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ABSTRACT

The digital garment modeling using self-supervised learning has significantly
evolved in terms of the speed and visual quality of garment deformation simulations.
Recent advances have incorporated size-awareness which allows to drape garments
realistically, by stretching only to avoid collisions with the human body. It allows
their deployment into virtual try-on systems where the goal is to observe garment
fitting. However, a major-shortcoming is that they learn mesh-specific models
which requires a distinct model to be trained for each mesh representations of
a given garment. In this paper, we introduce a novel self-supervised garment
simulation approach to learn garment deformations using only functions. First, our
PolyFit module converts the garment mesh patches into functions which allows a
compact yet detail-preserving representation. Then, OneFit learns the deformations
of these patches by restricting the space of the PolyFit function transformations
conditioned on different body poses, in a physics-guided and an intrinsic geometry-
aware manner. It not only extends to various mesh-representations of a given
garment but also to diverse representations of a garment type. Hence, a model
trained on single garment can generalise across several garment types. Thanks to its
compact representation, it is computationally superior to its counterparts, in terms
of both training and inference and scales well to unseen garments. Thus, by training
OneFit on a set of garments, a mesh-agnostic, garment-agnostic deformation model
can be learnt which can either be finetuned or postprocessed to accommodate
unseen garment types. Code will be released upon acceptance.

1 INTRODUCTION

More than 60% of garments sold online end up in landfills due to their improper fits Duhoux et al.
(2024). Designing virtual try-on applications which can allow the users to estimate the best fit can
significantly reduce this spill. Traditionally, digital garments are modeled through Physics-based
Simulations (PBS) Terzopoulos et al. (1987); Nealen et al. (2006); Narain et al. (2012), which are
computationally expensive and therefore, not suitable for real-time applications such as virtual try-on
or human animations.

By using garments generated by PBS softwares Nvidia (2018b;a); Software (2018); Designer (2018),
supervised learning of garment deformations Gundogdu et al. (2020); Tiwari et al. (2020); Pfaff et al.
(2021); Wang et al. (2019a); Zhang et al. (2021); Patel et al. (2020); Corona et al. (2021); Santesteban
et al. (2019) was achieved, which allowed a fast inference. However, the tedious process of obtaining
large amounts of data through PBS (which still requires manual intervention) coupled with the
extended training duration, prohibits the use of these methodologies. Recent advances Bertiche et al.
(2021); Santesteban et al. (2022b); Bertiche et al. (2022); Grigorev et al. (2023); Chen et al. (2024)
approximate PBS by optimising physical forces contributing to garment motion in an unsupervised
fashion. This is a big leap that has reduced the computational workload of garment draping by almost
100×. However, much like their supervised counterparts, most of these methods learn a mesh-specific
garment model that does not scale to significant changes in mesh topology. Moreover, given that even
a simple garment such as tshirt can be diversified with various design changes relating to neck styles,
arm and overall length as seen in Fig. 1; training a separate model for each garment is impractical.
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Figure 1: OneFit vs. existing sota methods (supervised or otherwise) . Most methods train a garment-
specific (or mesh-specific) model. OneFit, if trained on a single garment (such as half-sleeve tshirt),
directly extends to the garments with similar types. It can also learn to drape multiple garments
within a single model, resulting in compact models.

In this paper, we present a novel self-supervised draping approach that overcomes the limitation
of both mesh-specific and garment-specific learning by adopting a function-based approach for
representing garments and learning deformations. We represent the garment as a collection of
deformable patches. PolyFit fits a differentiable n-jet function onto each patch in a linear least
square sense. It re-orients the patches in order to maximise bijectivity of functions to obtain best
possible jet fitting. It is pre-trained on various functions and real garment data. OneFit learns garment
deformations as various instances of functions by modifying the PolyFit’s jet-coefficients. Instead of
using strain and bending forces to model deformations, it conditions surfaces’ geometry to deform
isometrically (or geodesics-preserving) respecting the tight boundary between patches and garment-
body interactions while enforcing physical laws of gravity and body-garment collisions. This local,
function-based learning of surfaces allows OneFit to be both mesh-agnostic and garment-agnostic.
Consequently, OneFit trained on single garment is able to handle a wide range of inter-class and
intra-class garment variations. Moreover, due to its compact function-based representation, it trains
quicker than existing methods and provides a much faster inference. Our experiments show that
OneFit jointly trained on few garment types ( such as dress, shirt, pants) is able to scale well to a large
variety of unseen garment types. Since it does not learn specific body-garment interactions on unseen
data, a computationally inexpensive post-processing to remove collision artefacts allows OneFit to
drape garments at a minimum of 250 fps, much faster than its counterparts while maintaining a
similar drape quality.

2 RELATED WORK

Garment Draping. Traditional garment simulation methods rely on computationally expensive but
accurate differential cloth simulation Narain et al. (2012); Baraff & Witkin (1998); Nealen et al.
(2006); Macklin et al. (2016); Liu et al. (2013); Cirio et al. (2014). Advances have been made
to reduce the computational complexity of cloth simulation by approximating gradients Li et al.
(2022b); Hu et al. (2019) for fast computation or adding 3D priors Guo et al. (2021) such as point
clouds of clothed humans. However, these advances compromise reconstruction quality and make the
deployment impractical for the virtual try-on systems.

In contrast, learning-based methods yield fast inference. Most methods Bertiche et al. (2020); Patel
et al. (2020); Santesteban et al. (2019); Zhang et al. (2021); Wang et al. (2019a); Lähner et al. (2018);
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Gundogdu et al. (2020); Guan et al. (2012); Santesteban et al. (2021); Pan et al. (2022); Vidaurre et al.
(2020) incorporate a supervised learning approach by using PBS-generated data to learn the relative
garment positions with respect to the body. The data generation process is slow and labor intensive
which limits the applicability of these methods. Recently, Bertiche et al. (2021); Santesteban et al.
(2022b); Bertiche et al. (2022); Chen et al. (2024); Grigorev et al. (2023) proposed unsupervised
learning of garment deformations by converting the physical constraints into optimizable losses to
estimate garment positions. Most of these methods learn a mesh-specific model which needs to be
retrained for slight changes in the garment topology. To our best knowledge, Grigorev et al. (2023)
is the only exception that uses graph neural networks to learn drapings of several garment meshes.
However, the performance decreases while draping meshes with significantly different resolutions
from the training. In contrast, OneFit transforms garment patches into functions to learn drapings of
several garments which can handle various mesh resolutions. Moreover, as compared to mesh-based
methods, OneFit is less prone to cloth self-intersections.

Garment representation. While most learning-based methodologies represent garments as
meshes, Zakharkin et al. (2021); Zhang et al. (2023); Bertiche et al. (2020); Ma et al. (2021b)
use point based representation to model garment, which allows topologically flexible learning. Ma
et al. (2021b) uses dense point cloud to represent garments and obtains a parametric representa-
tion using AtlasNet Groueix et al. (2018). Such a global representation is expensive to compute.
To ease learning on large point sets with variable sampling resolutions, Ma et al. (2021a) models
pose-dependent shape variations of clothing as a collection of rigid patches associated with a set of
predefined locations on the body. Ma et al. (2022) builds upon this with a coarse-to-fine prediction
of clothing shape to learn highly deformable garments like skirts and dresses. In contrast, OneFit
uses deformable patches expressed with simple jet functions using PolyFit which allows an accurate
representation of deformable objects.

Some methods Corona et al. (2021); Li et al. (2022a); De Luigi et al. (2023); Santesteban et al.
(2022a); Chen et al. (2021); Li et al. (2023) utilize implicit surface functions to handle varying
topologies. However, these representations often encounter issues such as self-collisions due to the
Signed Distance Function (SDF) inflation and limits to only modeling closed connected surfaces.
More advanced representations using Unsigned Distance Function (UDF) De Luigi et al. (2023)
can be expensive due to meshing Guillard et al. (2022) and often produce jittery boundaries, which
can detract from the realism of the garment simulation. Instead, the localised, explicit, jet fitting of
OneFit is computationally inexpensive and accurate.

Garment Deformation modeling. While one of the first works on cloth modeling Weil (1986) was
purely based on parametric modeling of surfaces using Thin Plate Splines (TPS), physics-based
elastic continuum modeling Baraff & Witkin (1998); Liu et al. (2013); Kim (2020); Macklin et al.
(2016) combined with collisions, friction, gravity and contact forces is more common in garment
simulations. In contrast, Terzopoulos et al. (1987) proposed a purely geometric formulation of
modeling deformations by preserving the first and second fundamental forms of the surfaces do Carmo
(1976) which allows a direct control on the surfaces’ evolution. Most supervised learning-based
methods, Bertiche et al. (2020); Ma et al. (2021b); Gundogdu et al. (2020) for example, adopt this
scheme and learn deformations by enforcing only geometric constraints (approximated as garment
inextensibility and normals similarity) between simulated garment and data used for supervision.

The unsupervised methods Chen et al. (2024); Bertiche et al. (2021) combine physics-based and
geometric modeling. While Bertiche et al. (2021) follows a simplistic modeling similar to supervised
learning-based methods, Chen et al. (2024) approximates first fundamental form on meshes and
enforces an efficient, realistic and tight control which minimizes garment-body collisions. OneFit
extends the latter by forcing preservation of the first fundamental form of surfaces.

3 ONEFIT

We introduce OneFit, a comprehensive framework that leverages PolyFit ( a patch-wise, function-
based representation) to efficiently simulate garment deformations. Figure 2 shows the overview. The
template garment GT is upsampled and subdivided using Approximated Centroidal Voronoi Diagrams
(ACVD) clustering Valette & Chassery (2004), which efficiently constructs uniform tessellations
of a given surface area, into K patches. K varies for each garment. Each patch is passed into
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Figure 2: OneFit overview. It divides the garments into small patches. PolyFit fits a parametric
function onto each patch which are passed in the downstream to estimate drapings by controlling
their geometric and physical behaviour with respect to the body under consideration.

PolyFit which computes orientation O = (s,R,T) and a parametric n-jet ϕT (u, v) with respect to a
canonical UV space. Thus, we obtain a smooth patch representation, T := {O, ϕT (u, v)}.

A garment patch embedding, ZGT , is generated by passing T for each patch along with its positional
encoding into the encoder, an MLP with skip connections. The positional encoding, as described in
Mildenhall et al. (2020), is applied to each patch to incorporate its center position and its relative
offsets from body joints.

A body embedding, ZB is obtained as a concatenation of dynamic and static encoding. To describe
joint orientation relative to the parent joint, we follow Bertiche et al. (2022) and adopt 6D descriptors
Zhou et al. (2019) concatenated with a unit vector with the unposed direction of gravity. This allows
to alleviate the discontinuities in the rotation space presented in axis-angle representation. For the
structure of the static and dynamic encoder, we adhere to the framework established by Bertiche et al.
(2022). The global body pose, B(β, θ, v⃗) encapsulates the body shape (β), the current body pose (θ),
and the global velocity of the root joint (v⃗).

Given B(β, θ, v⃗) and GT , the network first computes the garment patch and body embeddings, ZGT
and ZB respectively. They are then concatenated and fed into a decoder (details in Appendix A.3)
as Z = concatenate(ZGT ,ZB) to predict the patch deformations, S := {O, ϕS(u, v)}. The garment
deformations are learnt by enforcing the physical equilibrium of forces and geometric consistency
of template and deformed surface patches posed on the desired body after skinning. This enables a
self-supervised, mesh-agnostic, garment-agnostic learning of the deformations.

3.1 POLYFIT

Following the explicit representation of surfaces in terms of height function, z = f(u, v), from a
canonical UV space, an nth order truncated Taylor expansion of z (also known as n-jet), is given by

z = fα,n(u, v) =

n∑
i=0

i∑
j=0

αi−j,ju
i−jvj . (1)

The combinations of (α, n) allow an analytical representation of various non-trivial geometries,
whose nth order derivatives can be computed precisely. Moreover, given sufficient point samples,
z = f(u, v) can be obtained by fitting an nth order jet in a least square sense Cazals & Pouget
(2003). Therefore, canonical representation of surfaces, in which every point is parameterized by a
diffeomorphism ϕT : (u, v) 7→ (u, v, f(u, v))⊤, can be oriented (using O = {s,R,T}) to fit any
smooth surface patch embedded in R3.
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Given a set of 3D points p sampled from a garment patch T ∈ GT obtained using ACVD, PolyFit
yields a smooth representation T := {O, ϕT (u, v)} such that p = sRϕT (u, v) +T. This allows an
analytical computation of nth order (non-trivial) differential quantities on surfaces that will be used to
enforce geometric and physics-based constraints on garment deformations.

The inherent arbitrariness of positioning T ∈ GT in R3 can lead to problematic scenarios where ϕT ,
exhibits set-valued behavior at some points which violates its bijectivity. To mitigate this issue, we
leverage Principal Component Analysis (PCA) to transform each patch into a canonical space of
maximally planar patch representations. We hypothesize that it reduces the likelihood of encountering
degenerate cases with one-to-many mappings in ϕT but it does not ensure its bijectivity. Thus, we
incorporate a Spatial Transformer Network (STN) Guerrero et al. (2018) which utilizes quaternion
rotations to precisely reorient the patches into a suitable configuration for n-jet fitting.

We pre-trained PolyFit on point clouds sampled from regular explicit functions (4-jets, trigonometric,
Gaussian and Bessels) and fine-tuned on patches sampled from garment meshes in Cloth3D dataset
using ACVD, which enhances its generalizability on various garment topologies. More details related
to the training, fitting performance and comparison of PolyFit with other point cloud encoders can be
found in Appendix A.1.

3.2 GEOMETRIC DEFORMATION MODELING

Figure 3: Geometric Deformation Modeling. On-
eFit deforms T ∈ GT isometrically to obtain
P ∈ Gt posed on body Bt by forcing patch bound-
ary consistency and avoiding collisions.

On a patch T ∈ GT seen in Figure 3 with a
parametric representation T := {O, ϕT } ob-
tained using PolyFit, any 3D point is given by
x = sRϕT + T. This patch is deformed to
S := {O, ϕS} such that x ∈ S is given by
x = sRϕS + T. Upon skinning with ψS ,
we obtain P ∈ Ĝt posed on body Bt. We
impose patch deformations to be isometric (or
geodesics-preserving) and enforce the preserva-
tion of their first fundamental form in terms of lo-
cal metric tensors g at T ∈ GT and P ∈ Ĝt. The
local metric tensor at T ∈ GT is given by gT =
s2J⊤

ϕT
JϕT . Upon deformation and skinning,

it transforms to gP = s2J⊤
ϕS

R⊤J⊤
ψS

JψSRJϕS
.

JϕT and JϕS can be expressed analytically from
the parametric representation obtained in Poly-
Fit. JψS

can be computed analytically from the
LBS skinning function Lin et al. (2022).

Like Chen et al. (2024), we allow local stretch-
ings to avoid collisions. Moreover, we impose
geometrical restrictions on patch boundaries to
maintain consistency. Thus, we impose the following four geometric losses:

1) Collision. It penalizes penetration between the body and the garment. For each points, it is given
by

Lcollision = kc

∑
points

d2c , (2)

where dc = max(ϵ− d(x), 0) quantifies the degree of interpenetration. d(x) is the signed distance
between garment vertex and body surface, and ϵ is a small positive constant introduced to enhance
stability.

2) Inextensibility. In order to preserve geodesic distances between the original and draped garment,
it enforces metric tensor similarity. It is computed as

Linext = ki
1

KM

∑
T ∈GT

∑
x∈T

|kextgT (x)− gP(x)| (3)
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where gT (·) and gP(·) denote the metric tensor of a point on the template patch and deformed posed
patch, respectively. M denotes the number of points in each patch, sampled from the dense mesh
vertices and K denotes the number of patches. kext = 1 +min(dc, 0.01)×min(e, 100),where e is
the current epoch. We first allow network to stabilise and then enforce inextensibility.

3) Mesh Inextensibility. It enforces edge-preserving constraints between the garment and template
mesh, MP and MT respectively .

Lmesh inext = kmc

nedge∑
i=1

(ei(MP)− ei(MT ))
2 (4)

where ei(·) denotes edge length of the edge i-th.

Lmesh inext and Linext impose the geodesic preservation constraints at zeroth and first order respectively
with points and local jacobians. This allows to restrain the garment deformations to preserve geodesics
while taking local body-garment collisions into account.

4) Boundary. It enforces the connectivity between adjacent patches and is defined as follows:

Lboundary =
1

Mb

∑
(i,j)∈B

∑
points

kb∥xi − xj∥2 + kbn (1− cos(θn))
2 (5)

where xi and xj denote boundary points on the adjacent patch of index i and j, Mb denote the total
number of adjacent points between all pairs of patches. cos(θn) = cos sim(N0[n],N1[n]) represents
the cosine similarity between the normals of the n-th pair of adjacent points. This loss effectively
penalizes deviations from perfect parallelism between normals, thus promoting smoother transitions
at the boundaries.

Overall, the geometric losses are given by

Lgeometric = Linext + Lcollision + Lboundary + Lmesh inext (6)

3.3 PHYSICS-BASED DEFORMATION MODELING

The physics-based losses incorporate effect of interia and gravitational forces. Their implementation
is similar to Chen et al. (2024) except they are defined on points instead of mesh vertices.

1) Gravity. It incorporates gravity by minimizing the potential energy of the garment, given by

Lgravity =
∑

vertices

−mg⊤x, (7)

where m is the particle mass and g is the gravitational acceleration.

2) Inertia. It incorporates the inertia loss as proposed in Santesteban et al. (2022b). It is given by

Linertia =
∑

vertices

1

2∆t2
m(x[t] − x[t−1] −∆tv[t−1])2, (8)

where ∆t is the simulation time step, x[t] and x[t−1] specify the particle’s position at times t and
t− 1, respectively.

Overall, physics-based losses are

Lphysics = Linertia + Lgravity (9)

Together, the losses are given by
L = Lphysics + Lgeometric (10)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We train OneFit on a set of 6 standard garment templates (tshirt, dress, pants, shorts, long-sleeve top
and tank) used in garment draping Santesteban et al. (2022a). We utilize the human motion sequences
from the AMASS dataset Mahmood et al. (2019) as in Chen et al. (2024); Santesteban et al. (2022a),
including 60 sequences with more than 10,000 poses.

We then validate the resulting models on unseen garment meshes from Cloth3D Bertiche et al. (2020),
which is a big-scale synthetic dataset containing over 7K sequences of animated 3D humans parame-
terized using SMPL model and wearing different garments. We note that garments from Cloth3D is
first preprocessed to fit on average SMPL body shape in T-pose as described in Appendix A.2.

We set the adaptive batch size according to number of patches of the garment. The learning rate
begins at 1e-3 for the first 10 epochs and then reduces to 1e-4 for the subsequent epochs. Regarding
the balancing weights, we set kb = 5e3, kmc = 2, kg = 1, kc = 1, and ki = 0.5. These parameters
are fixed for all garments across all experiments.

Figure 4: OneFit drapings with different mesh resolutions obtained within a similar inference time.

4.2 PERFORMANCE EVALUATION

We evaluate the performance of OneFit with respect to existing state-of-the-art unsupervised methods:
GAPS Chen et al. (2024), SNUG Santesteban et al. (2022b), NCS Bertiche et al. (2022) and
HOOD Grigorev et al. (2023). Besides HOOD, all these methods train mesh-specific, single
garment models. HOOD trains a mesh-based model but it can train a unified model for multiple
garments. OneFit trains a mesh-independent model: it can train a single or a multiple garment
network. Furthermore, it can finetune an existing model to a specific garment; thus avoiding from-
scratch training. Since it learns a mesh-independent model, it can generalise to various mesh
resolutions. Figure 4 shows the scalability of OneFit towards various mesh resolutions with a similar
inference time. SNUG and HOOD include a post-processing to remove garment-body collision
artifacts. NCS learns a body-specific model; thus no post-processing is required. OneFit does not
require post-processing while dealing with garments and bodies in the training dataset or while
dealing with garments which cover the garment-body interactions similar to the training data.

OneFit as a single garment model. In this experiment, we test the generalization capabilities of our
method. Figure 5 shows the results of our method trained on a Tank top. While it drapes well on the
trained garment, it generalises well to the garments of similar style without a post-processing. This
demonstrates that OneFit is highly flexible and generalises well over various garment intra-class
variations. As a stress test, we perform another experiment to test the generalisation capabilities of
OneFit towards garment inter-class variations. Figure 6 (top) shows results of our method trained on
a dress and tested on various garments. Since our method learns garment deformations from small
patches, it basically learns localised garment-body interactions which are generally extensible to
various garments. This is why we see a decent drape on tshirt and tank tops. The only artefacts that
appear over these garment are due to collisions. Since the network is learnt on a dress which does
not have arms, it has no awareness of the garment-body interactions in this region which makes the
collision artefacts inevitable. Given that our method is almost 250× faster than HOOD (see timing
comparison in Table 5), a simple post-processing can be performed to remove these artefacts with

7
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Figure 5: Single garment OneFit under garment intra-class variations. Trained on a Tank top (in
green), our method is able to drape tank tops of different styles without requiring any post processing.

an inexpensive computation. For more visual details, please refer to the supplementary video. The
interesting results in Figure 6 (top) are with pants and shorts which are tightly wrapped to body as
compared to dress. Besides the inevitable collision artefacts, some deformation artefacts are also
visible within the area between the legs. Since dress is a loose garment, the network does not witness
many patches tightly bound between the legs and produces garment artefacts.

Figure 6: Top: OneFit trained using Dress. Bottom: OneFit trained using a collection of 6 garments.

Loose garments are known to be challenging for most garment draping methods. Figure 7 shows that
our method trained on dress is close with GAPS, the best performing method in this case. All other
methods yield severe artefacts.

Figure 7: SOTA comparison for OneFit trained on dress. The results on SNUG and HOOD are
reported after post-processing to remove collision artefacts.†

OneFit as a multiple garment model. We train our method jointly on all six garments: tshirt,
dress, pants, shorts, long-sleeve top and tank top in order to cover a wide range of body-garment

†The poses are slightly different due to variations in the SMPL implementation.
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Model T-shirt Dress Tank Top Shorts Pants

OneFit (Dress) 0.330 0.840 2.834 10.033 6.271 2.389
OneFit (6 garments) 0.422 0.756 0.481 1.592 1.749 1.194

Table 1: ϵc for different configurations. Trained on
multiple garment improves the generalizability of
the model without requiring any post-processing.

Model εc Training time

OneFit (6 garments) 2.397 8h
OneFit (6 garments) + finetuning 1.982 1h
OneFit (jumpsuit) 1.845 3h

Table 2: Fine-tuning vs training OneFit
on jumpsuit.

interactions. Table 1 shows that the ϵc has drastically reduced as compared to the inferences made
by OneFit trained on dress. We have evaluated ϵc on a validation sequence in the AMASS dataset,
composing of more than 2,000 frames. Training on multiple garments improves the generalizability
of OneFit. Figure 6 (bottom) shows that the multiple garment training allows to learn deformations
better on pants and shorts; which demonstrated deformation artefacts in Figure 6 (top) under a single
garment OneFit trained with dress. Figure 8 shows that our method is at par with GAPS, the best
performing method in this case.

Figure 8: SOTA comparison on tight garments. The results on SNUG and HOOD are reported after
post-processing to remove collision artefacts.†

Finetuning OneFit. Once learnt, OneFit can be finetuned to a new garment. Table 2 compares the
performance of OneFit trained on multiple garments to drape a new garment, jumpsuit. Almost 2.5%
vertices are observed to be under collision which are brought down to less than 2% by finetuning this
model on jumpsuit for an hour. Training OneFit from scratch achieves a similar performance with
3× more computation. This allows an fast generalisation of our method to new garments.

Summary of Experiments. Since OneFit learns garment deformations in terms of local patches, it
has high generalizing capabilities. By training OneFit on 6 different garments, we have maximised
the network’s awareness of various localised garment-body interactions. This allows OneFit to drape
a variety of garments beyond the trained 6. The collision artefacts are common while draping unseen
garments with OneFit. Given its timing performance, a computationally inexpensive post-processing
can be added to remove such collision artefacts. However, in cases where deformation artefacts are
observed, the existing OneFit can be finetuned to accommodate the new garment.

4.3 ABLATION STUDY

PolyFit. We conduct a study on the family of parametric functions used for training. Table 3 shows
the results. While learning a parametric representation from a single family of functions is still quite
accurate, we perform an exhaustive training to minimize the PolyFit errors.

Function used for training Height RMSE Normal Diff (degree)

Gaussians only 0.0248 5.485
4 Families 0.0239 5.423
4 Families + Finetuning with garment patches 0.0201 5.317

Table 3: Study on different training data for PolyFit.

OneFit. We conduct an ablation study on OneFit’s loss components in the table 4, using a tank
top as the test garment. Losses Lmesh inext and Linext control the stretchability of garment through
zeroth-order (point-based) and first-order (normal-based) metrics. Lcol explicitly controls the amount

9
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of body-garment collisions. Omitting Lmesh inext demonstrates that simply incorporating metric tensor
inextensibility loss is insufficient. A zeroth-order loss is necessary to control stretching. Without
Linext, forcing inextensibility causes collision artefacts. Excluding Lcol causes more collisions.

Model εe εa εc

OneFit 7.828 13.020 0.227
no Lmesh inext 13.175 24.011 0.263
no Linext 7.739 12.760 1.641
no Lcol 8.004 13.373 0.387

Table 4: Ablation study on variant
combinations of loss functions.

Train Runtime

SNUG 1-8 h 32.4 ms
HOOD 10 h 125.5 ms
GAPS 2-6 h 5.12 ms
OneFit 2-8 h 0.482 ms
+ post-processing - 4.108 ms

Table 5: Timing performance.

4.4 TIMING COMPARISON

When it comes to training and runtime performance, the mesh specific methods takes less time to train
but can not generalize to different topologies. GAPS takes 2 hours to converge for tight garments
with less than 10k vertices and up to 6 hours for looser garments like dresses. HOOD takes 10 hours
according to the author. Our method takes 8 hours for training a multiple garment model. The training
is carried out on 4 NVIDIA A100 GPUs. As for run-time performance, we measure the processing
duration from the stage of raw body pose data to the final garment meshes. For a fair comparison, we
use a CMU motion sequence comprising 2,175 frames to evaluate the runtime. The tests are executed
on an Quadro RTX 6000. For SNUG and HOOD, we used the checkpoint and associated script
provided by the author. For GAPS, we use the author’s script for training and prediction. Table 5
shows the comparison. HOOD takes greater runtime due to the use of graph neural network and
message passing steps. SNUG takes less inference time but is slower than GAPS because of the
additional per-frame collision post-processing. Our approach has the fastest run time performance.
For the post-processing, we have reported the maximum time which was observed. In general, it
requires 1-2 ms.

Limitations and future directions. To our best knowledge, OneFit is the first method to use
deformable patches to learn garment simulations. However, several aspects need to be improved. 1)
It employs ACVD clustering prior to jet fitting; however, patches with high curvature sometimes
do not conform well to jet functions, leading to loss of details. Reducing the patch sizes can fix
this issue but it makes the training computationally expensive. An adaptive, curvature-based patch
resizing would be optimal to fix this issue. 2) In addition, discontinuity between the patches is
noticeable under some extreme poses. A more sophisticated control on boundary is required. We plan
to incorporate second-order properties such as curvatures or hierarchical patch representations to fix
this issue. 3) We plan to incorporate materials into our formulation in future in order to drape various
materials ranging from light to stiff. 4) We plan to devise mechanism to generate more wrinkles to
improve realism in the generated dynamics. Overall, the ultra fast inference of OneFit allows one to
incorporate simple mechanisms (without retraining) to deal with more complexities: multi-layered
garment draping, dealing with non-homogeneous designs including pockets, zippers, buttons etc and
dealing with complex garment designs. We plan to address this issue in future.

5 CONCLUSIONS

OneFit offers a novel perspective on mesh-agnostic, garment-agnostic, self-supervised learning of
garment deformations using functions. By training on patches, the learnt network generalises to
various garments. The function-based representation of patches in terms of jet functions obtained
using PolyFit, allows an analytical computation of the differential properties of surfaces. This allows
a geometrically-consistent, physics-guided learning of deformations that can accommodate a wide
range of garments and achieve real-time performance. We contend that OneFit serves as a valuable
complement to existing physics-based, self-supervised garment draping techniques. Once trained on
a set of garments, it generalised well to wide range of unseen garments. The fast inference allows
one to combine OneFit with an inexpensive post-processing to remove the collision artefacts which
are observed while draping unseen garments with different body-garment relationships as compared
with training data. However unlikely, if deformation artefacts are observed, OneFit can be quickly
finetuned to accommodate the unaccounted deformations.
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A APPENDIX

A.1 POLYFIT: TRAINING PROCESS AND DATASET DETAILS

Training details. We use various types of functions to train the rotation correction module in PolyFit.
More specifically, we created a dataset consisting of point cloud patches, generated by combining four
families of functions, including jet, trigonomtric, Gaussian and Bessel. The dataset comprises 100k
patches. The batch size is set to 512, and learning rate is set to 0.001. For every patch, we perform a
preprocessing step including normalization, basis extraction and coordinate frame transformation,
similar as depicted in Ben-Shabat & Gould (2020). We further fine-tune the model using patches
extracted from CLOTH3D training dataset. The intuition behind this rigorous training is to obtain as
accurate as possible function-based representation of garment patches.

The four families of functions is defined as follows:

1) 4-jet: f(u, v) =
∑4
i=0

∑i
j=0 αi−j,ju

i−jvj

2) Trigonometric: T (u, v) = α cos
(
θ
√
u2 + v2

)
3) Gaussian: G(u, v) = α exp

(
− (u−u0)

2+(v−v0)2
2σ2

)
4) Bessel: B(u, v) = αJ0

(
k
√
(u− u0)2 + (v − v0)2

)
where α ∈ [−0.5, 0.5] , θ ∈ [π, 2π] , σ ∈ [0.5, 1] and k = 5. Here, J0 denotes the Bessel function
of the first kind of order 0. Using (u, v) ∈ [−1, 1], we sum the outputs from the four functions and
train the PolyFit model in an unsupervised way, by minimizing the height discrepancies between the
original and the fitted surface points.

Figure 9: Fitting error for patches from the
Cloth3D dataset

Fitting performance. To evaluate the fitting
performance of PolyFit, we use garment models
from the Cloth3D validation dataset Bertiche
et al. (2020). Specifically, we extracted 100k
patches from up-sampled mesh and compute
ground truth normals from their corresponding
meshes. The trained PolyFit model is then fine-
tuned with these patches to improve its efficacy.
We compute its performance from metrics in-
cluding height RMSE and normal loss, mea-
sured in degrees. Figure 9 shows the perfor-
mance of n-jet fitting on the Cloth3D dataset.
This shows that the 4-jet function is capable of
fitting point clouds from garment patches effec-
tively. Therefore, we fix n = 4, as this setting
has been shown to achieve accuracy on garments
with reasonable computational complexity. Table 6 indicates that the QSTN network noticeably
enhances the model’s fitting accuracy as it re-orients patches to improve their bijectivity, which leads
to better jet-fitting. Additionally, we show PolyFit’s performance on six garments by calculating both
the point RMSE (Root Mean Square Error) and the normal errors in degrees. These metrics measure
the discrepancies between the original upsampled mesh vertices and the corresponding points fitted
using PolyFit. The results are provided in Table 7.

height RMSE normal diff (degree)

with 0.0201 5.3170
w/o 0.0259 5.4651

Table 6: PolyFit fitting metric, with and w/o QSTN.

PolyFit vs Point cloud encoders. We evaluated the fitting performance using three methods on
patches from Cloth3d validation dataset Bertiche et al. (2020): PolyFit, a PointNet encoder, and a
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Tshirt Dress Tank Top Shorts Pants

Point RMSE 8.645e-05 5.303e-04 1.565e-04 2.291e-04 8.005e-04 7.957e-04
Avg. normal error (degree) 1.834 4.273 2.666 2.951 6.309 3.193

Table 7: PolyFit performance on garments.

DGCNN encoder, all trained in unsupervised fashion. The metrics used for comparison are height
RMSE and normal difference (in degrees).

Model Height RMSE Normal Diff (degree) Avg Inference Time per Patch (ms)

PolyFit 0.0201 5.274 0.0481
PointNet Qi et al. (2017) 0.0309 6.936 0.0754
DGCNN Wang et al. (2019b) 0.0290 6.406 0.0625

Table 8: Study on different training data for PolyFit.

The results presented in table 8 demonstrate that PolyFit provides slightly superior fitting performance
in terms of both accuracy and efficiency. Beyond its marginally superior accuracy, the main reason
to use PolyFit is to leverage its bijective function representation to avoid self-intersections and its
compact representation. Using PolyFit, a given patch can be represented using n(n+1)

2 jet-coefficients
(n is the jet order) which is significantly lower than other representations. The fast training and
inference time of OneFit are attributed to this compact representation.

A.2 GARMENT PREPROCESSING

Patch division. The garment mesh is first subdivided four times to achieve a dense mesh. Subse-
quently, ACVD is applied to the refined mesh, clustering the vertices into n patches according to
the superficial area. Specifically, the number of patches is given by max

(
100,min

(
400,

⌊
A

0.008

⌋))
,

where A denotes the area of the mesh.

T-pose average shape conversion. The garments in Cloth3D dataset are with legs slightly separated,
which varies from standard T-pose on which skinning weight is computed. Furthermore, the dataset
are fit on different body shapes. To test the garment from Cloth3D with OneFit, the garment is
first preprocessed to fit average body shape under standard T-pose. We query the closest body
vertex for each garment vertex, and then move it according to the displacement of the body vertex
between the original and the standard body. Laplacian surface smoothing of single iteration is applied
subsequently to smooth the surface. For loose garment including dress and skirt, since they do not
adhere to the legs, we only correct the position in terms of shape difference.

A.3 ONEFIT: NETWORK AND TRAINING DETAILS

In the Dynamic encoder, different from Bertiche et al. (2022), the Gated Recurrent Unit (GRU)
layers are initialized with random hidden states. The body feature extractor are implemented using a
five-layer multilayer perceptron (MLP) with LeakyReLU activation between the layers. Each layer
contains 256 nodes, with the exception of the final layer.

The decoder consists of four fully connected layers, each with dimensions of 512, 512, 512, and 256,
respectively. This is followed by three prediction heads for jet coefficient, translation and scale, each
implemented as a three fully connected layers with dimensions 128 and 64, ending with a final output
layer.

Finally, to maximize parallel computation on GPUs, the batch size for each garment is dynamically
determined based on the number of patches using the following equation: bs = 20,000

number of patches .
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