ℓ
1−𝜌
𝑛 · 1

𝑑max

𝑝 𝑗

|K | = 𝑂

(
2
𝑛 (1−𝜌 )

)
.

The term 1/𝑑max arises from observing that 𝑘 (𝑡) = ˆ𝑘 (𝑡) (line 15 in Algorithm 1) occurs at least once

every 𝑑max rounds. Using Chernoff bounds, we can show that P
(
𝑁 𝑗,𝑘 (𝑛) ≤ (1 −

√
2

2
) · E[𝑁 𝑗,𝑘 (𝑛)]

)
≤

exp

(
−E[𝑁 𝑗,𝑘 (𝑛)]/4

)
≤ 𝑂

(
1/4

𝑛 (1−𝜌 )
)
. Consequently, the expectation of the error term becomes

𝑂

(
E

[∑𝑁
𝑛=1

(
𝑓𝑛 + ℓ𝑛

√︁
log(1/𝛿𝑛)/min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛−1) +

√︁
ℓ𝑛 log(1/𝛿𝑛)

)] )
≤ 𝑂 (𝑇

1+𝜌
2

√︁
log𝑇 +𝑇 1−𝜌 ). By setting

𝜌 = 1/3, we minimize the order of this bound to 𝑂 (𝑇 2/3). Accordingly, we choose 𝑓𝑛 = ℓ
−1/3

𝑛 in our

algorithm to match this analysis, and this choice also explains the emergence of the 𝑂 (𝑇 2/3) term
in our performance bound (see Theorem 2). To deal with the ratio term in (4), we set 𝛾1 = (𝜀 + 1)/𝐶
and 𝛾2 = 𝜀 in the definition of 𝑔𝑛 (𝜀 will be specified later), resulting in

1

1 + 𝑔𝑛
=

1

1 + (𝜀 + 1)𝜖𝑛/𝐶 + 𝜀
=

1

1 + 𝜖𝑛/𝐶
· 1

𝜀 + 1

,

1

(1 + 𝜀)𝐶−1

· exp

[
𝜀 (𝐶 + 𝜖𝑛)

1 + 𝑔𝑛

]
= (1 + 𝜀) · 1

(1 + 𝜀)𝐶
· exp( 𝜀

1 + 𝜀
·𝐶) = (1 + 𝜀) exp

[
𝐶

( 𝜀

1 + 𝜀
− log(1 + 𝜀)

)]
.

Thus, the ratio term in (4) can be rewritten as

ratio term in (4) =
1

1 + 𝜖𝑛/𝐶
· 1

𝜀 + 1

·
(
1 − (1 + 𝜀) exp

[
𝐶

( 𝜀

1 + 𝜀
− log(1 + 𝜀)

)] )+
. (5)

Denote L(𝜀) as

L(𝜀) = 1

𝜀 + 1

·
(
1 − (1 + 𝜀) exp

[
𝐶

( 𝜀

1 + 𝜀
− log(1 + 𝜀)

)] )+
, (6)

and then (5) implies that our algorithm can achieve at least
1

1+𝜖𝑛/𝐶 · L(𝜀) competitive ratio against

ℓ𝑛 · 𝜆∗ for any 𝜀 > 0 at epoch 𝑛 ≥ 1. Let 𝜀∗ (𝐶) be the optimal assignment solving Equation (6).

It is not hard to verify that 𝜀∗ (𝐶) = 𝑂 (
√︁

log𝐶/𝐶). Next, we show that the ratio term in (4) is

of order 1 − 𝑂 (
√︁

log𝐶/𝐶) under 𝜖 = 𝜀∗ (𝐶) in the asymptotic regime of 𝐶 . Note that the term
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exp

[
𝐶

(
𝜀

1+𝜀 − log(1 + 𝜀)
) ]

in L(𝜀) can be bounded as follows,

exp

[
𝐶

( 𝜀

1 + 𝜀
− log(1 + 𝜀)

)]
≤ exp

[
𝐶

(
𝜀

1 + 𝜀
−

(
𝜀 − 𝜀2

2

))]
= exp

[
𝐶

(
− 𝜀2

1 + 𝜀2
+ 𝜀2

2

)]
= exp

[
𝐶

(
−𝜀

2

2

+ 𝜀2
𝜀2

1 + 𝜀2

)]
≤ exp

[
𝐶

(
−𝜀

2

2

+ 𝜀4

)]
= exp

[
−𝐶𝜀

2

2

]
exp

[
𝐶𝜀4

]
.

Using L(𝜀∗ (𝐶)) ≥ L
(√︁

log𝐶/𝐶
)
and combining all the things together, we can find that when 𝑛

is sufficiently large such that 𝜖𝑛 ≤ 0.5:

ratio term in (4) =
1

1 + 𝜖𝑛/𝐶
· L(𝜀∗ (𝐶)) ≥ 1

1 + 1/(2𝐶) · L
(√︁

log𝐶/𝐶
)

≥ 1

1 + 1/(2𝐶) ·
1

1 +
√︁

log𝐶/𝐶
·
(
1 − 1

1 +
√︁

log𝐶/𝐶
· exp

[
−
𝐶

log𝐶

𝐶

2

]
exp

[
𝐶

(
log𝐶

𝐶

)
2

])+
≥

(
1 − 1

2𝐶

)
·
(
1 −

√︂
log𝐶

𝐶

)
·
(
1 − 1

1 +
√︁

log𝐶/𝐶
·
√︂

log𝐶

𝐶
exp

[
log

2𝐶

𝐶

])+
= 𝑂

((
1 − 1

2𝐶

)
·
(
1 −

√︂
log𝐶

𝐶

))
= 1 −𝑂

(√︂
log𝐶

𝐶

)
.

Therefore, by setting 𝜌 = 1/3, 𝛾1 = (𝜀∗ (𝐶) + 1)/𝐶 , and 𝛾2 = 𝜀∗ (𝐶) in Algorithm 1, and combining

with Lemma 1, our algorithm achieves at least 1 − 𝑂 (
√︁

log𝐶/𝐶) competitive ratio against the

optimum OPT
∗
. We formally establish this statement in the following section.

5.2 Main competitive results
In this section, we present the theoretical guarantees of the developed algorithm. The following the-

orem establishes the performance bounds for our algorithm by using the discarding and exploration

densities (𝑓𝑛, 𝑔𝑛) defined in Section 5.1.

Theorem 2. Set 𝜌 = 1/3,𝛾1 = (𝜀∗ (𝐶)+1)/𝐶 , and𝛾2 = 𝜀∗ (𝐶) in (3), where 𝜀∗ (𝐶) = arg max𝜀>0 L(𝜀) =
1

𝜀+1
·
(
1 − (1 + 𝜀) exp

[
𝐶

(
𝜀

1+𝜀 − log(1 + 𝜀)
) ] )+. Then our algorithm ensures that

min

𝑖∈I
E

[
1

𝑇
·

𝑇∑︁
𝑡=1

𝑅𝑖, 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡)
]
≥

(
1 − 1

2𝐶

)
· L(𝜀∗ (𝐶)) · OPT∗ −𝑂

(
|J |𝑑max ·𝑇 2/3

√︁
log𝑇 · log( |J ||K ||I|)

+ 𝜀∗ (𝐶) · (𝑑𝑚𝑎𝑥 −𝐶)+ ·𝑇 2/3 +𝑇 2/3 + 𝑑3

max
+ 𝑑max/𝑝min +

∑︁
𝑗∈J

|K |/𝑝 𝑗
)/
𝑇 .
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Fig. 1. The curve of L(𝜀∗ (𝐶))

Here, we have L(𝜀∗ (𝐶)) ≥ 1 −𝑂 (
√︁

log𝐶/𝐶) as
previously proved, and its curve is depicted in Fig-

ure 1. Theorem 2 implies that the performance of

our algorithm is closer to the optimum when𝑇 and

𝐶 increase. A larger 𝐶 means that the controller

is endowed with more resource units to buffer

against the model uncertainty, stochastic nature

of the outcomes, and limited information feedback.

Compared to [17], where the error term is of the

order𝑂 (𝑇 1/2 +𝑑3

max
), our performance bound intro-

duces error terms that scale as 𝑂 (𝑑max ·𝑇 2/3 + 𝑑3

max
+ ∑

𝑗∈J |K |/𝑝 𝑗 + 𝑑max/𝑝min). The leading term

𝑂 (𝑑max ·𝑇 2/3) represents the performance loss due to forced exploration, highlighting the impact

of model uncertainty and the bandit feedback structure. While our current approach adopts a fixed
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forced exploration schedule, a more adaptive exploration strategy may help mitigate this overhead

and improve the theoretical guarantees. Therefore, an intriguing direction for future work is to

design more refined exploration mechanisms that have the potential to surpass this𝑂 (𝑇 2/3) bound.
In Section 6, we demonstrate that under the Quasi-full-feedback setup, our algorithm improves this

term to 𝑂 (𝑑max ·𝑇 1/2), achieving the same order of dependence on the time-horizon as [17] under

the same feedback setup. The coefficient 𝑑max reflects the absence of specific assumptions about

the distributions of 𝐷 𝑗,𝑘 (𝑡), such as known variance. By Hoeffding’s inequality, the accumulated

estimation error for 𝒅 at any given time is at least proportional to its support 𝑑max, and thus the

coefficient 𝑑max in relation to 𝑇 generally cannot be improved. This contrasts with [17], which

assumes deterministic resource usage durations. The coefficient 𝑑max also implies that our algo-

rithm achieves a meaningful competitive guarantee only when 𝑑max = 𝑜 (𝑇 1/3). Additionally, the
additional constant term𝑂

(∑
𝑗∈J |K |/𝑝 𝑗 + 𝑑max/𝑝min

)
arises from the uncertainty in 𝒑. Intuitively,

when 𝑝 𝑗 is very small—indicating that insufficient samples are available for accurate estimation

under arrival type 𝑗—significant performance loss may occur if actions associated with this arrival

type can yield high utility but with minimal resource usage time. In scenarios with only one request

type, as considered in [17], 𝑝min = |J | = 1, and thus 𝑑3

max
becomes the dominant constant term.

Finally, we would like to remark that the performance guarantee in Theorem 2 is not optimized for

the case where 𝐶 ≥ 𝑑max. In fact, when resources are abundant (𝐶 ≥ 𝑑max), resource availability is

ensured at all time steps, hence, discarding becomes unnecessary. In this case, we set the discarding

probability 𝑔𝑛 in our algorithm to zero (i.e., 𝛾1 = 𝛾2 = 0 in (3)). As a result, our algorithm achieves an

improved competitive ratio of 1. This improved performance guarantee under resource sufficiency

is formally presented in the following theorem.

Theorem 3. For the case where𝐶 ≥ 𝑑max, set 𝜌 = 1/3, 𝛾1 = 0, and 𝛾2 = 0 in (3) allows our algorithm
to further guarantee that

min

𝑖∈I
E

[
1

𝑇
·

𝑇∑︁
𝑡=1

𝑅𝑖, 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡)
]
≥ OPT∗ −𝑂

(
|J |𝑑max ·𝑇 2/3

√︁
log𝑇 · log( |J ||K ||I|)

+ 𝜀∗ (𝐶) · (𝑑𝑚𝑎𝑥 −𝐶)+ ·𝑇 2/3 +𝑇 2/3 + 𝑑3

max
+

∑︁
𝑗∈J

|K |/𝑝 𝑗
)/
𝑇 .

Theorem 3 implies that our algorithm can guarantee a sublinear regret of𝑂 (𝑇 2/3) when resources
are abundant (𝑑 ≥ 𝑑max). Notably, when 𝐶 ≥ 𝑑max, our model reduces to the indivisible variant of

the horizon-fairness optimization problem in the online setting. In this context, the most closely

related work is by [12] which achieves an 𝑂 (𝑇 1/2) regret bound under the full-feedback setup.

In Section 6, we relax the bandit-feedback setup to a Quasi-full-feedback setup (weaker than the

full feedback setup) and our algorithm guarantees the same regret order of 𝑂 (𝑇 1/2). However, it
remains unclear whether the 𝑂 (𝑇 2/3) regret bound is optimal in the bandit-feedback setup, and we

leave this as an open problem for future work.

We remark that the proofs of our main theoretical results (i.e., Theorems 2 and 3) are built upon

Theorem 1, which involve bounding its error term and applying a union bound across epochs.

Accordingly, we provide the proof of Theorem 1 in the next section. We introduce our proof strategy

by breaking the proof of Theorem 1 into lemmas.

5.3 Proof of Theorem 1
We begin by introducing a coupling technique that serves as a key tool for analyzing Theorem

1. This process involves bounding the accumulated utility for every type 𝑖 ∈ I in each epoch

𝑛 ∈ {1, . . . , ⌈log
2
(𝑇 /𝑑max)⌉}, and thereby leads to the proof of Theorem 1. Note that analyzing

the utility collected within each epoch is not straightforward due to the intricate dependence of
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resource availability on both the previously allocated resources and their usage durations. We

disentangle this intricate dependence via the following coupling argument. For notational conve-

nience, let ( ˜𝑹 (𝑡), 𝐴̃(𝑡), 𝐷̃ (𝑡)) represent the stochastic outcomes (i.e., the yield utilities, the amount

of consumed resource, and the resource usage duration) under action
˜𝑘 (𝑡). By our model setup,

we have
˜𝑹 (𝑡) = (𝑅

1, 𝑗 (𝑡 ), ˜𝑘 (𝑡 ) (𝑡), . . . , 𝑅I, 𝑗 (𝑡 ), ˜𝑘 (𝑡 ) (𝑡)), 𝐴̃(𝑡) = 1, and 𝐷̃ (𝑡) = 𝐷
𝑗 (𝑡 ), ˜𝑘 (𝑡 ) (𝑡). Similarly, we

denote ( ˜𝑹𝑒 (𝑡), 𝐴̃𝑒 (𝑡), 𝐷̃𝑒 (𝑡)) and ( ˆ𝑹 (𝑡), 𝐴(𝑡), 𝐷̂ (𝑡)) as the stochastic outcomes under the actions

˜𝑘𝑒 (𝑡) and ˆ𝑘 (𝑡), respectively. We also define two indicator variables 𝐼1 (𝑡) = I{𝜔 (𝑡) ≤ 𝑓𝑛} and

𝐼2 (𝑡) = I{𝑓𝑛 < 𝜔 (𝑡) ≤ 𝑓𝑛 + (1−𝑓𝑛 )/(1+𝑔𝑛 )}, which are mutually exclusive and are Bernoulli variables

with mean 𝑓𝑛 and (1−𝑓𝑛 )/(1+𝑔𝑛 ), respectively. Note that the random variables {(𝐼1 (𝑡), 𝐼2 (𝑡))}𝑡𝑛𝑡=𝑡𝑛−1+1

are jointly independent, and they are independent of {( ˜𝑹 (𝑡), 𝐴̃(𝑡), 𝐷̃ (𝑡))}𝑡𝑛
𝑡=𝑡𝑛−1+1

as well. Then by

the definition of
ˆ𝑘 (𝑡), the stochastic outcomes ( ˆ𝑹 (𝑡), 𝐴(𝑡), 𝐷̂ (𝑡)) can be decomposed as

𝑅𝑖 (𝑡) = 𝐼2 (𝑡) · 𝑅̃𝑖 (𝑡) + 𝐼1 (𝑡) · 𝑅̃𝑒𝑖 (𝑡), for all 𝑖 ∈ I;

𝐴(𝑡) = 𝐼2 (𝑡) · 𝐴̃(𝑡) + 𝐼1 (𝑡) · 𝐴̃𝑒 (𝑡); 𝐷̂ (𝑡) = 𝐼2 (𝑡) · 𝐷̃ (𝑡) + 𝐼1 (𝑡) · 𝐷̃𝑒 (𝑡) .
(7)

With a slight abuse of notation, let (𝑹 (𝑡), 𝐴(𝑡), 𝐷 (𝑡)) be the actual outcomes under the final

decision 𝑘 (𝑡), i.e., 𝑅𝑖 (𝑡) = 𝑅𝑖, 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡), 𝐷 (𝑡) = 𝐷 𝑗 (𝑡 ),𝑘 (𝑡 ) (𝑡) and 𝐴(𝑡) = I{𝑘 (𝑡) ≠ 𝑘null}. Then

𝑅𝑖 (𝑡) = 𝑅𝑖 (𝑡) · I

{
𝑡−1∑︁
𝜏=1

𝐴(𝜏)I{𝐷 (𝜏) ≥ 𝑡 − 𝜏 + 1} ≤ 𝐶 − 1

}
, for all 𝑖 ∈ I; (8)

𝐴(𝑡) = 𝐴(𝑡) · I

{
𝑡−1∑︁
𝜏=1

𝐴(𝜏)I{𝐷 (𝜏) ≥ 𝑡 − 𝜏 + 1} ≤ 𝐶 − 1

}
; 𝐷 (𝑡) = 𝐷̂ (𝑡) · I

{
𝑡−1∑︁
𝜏=1

𝐴(𝜏)I{𝐷 (𝜏) ≥ 𝑡 − 𝜏 + 1} ≤ 𝐶 − 1

}
.

The equations in (8), elaborate on the intricate dependency between the outcomes {𝑹 (𝑡), 𝐴(𝑡), 𝐷 (𝑡)}
at time 𝑡 and those from preceding time steps. This dependency is captured by the indicator random

variable which determines whether the controller can make an allocation at time 𝑡 . Based on (8),

we handle the accumulated utility of type 𝑖 within epoch 𝑛 below:

𝑡𝑛∑︁
𝑡=𝑡𝑛−1+1

𝑅𝑖 (𝑡) =
𝑡𝑛∑︁

𝑡=𝑡𝑛−1+1

𝑅𝑖 (𝑡) · I

{
𝑡−1∑︁
𝜏=1

𝐴𝑖 (𝜏)I{𝐷𝑖 (𝜏) ≥ 𝑡 − 𝜏 + 1} ≤ 𝐶 − 1

}
≥

𝑡𝑛∑︁
𝑡=𝑡𝑛−1+1

𝑅𝑖 (𝑡) · I

{
𝑡−1∑︁
𝜏=1

𝐴(𝜏)I{𝐷̂ (𝜏) ≥ 𝑡 − 𝜏 + 1} ≤ 𝐶 − 1

}
(9)

=

𝑡𝑛∑︁
𝑡=𝑡𝑛−1+1

𝑅𝑖 (𝑡) · I


𝑡−1∑︁
𝜏=max{𝑡−𝑑max,1}

𝐴(𝜏)I{𝐷̂ (𝜏) ≥ 𝑡 − 𝜏 + 1} ≤ 𝐶 − 1

 (10)

≥
𝑡𝑛∑︁

𝑡=min{𝑡𝑛−1+1+𝑑max,𝑡𝑛 }
𝑅𝑖 (𝑡) · I


𝑡−1∑︁

𝜏=max{𝑡−𝑑max,1}
𝐴(𝜏)I{𝐷̂ (𝜏) ≥ 𝑡 − 𝜏 + 1} ≤ 𝐶 − 1

 , (11)

where (9) is because the coupling (8) ensures𝐴(𝑡) ≤ 𝐴(𝑡) and𝐷 (𝑡) ≤ 𝐷̂ (𝑡) almost surely; (10) holds

since 𝐷̂ (𝑡) ≤ 𝑑max. Here we would like to remark that the inequality (11) facilitates our analysis,

because conditioned on the parameters {Θ𝑛, 𝒓 (𝑛), ˆ𝒅 (𝑛), 𝑓𝑛, 𝑔𝑛}, which is 𝜎 (H (𝑡𝑛−1))-measurable,

the random outcomes {( ˆ𝑹 (𝑡), 𝐴(𝑡), 𝐷̂ (𝑡))}𝑡𝑛
𝑡=𝑡𝑛−1+1

defined in (7) are i.i.d. Consequently, the random

outcomes {( ˆ𝑹 (𝑡), 𝐴(𝑡), 𝐷̂ (𝑡))}𝑡𝑛
𝑡=𝑡𝑛−1+1

are much easier to analyse than the actual random outcomes

{(𝑹 (𝑡), 𝐴(𝑡), 𝐷 (𝑡))}𝑡𝑛
𝑡=𝑡𝑛−1+1

.

Next, we establish a lower bound for the sum on the r.h.s of (11), which plays an important role

in the proof of Theorem 1. Denote 𝑉 (𝑡) = I
{ ∑𝑡−1

𝜏=max{𝑡−𝑑max,1} 𝐴(𝜏)I{𝐷̂ (𝜏) ≥ 𝑡 − 𝜏 + 1} ≤ 𝐶 − 1

}
,
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which represents the resource availability at time 𝑡 induced by the sequence { ˆ𝑘 (𝑡)}𝑡 . Consequently,
the sum on the r.h.s. of (11) can be rewritten as follows:

(11) =

𝑡𝑛∑︁
𝑡=𝑡𝑛−1+1+𝑑max

𝑅𝑖 (𝑡) ·𝑉 (𝑡).

The analysis on the r.h.s of (11) involves lower bounding the probability of resource availability

𝑉 (𝑡) and the utilities earned
ˆ𝑹 (𝑡) induced by the sequence { ˆ𝑘 (𝑡)}𝑡 at all time steps within epoch

𝑛. Notably, ˆ𝑘 (𝑡) is closely tied to
˜𝑘 (𝑡), which is determined by the penalty weight vectors in Θ𝑛 .

These weight vectors could be viewed as dual variables solving the online feasibility problem for

(OFARR-S)(𝑛) given 𝜆∗ (𝑛). To this end, the following lemma bounds the estimation error of
ˆ𝜆∗ (𝑛).

Lemma 2. Define 𝜖𝐴𝑛 = 2

√︃
𝑑max log(1/𝛿𝑛 )

𝐶 ·𝑡𝑛−1

+ 2𝑑max log(1/𝛿𝑛 )
𝐶 ·𝑡𝑛−1

, 𝜖𝐵𝑛 = 𝑟max

√︃
2 log( |I |/𝛿𝑛 )

𝑡𝑛−1

, and 𝜖𝐶𝑛 = 2𝑟max

√︃
log(1/𝛿𝑛 )

𝑡𝑛−1

+2𝑟max

log(1/𝛿𝑛 )
𝑡𝑛−1

+ 2|J | (𝑟max + 𝑑max)
√︃

2 log( | J | |K | |I |/𝛿𝑛 )
min𝑗 ∈J,𝑘∈K 𝑁 𝑗,𝑘 (𝑡𝑛−1 ) . For any 𝑛 ≥ 1, we can guarantee that

(a) ˆ𝜆∗ (𝑛) ≥ 𝜆∗ − 𝜖𝐵𝑛 − 𝜖𝐴𝑛 , w.p. 1 − 4𝛿𝑛, (b) ˆ𝜆∗ (𝑛) ≤ 𝜆∗ + 𝜖𝐶𝑛 , w.p. 1 − 3𝛿𝑛 .

Subsequently, the following lemma establishes a connection between (OFARR-S)(𝑛) and the

time-averaged expected resource consumption and utilities induced by the sequence { ˜𝑘 (𝑡)}𝑡𝑛
𝑡=𝑡𝑛−1+1

.

Lemma 3. For notational convenience, define oracle 𝜅𝑛 (𝝓, 𝑗) = arg max𝑘∈K∪𝑘null {
∑
𝑖∈I 𝜙𝑖 · 𝑟𝑖, 𝑗,𝑘 (𝑛) −

𝜙0 · ˆ𝑑 𝑗,𝑘 (𝑛)}. Denote 𝜖𝑛 = 6𝑑max

√︃
2

𝑡𝑛−1

log
2

𝛿𝑛
+ 𝑑max

√︃
8 log( |I |+1)

ℓ𝑛
+ 𝑑max

√︃
2 log( |I | | J | |K | )/𝛿𝑛

min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛−1 ) , then we
have that

1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 · 𝑟𝑖, 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) ≥ 𝜆∗ − 𝜖𝐴𝑛 − 𝜖𝐵𝑛 − 𝜖𝐶𝑛 − 𝜖𝑛, w.p. 1 − 11𝛿𝑛,

1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 · 𝑑 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) ≤ 𝐶 + 𝜖𝑛, w.p. 1 − 11𝛿𝑛 .

The lemma 3 builds upon lemma 2 and the properties of the MWU process. Leveraging lemma 3,

we derive the following lower bounds for 𝑉 (𝑡) and 𝑹̂ (𝑡) under our algorithm:

Lemma 4. Our algorithm ensures that for any 𝜀 > 0, with probability 1 − 11𝛿𝑛 the inequality

E[𝑉 (𝑡) | H (𝑡𝑛−1)] ≥
(
1 − 1

(1 + 𝜀)𝐶−1

· exp

[
𝜀 (1 − 𝑓𝑛)

1 + 𝑔𝑛
· 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

𝑝 𝑗 · 𝑑 𝑗,𝑓𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) + 𝜀 · 𝑓𝑛 · 𝑑max

])+
≥

(
1 − 1

(1 + 𝜀)𝐶−1

· exp

[
𝜀 (𝐶 + 𝜖𝑛)

1 + 𝑔𝑛

]
· exp

[
𝜀 · 𝑓𝑛 · (𝑑𝑚𝑎𝑥 −𝐶)+

] )+
holds simultaneously for all 𝑡 ∈ {𝑡𝑛−1 +1+𝑑max, . . . , 𝑡𝑛}. Also, for any 𝑖 ∈ I, with probability 1−11𝛿𝑛
we have that simultaneously for all 𝑡 ∈ {𝑡𝑛−1 + 1 + 𝑑max, . . . , 𝑡𝑛}:

E[𝑅𝑖 (𝑡) | H (𝑡𝑛−1)] ≥
1 − 𝑓𝑛

1 + 𝑔𝑛
· 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 · 𝑟𝑖, 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) ≥
1

1 + 𝑔𝑛
𝜆∗ − 𝜖𝐴𝑛 − 𝜖𝐵𝑛 − 𝜖𝐶𝑛 − 𝜖𝑛 − 𝑓𝑛 · 𝜆∗ .

Wenote that, in the special casewhere𝐶 ≥ 𝑑max, it is straightforward to see that E [𝑉 (𝑡) | H (𝑡𝑛−1)] =
1 as resource availability is always ensured. This enhanced technical result forms the basis of Theo-

rem 3. Generally, Lemma 4 establishes that given any 𝜀 > 0 and 𝑖 ∈ I, the following inequality
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holds simultaneously for all 𝑡 ∈ {𝑡𝑛−1 + 1 + 𝑑max, . . . , 𝑡𝑛}

E
[
𝑅𝑖 (𝑡) ·𝑉 (𝑡) | H (𝑡𝑛−1)

]
≥ 1

1 + 𝑔𝑛

(
1 − 1

(1 + 𝜀)𝐶−1

exp

[
𝜀 (𝐶 + 𝜖𝑛)

1 + 𝑔𝑛

]
exp

[
𝜀 · 𝑓𝑛 (𝑑𝑚𝑎𝑥 −𝐶)+

] )+
· 𝜆∗

−
(
𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛 + 𝑓𝑛𝜆

∗
)
, w.p. 1 − 22𝛿𝑛 .

(12)

When 𝑛 is sufficient large such that 𝜀 · 𝑓𝑛 · (𝑑𝑚𝑎𝑥 − 𝐶)+ ≤ 1, e.g., 𝑛 ≥ 3 log 𝜀 + 2 log𝑑max, the

inequality 𝑒𝑥 ≤ 1 + 2𝑥 for any 𝑥 ∈ [0, 1] ensures that

E
[
𝑅𝑖 (𝑡) ·𝑉 (𝑡) | H (𝑡𝑛−1)

]
≥ 1

1 + 𝑔𝑛

(
1 − 1

(1 + 𝜀)𝐶−1

· exp

[
𝜀 (𝐶 + 𝜖𝑛)

1 + 𝑔𝑛

] )+
· 𝜆∗

−
(
𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛 + 𝑓𝑛𝜆

∗ + 2𝜀 · 𝑓𝑛 · (𝑑𝑚𝑎𝑥 −𝐶)+ · 𝜆∗
)
, w.p. 1 − 22𝛿𝑛 .

(13)

Inequality (13) provides a conditional expectation lower bound for the r.h.s of (11). To complete

the the proof of Theorem 1, we still need a conditional Chernoff inequality, stated below:

Lemma 5 (Conditional Chernoff Ineqality [40]). Let the random variables {𝑋𝑡 }𝑁𝑡=1
satisfy the

following conditions: (I) The variables 𝑋1, . . . , 𝑋𝑁 ∈ [0, 𝐵]𝑁 are jointly independent given a 𝜎-algebra
F ; (II) There exist real numbers 𝜖 ∈ [0, 1] and 𝜈 > 0 such that P

(
E

[∑𝑁
𝑡=1

𝑋𝑡

��F ]
< 𝜈

)
≤ 𝜖. Then for

any 𝛿 ∈ (0, 1), the following inequality holds: P
( ∑𝑁

𝑡=1
𝑋𝑡 < 𝜈 −

√︁
2𝐵𝜈 log(1/𝛿)

)
≤ 𝛿 + 𝜖.

However, Theorem 1 cannot be directly derived from Lemma 5 applied to (13). This is because the

random variables {𝑅𝑖 (𝑡)𝑉 (𝑡)}𝑡𝑛
𝑡=𝑡𝑛−1+𝑑max+1

remain correlated even when conditioned onH(𝑡𝑛−1).
To address this, we employ Lemma 5 on carefully selected subsets of {𝑅𝑖 (𝑡)𝑉 (𝑡)}𝑡𝑛

𝑡=𝑡𝑛−1+𝑑max+1
,

partitioning the entire set into disjoint groups. For this purpose, let Γ = ⌈ℓ𝑛 − 𝑑max/𝑑max⌉. For
𝑞 ∈ {1, . . . , 𝑑max} and 𝑝 ∈ {1, . . . , Γ}, we define the time index 𝑡 (𝑝 ;𝑞) = (𝑡𝑛−1+𝑑max)+𝑞+(𝑝−1)𝑑max .

We argue that for any fixed 𝑞 ∈ {1, . . . , 𝑑max}, the random variables in the following set are i.i.d.

conditioned onH(𝑡𝑛−1):
Ψ(𝑞) =

{
𝑉 (𝑡 (𝑝;𝑞)) · 𝑅𝑖 (𝑡 (𝑝;𝑞))

}Γ
𝑝=1

.

To establish the conditional independence, note that 𝑅𝑖 (𝑡)𝑉 (𝑡) is 𝜎 ({( ˆ𝑹 (𝜏), 𝐴(𝜏), 𝐷̂ (𝜏))}𝑡
𝜏=𝑡−𝑑max

)-
measurable for any time 𝑡 . More specifically, there exists a deterministic function 𝑧𝑖 such that

𝑅𝑖 (𝑡)𝑉 (𝑡) = 𝑧𝑖 ({(𝑅(𝜏), 𝐴(𝜏), 𝐷̂ (𝜏))}𝑡
𝜏=𝑡−𝑑max

), where 𝑧𝑖 depends only on 𝑖 and remains invariant

with respect to 𝑡 . Since the time indexes within Ψ(𝑞) are separated by at least 𝑑max time steps,

we know that for any 𝑝, 𝑝′ ∈ {1, . . . , Γ} with 𝑝 ≠ 𝑝′, the index sets {𝑡 (𝑝;𝑞) − 𝑑max, . . . , 𝑡 (𝑝, 𝑞)}
and {𝑡 (𝑝′;𝑞) − 𝑑max, . . . , 𝑡 (𝑝′, 𝑞)} do not overlap. By observing that {( ˆ𝑹 (𝜏), 𝐴(𝜏), 𝐷̂ (𝜏))}𝑡𝑛

𝜏=𝑡𝑛−1+1

are independent conditioned onH(𝑡𝑛−1), we conclude that the random variables within Ψ(𝑞) are
independent conditioned on H(𝑡𝑛−1).
To establish the identical distribution, note that {( ˆ𝑹 (𝑡), 𝐴(𝑡), 𝐷̂ (𝑡))}𝑡𝑛

𝑡=𝑡𝑛−1+1
are identically dis-

tributed conditioned on H(𝑡𝑛−1). Given that 𝑅𝑖 (𝑡)𝑉 (𝑡) = 𝑧𝑖 ({(𝑅(𝜏), 𝐴(𝜏), 𝐷̂ (𝜏))}𝑡
𝜏=𝑡−𝑑max

) and 𝑧𝑖 is
independent of 𝑡 , we conclude that the random variables in Ψ(𝑞) are also identically distributed

conditioned onH(𝑡𝑛−1).
With the conditional i.i.d. nature of the variables in Ψ(𝑞) for any 𝑞, we can apply the conditional

Chernoff inequality (Lemma 5) to these variables to establish Theorem 1 using F = H(𝑡𝑛−1) and
𝐵 = 𝑟max. Specifically, by summing E

[
𝑅𝑖 (𝑡) ·𝑉 (𝑡) | H (𝑡𝑛−1)

]
over 𝑡 ∈ {𝑡 (𝑝;𝑞)}Γ𝑞=1

, inequality (13)

implies that, for any 𝜀 > 0, with probability at least 1 − 22𝛿𝑛 , the following inequality holds:

Γ∑︁
𝑝=1

E
[
𝑅𝑖 (𝑡 (𝑝;𝑞)) ·𝑉 (𝑡 (𝑝;𝑞)) | H (𝑡𝑛−1)

]
= 𝜈 (𝑞) ≥

(
1 − 1

(1 + 𝜀)𝐶−1

· exp

[ 𝜀 (𝐶 + 𝜖𝑛)
1 + 𝑔𝑛

] )+
· Γ · 𝜆∗

− Γ · (𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛 + 𝑓𝑛𝜆
∗ + 2𝜀 · (𝑑𝑚𝑎𝑥 −𝐶)+𝜆∗)
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for all 𝑞 ∈ {1, . . . , 𝑑max}. Note that 𝜈 (𝑞) ≤ 𝑟max · Γ for all 𝑞 ∈ {1, . . . , 𝑑max} with certainty. Using

Lemma 5, we further deduce that, with probability at least 1 − 𝛿𝑛/𝑑max:

Γ∑︁
𝑝=1

𝑅𝑖 (𝑡 (𝑝;𝑞)) ·𝑉 (𝑡 (𝑝;𝑞)) ≥ 𝜈 (𝑞) − 𝑟max

√︁
2Γ log𝑑max/𝛿𝑛, for any 𝑞 ∈ {1, . . . , 𝑑max}. (14)

Summing (14) over 𝑞 and applying the union bound yield

𝑡𝑛∑︁
𝑡=𝑡𝑛−1+𝑑max+1

𝑅𝑖 (𝑡) ·𝑉 (𝑡) ≥
(
1 − 1

(1 + 𝜀)𝐶−1

exp

[ 𝜀 (𝐶 + 𝜖𝑛)
1 + 𝑔𝑛

] )+
(ℓ𝑛 − 𝑑max)𝜆∗ − 𝑟max𝑑max

√︁
2Γ log𝑑max/𝛿𝑛

− 𝑟max𝑑max − (ℓ𝑛 − 𝑑max) · (𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛 + 𝑓𝑛𝜆
∗ + 2𝜀 · 𝑓𝑛 · (𝑑𝑚𝑎𝑥 −𝐶)+𝜆∗), w.p. 1 − 23𝛿𝑛 . (15)

Finally, by leveraging (11) that

∑𝑡𝑛
𝑡𝑛−1+1

𝑅𝑖 (𝑡) ≥
∑𝑡𝑛

𝑡𝑛−1+𝑑max+1
𝑅𝑖 (𝑡) · 𝑉 (𝑡), we establish Theorem 1.

Theorems 2 and 3 are applications of Theorem 1, and we provide their proofs in the Appendix.

6 Extending toQuasi-full-feedback Setup
In this section, we extend our analysis to a Quasi-full-feedback setup where the controller can

observe the outcomes for all possible actions if the resource is available (i.e., the resource is not

blocked). This feedback setup, aligned with the setup in [17], is more informative than the bandit

feedback setup but less comprehensive than the full-feedback setup. Notably, in this case, the

controller can collect sufficient samples for all pairs ( 𝑗, 𝑘) ∈ J × K , thereby eliminating the need

for forced exploration. As a result, we set 𝑓𝑛 = 0 (i.e., 𝜌 = ∞) in our algorithm, simplifying the

exploration-exploitation trade-off. The following theorem demonstrates that, leveraging this richer

feedback structure, our algorithm achieves a tighter performance guarantee.

Theorem 4. Under the Quasi-full-feedback setup, our algorithm with 𝜌 = ∞ (𝑓𝑛 = 0), 𝛾1 =

(𝜀∗ (𝐶) + 1)/𝐶 , and 𝛾2 = 𝜀∗ (𝐶) ensures that

min

𝑖∈I
E
[

1

𝑇
·

𝑇∑︁
𝑡=1

𝑅𝑖 (𝑡)
]
≥

(
1 − 1

2𝐶

)
· L(𝜀∗ (𝐶)) · OPT∗

−𝑂

(
|J |𝑑max

√︁
𝑇 log𝑇 · log( |J ||K ||I|) + 𝑑3

max
+

∑︁
𝑗∈J

1

𝑝 𝑗

|K |
(1 − 0.5/𝐶) L(𝜖∗ (𝐶))

)/
𝑇 .

Moreover, for the special case of 𝐶 ≥ 𝑑max, we have that (regret guarantee)

min

𝑖∈I
E
[

1

𝑇
·

𝑇∑︁
𝑡=1

𝑅𝑖 (𝑡)
]
≥ OPT∗ −𝑂

(
|J |𝑑max

√︁
𝑇 log𝑇 · log( |J ||K ||I|) + 𝑑3

max
+

∑︁
𝑗∈J

|K |
𝑝 𝑗

)/
𝑇 .

The proof of Theorem 4 exploits that our system could receive a linear number of samples. Specifi-

cally, after 𝑡 time steps (for sufficiently large 𝑡 ), the system obtains approximately
𝑝 𝑗

|K |
(
1 − 1

2𝐶

)
L(𝜖∗ (𝐶))

·𝑡 = 𝑂 (𝑡) samples for all pairs ( 𝑗, 𝑘), as established in Lemma 4. Notably, when 𝐶 ≥ 𝑑max, this

Quasi-full-feedback setup aligns with the full-feedback setup and our formulation reduces to the

indivisible variant of the horizon-fairness optimization problem. This corresponds to the framework

presented by [12], and we achieve the same regret order as in their work.

7 Conclusion
This paper introduces a general framework that unifies online reusable resource allocation with

fairness optimization, addressing the challenges of balancing multiple performance metrics under

model uncertainty and a bandit feedback setup.We develop an algorithm that achieves a competitive

guarantee of ((1 − 1

2𝐶
)L(𝜖∗ (𝐶)), 2/3), in which the competitive ratio approaches optimality as the

resource capacity increases. Furthermore, we show that under a Quasi-full-feedback setup, our
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algorithm can achieve an improved competitive guarantee of ((1 − 1

2𝐶
)L(𝜖∗ (𝐶)), 1/2). This work

lays the theoretical groundwork for developing more equitable computing systems.

Future research could explore more complex scenarios, such as situations where different requests

consume varying amounts of resources. In addition, investigating tight lower bounds—particularly

in the bandit feedback setting—remains an open problem. Establishing a rigorous, matching lower

bound would not only complement the current upper-bound analysis but also provide deeper

insights into the fundamental performance limits of online algorithms.
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A Proofs
This section provides the proofs for all listed lemmas and theorems, with the exception of Theorem

1. Before delving into the proofs, we first introduce several supporting lemmas.

Lemma 6 (Azuma-Hoeffding Ineqality [31]). Let 𝑁 be a positive integer and 𝐵 be a positive
real number. Suppose the random variables 𝑋1, . . . , 𝑋𝑁 constitute a martingale difference sequence
with respect to the filtration {F𝑛}𝑁𝑛=0

, i.e. E[𝑋𝑛 |F𝑛−1] = 0 almost surely for every 𝑛 ∈ {1, . . . , 𝑁 }. In
addition, suppose |𝑋𝑛 | ≤ 𝐵 almost surely for every 𝑛 ∈ {1, . . . , 𝑁 }. For any 𝛿 ∈ (0, 1), it holds that

P

(����� 1

𝑁

𝑁∑︁
𝑛=1

𝑋𝑛

����� ≤ 𝐵

√︂
2 log(2/𝛿)

𝑁

)
≥ 1 − 𝛿.

Lemma 7 (Multiplicative Chernoff Ineqality [31]). Suppose random variables {𝑋𝑡 }𝑁𝑡=1
are

independent, and that 𝑋𝑡 ∈ [0, 𝐵] for all 𝑡 ∈ {1, . . . , 𝑁 }. Denote 𝜇 = E[∑𝑁
𝑡=1

𝑋𝑡 ]. The following
concentration inequalities hold for any fixed but arbitrary 𝛿 ∈ (0, 1):

P

(
𝑁∑︁
𝑡=1

𝑋𝑡 > 𝜇 + 2

√︂
𝐵𝜇 log

1

𝛿
+ 2𝐵 log

1

𝛿

)
≤ 𝛿, P

(
𝑁∑︁
𝑡=1

𝑋𝑡 < 𝜇 −
√︂

2𝐵𝜇 log

1

𝛿

)
≤ 𝛿.

Lemma 8 (Multiplicative Weight Update). Let {ℓ (𝑠)}𝜏
𝑠=1

be an arbitrary sequence of vectors,
where ℓ (𝑠) = (ℓ𝑖 (𝑠))𝑖∈{0,1,..., | I | } ∈ [−𝐵, 𝐵] | I |+1 for each 𝑠 ∈ {1, . . . , 𝜏}. Consider the sequence of vectors
𝜗 (1), . . . , 𝜗 (𝜏), where 𝜗 (𝑠) = (𝜗𝑖 (𝑠))𝑖∈{0,1,..., | I | } ∈ Δ | I |+1 is defined as

𝜗𝑖 (𝑠) =
exp

[
−𝜂 (𝑠)∑𝑠−1

𝑛=1
ℓ𝑖 (𝑛)

]∑
𝜄∈{0,1,..., | I | } exp

[
−𝜂 (𝑠)∑𝑠−1

𝑛=1
ℓ𝜄 (𝑛)

] , and 𝜂 (𝑠) = √︁
log( |I| + 1)

𝐵
√
𝑠

(16)

for each 𝑠 ∈ {1, . . . 𝜏}, 𝑖 ∈ {0, 1, ..., |I |}. Then for any 𝑖 ∈ {0, 1, ..., |I |}, it holds that

1

𝜏

𝜏∑︁
𝑠=1

ℓ𝑖 (𝑠) ≥
1

𝜏

𝜏∑︁
𝑠=1

∑︁
𝜄∈{0,1,..., | I | }

𝜗𝜄 (𝑠)ℓ𝜄 (𝑠) − 2𝐵

√︂
log( |I| + 1)

𝜏
.

The proof of this lemma can be found in Chapter 7.5 of [38].

A.1 Proof of Lemma 1
We begin by adopting a similar analysis from [19] to establish OPT

∗ ≤ OPT
R
by showing that any

optimal solution to (OFARR) is feasible to (OFARR-R). We then derive OPT
R ≤ 𝜆∗ + 𝑑max · 𝑟max/𝑇

by constructing a feasible solution for the dual of (OFARR-S) using an optimal dual solution to

(OFARR-R).
Recall that OPT

R
is the optimal objective value to (OFARR-R), which is defined as follows,

(OFARR-R) max 𝜆

s.t.

𝑇∑︁
𝑡=1

∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 · 𝑟𝑖, 𝑗,𝑘 · 𝑥 𝑗,𝑘 (𝑡) ≥ 𝑇 · 𝜆, ∀𝑖 ∈ I,

𝑡∑︁
𝜏=1

∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 · P(𝐷 𝑗,𝑘 (𝜏) ≥ 𝑡 − 𝜏 + 1) · 𝑥 𝑗,𝑘 (𝑡) ≤ 𝐶, ∀𝑡 ∈ [𝑇 ], (17)∑︁
𝑘∈K

𝑥 𝑗,𝑘 (𝑡) ≤ 1, ∀𝑗 ∈ J , 𝑡 ∈ [𝑇 ]; 𝑥 𝑗,𝑘 (𝑡) ≥ 0, ∀𝑘 ∈ K, 𝑗 ∈ J .
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To establish OPT
R ≥ OPT

∗
, consider a policy 𝜋 that achieves the optimum OPT

∗
for (OFARR), i.e.,

min𝑖

{
E

[
1

𝑇

∑𝑇
𝑡=1

∑
𝑘∈K 𝑅𝑖, 𝑗 (𝑡 ),𝑘 (𝑡)𝑌𝜋

𝑘
(𝑡)

]}
= OPT

∗ . Define 𝑥 𝑗,𝑘 (𝑡) = P(𝑌𝜋
𝑘
(𝑡) = 1| 𝑗 (𝑡) = 𝑗), and

we claim that {𝑥 𝑗,𝑘 (𝑡)} 𝑗,𝑘,𝑡 is feasible to (OFARR-R) and the objective value of (OFARR-R) under

{𝑥 𝑗,𝑘 (𝑡)} 𝑗,𝑘,𝑡 equals min𝑖

{
E

[
1

𝑇

∑𝑇
𝑡=1

∑
𝑘∈K 𝑅𝑖, 𝑗 (𝑡 ),𝑘 (𝑡)𝑌𝜋

𝑘
(𝑡)

]}
. Thus, verifying both the feasibility

and equivalence of the objective value can establish OPT
R ≥ OPT

∗
.

To verify the feasibility of {𝑥 𝑗,𝑘 (𝑡)} 𝑗,𝑘,𝑡 for (OFARR-R), note that the policy 𝜋 satisfies the resource

capacity constraints at any time. Specifically, the inequality

∑𝑡
𝜏=1

∑
𝑘∈K I{𝐷 𝑗 (𝜏 ),𝑘 (𝜏) ≥ 𝑡 − 𝜏 +

1}𝑌𝜋
𝑘
(𝜏) ≤ 𝐶 holds for all 𝑡 ∈ [𝑇 ]. Taking the expectation of the left-hand side over 𝑌𝜋

𝑘
(𝜏), 𝐷 𝑗,𝑘 (𝜏),

and 𝑗 (𝜏) for 𝜏 = 1, . . . , 𝑡 yields:

E

[
𝑡∑︁

𝜏=1

∑︁
𝑘∈K

I
{
𝐷 𝑗 (𝜏 ),𝑘 (𝜏) ≥ 𝑡 − 𝜏 + 1

}
· 𝑌𝜋

𝑘
(𝜏)

]
=

𝑡∑︁
𝜏=1

∑︁
𝑘∈K

∑︁
𝑗∈J

𝑝 𝑗E
[
I
{
𝐷 𝑗,𝑘 (𝜏) ≥ 𝑡 − 𝜏 + 1

}]
· 𝑥 𝑗,𝑘 (𝜏) (18)

=

𝑡∑︁
𝜏=1

∑︁
𝑘∈K

∑︁
𝑗∈J

𝑝 𝑗P
(
𝐷 𝑗,𝑘 (𝜏) ≥ 𝑡 − 𝜏 + 1

)
· 𝑥 𝑗,𝑘 (𝜏) ≤ 𝐶.

Similarly, taking the expectation over the accumulated utility of each type 𝑖 ∈ I yields:

E

[
𝑇∑︁
𝑡=1

∑︁
𝑘∈K

𝑅𝑖, 𝑗 (𝑡 ),𝑘 (𝑡) · 𝑌𝜋
𝑘
(𝑡)

]
=

𝑇∑︁
𝑡=1

∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 · 𝑟𝑖, 𝑗,𝑘 · 𝑥 𝑗,𝑘 (𝑡).

Hence, the claim regarding the equivalence of the objective value is verified.

To complete the proof of Lemma 1, we next demonstrate that𝑇 ·OPTR ≤ 𝑇 ·𝜆∗+𝑟max𝑑max holds with

certainty. Since 𝐷 𝑗,𝑘 (𝑡) ∈ [1, 𝑑max] for all 𝑗, 𝑘, 𝑡 , the resource capacity constraints in (OFARR-R) can
be equivalently written as

∑𝑡
𝜏=max{𝑡−𝑑max,1}

∑
𝑗∈J

∑
𝑘∈K 𝑝 𝑗P

(
𝐷 𝑗,𝑘 (𝜏) ≥ 𝑡 − 𝜏 + 1

)
𝑥 𝑗,𝑘 (𝜏) ≤ 𝐶, ∀𝑡 ∈

[𝑇 ]. Similarly, the resource capacity constraints in (OFARR-S) can be written as

∑
𝑗∈J

∑
𝑘∈K

∑𝑑max

𝜏=1

𝑝 𝑗 · P(𝐷 𝑗,𝑘 (𝜏) ≥ 𝜏) · 𝑥 𝑗,𝑘 ≤ 𝐶 . Therefore, the dual of (OFARR-R) can be expressed as:

(OFARR-R-D) : min

𝜶 ,𝜷,𝝆

𝑇∑︁
𝑡=1

©­«
∑︁
𝑗∈J

𝛽 𝑗,𝑡 +𝐶 · 𝛼𝑡ª®¬
s.t. 𝛽 𝑗,𝑡 + 𝑝 𝑗

min{𝑡+𝑑max−1,𝑇 }∑︁
𝜏=𝑡

P
(
𝐷 𝑗,𝑘 (𝜏) ≥ 𝜏 − 𝑡 + 1

)
· 𝛼𝜏 − 𝑝 𝑗

∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 · 𝜌𝑖 ≥ 0, ∀𝑗 ∈ J , 𝑘 ∈ K, 𝑡 ∈ [𝑇 ],

𝑇
∑︁
𝑖∈I

𝜌𝑖 ≥ 1; 𝜌𝑖 ≥ 0, ∀𝑖 ∈ I; 𝛼𝑡 ≥ 0, ∀𝑡 ∈ [𝑇 ]; 𝛽 𝑗,𝑡 ≥ 0, ∀𝑗 ∈ J , 𝑡 ∈ [𝑇 ] .

which is equivalent to

(OFARR-R-D) : min

𝜶 ,𝜷,𝝆

𝑇∑︁
𝑡=1

©­«
∑︁
𝑗∈J

𝑝 𝑗 · 𝛽 𝑗,𝑡 +𝐶 · 𝛼𝑡
ª®¬

s.t. 𝛽 𝑗,𝑡 +
min{𝑡+𝑑max−1,𝑇 }∑︁

𝜏=𝑡

P
(
𝐷 𝑗,𝑘 (𝜏) ≥ 𝜏 − 𝑡 + 1

)
· 𝛼𝜏 −

∑︁
𝑖

𝑟𝑖, 𝑗,𝑘 · 𝜌𝑖 ≥ 0, ∀𝑗 ∈ J , 𝑘 ∈ K, 𝑡 ∈ [𝑇 ],

𝑇
∑︁
𝑖∈I

𝜌𝑖 ≥ 1; 𝜌𝑖 ≥ 0, ∀𝑖 ∈ I; 𝛼𝑡 ≥ 0, ∀𝑡 ∈ [𝑇 ]; 𝛽 𝑗,𝑡 ≥ 0, ∀𝑗 ∈ J , 𝑡 ∈ [𝑇 ] .
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Similarly, the dual of (OFARR-S) is given by:

(OFARR-S-D) : min

𝜶 ,𝜷,𝝆

∑︁
𝑗∈J

𝑝 𝑗 · 𝛽 𝑗 +𝐶 · 𝛼

s.t. 𝛽 𝑗 + 𝛼 · 𝑑 𝑗,𝑘 −
∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 · 𝜌𝑖 ≥ 0, ∀𝑗 ∈ J , 𝑘 ∈ K,∑︁
𝑖∈I

𝜌𝑖 ≥ 1; 𝜌𝑖 ≥ 0, ∀𝑖 ∈ I; 𝛼 ≥ 0; 𝛽 𝑗 ≥ 0, ∀𝑗 ∈ J .

Let (𝜶 ∗, 𝜷∗, 𝝆∗) be an optimal solution to (OFARR-S-D). Define the solution (𝜶 = (𝛼𝑡 )𝑡 , 𝜷 =

( ¯𝛽 𝑗,𝑡 ) 𝑗,𝑡 , 𝝆 = (𝜌𝑖 )𝑖 ) as follows,

𝛼𝑡 = 𝛼∗/𝑇 for all 𝑡 ∈ {1, . . . ,𝑇 },

¯𝛽 𝑗,𝑡 =

{
𝛽∗𝑗 /𝑇 for all 𝑗 ∈ J , 𝑡 ∈ {1, . . . ,𝑇 − 𝑑max},
𝑟max/𝑇 for all 𝑗 ∈ J , 𝑡 ∈ {𝑇 − 𝑑max + 1, . . . ,𝑇 },

𝜌𝑖 = 𝜌∗𝑖 /𝑇 for all 𝑖 ∈ I .

We claim that the solution (𝜶 , 𝜷, 𝝆) is feasible to (OFARR-R-D). Note that the objective value of
(OFARR-R-D) under (𝜶 , 𝜷, 𝝆) can be bounded as

𝑟max𝑑max

𝑇
+

∑︁
𝑗∈J

(
1 − 𝑑max

𝑇

)
𝑝 𝑗𝛽

∗
𝑗 +𝐶 · 𝛼∗ ≤ 𝑟max𝑑max

𝑇
+ 𝜆∗ .

Thus, to establish the bound𝑇 ·OPTR ≤ 𝑇 ·𝜆∗+𝑑max𝑟max, it suffices to show the feasibility of (𝜶 , 𝜷, 𝝆)
to (OFARR-R-D). Firstly, by the optimality of (𝜶 ∗, 𝜷∗, 𝝆∗) to (OFARR-S-D), we have

∑
𝑖∈I 𝜌∗𝑖 = 1.

Therefore, it is sufficient to verify the feasibility of the first set of constraints in (OFARR-R-D). For
the case where 𝑡 ∈ {𝑇 − 𝑑max + 1, . . . ,𝑇 }, the constraints are satisfied since

¯𝛽 𝑗,𝑡 = 𝑟max/𝑇 while∑
𝑖∈I 𝑟𝑖, 𝑗,𝑘 · 𝜌𝑖 ≤ 𝑟max/𝑇 . For the another case where 𝑡 ∈ {1, . . . ,𝑇 − 𝑑max}, the constraints remain

feasible because

¯𝛽 𝑗,𝑡 +
min{𝑡+𝑑max,𝑇 }∑︁

𝜏=𝑡

P
(
𝐷 𝑗,𝑘 (𝜏) ≥ 𝜏 − 𝑡 + 1

)
𝛼𝜏 −

∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 · 𝜌𝑖

=
1

𝑇

[
𝛽∗𝑗 +

𝑡+𝑑max∑︁
𝜏=𝑡

P
(
𝐷 𝑗,𝑘 (𝜏) ≥ 𝜏 − 𝑡 + 1

)
𝛼∗
𝜏 −

∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 · 𝜌∗𝑖

]
=

1

𝑇

[
𝛽∗𝑗 +

𝑑max∑︁
𝜏=1

P
(
𝐷 𝑗,𝑘 (𝜏) ≥ 𝜏

)
𝛼∗
𝜏 −

∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 · 𝜌∗𝑖

]
=

1

𝑇

[
𝛽∗𝑗 + 𝑑 𝑗,𝑘 · 𝛼∗

𝜏 −
∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 · 𝜌∗𝑖

]
≥ 0.

For the special case where 𝐶 ≥ 𝑑max, the resource capacity constraints in both (OFARR-R) and
(OFARR-S) can be safely ignored, as they are guaranteed to hold for all 𝑡 ∈ [𝑇 ] . Consequently,
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(OFARR-R) and (OFARR-S) simplify to the following forms, respectively:

(OFARR-R) max 𝜆 s.t.

𝑇∑︁
𝑡=1

∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 · 𝑟𝑖, 𝑗,𝑘 · 𝑥 𝑗,𝑘 (𝑡) ≥ 𝑇 · 𝜆, ∀𝑖 ∈ I,∑︁
𝑘∈K

𝑥 𝑗,𝑘 (𝑡) ≤ 1, ∀𝑗 ∈ J , 𝑡 ∈ [𝑇 ]; 𝑥 𝑗,𝑘 (𝑡) ≥ 0, ∀𝑘 ∈ K, 𝑗 ∈ J , 𝑡 ∈ [𝑇 ] .

(OFARR-S) max 𝜆 s.t.

∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 · 𝑟𝑖, 𝑗,𝑘 · 𝑦 𝑗,𝑘 ≥ 𝜆, ∀𝑖 ∈ I,∑︁
𝑘∈K

𝑦 𝑗,𝑘 ≤ 1, ∀𝑗 ∈ J ; 𝑦 𝑗,𝑘 ≥ 0, ∀𝑘 ∈ K, 𝑗 ∈ J .

Denote {𝑥 𝑗,𝑘 (𝑡)} 𝑗,𝑘,𝑡 and𝒚∗
as the optimal solutions to (OFARR-R) and (OFARR-S), respectively, when

𝐶 ≥ 𝑑max. It follows that 𝜆
∗ ≤ OPT

R
, as the solution 𝒙 , defined by 𝑥 𝑗,𝑘 (𝑡) = 𝑦∗

𝑗,𝑘
, is feasible to (OFARR-

R). The corresponding objective value of 𝒙 under (OFARR-R) is exactly 𝜆∗. Conversely, 𝜆∗ ≥ OPT
R

holds because the objective value of (OFARR-S) under 𝒚, where 𝑦 𝑗,𝑘 = 1/𝑇 · ∑𝑇
𝑡=1

𝑥∗
𝑗,𝑘
(𝑡), equals

OPT
R
, and 𝒚 is feasible to (OFARR-S). Therefore, we conclude that 𝜆∗ = OPT

R
when 𝐶 ≥ 𝑑max. Put

all the things together completes the proof of Lemma 1.

A.2 Proof of Lemma 2
To establish that 𝜆∗ ≤ ˆ𝜆∗ (𝑛) + 𝜖𝐴𝑛 + 𝜖𝐵𝑛 holds w.p. 1 − 4𝛿𝑛 , we construct the following solution 𝒙̂ (𝑛)
for (OFARR-S)(𝑛),

𝑥 𝑗,𝑘 (𝑛) =
1

1 + 𝜖𝐴𝑛
· 𝑥∗

𝑗,𝑘
, ∀𝑗 ∈ J , 𝑘 ∈ K,

where 𝒙∗
is an optimal solution to (OFARR-S). We claim that with probability at least 1 − 2𝛿𝑛 , 𝒙̂ (𝑛)

is feasible to (OFARR-S)(𝑛). Furthermore, it holds that with probability at least 1 − 2𝛿𝑛 :∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 (𝑛) · 𝑟𝑖, 𝑗,𝑘 (𝑛) · 𝑥 𝑗,𝑘 (𝑛) ≥𝜆∗ − 𝜖𝐵𝑛 − 𝜖𝐴𝑛 . (20)

These two properties clearly imply that inequality 𝜆∗ − 𝜖𝐴𝑛 − 𝜖𝐵𝑛 ≤ ˆ𝜆∗ (𝑛) holds with probability at

least 1 − 4𝛿𝑛 . Thus, our focus shifts to establishing the feasibility of 𝒙̂ (𝑛) and verifying (20).

To verify the feasibility, we apply the multiplicative Chernoff inequality (Lemma 7) to 𝑋𝑡 =∑
𝑘∈K 𝑑 𝑗 (𝑡 ),𝑘 · 𝑥∗

𝑗 (𝑡 ),𝑘 for 𝑡 ∈ {1, ..., 𝑡𝑛−1}. Observe that 1

𝑡𝑛−1

∑𝑡𝑛−1

𝑠=1
𝑋𝑠 =

∑
𝑗∈J

∑
𝑘∈K 𝑝 𝑗 (𝑛) · 𝑑 𝑗,𝑘 · 𝑥∗

𝑗,𝑘

and E[ 1

𝑡𝑛−1

∑𝑡𝑛−1

𝑠=1
𝑋𝑠 ] =

∑
𝑗∈J

∑
𝑘∈K 𝑝 𝑗 ·𝑑 𝑗,𝑘 · 𝑥∗𝑗,𝑘 . Thus, with probability at least 1−𝛿𝑛 , it holds that∑︁

𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 (𝑛) · 𝑑 𝑗,𝑘 · 𝑥∗
𝑗,𝑘

≤
∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 · 𝑑 𝑗,𝑘 · 𝑥∗
𝑗,𝑘

+
√√

4𝑑max

𝑡𝑛−1

∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 · 𝑑 𝑗,𝑘 · 𝑥∗
𝑗,𝑘

· log

1

𝛿𝑛
+ 2𝑑max

𝑡𝑛−1

log

1

𝛿𝑛

≤𝐶 +

√︄
4𝑑max𝐶

𝑡𝑛−1

log

1

𝛿𝑛
+ 2𝑑max

𝑡𝑛−1

log

1

𝛿𝑛

=𝐶
©­«1 + 2

√︄
𝑑max

𝐶 · 𝑡𝑛−1

log

1

𝛿𝑛
+ 2𝑑max

𝐶 · 𝑡𝑛−1

log

1

𝛿𝑛

ª®¬ = 𝐶

(
1 + 𝜖𝐴𝑛

)
.
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Additionally, the concentration inequality for the LCB estimate
ˆ𝒅 (𝑛) implies that∑︁

𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 (𝑛) · ˆ𝑑 𝑗,𝑘 (𝑛) · 𝑥∗𝑗,𝑘 ≤
∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 (𝑛) · 𝑑 𝑗,𝑘 · 𝑥∗
𝑗,𝑘
, w.p. 1 − 𝛿𝑛 .

Then according to the definition of 𝒙̂ (𝑛) we can derive that

∑
𝑗∈J

∑
𝑘∈K 𝑝 𝑗 (𝑛) · ˆ𝑑 𝑗,𝑘 (𝑛) · 𝑥 𝑗,𝑘 (𝑛) =

1

1+𝜖𝐴𝑛

∑
𝑗∈J

∑
𝑘∈K 𝑝 𝑗 (𝑛) · ˆ𝑑 𝑗,𝑘 (𝑛) · 𝑥∗𝑗,𝑘 ≤ 𝐶 holds with probability at least 1− 2𝛿𝑛 . This indicates that

𝒙̂ (𝑛) is feasible to (OFARR-S)(𝑛) with probability at least 1 − 2𝛿𝑛 .

To establish (20), we apply the multiplicative Chernoff inequality again to 𝑋𝑡 =
∑

𝑘∈K 𝑟𝑖, 𝑗 (𝑡 ),𝑘 ·
𝑥∗
𝑗 (𝑡 ),𝑘 for 𝑡 ∈ {1, . . . , 𝑡𝑛−1}, which yields:∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 (𝑛) · 𝑟𝑖, 𝑗,𝑘 · 𝑥∗
𝑗,𝑘

≥
∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 · 𝑟𝑖, 𝑗,𝑘 · 𝑥∗
𝑗,𝑘

−

√︄
2𝑟max ·

∑
𝑗∈J

∑
𝑘∈K 𝑝 𝑗 · 𝑟𝑖, 𝑗,𝑘 · 𝑥∗

𝑗,𝑘
· log( |I|/𝛿𝑛)

𝑡𝑛−1

w.p. 1 − 𝛿𝑛/|I|

≥
∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 · 𝑟𝑖, 𝑗,𝑘 · 𝑥∗
𝑗,𝑘

− 𝑟max

√︄
2 log( |I|/𝛿𝑛)

𝑡𝑛−1

w.p. 1 − 𝛿𝑛/|I|

≥ 𝜆∗ − 𝑟max

√︄
2 log( |I|/𝛿𝑛)

𝑡𝑛−1

= 𝜆∗ − 𝜖𝐵𝑛 , w.p. 1 − 𝛿𝑛/|I|,

The concentration bound for 𝒓 (𝑛) further implies that for any 𝑖 ∈ I:∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 (𝑛) · 𝑟𝑖, 𝑗,𝑘 (𝑛) · 𝑥∗𝑗,𝑘 ≥
∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 (𝑛) · 𝑟𝑖, 𝑗,𝑘 · 𝑥∗
𝑗,𝑘

w.p. 1 − 𝛿𝑛/|I|.

Combining these results, we establish that for all 𝑖 ∈ I∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 (𝑛) · 𝑟𝑖, 𝑗,𝑘 (𝑛) · 𝑦∗𝑗,𝑘 ≥ 𝜆∗ − 𝜖𝐵𝑛 , w.p. 1 − 2𝛿𝑛 .

Finally, the inequality (20) can be derived using the definition of 𝒙̂ (𝑛):∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 (𝑛) · 𝑟𝑖, 𝑗,𝑘 (𝑛) · 𝑥 𝑗,𝑘 (𝑛) =
1

1 + 𝜖𝐴𝑛

∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 (𝑛) · 𝑟𝑖, 𝑗,𝑘 (𝑛) · 𝑥∗𝑗,𝑘

≥ 𝜆∗ − 𝜖𝐵𝑛

1 + 𝜖𝐴𝑛
≥ 𝜆∗ − 𝜖𝐵𝑛 − 𝜖𝐴𝑛 ,

where the last inequality holds since 𝜆∗ ≤ 𝑟max ≤ 1 + 𝜖𝐴𝑛 + 𝜖𝐵𝑛 .

Thus, the remaining thing is to prove P( ˆ𝜆∗ (𝑛) − 𝜖𝐶𝑛 ≤ 𝜆∗) ≥ 1 − 3𝛿𝑛 . Recall that the dual of

(OFARR-S) is given by

(OFARR-S-D) : min

𝜶 ,𝜷,𝝆

∑︁
𝑗∈J

𝑝 𝑗𝛽 𝑗 +𝐶𝛼

s.t. 𝛽 𝑗 + 𝑑 𝑗,𝑘 · 𝛼 −
∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 · 𝜌𝑖 ≥ 0, ∀𝑗 ∈ J , 𝑘 ∈ K∑︁
𝑖∈I

𝜌𝑖 ≥ 1; 𝜌𝑖 ≥ 0, ∀𝑖 ∈ I; 𝛼 ≥ 0, 𝛽 𝑗 ≥ 0, ∀𝑗 ∈ J .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 29. Publication date: June 2025.



Online Fair Allocation of Reusable Resources 29:29

Similarly, the dual of (OFARR-S)(𝑛) is as follows:

(OFARR-S-D)(𝑛) : min

𝜶̂ , ˆ𝜷,𝝆̂

∑︁
𝑗∈J

𝑝 𝑗 (𝑛) · ˆ𝛽 𝑗 +𝐶 · 𝛼

s.t.
ˆ𝛽 𝑗 + ˆ𝑑 𝑗,𝑘 (𝑛) · 𝛼 −

∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 (𝑛) · 𝜌𝑖 ≥ 0, ∀𝑗 ∈ J , 𝑘 ∈ K∑︁
𝑖∈I

𝜌𝑖 ≥ 1; 𝜌𝑖 ≥ 0, ∀𝑖 ∈ I; 𝛼 ≥ 0, ˆ𝛽 𝑗 ≥ 0, ∀𝑗 ∈ J .

Since the feasible domains of (OFARR-S-D) and (OFARR-S-D)(𝑛) are identical, any optimal solution

to (OFARR-S-D) must also be feasible to (OFARR-S-D)(𝑛). Assume (𝜶 ∗, 𝜷∗, 𝝆∗) is an optimal solution

to (OFARR-S-D) and then it holds that

𝜆∗ =
∑︁
𝑗∈J

𝑝 𝑗𝛽
∗
𝑗 +𝐶𝛼∗,

∑︁
𝑖∈I

𝜌∗𝑖 = 1, 𝛽∗𝑗 =
∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 · 𝜌∗𝑖 − 𝑑 𝑗,𝑘 · 𝛼∗, ∀𝑗 ∈ J , 𝑘 ∈ K .

Now we claim that the constructed solution (𝜶̂ ∗, 𝜷∗, 𝝆̂∗), defined as

𝛼∗ = 𝛼∗,

ˆ𝛽∗𝑗 = 𝛽∗𝑗 + 2(𝑟max + 𝑑max)
√︄

2 log( |J ||K ||I|/𝛿𝑛)
min𝑘∈K 𝑁 𝑗,𝑘 (𝑡𝑛−1)

, ∀𝑗 ∈ J ,

𝜌∗𝑖 = 𝜌∗𝑖 , ∀𝑖 ∈ I .
is feasible to (OFARR-S-D)(𝑛) with probability as least 1 − 2𝛿𝑛 . To prove this claim, note that∑

𝑖∈I 𝜌∗𝑖 = 1 and 𝛽∗𝑗 =
∑

𝑖∈I 𝑟𝑖, 𝑗,𝑘 · 𝜌∗𝑖 − 𝑑 𝑗,𝑘 · 𝛼∗ ≥ 0,∀𝑗 ∈ J , 𝑘 ∈ K , which together imply that

𝛼∗ ≤ 𝑟max. Hence, the following inequality holds that for any pair ( 𝑗, 𝑘):
ˆ𝛽∗𝑗 + ˆ𝑑 𝑗,𝑘 (𝑛) · 𝛼∗ −

∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 (𝑛) · 𝜌∗𝑖

= 𝛽 𝑗 + (2𝑟max + 2𝑑max)
√︄

2 log( |J ||K ||I|/𝛿𝑛)
min𝑘∈K 𝑁 𝑗,𝑘 (𝑡𝑛−1)

+ ˆ𝑑 𝑗,𝑘 (𝑛) · 𝛼∗ −
∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 (𝑛) · 𝜌∗𝑖

(𝑎)
≥ 𝛽∗𝑗 + (2𝑟max + 2𝑑max)

√︄
2 log( |J ||K ||I|/𝛿𝑛)
min𝑘∈K 𝑁 𝑗,𝑘 (𝑡𝑛−1)

+
(
𝑑 𝑗,𝑘 − 2𝑑max

√︄
2 log( |J ||K |/𝛿𝑛)

𝑁 𝑗,𝑘 (𝑡𝑛−1)

)
· 𝛼∗ −

∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 (𝑛) · 𝜌∗𝑖 w.p. 1 − 𝛿𝑛/(|J ||K |)

(𝑏 )
≥ 𝛽∗𝑗 + (2𝑟max + 2𝑑max)

√︄
2 log( |J ||K ||I|/𝛿𝑛)
min𝑘∈K 𝑁 𝑗,𝑘 (𝑡𝑛−1)

+
(
𝑑 𝑗,𝑘 − 2𝑑max

√︄
2 log( |J ||K |/𝛿𝑛)

𝑁 𝑗,𝑘 (𝑡𝑛−1)

)
· 𝛼∗

−
∑︁
𝑖∈I

(
𝑟𝑖, 𝑗,𝑘 + 2𝑟max

√︄
2 log( |J ||K ||I|/𝛿𝑛)

𝑁 𝑗,𝑘 (𝑡𝑛−1)

)
· 𝜌∗𝑖 w.p. 1 − 2𝛿𝑛/(|J ||K |)

≥ 𝛽∗𝑗 + (2𝑟max + 2𝑑max)
√︄

2 log( |J ||K ||I|/𝛿𝑛)
min𝑘∈K 𝑁 𝑗,𝑘 (𝑡𝑛−1)

+ 𝑑 𝑗,𝑘 · 𝛼∗ −
∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 · 𝜌∗𝑖

− 2𝑑max

√︄
2 log( |J ||K ||I|/𝛿𝑛)

𝑁 𝑗,𝑘 (𝑡𝑛−1)
· 𝛼∗ − 2𝑟max

√︄
2 log( |J ||K |/𝛿𝑛)

𝑁 𝑗,𝑘 (𝑡𝑛−1)
∑︁
𝑖∈I

𝜌∗𝑖 w.p. 1 − 2𝛿𝑛/(|J ||K |)
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where (a) and (b) hold due to the concentration bounds for
ˆ𝒅 (𝑛) and 𝒓 (𝑛), respectively. Further

leveraging the facts that

∑
𝑖 𝜌

∗
𝑖 = 1 and 𝛼∗ ≤ 𝑟max, we have

ˆ𝛽∗𝑗 + ˆ𝑑 𝑗,𝑘 (𝑛) · 𝛼∗ −
∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 (𝑛) · 𝜌∗𝑖

≥ 𝛽∗𝑗 + (2𝑟max + 2𝑑max)
√︄

2 log( |J ||K ||I|/𝛿𝑛)
min𝑘∈K 𝑁 𝑗,𝑘 (𝑡𝑛−1)

+ 𝑑 𝑗,𝑘 · 𝛼∗ −
∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 · 𝜌∗𝑖

− 2𝑑max

√︄
2 log( |J ||K ||I|/𝛿𝑛)

𝑁 𝑗,𝑘 (𝑡𝑛−1)
− 2𝑟max

√︄
2 log( |J ||K |/𝛿𝑛)

𝑁 𝑗,𝑘 (𝑡𝑛−1)
w.p. 1 − 2𝛿𝑛/(|J ||K |)

≥ 𝛽∗𝑗 + 𝑑 𝑗,𝑘 · 𝛼∗ −
∑︁
𝑖∈I

𝑟𝑖, 𝑗,𝑘 · 𝜌∗𝑖 ≥ 0, w.p. 1 − 2𝛿𝑛/(|J ||K |).

This completes the proof that (𝜶̂ ∗, 𝜷∗, 𝝆̂∗) is feasible to (OFARR-S-D)(𝑛) with probability as least

1 − 2𝛿𝑛 . Next, we show that the objective value of (OFARR-S-D)(𝑛) achieved by (𝜶̂ ∗, 𝜷∗, 𝝆̂∗) has a
gap of at most 𝜖𝐶𝑛 compared to 𝜆∗, with high-probability.

Firstly, by the definition of
ˆ𝜆∗ (𝑛), it is upper bounded by the objective value achieved by

(𝜶̂ ∗, 𝜷∗, 𝝆̂∗) in (OFARR-S-D)(𝑛). Hence, we have that
ˆ𝜆∗ (𝑛) ≤

∑︁
𝑗∈J

𝑝 𝑗 (𝑛) · ˆ𝛽∗𝑗 +𝐶 · 𝛼∗

≤
∑︁
𝑗∈J

𝑝 𝑗 (𝑛) · 𝛽∗𝑗 +𝐶 · 𝛼∗ +
∑︁
𝑗∈J

2𝑝 𝑗 (𝑛) (𝑟max + 𝑑max)
√︄

2 log( |J ||K ||I|/𝛿𝑛)
min𝑘∈K 𝑁 𝑗,𝑘 (𝑡𝑛−1)

=
∑︁
𝑗∈J

𝑝 𝑗 (𝑛) · 𝛽∗𝑗 +𝐶 · 𝛼∗ +
∑︁
𝑗∈J

2(𝑟max + 𝑑max)
√︄

2 log( |J ||K ||I|/𝛿𝑛)
min𝑘∈K 𝑁 𝑗,𝑘 (𝑡𝑛−1)

(𝑎)
≤

∑︁
𝑗∈J

𝑝 𝑗𝛽
∗
𝑗 + 2

√︄
𝑟max (

∑
𝑗∈J 𝑝 𝑗𝛽

∗
𝑗
) log(1/𝛿𝑛)

𝑡𝑛−1

+ 2

𝑟max log(1/𝛿𝑛)
𝑡𝑛−1

+𝐶 · 𝛼∗ +
∑︁
𝑗∈J

2(𝑟max + 𝑑max)
√︄

2 log( |J ||K ||I|/𝛿𝑛)
min𝑘∈K 𝑁 𝑗,𝑘 (𝑡𝑛−1)

w.p. 1 − 𝛿𝑛

=𝜆∗ + 2

√︄
𝑟max (

∑
𝑗∈J 𝑝 𝑗𝛽

∗
𝑗
) log(1/𝛿𝑛)

𝑡𝑛−1

+ 2

𝑟max log(1/𝛿𝑛)
𝑡𝑛−1

+
∑︁
𝑗∈J

2(𝑟max + 𝑑max)
√︄

2 log( |J ||K ||I|/𝛿𝑛)
min𝑘∈K 𝑁 𝑗,𝑘 (𝑡𝑛−1)

≤𝜆∗ + 2𝑟max


√︄

log(1/𝛿𝑛)
𝑡𝑛−1

+ log(1/𝛿𝑛)
𝑡𝑛−1

 +
∑︁
𝑗∈J

2(𝑟max + 𝑑max)
√︄

2 log( |J ||K ||I|/𝛿𝑛)
min𝑘∈K 𝑁 𝑗,𝑘 (𝑡𝑛−1)

≤𝜆∗ + 2𝑟max


√︄

log(1/𝛿𝑛)
𝑡𝑛−1

+ log(1/𝛿𝑛)
𝑡𝑛−1

 + 2|J |(𝑟max + 𝑑max)
√︄

2 log( |J ||K ||I|/𝛿𝑛)
min𝑗∈J,𝑘∈K 𝑁 𝑗,𝑘 (𝑡𝑛−1)

=𝜆∗ + 𝜖𝐶𝑛 .
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Step (a) applies the multiplicative Chernoff inequality, leveraging the key fact that 𝛽∗𝑗 ≤ 𝑟max.

This holds because the condition

∑
𝑖∈I 𝜌∗𝑖 = 1 is satisfied due to the optimality of the solution

(𝜶 ∗, 𝜷∗, 𝝆∗) to (OFARR-S-D). Combining these arguments establishes the following bound

ˆ𝜆∗ (𝑛) ≤ 𝜖𝐶𝑛 + 𝜆∗, w.p. 1 − 3𝛿𝑛,

which completes the proof of Lemma 2.

A.3 Proof of Lemma 3
The proof critically relies on a pivotal application of Lemma 8, which serves as the foundation for

constructing Algorithm 2. Specifically, for each 𝑠 ∈ {1, . . . , ℓ𝑛}, we define

𝑓𝑖 (𝑠) =
{
𝑟𝑖, 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) (𝑛) − ( ˆ𝜆∗ (𝑛) − 𝜖𝐶𝑛 ) if 𝑖 = 1, 2, ..., |I |,
− ˆ𝑑 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) (𝑛) +𝐶 if 𝑖 = 0.

(21)

Since 𝑟𝑖, 𝑗,𝑘 (𝑛) ≤ 𝑟max and
ˆ𝑑 𝑗,𝑘 (𝑛) ≤ 𝑑max, it follows that |𝑓𝑖 (𝑠) | ≤ max{𝑟max, 𝑑max} for all 𝑖 =

0, 1, ..., |I | and 𝑠 ∈ {1, . . . , ℓ𝑛}. Moreover, under the specification of {𝒇 (𝑠)}ℓ𝑛
𝑠=1

in (21), it can be directly

verified that the MWU weigh vector 𝜗 (𝑠) in lemma 8 is equal to 𝝓𝑛 (𝑠) for each 𝑠 ∈ {1, . . . , ℓ𝑛},
where {𝝓𝑛 (𝑠)}ℓ𝑛𝑠=1

are the weight vectors in Θ(𝑛). Applying Lemma 8 under these conditions yields

the following inequalities (which simultaneously hold with certainty):[
1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

𝑟𝑖, 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) (𝑛)
]
−

(
ˆ𝜆∗ (𝑛) − 𝜖𝐶𝑛

)
≥ Φ(𝑛) − 𝑟max

√︄
8 log( |I| + 1)

ℓ𝑛
for each 𝑖 ∈ |I|, (22)

−
[

1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

ˆ𝑑 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) (𝑛)
]
+𝐶 ≥ Φ(𝑛) − 𝑑max

√︄
8 log( |I| + 1)

ℓ𝑛
, (23)

where

Φ(𝑛) = 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1


∑︁

𝜄∈{1,...,I}
𝜙𝑛,𝜄 (𝑠)

(
𝑟𝜄, 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) (𝑛) − ( ˆ𝜆∗ (𝑛) − 𝜖𝐶𝑛 )

)
+𝜙𝑛,0 (𝑠)

(
− ˆ𝑑 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) (𝑛) +𝐶

)]
. (24)

Next, we proceed to prove the following three inequalities:

P

(
Φ(𝑛) ≥ −𝑟max

√︂
2

ℓ𝑛
log

2

𝛿𝑛
− 𝑑max

√︂
2

ℓ𝑛
log

2

𝛿𝑛
− 𝑟max

√︂
2

𝑡𝑛
log

2

𝛿𝑛
− 𝑑max

√︂
2

𝑡𝑛
log

2

𝛿𝑛

)
≥ 1 − 9𝛿𝑛,

(25)

P ©­«
ℓ𝑛∑︁
𝑠=1

𝑟𝑖, 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) (𝑛) ≤
ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 · 𝑟𝑖, 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) (𝑛) + 2𝑟max

√︄
2ℓ𝑛 log

|I |
𝛿𝑛

ª®¬ ≥ 1 − 2

𝛿𝑛

|I | , (26)

P ©­«
ℓ𝑛∑︁
𝑠=1

𝑑 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) (𝑛) ≥
ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 · 𝑑 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) (𝑛) − 2𝑑max

√︂
2ℓ𝑛 log

1

𝛿𝑛

ª®¬ ≥ 1 − 2𝛿𝑛 . (27)
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To establish (25), we assume that 𝒙∗ = {𝑥∗
𝑗,𝑘
} 𝑗∈J,𝑘∈K is an optimal solution to (OFARR-S). According

to the selection rule for 𝑘𝑣 (𝑡) in Algorithm 2, it holds that

Φ(𝑛) ≥ 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1


∑︁

𝜄∈{1,..., | I | }
𝜙𝑛,𝜄 (𝑠)

({∑︁
𝑘∈K

𝑟𝜄, 𝑗𝑣 (𝑠 ),𝑘 (𝑛) · 𝑥∗𝑗𝑣 (𝑠 ),𝑘

}
− ( ˆ𝜆∗ (𝑛) − 𝜖𝐶𝑛 )

)
+ 𝜙𝑛,0 (𝑠)

(
−

{∑︁
𝑘∈K

ˆ𝑑 𝑗𝑣 (𝑠 ),𝑘 (𝑛) · 𝑥∗𝑗𝑣 (𝑠 ),𝑘

}
+𝐶

)]
.

(28)

The concentration bounds for 𝒓 (𝑛) and ˆ𝒅 (𝑛) imply that

Φ(𝑛) ≥ 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1


∑︁

𝜄∈{1,..., | I | }
𝜙𝑛,𝜄 (𝑠)

({∑︁
𝑘∈K

𝑟𝜄, 𝑗𝑣 (𝑠 ),𝑘 · 𝑥∗
𝑗𝑣 (𝑠 ),𝑘

}
− ( ˆ𝜆∗ (𝑛) − 𝜖𝐶𝑛 )

)
+ 𝜙𝑛,0 (𝑠)

(
−

{∑︁
𝑘∈K

𝑑 𝑗𝑣 (𝑠 ),𝑘 · 𝑥∗
𝑗𝑣 (𝑠 ),𝑘

}
+𝐶

)]
w.p. ≥ 1 − 2𝛿𝑛

≥ 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1


∑︁

𝜄∈{1,...,I}
𝜙𝑛,𝜄 (𝑠)

©­«

∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 (𝑛) · 𝑟𝜄, 𝑗,𝑘 · 𝑥∗
𝑗,𝑘

 − ( ˆ𝜆∗ (𝑛) − 𝜖𝐶𝑛 )
ª®¬

+ 𝜙𝑛,0 (𝑠) ©­«−

∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 (𝑛) · 𝑑 𝑗,𝑘 · 𝑥∗
𝑗,𝑘

 +𝐶ª®¬


− 𝑟max

√︂
2

ℓ𝑛
log

2

𝛿𝑛
− 𝑑max

√︂
2

ℓ𝑛
log

2

𝛿𝑛
w.p. ≥ 1 − 2𝛿𝑛 (29)

≥ 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1


∑︁

𝜄∈{1,...,I}
𝜙𝑛,𝜄 (𝑠) ©­«


∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 · 𝑟𝜄, 𝑗,𝑘 · 𝑥∗
𝑗,𝑘

 − ( ˆ𝜆∗ (𝑛) − 𝜖𝐶𝑛 )
ª®¬

+ 𝜙𝑛,0 (𝑠)
©­«−


∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 · 𝑑 𝑗,𝑘 · 𝑥∗
𝑗,𝑘

 +𝐶ª®¬
 − 𝑟max

√︂
2

𝑡𝑛−1

log

2

𝛿𝑛
− 𝑑max

√︂
2

𝑡𝑛−1

log

2

𝛿𝑛

− 𝑟max

√︂
2

ℓ𝑛
log

2

𝛿𝑛
− 𝑑max

√︂
2

ℓ𝑛
log

2

𝛿𝑛
w.p. ≥ 1 − 2𝛿𝑛 (30)

≥ 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1


∑︁

𝜄∈{1,.., | I}
𝜙𝑛,𝜄 (𝑠)

©­«

∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 · 𝑟𝜄, 𝑗,𝑘 · 𝑥∗
𝑗,𝑘

 − 𝜆∗
ª®¬

+ 𝜙𝑛,0 (𝑠) ©­«−

∑︁
𝑗∈J

∑︁
𝑘∈K

𝑝 𝑗 · 𝑑 𝑗,𝑘 · 𝑥∗
𝑗,𝑘

 +𝐶ª®¬
 − 𝑟max

√︂
2

𝑡𝑛−1

log

2

𝛿𝑛
− 𝑑max

√︂
2

𝑡𝑛−1

log

2

𝛿𝑛

− 𝑟max

√︂
2

ℓ𝑛
log

2

𝛿𝑛
− 𝑑max

√︂
2

ℓ𝑛
log

2

𝛿𝑛
w.p. ≥ 1 − 3𝛿𝑛 (31)

≥ − (𝑟max + 𝑑max)
√︂

2

𝑡𝑛−1

log

2

𝛿𝑛
− (𝑟max + 𝑑max)

√︂
2

ℓ𝑛
log

2

𝛿𝑛
. (32)
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Step (29) leverages the fact that 𝑗 (𝑠) is sampled from the distribution 𝒑̂(𝑛) and applies the

Azuma Hoeffding inequality (see Lemma 6) with the filtration {F (𝑠)}ℓ𝑛
𝑠=1

defined as F (𝑠) =

𝜎 ({𝒓 (𝑛), ˆ𝒅 (𝑛), 𝒑̃(𝑛)} ∪ { 𝑗 𝑣 (𝜏)}𝑠𝜏=1
). This leads to the conclusion that the inequality in (29) holds

with probability ≥ 1 − 2𝛿𝑛 . Step (30) applies the Hoeffding inequality for the estimates 𝒑̃(𝑛), which
are computed based on the observations up to time 𝑡𝑛−1. Step (31) follows from the Lemma 2, which

establishes that
ˆ𝜆∗ (𝑛) ≤ 𝜆∗ + 𝜖𝐶𝑛 holds with probability at least 1 − 3𝛿𝑛 . Step (32) is justified by

the feasibility of 𝒚∗
for (OFARR-S) and the fact that

∑
𝑗∈J

∑
𝑘∈K 𝑝 𝑗 · 𝑑 𝑗,𝑘 · 𝑦∗

𝑗,𝑘
≤ 𝐶 . Notably, the

inequality in (32) holds with certainty. Put these things together completes the proof of (25).

Finally, we prove inequalities (26) and (27) both using the Azuma-Hoeffding inequality. In-

equality (27)) can be shown by considering {𝑟𝑖, 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) −
∑

𝑗∈J 𝑝 𝑗 (𝑛) · 𝑟𝑖, 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) }
ℓ𝑛
𝑠=1

, which

forms a martingale difference sequence with respect to the filtration {F (𝑠)}ℓ𝑛
𝑠=1

defined as F (𝑠) =
𝜎 ({𝒓 (𝑛), ˆ𝒅 (𝑛), 𝒑̃(𝑛)}∪{ 𝑗 𝑣 (𝜏)}𝑠𝜏=1

). Crucially, in the conditional expectation E[𝑟𝑖, 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) |F (𝑠−1)],
the randomness lies solely in 𝑗 𝑣 (𝑠), as 𝑘𝑣 (𝑠) is deterministic conditioned on 𝑗 𝑣 (𝑠) ∪ F (𝑠 − 1). Since
the weight vector 𝝓𝑛 (𝑠) is F (𝑠 − 1)-measurable, applying the Azuma-Hoeffding inequality yields

ℓ𝑛∑︁
𝑠=1

𝑟𝑖, 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) ≤
ℓ𝑛−1∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 (𝑛) · 𝑟𝑖, 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) + 𝑟max

√︄
2ℓ𝑛 log

|I |
𝛿𝑛

, w.p. ≥ 1 − 𝛿𝑛/|I|.

Then applying the Hoeffding inequality into 𝒑̂(𝑛) gives

ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 (𝑛) · 𝑟𝑖, 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) ≤
ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 · 𝑟𝑖, 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) + 𝑟max

√︄
2ℓ𝑛 log

|I |
𝛿𝑛

, w.p. ≥ 1 − 𝛿𝑛/|I|.

Thus, the inequality (26) follows.

Similarly, inequality (27) can be shown by considering {𝑑 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 )−
∑

𝑗∈J 𝑝 𝑗 (𝑛) ·𝑑 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) }
ℓ𝑛
𝑠=1

,

which also forms a martingale difference sequence with respect to the filtration {F (𝑠)}ℓ𝑛
𝑠=1

. By

applying the Azuma-Hoeffding inequality, we obtain

ℓ𝑛∑︁
𝑠=1

𝑑 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) ≤
ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 (𝑛) · 𝑑 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) + 𝑑max

√︂
2ℓ𝑛 log

1

𝛿𝑛
, w.p. ≥ 1 − 𝛿𝑛 .

Applying the Hoeffding inequality again to 𝒑̂(𝑛) yields

ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 (𝑛) · 𝑑 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) ≤
ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 · 𝑑 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) + 𝑑max

√︂
2ℓ𝑛 log

1

𝛿𝑛
, w.p. ≥ 1 − 𝛿𝑛 .

Combining these results completes the proof of inequality (27). Therefore, based on inequalities

(25), (26), and (27), for all 𝑖 ∈ I we have that

1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 · 𝑟𝑖, 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) ≥
1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

𝑟𝑖, 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) − 2𝑟max

√︂
2

ℓ𝑛
log

1

𝛿𝑛
w.p. 1 − 2𝛿𝑛

=
1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

𝑟𝑖, 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) (𝑛) − 2𝑟max

√︂
2

ℓ𝑛
log

1

𝛿𝑛
− 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

𝑟max

√︄
2 log( |I| |J ||K |/𝛿𝑛)
𝑁 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) (𝑡𝑛−1)
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≥ 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

𝑟𝑖, 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) (𝑛) − 2𝑟max

√︂
2

ℓ𝑛
log

1

𝛿𝑛
− 𝑟max

√︄
2 log( |I| |J ||K |/𝛿𝑛)

min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛−1)

≥
(

ˆ𝜆∗ (𝑛) − 𝜖𝐶𝑛

)
+ Φ(𝑛) − 𝑟max

√︄
8 log( |I| + 1)

ℓ𝑛
− 2𝑟max

√︂
2

ℓ𝑛
log

1

𝛿𝑛
− 𝑟max

√︄
2 log( |I| |J ||K |/𝛿𝑛)

min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛)

≥ 𝜆∗ − 𝜖𝐴𝑛 − 𝜖𝐵𝑛 − 𝜖𝐶𝑛 + Φ(𝑛) − 𝑟max

√︄
8 log( |I| + 1)

ℓ𝑛
− 2𝑟max

√︂
2

ℓ𝑛
log

1

𝛿𝑛
− 𝑟max

√︄
2 log( |I| |J ||K |/𝛿𝑛)

min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛−1)

≥
(
𝜆∗ − 𝜖𝐴𝑛 − 𝜖𝐵𝑛 − 𝜖𝐶𝑛

)
− (𝑟max + 𝑑max)

√︂
2

𝑡𝑛−1

log

2

𝛿𝑛
− (𝑟max + 𝑑max)

√︂
2

ℓ𝑛
log

2

𝛿𝑛

− 𝑟max

√︄
8 log( |I| + 1)

ℓ𝑛
− 2𝑟max

√︂
2

ℓ𝑛
log

1

𝛿𝑛
− 𝑟max

√︄
2 log( |I| |J ||K |/𝛿𝑛)

min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛−1)
w.p. 1 − 9𝛿𝑛

≥ 𝜆∗ − 𝜖𝐴𝑛 − 𝜖𝐵𝑛 − 𝜖𝐶𝑛 − (4𝑟max + 2𝑑max)
√︂

2

𝑡𝑛−1

log

2

𝛿𝑛
− 𝑟max

√︄
8 log( |I| + 1)

ℓ𝑛

− 𝑟max

√︄
2 log( |I| |J ||K |/𝛿𝑛)

min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛−1)
≥ 𝜆∗ − 𝜖𝐴𝑛 − 𝜖𝐵𝑛 − 𝜖𝐶𝑛 − 𝜖𝑛,

which establishes that the inequality
1

ℓ𝑛

∑ℓ𝑛
𝑠=1

∑
𝑗∈J 𝑝 𝑗 · 𝑟𝑖, 𝑗,𝑓𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) ≥ 𝜆∗ − 𝜖𝐴𝑛 − 𝜖𝐵𝑛 − 𝜖𝐶𝑛 − 𝜖𝑛 hold

simultaneously for all 𝑖 ∈ I with probability at least 1 − 11𝛿𝑛 . Similarly, it holds that

1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 · 𝑑 𝑗,𝑓𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) ≤
1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

𝑑 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) + 2𝑑max

√︂
2

ℓ𝑛
log

1

𝛿𝑛
w.p. 1 − 2𝛿𝑛

=
1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

ˆ𝑑 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) (𝑛) + 2𝑑max

√︂
2

ℓ𝑛
log

1

𝛿𝑛
+ 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

𝑑max

√︄
2 log( |J ||K |)/𝛿𝑛
𝑁 𝑗𝑠 (𝑠 ),𝑘𝑠 (𝑠 ) (𝑡𝑛−1)

≤ 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

ˆ𝑑 𝑗𝑣 (𝑠 ),𝑘𝑣 (𝑠 ) (𝑛) + 2𝑑max

√︂
2

ℓ𝑛
log

1

𝛿𝑛
+ 𝑑max

√︄
2 log( |J ||K |)/𝛿𝑛
min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛−1)

≤ 𝐶 − Φ(𝑛) + 𝑑max

√︄
8 log( |I| + 1)

ℓ𝑛
+ 2𝑑max

√︂
2

ℓ𝑛
log

1

𝛿𝑛
+ 𝑑max

√︄
2 log( |J ||K |)/𝛿𝑛
min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛−1)

≤ 𝐶 + (𝑟max + 𝑑max)
√︂

2

ℓ𝑛
log

2

𝛿𝑛
+ (𝑟max + 𝑑max)

√︂
2

𝑡𝑛−1

log

2

𝛿𝑛

+ 𝑑max

√︄
8 log( |I| + 1)

ℓ𝑛
+ 2𝑑max

√︂
2

ℓ𝑛
log

1

𝛿𝑛
+ 𝑑max

√︄
2 log( |J ||K |)/𝛿𝑛
min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛−1)

w.p. 1 − 9𝛿𝑛

≤ 𝐶 + (2𝑟max + 4𝑑max)
√︂

2

𝑡𝑛−1

log

2

𝛿𝑛
+ 𝑑max

√︄
8 log( |I| + 1)

ℓ𝑛
+ 𝑑max

√︄
2 log( |J ||K |)/𝛿𝑛
min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛−1)

≤ 𝐶 + 𝜖𝑛 .

This completes the proof that
1

ℓ𝑛

∑ℓ𝑛
𝑠=1

∑
𝑗∈J 𝑝 𝑗 ·𝑑 𝑗,𝑓𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) ≤ 𝐶 +𝜖𝑛 holds with probability at least

1 − 11𝛿𝑛 . Combining all things together, the Lemma 3 follows.
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A.4 Proof of Lemma 4
We begin by noting that:

E[𝑉 (𝑡) | H (𝑡𝑛−1)] ≥ 1 − E
I


𝑡−1∑︁

𝜏=max{𝑡−𝑑max,1}
𝐴(𝜏)I{𝐷̂ (𝜏) ≥ 𝑡 − 𝜏 + 1} > 𝐶 − 1


���� H(𝑡𝑛−1)

︸                                                                                    ︷︷                                                                                    ︸
=𝑀𝑛 (𝑡 )

.

The proof of the lemma involves two key steps. Firstly, we demonstrate that for any 𝑡 ∈ {𝑡𝑛−1 + 1 +
𝑑max, . . . , 𝑡𝑛} and any fixed 𝜀 > 0, the following inequality holds with certainty:

𝑀𝑛 (𝑡) ≤
1

(1 + 𝜀)𝐶−1

· exp

[
𝜀 (1 − 𝑓𝑛)

1 + 𝑔𝑛
· 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

𝑝 𝑗𝑑 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) + 𝜀 · 𝑓𝑛 · 𝑑max

]
. (33)

Importantly, the right-hand side of (33) is independent of 𝑡 and only relies on the epoch index 𝑛.

This independence arises because the weight vector construction ensures that
˜𝑘 (𝑡) is i.i.d. for all

𝑡 ∈ {𝑡𝑛−1 + 1, ..., 𝑡𝑛}, conditional on the history H(𝑡𝑛−1). Applying Lemma 3 yields:

exp

[
𝜀 (1 − 𝑓𝑛)

1 + 𝑔𝑛
· 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

𝑝 𝑗 · 𝑑 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) + 𝜀 · 𝑓𝑛 · 𝑑max

]
≤ exp

[
𝜀 (𝐶 + 𝜖𝑛)

1 + 𝑔𝑛

]
· exp

[
𝜀 · (𝑑𝑚𝑎𝑥 −𝐶)+

]
,

(34)

which holds with probability at least 1 − 11𝛿 . Combining (33) and (34), we establish the first part of

Lemma 4. Secondly, we demonstrate that the following inequality holds:

E[𝑅𝑖 (𝑡) | H (𝑡𝑛−1)] ≥
1 − 𝑓𝑛

1 + 𝑔𝑛
· 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 · 𝑟𝑖, 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) . (35)

Applying Lemma 3 again, we derive that:

1

1 + 𝑔𝑛
· 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 ·𝑟𝑖, 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) ≥
1 − 𝑓𝑛

1 + 𝑔𝑛
·
(
𝜆∗ − 𝜖𝐴𝑛 − 𝜖𝐵𝑛 − 𝜖𝐵𝑛 − 𝜖𝑛

)
≥ 1

1 + 𝑔𝑛
𝜆∗ − 𝜖𝐴𝑛 − 𝜖𝐵𝑛 − 𝜖𝐶𝑛 − 𝜖𝑛

1 + 𝑔𝑛
− 𝑓𝑛 · 𝜆∗,

which holds for all 𝑖 ∈ I with probability at least 1 − 11𝛿 . Thus, the second part of Lemma 4 is

established.

Thus, what remains is to establish (33) and (35). Inequality (33) is demonstrated through the

following sequence of calculations, where all equalities and inequalities hold certainty:

𝑀𝑛 (𝑡) = E
I


𝑡−1∑︁

𝜏=max{𝑡−𝑑max,1}
𝐴(𝜏)I{𝐷̂ (𝜏) ≥ 𝑡 − 𝜏 + 1} > 𝐶 − 1


���� H(𝑡𝑛−1)


=E

[
I
{
(1 + 𝜀)

∑𝑡−1

𝜏=max{𝑡−𝑑max+1,1} 𝐴̂(𝜏 )I{𝐷̂ (𝜏 )≥𝑡−𝜏+1}
> (1 + 𝜀)𝐶−1

} ���� H(𝑡𝑛−1)
]

≤ 1

(1 + 𝜀)𝐶−1

· E
[
(1 + 𝜀)

∑𝑡−1

𝜏=max{𝑡−𝑑max,1} 𝐴̂(𝜏 )I{𝐷̂ (𝜏 )≥𝑡−𝜏+1}
���� H(𝑡𝑛−1)

]
(36)
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=
1

(1 + 𝜀)𝐶−1

·
𝑡−1∏

𝜏=max{𝑡−𝑑max,1}
E

[
(1 + 𝜀)𝐴̂(𝜏 )I{𝐷̂ (𝜏 )≥𝑡−𝜏+1}

���� H(𝑡𝑛−1)
]

(37)

≤ 1

(1 + 𝜀)𝐶−1

·
𝑡−1∏

𝜏=max{𝑡−𝑑max,1}

(
1 + 𝜀 · E

[
𝐴(𝜏)I{𝐷̂ (𝜏) ≥ 𝑡 − 𝜏 + 1}

���� H(𝑡𝑛−1)
] )

(38)

≤ 1

(1 + 𝜀)𝐶−1

·
𝑡−1∏

𝜏=max{𝑡−𝑑max,1}

(
1 + 𝜀 · P (𝐼1 (𝜏)) E

[
𝐴̃(𝜏)I{𝐷̃ (𝜏) ≥ 𝑡 − 𝜏 + 1}

���� H(𝑡𝑛−1)
]

(39)

+ 𝜀 · P (𝐼2 (𝜏)) E
[
𝐴̃𝑒 (𝜏)I{𝐷̃𝑒 (𝜏) ≥ 𝑡 − 𝜏 + 1}

���� H(𝑡𝑛−1)
] )

Step (36) is derived using the Markov inequality. Step (37) follows from the joint independence of

the sequence {𝐴(𝜏)I{𝐷̂ (𝜏) ≥ 𝑡 −𝜏 +1}}𝑡−1

𝜏=max{𝑡−𝑑max,1} conditioned onH(𝑡𝑛−1), as established by the
coupling argument. Step (38) utilizes the inequality (1+𝜀)𝑎 ≤ 1+𝜀 ·𝑎 for all 𝑎 ∈ [0, 1], 𝜀 > 0. Step (39)

follows from the facts that (𝐼1 (𝑡), 𝐼2 (𝑡)) is independent of the historyH(𝑡𝑛−1) for 𝑡 ∈ {𝑡𝑛−1+1, ..., 𝑡𝑛}
and

(𝐴(𝜏), 𝐷̂ (𝜏)) =
{
(𝐴̃(𝜏), 𝐷̃ (𝜏)) if 𝐼1 (𝑡) holds,
(𝐴̃𝑒 (𝜏), 𝐷̃𝑒 (𝜏)) if 𝐼2 (𝑡) holds,

Recall that 𝐴̃(𝑡) = 𝐴̃𝑒 (𝑡) = 1, ∀𝑡 ∈ [𝑇 ], thus

𝑀𝑛 (𝑡) ≤
1

(1 + 𝜀)𝐶−1

·
𝑡−1∏

𝜏=max{𝑡−𝑑max,1}

(
1 + 𝜀 · P (𝐼1 (𝜏)) E

[
I{𝐷̃ (𝜏) ≥ 𝑡 − 𝜏 + 1}

���� H(𝑡𝑛−1)
]

+ 𝜀 · P (𝐼2 (𝜏)) E
[
I{𝐷̃𝑒 (𝜏) ≥ 𝑡 − 𝜏 + 1}

���� H(𝑡𝑛−1)
] )

≤ 1

(1 + 𝜀)𝐶−1

·
𝑡−1∏

𝜏=max{𝑡−𝑑max,1}
exp

(
𝜀 · P(𝐼1 (𝜏))E

[
I{𝐷̃ (𝜏) ≥ 𝑡 − 𝜏 + 1}

���� H(𝑡𝑛−1)
]

+ 𝜀 · P(𝐼2 (𝜏))E
[
I{𝐷̃𝑒 (𝜏) ≥ 𝑡 − 𝜏 + 1}

���� H(𝑡𝑛−1)
] )

(40)

1

(1 + 𝜀)𝐶−1

· exp

(
𝜀 (1 − 𝑓𝑛)

1 + 𝑔𝑛
·

𝑡−1∑︁
𝜏=max{𝑡−𝑑max,1}

E
[
I{𝐷̃ (𝜏) ≥ 𝑡 − 𝜏 + 1}

���� H(𝑡𝑛−1)
]

+ 𝜀 · 𝑓𝑛 ·
𝑡−1∑︁

𝜏=max{𝑡−𝑑max,1}
E

[
I{𝐷̃𝑒 (𝜏) ≥ 𝑡 − 𝜏 + 1}

���� H(𝑡𝑛−1)
] )

(41)

Step (40) follows from the inequality 1 + 𝜀 ≤ 𝑒𝜖 , ∀𝜀 > 0. To further deal with (41), note that

𝑡−1∑︁
𝜏=max{𝑡−𝑑max,1}

E
[
I{𝐷̃ (𝜏) ≥ 𝑡 − 𝜏 + 1}

���� H(𝑡𝑛−1)
]

≤
𝑡∑︁

𝜏=𝑡−𝑑max+1

𝑑max∑︁
𝑠=𝑡−𝜏+1

E
[
I{𝐷̃ (𝜏) = 𝑠}

���� H(𝑡𝑛−1)
]

=

𝑑max∑︁
𝑠=1

𝑡∑︁
𝜏=𝑡−𝑠+1

E
[
I{𝐷̃ (𝜏) = 𝑠}

���� H(𝑡𝑛−1)
]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 29. Publication date: June 2025.



Online Fair Allocation of Reusable Resources 29:37

=

𝑑max∑︁
𝑠=1

𝑡∑︁
𝜏=𝑡−𝑠+1

E
[
I{𝐷̃ (𝑡) = 𝑠}

���� H(𝑡𝑛−1)
]

(42)

=

𝑑max∑︁
𝑠=1

E
[
𝑠 · I{𝐷̃ (𝑡) = 𝑠}

���� H(𝑡𝑛−1)
]

=

𝑑max∑︁
𝑠=1

E
[
𝑠 · I{𝐷̃ (𝑡) = 𝑠}

���� H(𝑡𝑛−1)
]
≤ E

[
𝐷̃ (𝑡)

���� H(𝑡𝑛−1)
]

In (41), it is crucial to note that the range of summation, namely {max{𝑡 − 𝑑max, 1}, . . . , 𝑡 − 1}, lies
entirely within the time interval of 𝑛, as ensured by our assumption 𝑡 ∈ {𝑡𝑛−1 + 1 + 𝑑max, . . . , 𝑡𝑛}.
Recall the construction of

˜𝑘 (𝑡) and the definition of (𝑅̃(𝑡), 𝐴̃(𝑡), 𝐷̃ (𝑡)) ∼ O
𝑗 (𝑡 ), ˜𝑘 (𝑡 ) in our cou-

pling argument. These two facts imply that {(𝐴̃𝑖 (𝜏), 𝐷̃𝑖 (𝜏))}𝑡𝜏=max{𝑡−𝑑max,1} are i.i.d conditioned on

H(𝑡𝑛−1), which leads to (42). Similarly,

𝑡−1∑︁
𝜏=max{𝑡−𝑑max,1}

E
[
I{𝐷̃𝑒 (𝜏) ≥ 𝑡 − 𝜏 + 1}

���� H(𝑡𝑛−1)
]
≤ E

[
𝐷̃𝑒 (𝑡)

���� H(𝑡𝑛−1)
]
.

Therefore,𝑀𝑛 (𝑡) can be further upper-bounded as

𝑀𝑛 (𝑡) ≤
1

(1 + 𝜀)𝐶−1

· exp

(
𝜀 (1 − 𝑓𝑛)

1 + 𝑔𝑛
·

𝑡∑︁
𝜏=𝑡−𝑑max+1

𝑑max∑︁
𝑠=𝑡−𝜏+1

E
[
I{𝐷̃ (𝜏) = 𝑠}

���� H(𝑡𝑛−1)
]

+ 𝜀 · 𝑓𝑛 ·
𝑡∑︁

𝜏=𝑡−𝑑max+1

𝑑max∑︁
𝑠=𝑡−𝜏+1

E
[
I{𝐷̃𝑒 (𝜏) = 𝑠}

���� H(𝑡𝑛−1)
] )

≤ 1

(1 + 𝜀)𝐶−1

· exp

(
𝜀 (1 − 𝑓𝑛)

1 + 𝑔𝑛
· E

[
𝐷̃ (𝑡)

���� H(𝑡𝑛−1)
]

+ 𝜀 · 𝑓𝑛 · ·E
[
𝐷̃𝑒 (𝑡)

���� H(𝑡𝑛−1)
] )

=
1

(1 + 𝜀)𝐶−1

· exp

[
𝜀 (1 − 𝑓𝑛)

1 + 𝑔𝑛
· 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

𝑝 𝑗 · 𝑑 𝑗,𝑓𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) + 𝜀 · 𝑓𝑛 · E[𝐷̃𝑒 (𝑡)
���� H(𝑡𝑛−1)]

]
(43)

≤ 1

(1 + 𝜀)𝐶−1

· exp

[
𝜀 (1 − 𝑓𝑛)

1 + 𝑔𝑛
· 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

𝑝 𝑗 · 𝑑 𝑗,𝑓𝑛 (𝝓𝑛 (𝑠 ), 𝑗 ) + 𝜀 · 𝑓𝑛 · 𝑑max

]
. (44)

Step (43) follows from taking the conditional expectation and recalling the construction of
˜𝑘 (𝑡) in

Algorithm 1. Step (44) holds because 𝐷̃𝑒 (𝑡) ≤ 𝑑max, ∀𝑡 ∈ [𝑇 ]. This completes the proof of (33).

To establish (35), note that the coupling argument ensures that for every 𝑡 ∈ {𝑡𝑛−1 + 1, . . . , 𝑡𝑛}
and every 𝑖 ∈ I, the following inquality holds with certainty:

E[𝑅𝑖 (𝑡) | H (𝑡𝑛−1)] = E[𝐼2 (𝑡) · 𝑅̃𝑖 (𝑡) + 𝐼2 (𝑡) · 𝑅̃𝑒𝑖 (𝑡) | H (𝑡𝑛−1)]
≥ E[𝐼2 (𝑡) · 𝑅̃𝑖 (𝑡) | H (𝑡𝑛−1)]

=
1 − 𝑓𝑛

1 + 𝑔𝑛
· 1

ℓ𝑛

ℓ𝑛∑︁
𝑠=1

∑︁
𝑗∈J

𝑝 𝑗 · 𝑟𝑖, 𝑗,𝜅𝑛 (𝝓𝑛 (𝑠 ), 𝑗 )

Thus, the inequality (35) follows, and we complete the proof of Lemma 4.
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A.5 Proof of Theorem 2
Firstly, by unpacking the definitions of 𝑓𝑛 and 𝑔𝑛 in Theorem 1 and setting 𝜀 = 𝜀∗ (𝐶), we have

𝑡𝑛∑︁
𝑡=𝑡𝑛−1+1

𝑅𝑖 (𝑡) ≥
1

1 + 𝜖𝑛/𝐶
· L(𝜀∗ (𝐶)) · ℓ𝑛 · 𝜆∗ − 𝑟max

√︁
2𝑑maxℓ𝑛 log(𝑑max/𝛿𝑛) − 2𝑟max𝑑max

− ℓ𝑛 ·
(
𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛 + 𝑓𝑛𝜆

∗ + 2𝜀∗ (𝐶) · 𝑓𝑛 · (𝑑𝑚𝑎𝑥 −𝐶)+ · 𝜆∗
)
, w.p. 1 − 23𝛿𝑛,

(45)

when 𝑛 ≥ 3 log 𝜀∗ (𝐶) + 2 log𝑑max, where 𝜖
𝐴
𝑛 , 𝜖

𝐵
𝑛 , 𝜖

𝐶
𝑛 , and 𝜖𝑛 are defined as follows

𝜖𝐴𝑛 = 2

√︄
𝑑max log(1/𝛿𝑛)

𝐶 · 𝑡𝑛−1

+ 2𝑑max log(1/𝛿𝑛)
𝐶 · 𝑡𝑛−1

, 𝜖𝐵𝑛 = 𝑟max

√︄
2 log( |I|/𝛿𝑛)

𝑡𝑛−1

,

𝜖𝐶𝑛 = 2𝑟max


√︄

log(1/𝛿𝑛)
𝑡𝑛−1

+ log(1/𝛿𝑛)
𝑡𝑛−1

 + 2|J | (𝑟max + 𝑑max)
√︄

2 log( |J ||K ||I|/𝛿𝑛)
min𝑗∈J,𝑘∈K 𝑁 𝑗,𝑘 (𝑡𝑛−1)

,

𝜖𝑛 = 6𝑑max

√︂
2

𝑡𝑛−1

log

2

𝛿𝑛
+ 𝑑max

√︄
8 log( |I| + 1)

ℓ𝑛
+ 𝑑max

√︄
2 log( |I| |J ||K |/𝛿𝑛)

min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛−1)
,

To proceed with analyzing (45), we next derive a lower bound for min𝑗,𝑘 𝑁 𝑗,𝑘 (𝑡𝑛−1). Recall that
𝑁 𝑗,𝑘 (𝑡) denotes the number of times that the action 𝑘 is chosen for arrival type 𝑗 up to time 𝑡 . By

definition, at epoch 𝑛, the probability of selecting action 𝑘 ∈ K (i.e., 𝑘 ≠ 𝑘null) at round 𝑡 when the

arrival type is 𝑗 satisfies:

P (𝑘 (𝑡) = 𝑘, 𝑗 (𝑡) = 𝑗) ≥ 1

ℓ
1/3

𝑛

· 1

𝑑max

·
𝑝 𝑗

|K | .

The term 1/𝑑max arises from the observation that any policy experiences at least one instance of

resource availability every 𝑑max rounds. Note that the actual number of selections of action 𝑘 for

arrival type 𝑗 may be significantly higher in practice, as this also accounts for exploratory selections

of each action. At the beginning of epoch 𝑛, the expected value for 𝑁 𝑗,𝑘 (𝑡𝑛−1) is given by:

E[𝑁 𝑗,𝑘 (𝑡𝑛−1)] = 1 +
𝑡𝑛−1∑︁
𝑡=1

P (𝑘 (𝑡) = 𝑘, 𝑗 (𝑡) = 𝑗) ≥ 1 +
𝑛−1∑︁
𝑖=0

ℓ𝑖 · ℓ−1/3

𝑖
· 1

𝑑max

·
𝑝 𝑗

|K | ≥
𝑝 𝑗

𝑑max |K | · ℓ
2/3

𝑛

The first equality follows from initializing 𝑁 𝑗,𝑘 (0) = 1. Using the Chernoff bound, we can further

show that for any 𝛿 ∈ (0, 1):

P
(
𝑁 𝑗,𝑘 (𝑛) ≤ (1 − 𝛿)E[𝑁 𝑗,𝑘 (𝑛)]

)
≤ exp

(
−
𝛿2E[𝑁 𝑗,𝑘 (𝑛)]

2

)
≤ exp

(
−
𝑝 𝑗𝛿

2
2

2𝑛/3

2|K |𝑑1/3

max

)
.

Setting 𝛿 =
√

2

2
leads to

P

(
𝑁 𝑗,𝑘 (𝑛) ≤

(
1 −

√
2

2

)
· E[𝑁 𝑗,𝑘 (𝑛)]

)
≤ exp

(
−

𝑝 𝑗2
2𝑛/3

4|K |𝑑1/3

max

)
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Building on this and applying the union bound, the following inequalities hold simultaneously

when 𝑛 ≥ 𝑂 (2 log𝑑max + log(1/𝑝min) + log (log (|I| |J ||K |))),
𝜖𝑛 ≤ 0.5,

ℓ𝑛 ·
(
𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛 + 𝑓𝑛𝜆

∗ + 2𝜀∗ (𝐶) · 𝑓𝑛 · (𝑑𝑚𝑎𝑥 −𝐶)+ · 𝜆∗
)

≤ 𝑂
©­«|J |𝑑maxℓ

2/3

𝑛

√︄
log( |J ||K ||I|

𝛿𝑛
) + 𝑑max

𝐶
log( 1

𝛿𝑛
) + 𝑟max log( 1

𝛿𝑛
) + 𝜀∗ (𝐶) (𝑑𝑚𝑎𝑥 −𝐶)+ℓ2/3

𝑛 + ℓ
2/3

𝑛
ª®¬

= 𝑂

(
|J |𝑑maxℓ

2/3

𝑛

√︁
𝑛 · log( |J ||K ||I|) + 𝑑max

𝐶
· 𝑛 + 𝑟max · 𝑛 + 𝜀∗ (𝐶) · (𝑑𝑚𝑎𝑥 −𝐶)+ · ℓ2/3

𝑛 + ℓ
2/3

𝑛

)
w.p. 1 −

∑︁
𝑗∈J

exp

(
−𝑝 𝑗2

2𝑛/3/(4|K |𝑑1/3

max
)
)
.

Thus, with probability at least 1 − 23𝛿𝑛 − ∑
𝑗∈J exp

(
−𝑝 𝑗2

2𝑛/3/(4|K |𝑑1/3

max
)
)
, we have that:

𝑡𝑛∑︁
𝑡=𝑡𝑛−1+1

𝑅𝑖 (𝑡) ≥
(
1 − 1

2𝐶

)
· L(𝜀∗ (𝐶)) · ℓ𝑛 · 𝜆∗ −𝑂

(
|J |𝑑max · ℓ2/3

𝑛

√︁
log( |J ||K ||I|/𝛿𝑛) +

𝑑max

𝐶
𝑛

+𝑟max · 𝑛 + 𝜀∗ (𝐶) · (𝑑𝑚𝑎𝑥 −𝐶)+ · ℓ2/3

𝑛 + ℓ
2/3

𝑛 + 𝑟max

√︁
𝑑maxℓ𝑛 log(𝑑max/𝛿𝑛) + 𝑟max𝑑max

)
,

(46)

when 𝑛 ≥ 𝑛0 = 𝑂 (2 log𝑑max + 3 log 𝜖∗ (𝐶) + log(1/𝑝min) + log (log ( |I| |J ||K |))). Summing over 𝑛

from 0 to ⌈log(𝑇 /𝑑max)⌉ and applying a union bound, we can obtain that with probability at least

1 − ∑𝑇
𝑛=1

(23𝛿𝑛 + ∑
𝑗∈J exp(−𝑝 𝑗2

2𝑛/3/(4|K |𝑑1/3

max
))):

𝑇∑︁
𝑡=1

𝑅𝑖 (𝑡) ≥
(
1 − 1

2𝐶

)
· L(𝜀∗ (𝐶)) ·𝑇 · 𝜆∗ −𝑂

(
log(𝑇 /𝑑max )∑︁

𝑛=1

[
|J |𝑑maxℓ

2/3

𝑛

√︁
log( |J ||K ||I|/𝛿𝑛) +

𝑑max

𝐶
𝑛

+𝑟max · 𝑛 + 𝜀∗ (𝐶) · (𝑑𝑚𝑎𝑥 −𝐶)+ · ℓ2/3

𝑛 + ℓ
2/3

𝑛 + 𝑟max

√︁
𝑑maxℓ𝑛 log(𝑑max/𝛿𝑛) + 𝑟max𝑑max

] )
−𝑂

(
𝑛0∑︁
𝑛=1

ℓ𝑛

)
≥

(
1 − 1

2𝐶

)
· L(𝜀∗ (𝐶)) ·𝑇 · 𝜆∗

−𝑂

(
|J | · 𝑑max𝑇

2/3

√︁
log𝑇 · log( |J ||K ||I|) + 𝜀∗ (𝐶) · (𝑑𝑚𝑎𝑥 −𝐶)+ ·𝑇 2/3 +𝑇 12/23 + 𝑑2

3max +
𝑑max

𝑝min

)
.

Taking the expectation yields

E

[
𝑇∑︁
𝑡=1

𝑅𝑖 (𝑡)
]
≥

(
1 − 1

2𝐶

)
· L(𝜀∗ (𝐶)) ·𝑇 · 𝜆∗ −𝑂

©­«
𝑇∑︁
𝑛=1

©­«23𝛿𝑛 +
∑︁
𝑗∈J

exp

(
−𝑝 𝑗2

𝑛/4|K |
)ª®¬ª®¬

−𝑂

(
|J |𝑑max𝑇

2/3

√︁
log𝑇 · log( |J ||K ||I|) + 𝜀∗ (𝐶) · (𝑑𝑚𝑎𝑥 −𝐶)+ ·𝑇 2/3 +𝑇 2/3 + 𝑑3

max
+ 𝑑max

𝑝min

)
=

(
1 − 1

2𝐶

)
· L(𝜀∗ (𝐶)) ·𝑇 · 𝜆∗

−𝑂
©­«|J |𝑑max𝑇

2

3

√︁
log𝑇 · log( |J ||K ||I|) + 𝜀∗ (𝐶) · (𝑑𝑚𝑎𝑥 −𝐶)+ ·𝑇 2

3 +𝑇 2

3 + 𝑑3

max
+ 𝑑max

𝑝min

+
∑︁
𝑗∈J

|K |
𝑝 𝑗

ª®¬ .
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Using Lemma 1 which states that 𝑇 · 𝜆∗ ≥ 𝑇 · OPT∗ − 𝑑max · 𝑟max, then the Theorem 2 follows.

A.6 Proof of Theorem 3
Clearly, when 𝐶 ≥ 𝑑max, it follows that 𝑔𝑛 = 0 and E [𝑉 (𝑡) | H (𝑡𝑛−1)] = 1, i.e., resource availability

is always ensured. Consequently, for any 𝑖 ∈ I, the following inequality holds simultaneously for

all 𝑡 ∈ {𝑡𝑛−1 + 1 + 𝑑max, . . . , 𝑡𝑛}:

E
[
𝑅𝑖 (𝑡) ·𝑉 (𝑡) | H (𝑡𝑛−1)

]
≥ 𝜆∗ −

(
𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛 + 𝑓𝑛𝜆

∗
)
, w.p. 1 − 22𝛿𝑛, (47)

when 𝑛 ≥ 3 log 𝜖∗ (𝐶) + 2 log𝑑max. Following the same analysis as in the proof of Theorem 2, it

holds that for all 𝑛 ≥ 1:

ℓ𝑛 ·
(
𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛 + 𝑓𝑛𝜆

∗
)
≤ 𝑂

(
|J |𝑑max · ℓ2/3

𝑛

√︁
𝑛 · log( |J ||K ||I|) + 𝑑max

𝐶
· 𝑛 + 𝑟max · 𝑛 + ℓ

2/3

𝑛

)
w.p. 1 −

∑︁
𝑗∈J

exp

(
−𝑝 𝑗2

2𝑛/3/(4|K |𝑑1/3

max
)
)
.

Following a similar analysis as in (15), we obtain that with probability at least 1 − 23𝛿𝑛 :

𝑡𝑛∑︁
𝑡=𝑡𝑛−1+𝑑max+1

𝑅𝑖 (𝑡) ·𝑉 (𝑡) ≥ (ℓ𝑛 − 𝑑max) · 𝜆∗ − 𝑟max

√︁
2𝑑maxℓ𝑛 log𝑑max/𝛿𝑛

− 𝑟max𝑑max − (ℓ𝑛 − 𝑑max) · (𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛 + 𝑓𝑛𝜆
∗).

By leveraging (11), we conclude thatwith probability at least 1−∑𝑇
𝑛=1

(
23𝛿𝑛 + ∑

𝑗∈J exp

(
− 𝑝 𝑗 2

2𝑛
3

4 |K |𝑑1/3

max

))
:

𝑇∑︁
𝑡=1

𝑅𝑖 (𝑡) ≥ 𝜆∗ −𝑂

(
|J | · 𝑑max𝑇

2/3

√︁
log𝑇 · log( |J ||K ||I|) +𝑇 2/3 + 𝑑3

max

)
.

Taking the expectation and applying Lemma 1 yield the desired bound.

A.7 Proof of Theorem 4
Unravelling the definitions of 𝑓𝑛 (note that 𝑓𝑛 = 0) and 𝑔𝑛 in Theorem 1 and setting 𝜀 = 𝜀∗ (𝐶) yield
the following result:

𝑡𝑛∑︁
𝑡=𝑡𝑛−1+1

𝑅𝑖 (𝑡) ≥
1

1 + 𝜖𝑛/𝐶
· L(𝜀∗ (𝐶)) · ℓ𝑛 · 𝜆∗ − 𝑟max

√︁
2𝑑maxℓ𝑛 log(𝑑max/𝛿𝑛) − 2𝑟max𝑑max

− ℓ𝑛 ·
(
𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛

)
, w.p. 1 − 23𝛿𝑛,

when 𝑛 ≥ 3 log 𝜀∗ (𝐶) + 2 log𝑑max. Similarly, applying the same unraveling process in Lemma 4, the

following inequality holds with probability 1 − 11𝛿𝑛

E[𝑉 (𝑡) | H (𝑡𝑛−1)] ≥
(
1 − 1

2𝐶
L(𝜖∗ (𝐶))

)
simultaneously for all 𝑡 ∈ {𝑡𝑛−1 + 1 + 𝑑max, . . . , 𝑡𝑛}. Taking expectation with respect to H(𝑡𝑛−1)
and telescope summation across times within epoch 𝑛 ≥ 1 gives

𝑡𝑛∑︁
𝑡𝑛−1+1

E[𝑉 (𝑡)] ≥
(
1 − 1

2𝐶

)
L(𝜖∗ (𝐶)) · (ℓ𝑛 − 𝑑max).
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Consequently, we can derive the following lower bound on quantity 𝑁 𝑗,𝑘 (𝑡𝑛−1) for any pair ( 𝑗, 𝑘):

E[𝑁 𝑗,𝑘 (𝑡𝑛−1)] =
𝑝 𝑗

|K |

(
𝑑max +

𝑛−1∑︁
𝑖=1

𝑡𝑖∑︁
𝑡=𝑡𝑖−1+1

E[𝑉 (𝑡)]
)

≥
𝑝 𝑗

|K |𝑑max +
𝑝 𝑗

|K |

(
1 − 1

2𝐶

)
L(𝜖∗ (𝐶)) · (𝑡𝑛−1 − 𝑑max − (𝑛 − 1)𝑑max)

≥
𝑝 𝑗

|K |

(
1 − 1

2𝐶

)
L(𝜖∗ (𝐶)) · (𝑡𝑛−1 − (𝑛 − 1)𝑑max) .

Using Chernoff bounds, it holds that

P

(
𝑁 𝑗,𝑘 (𝑛) ≤

(
1 −

√
2

2

)
· E[𝑁 𝑗,𝑘 (𝑛)]

)
≤ exp

(
−

E[𝑁 𝑗,𝑘 (𝑛)]
4

)
≤ 4|K |

𝑝 𝑗

(
1 − 1

2𝐶

)
L(𝜖∗ (𝐶)) · (𝑡𝑛−1 − (𝑛 − 1)𝑑max)

.

Building on this and applying the union bound, the following inequalities hold simultaneously

when 𝑛 ≥ 𝑂 (2 log𝑑max + log(1/𝑝min) + log (log (|I| |J ||K |))),

𝜖𝑛 ≤ 0.5,

ℓ𝑛 ·
(
𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛

)
≤ 𝑂

(
|J |𝑑max · ℓ1/2

𝑛

√︁
log( |J ||K ||I|/𝛿𝑛) +

𝑑max

𝐶
log(1/𝛿𝑛) + 𝑟max log(1/𝛿𝑛)

)
= 𝑂

(
|J |𝑑max · ℓ1/2

𝑛

√︁
𝑛 · log( |J ||K ||I|) + 𝑑max

𝐶
· 𝑛 + 𝑟max · 𝑛

)
w.p. 1 −

∑︁
𝑗∈J

4|K |
𝑝 𝑗

(
1 − 1

2𝐶

)
L(𝜖∗ (𝐶)) · (𝑡𝑛−1 − (𝑛 − 1)𝑑max)

.

Thus, with probability at least 1 − 23𝛿𝑛 − ∑
𝑗∈J

4 |K |
𝑝 𝑗 (1− 1

2𝐶 )L(𝜖∗ (𝐶 ) ) · (𝑡𝑛−1−(𝑛−1)𝑑max )
we have that:

𝑡𝑛∑︁
𝑡=𝑡𝑛−1+1

𝑅𝑖 (𝑡) ≥
(
1 − 1

2𝐶

)
· L(𝜀∗ (𝐶)) · ℓ𝑛 · 𝜆∗ −𝑂

(
|J |𝑑max · ℓ1/2

𝑛

√︁
log( |J ||K ||I|/𝛿𝑛)

+𝑑max

𝐶
𝑛 + 𝑟max · 𝑛 + 𝑟max

√︁
𝑑maxℓ𝑛 log(𝑑max/𝛿𝑛) + 𝑟max𝑑max

)
,

(48)

when 𝑛 ≥ 𝑛0 = 𝑂 (2 log𝑑max + 3 log 𝜖∗ (𝐶) + log(1/𝑝min) + log (log ( |I| |J ||K |))). Summing over 𝑛

from 0 to ⌈log(𝑇 /𝑑max)⌉ and applying a union bound, we can obtain that with probability at least

1 − ∑𝑇
𝑛=1

(23𝛿𝑛 + ∑
𝑗∈J

4 |K |
𝑝 𝑗 (1−1/2𝐶 ) ·L (𝜖∗ (𝐶 ) ) · (𝑡𝑛−1−(𝑛−1)𝑑max ) ):

𝑇∑︁
𝑡=1

𝑅𝑖 (𝑡) ≥
(
1 − 1

2𝐶

)
· L(𝜀∗ (𝐶)) ·𝑇 · 𝜆∗ −𝑂

(
log(𝑇 /𝑑max )∑︁

𝑛=1

[
|J |𝑑max · ℓ1/2

𝑛

√︁
log( |J ||K ||I|/𝛿𝑛)

+𝑑max

𝐶
𝑛 + 𝑟max · 𝑛 + 𝑟max

√︁
𝑑maxℓ𝑛 log(𝑑max/𝛿𝑛) + 𝑟max𝑑max

] )
−𝑂

(
𝑛0∑︁
𝑛=1

ℓ𝑛

)
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≥
(
1 − 1

2𝐶

)
· L(𝜀∗ (𝐶)) ·𝑇 · 𝜆∗

−𝑂

(
|J | · 𝑑max𝑇

1/2

√︁
log𝑇 · log( |J ||K ||I|) +𝑇 1/2 + 𝑑3

max

)
.

Taking the expectation yields

E

[
𝑇∑︁
𝑡=1

𝑅𝑖 (𝑡)
]

≥
(
1 − 1

2𝐶

)
L(𝜀∗ (𝐶)) ·𝑇𝜆∗ −𝑂

©­«
𝑇∑︁
𝑛=1

©­«23𝛿𝑛 +
∑︁
𝑗∈J

4|K |
𝑝 𝑗

(
1 − 1

2𝐶

)
L(𝜖∗ (𝐶)) (𝑡𝑛−1 − (𝑛 − 1)𝑑max)

ª®¬ª®¬
−𝑂

(
|J |𝑑max ·𝑇 1/2

√︁
log𝑇 · log( |J ||K ||I|) + 𝑑3

max

)
=

(
1 − 1

2𝐶

)
L(𝜀∗ (𝐶)) ·𝑇𝜆∗

−𝑂
©­«|J |𝑑max ·𝑇 1/2

√︁
log𝑇 · log( |J ||K ||I|) + 𝑑3

max
+

∑︁
𝑗∈J

1

𝑝 𝑗

· |K |(
1 − 1

2𝐶

)
L(𝜖∗ (𝐶))

ª®¬ .
Applying Lemma 1, which states that 𝑇 · 𝜆∗ ≥ 𝑇 · OPT∗ − 𝑑max · 𝑟max, completes the proof of the

first result in Theorem 4.

For the second result in Theorem 4, note that when 𝐶 ≥ 𝑑max, it follows that 𝑔𝑛 = 0 and

E [𝑉 (𝑡) | H (𝑡𝑛−1)] = 1, i.e., resource availability is always ensured. Consequently, the following

inequality holds simultaneously for all 𝑡 ∈ {𝑡𝑛−1 + 1 + 𝑑max, . . . , 𝑡𝑛} and 𝑖 ∈ I:

E
[
𝑅𝑖 (𝑡) ·𝑉 (𝑡) | H (𝑡𝑛−1)

]
≥ 𝜆∗ −

(
𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛

)
, w.p. 1 − 22𝛿𝑛, (49)

when 𝑛 ≥ 3 log 𝜖∗ (𝐶) + 2 log𝑑max. Additionally, the ensured resource availability implies that:

E[𝑁 𝑗,𝑘 (𝑡𝑛−1)] ≥
𝑝 𝑗

|K | · 𝑡𝑛−1,

Using Chernoff bounds, we obtain:

P

(
𝑁 𝑗,𝑘 (𝑛) ≤

(
1 −

√
2

2

)
· E[𝑁 𝑗,𝑘 (𝑛)]

)
≤ exp

(
−

E[𝑁 𝑗,𝑘 (𝑛)]
4

)
≤ 4|K |

𝑝 𝑗 · 𝑡𝑛−1

.

Thus, we have that for all 𝑛 ≥ 1:

ℓ𝑛 ·
(
𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛

)
≤ 𝑂

(
|J |𝑑max · ℓ1/2

𝑛

√︁
𝑛 · log( |J ||K ||I|) + 𝑑max

𝐶
· 𝑛 + 𝑟max · 𝑛 + ℓ

1/2

𝑛

)
w.p. 1 −

∑︁
𝑗∈J

4|K |
𝑝 𝑗 · 𝑡𝑛−1

.

Following a similar analysis as in (15), it follows that with probability at least 1 − 23𝛿𝑛 :

𝑡𝑛∑︁
𝑡=𝑡𝑛−1+𝑑max+1

𝑅𝑖 (𝑡) ·𝑉 (𝑡) ≥ (ℓ𝑛 − 𝑑max) · 𝜆∗ − 𝑟max

√︁
2𝑑maxℓ𝑛 log𝑑max/𝛿𝑛

− 𝑟max𝑑max − (ℓ𝑛 − 𝑑max) · (𝜖𝐴𝑛 + 𝜖𝐵𝑛 + 𝜖𝐶𝑛 + 𝜖𝑛).
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By leveraging (11), we conclude that with probability at least 1 − ∑𝑇
𝑛=1

(
23𝛿𝑛 + ∑

𝑗∈J
4 |K |

𝑝 𝑗 ·𝑡𝑛−1

)
:

𝑇∑︁
𝑡=1

𝑅𝑖 (𝑡) ≥ 𝜆∗ −𝑂

(
|J | · 𝑑max

√︁
𝑇 log𝑇 · log( |J ||K ||I|) + 𝑑3

max

)
.

Taking the expectation and applying Lemma 1 yield the second result in Theorem 4.

B Simulations
In this section, we present a series of simulation experiments conducted in a cloud computing

scenario to evaluate the effectiveness of the proposed algorithm. We begin by describing the

experimental setting and then summarize and analyze the numerical results.

B.1 Experimental Setup
In our experiments, each incoming request corresponds to a computing task, and the different

task types reflect varying workloads or job sizes. In practice, workloads often exhibit heavy-tailed

characteristics (e.g., Pareto distributions), where small tasks arrive more frequently but large tasks

still make up a substantial portion of the distribution. To capture a simplified version of this

phenomenon, we define four task types |J | = 4, with type-1 representing the smallest workload

and type-4 representing the largest. We assign the following discrete arrival probabilities for them:

𝒑 = ( 𝑝1, 𝑝2, 𝑝3, 𝑝4 ) = (0.4, 0.3, 0.2, 0.1).
The action space K includes several different worker nodes (or virtual machines, VMs) to which a

task can be assigned, along with the null action for rejection. Specifically, we have four distinct

worker nodes K = {1, 2, 3, 4}. Each worker 𝑘 has a different processing speed 𝑠𝑘 , which translates

into different average execution times for tasks. Higher speed implies shorter average running

times (and thus potentially higher utility rates). For simplicity, we set

𝑠1 = 1.0, 𝑠2 = 1.5, 𝑠3 = 2.0, 𝑠4 = 3.0.

Let𝑤 𝑗 denote the base workload (job size) of task type 𝑗 . Intuitively, larger 𝑗 indicates a bigger

workload. Suppose

𝑤1 = 3, 𝑤2 = 6, 𝑤3 = 12, 𝑤4 = 18.

When a task of type- 𝑗 is processed by worker 𝑘 , the average running time 𝑑 𝑗,𝑘 is given by

𝑑 𝑗,𝑘 =
𝑤 𝑗

𝑠𝑘
.

As expected, tasks with larger workload 𝑤 𝑗 take longer to complete, but this is mitigated by

assigning them to faster workers (larger 𝑠𝑘 ). Table 3 illustrates the specific values of these average

durations.

Table 3. Illustrative average running times 𝑑 𝑗,𝑘 =
𝑤𝑗

𝑠𝑘
.

Type 𝑗 Worker 𝑘 = 1 Worker 𝑘 = 2 Worker 𝑘 = 3 Worker 𝑘 = 4

1 (𝑠𝑘 is small) 3 2 1.5 1

2 (𝑠𝑘 is medium) 6 4 3 2

3 (𝑠𝑘 is large) 12 8 6 4

4 (𝑠𝑘 is very large) 18 12 9 6

We focus on two types of utilities I = {1, 2}: (i) profit (revenue) and (ii) energy consumption

(modeled as a cost or negative utility).
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• Profit
(
𝑟1, 𝑗,𝑘

)
: Larger workloads generally yield higher profit, and faster workers typically

deliver higher profit rates. We parameterize the profit via a base profit 𝑏 𝑗 for each task type 𝑗

and a worker-specific multiplier 𝛼𝑘 :

𝑟1, 𝑗,𝑘 = 𝛼𝑘 𝑏 𝑗 ,

where

𝑏1 = 3, 𝑏2 = 6, 𝑏3 = 9, 𝑏4 = 12, and 𝛼1 = 1.0, 𝛼2 = 1.2, 𝛼3 = 1.5, 𝛼4 = 1.8.

• Energy consumption
(
𝑟2, 𝑗,𝑘

)
: Energy cost is proportional to the task’s duration and the

worker’s energy consumption rate. Let 𝜇𝑘 denote the per-unit-time energy usage rate of

worker 𝑘 . Then

𝑟2, 𝑗,𝑘 = 𝜇𝑘 · 𝑑 𝑗,𝑘 ,

where 𝑑 𝑗,𝑘 = 𝑤𝑗/𝑠𝑘 is the expected running time. In our experimental setup, we set

𝜇1 = 1.0, 𝜇2 = 1.3, 𝜇3 = 1.5, 𝜇4 = 2.0.

Hence, faster workers have higher power (energy) consumption rates, reflecting the real-

world scenarios where there is a trade-off between speed and energy efficiency.

In our simulations, we normalize 𝒓 as 𝒓 = 𝒓/𝑟max. Note that the actual outcomes (𝑅1, 𝑗,𝑘 (𝑡), 𝑅2, 𝑗,𝑘 (𝑡))
in practice are random and fluctuate around their respective means. To model this randomness,

we represent these outcomes as Bernoulli random variables with means (𝑟1, 𝑗,𝑘 , 𝑟2, 𝑗,𝑘 ). Similarly, to

reflect stochastic variations in job execution, we require 𝐷 𝑗,𝑘 (𝑡) to be stochastic. Since we operate

in discrete time, we also require the durations 𝐷 𝑗,𝑘 (𝑡) to be integer values. To achieve this while

ensuring E[𝐷 𝑗,𝑘 (𝑡)] = 𝑑 𝑗,𝑘 , we adopt a simple two-point rounding approach when 𝑑 𝑗,𝑘 is not an

integer. Specifically, for each pair ( 𝑗, 𝑘), we define 𝑎 = ⌊𝑑 𝑗,𝑘⌋ and 𝛿 = 𝑑 𝑗,𝑘 −𝑎. We then draw 𝐷 𝑗,𝑘 (𝑡)
as follows:

𝐷 𝑗,𝑘 (𝑡) =

{
𝑎 + 1, with probability 𝛿,

𝑎, with probability 1 − 𝛿.

When 𝑑 𝑗,𝑘 is an integer, 𝐷 𝑗,𝑘 (𝑡) is uniformly distributed over {𝑑 𝑗,𝑘 − 1, 𝑑 𝑗,𝑘 , 𝑑 𝑗,𝑘 + 1}. This approach
ensures that 𝐷 𝑗,𝑘 (𝑡) is integer-valued while maintaining the desired expectation E[𝐷 𝑗,𝑘 (𝑡)] = 𝑑 𝑗,𝑘 .

We assume that the system can process a maximum number of tasks in parallel, limited by the

number of GPUs, 𝐶 , i.e., the system has 𝐶 reusable resource units. When all 𝐶 units are occupied,

any newly arriving task must be rejected. In our simulations, we vary 𝐶 from small to large values

to observe how the algorithm’s performance changes accordingly.

Compared baselines.We implement and compare two baseline algorithms: the offline static

algorithm and the hybrid algorithm proposed by [50]. Notably, both baselines are tailored for the

offline setting. In particular, the second baseline relies on a linear relationship between utilities and

resource usage durations. It is applicable only in the experimental setup where we disregard the

first type of utility (i.e., profit) and focus solely on the second type of utility (energy consumption),

which is linearly dependent on resource usage durations.

• Offline static algorithm. Denote {𝑦∗
𝑗,𝑘
} 𝑗,𝑘 as an optimal solution for (OFARR). The offline static

algorithm selects action 𝑘 for a type- 𝑗 arrival with probability 𝑥∗
𝑗,𝑘
.

• Hybrid Algorithm [50]. This algorithm involves solving (OFARR-R), adjusted dynamically

based on the current resource occupation to compute a distribution 𝒙 (𝑡). Allocations are
then determined using an adaptive weighting process informed by 𝒙 (𝑡).
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Performance metrics and parameter settings. We run our algorithm for 𝑛 = 15 epochs. We

evaluate the empirical performance of the compared algorithms by showing how the empirical

competitive ratio

Empirical competitive ratio(𝑛) =
min𝑖

∑𝑡𝑛
𝑡=1

𝑅𝑖 (𝑡)
𝑡𝑛 · 𝜆∗

evolves as the epoch index 𝑛 increases under different values of 𝐶 . Here 𝑡𝑛 is the ending time slot

of epoch 𝑛 and 𝜆∗ denotes the optimal value of (OFARR), and the length of epoch 𝑛 is 𝑑max · 2
𝑛
. Note

that 𝑑max = 19 in our experimental setup.

B.2 Empirical results
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Fig. 2. Empirical performance of our algo-
rithm under various values of 𝐶 (|I | = 2)

Figure 2 shows the empirical performance of our algo-

rithm for different values of 𝐶 . We can see from this

figure that as the number of epochs increases, the em-

pirical competitive ratios eventually stabilize for all 𝐶 .

Additionally, larger values of 𝐶 lead to higher compet-

itive ratios. Last, as depicted in the right most plot in

Figure 3, when 𝐶 exceeds 𝑑max, our algorithm achieves

a competitive ratio of 1, aligning well with our theoret-

ical results.

Figure 3 compares the empirical performance of our

algorithmwith that of the offline static policy. Although

the offline static policy achieves fairly consistent utility

performance (note that a higher empirical competitive

ratio indicates higher utility performance) across various values of𝐶 , our algorithm delivers superior

utility performance as 𝐶 increases. This is because, although the offline static policy, by definition,

targets a utility rate of 𝜆∗ for each type, random fluctuations in resource usage durations lead to

temporary resource unavailability, preventing it from consistently meeting the desired utility rate.
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Fig. 3. Empirical performance of our algorithm and the offline static policy (|I | = 2)
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Fig. 4. Empirical performance of all compared algorithms (|I | = 1)
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Fig. 5. Empirical performance of our algo-
rithm under various values of 𝐶 (|I | = 1)

To incorporate more baselines into the comparison,

we disregard the first type of utility (i.e., profit) and

focus exclusively on the second type of utility (i.e., en-

ergy consumption). As a result, the fairness objective

simplifies to maximizing the second type of utility. In

this scenario, utility depends linearly on resource us-

age durations, making the hybrid baseline algorithm

applicable. Figure 5 presents the empirical performance

of our algorithm across different values of 𝐶 , while

Figure 4 compares the empirical performance of our

algorithm with that of the baselines. Although the em-

pirical performance of our algorithm is initially worse

than the hybrid baseline, which has full knowledge of the problem parameters, the performance

gap decreases as the capacity 𝐶 increases.
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