CORE: Collaborative Optimization with
Reinforcement Learning and Evolutionary Algorithm
for Floorplanning

Pengyi Li'; Shixiong Kai?, Jianye Hao!] Ruizhe Zhong®, Hongyao Tang',
Zhentao Tang?, Mingxuan Yuan?, Junchi Yan?
! College of Intelligence and Computing, Tianjin University
2 Huawei Noah’s Ark Lab
3 Dept. of Computer Science and Engineering & MoE Key Lab of Al, Shanghai Jiao Tong University

Abstract

Floorplanning is the initial step in the physical design process of Electronic De-
sign Automation (EDA), directly influencing subsequent placement, routing, and
final power of the chip. However, the solution space in floorplanning is vast, and
current algorithms often struggle to explore it sufficiently, making them prone to
getting trapped in local optima. To achieve efficient floorplanning, we propose
CORE, a general and effective solution optimization framework that synergizes
Evolutionary Algorithms (EAs) and Reinforcement Learning (RL) for high-quality
layout search and optimization. Specifically, we propose the Clustering-based
Diversified Evolutionary Search that directly perturbs layouts and evolves them
based on novelty and performance. Additionally, we model the floorplanning
problem as a sequential decision problem with B*-Tree representation and employ
RL for efficient learning. To efficiently coordinate EAs and RL, we propose the
reinforcement-driven mechanism and evolution-guided mechanism. The former
accelerates population evolution through RL, while the latter guides RL learning
through EAs. The experimental results on the MCNC and GSRC benchmarks
demonstrate that CORE outperforms other strong baselines in terms of wire-
length and area utilization metrics, achieving a 12.9% improvement in wirelength.
CORE represents the first evolutionary reinforcement learning (ERL) algorithm
for floorplanning, surpassing existing RL-based methods. The code is available at
https://github.com/yeshenpy/CORE.

1 Introduction

Electronic Design Automation (EDA) [1, 2] encompasses a series of steps from the initial phase
of electronic system design to final manufacturing and testing. These steps include design, verifi-
cation, synthesis, physical design (floorplanning, macro placement and routing), packaging, and
manufacturing. Previous works have made significant progress in macro placement [3—11], whereas
research on floorplanning receives less attention. Unlike macro placement, floorplanning requires
representations that support the construction of compact layouts, which makes macro place-
ment algorithms ineffective for solving floorplanning problems. This is empirically validated
in Section 4.2. Floorplanning, as the first step of physical design, primarily involves determining
the locations and shapes of functional modules, providing a foundation for subsequent placement,
clock tree synthesis (CTS), and routing. Floorplanning is a crucial step in EDA, as it directly impacts

*Contact me at lipengyi@tju.edu.cn
TCorresponding author: Jianye Hao (jianye.hao @tju.edu.cn)

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/yeshenpy/CORE

subsequent placement, CTS, routing, and overall power consumption. However, the floorplanning
problem is NP-hard [12], with a vast solution space, making it very challenging to construct a
high-quality layout.

Methods for solving the floorplanning problem can generally be divided into three categories:
SA-based algorithms, analytical methods, and reinforcement learning (RL) algorithms. SA-based
methods [13, 14] model the problem based on specific floorplan representations, which encode the
floorplan layout into a structure that is convenient for optimization , and rely on Simulated Annealing
(SA) to search solutions [15, 16]. SA-based methods are reliable in small cases but easily converge
to suboptimal solutions in large cases with vast search spaces. Analytical methods [17-21] require
modeling the optimization objective as a differentiable function, which is then optimized through
gradient descent. Analytical methods face challenges in constructing differentiable functions and are
prone to getting stuck in suboptimal solutions due to the non-convexity of these functions [22]. For
the third category, RL [23] is a class of learning algorithms that has achieved significant progress
in various practical tasks. Using RL for floorplanning is an emerging research direction [24-28].
RL-based methods model the problem as a Markov Decision Process (MDP) [29] with specific
floorplan representations, tackling the task by placing modules one by one and learning the solution
through trial and error. RL can leverage fine-grained task feedback, which offers local guidance
ability and better sample efficiency. However, RL heavily depends on the MDP modeling, which
significantly affects solution quality. Additionally, the limited global exploration capability of RL can
also lead to suboptimal solutions.

Previous work often suffers from insufficient exploration of the design space, leading to suboptimal
results. We identify two main factors that impact the solution quality: (1) Floorplan Representation:
Directly placing modules in continuous space is challenging. Floorplan Representation is used to
create a more compact and favorable solution space. A proper floorplan representation should ease
the solution-finding process with the purpose of avoiding overlap and meeting optimization objectives.
The floorplan representation significantly impacts the feasibility and complexity of floorplan designs,
further influences both the execution time and the quality of the results [30]. (2) Limited Exploration
Capability: Previous methods often suffer from insufficient exploration capability and are prone to
getting stuck in suboptimal solutions.

To address the above challenges, we propose a hybrid framework, named Collaborative Optimization
with RL and Evolutionary Algorithms (CORE). CORE employs B*-Tree representation [31], which
offers a favorable solution space, linear transformation time, and compact placement. B*-Tree
representation has been proven to outperform other representation methods. For efficient exploration,
CORE integrates Evolutionary Algorithms (EAs) and RL. EAs [32] are a class of gradient-free
heuristic optimization algorithms that mimic the process of biological evolution by maintaining a
population. EAs improve the population through iterative variation. Compared to RL, EAs have
better global optimization and search capabilities. CORE leverages the respective strengths of EAs
and RL to achieve efficient layout optimization. It is worth noting that the integration of EAs and
RL, known as Evolutionary Reinforcement Learning (ERL) [33—36], has become a vast research
area. The most related prior works are those that use RL-assisted EAs to solve problems such as
the Traveling Salesman Problem [36]. Yet, a collaborative framework for tackling more complex
combinatorial optimization problems remains largely unexplored. In contrast, CORE is the first
attempt within the ERL domain to design a novel collaborative optimization framework for
complex floorplanning tasks.

CORE consists of three key processes: (1) Evolutionary Process, (2) Reinforcement Process, and (3)
Collaboration Process. In the evolutionary process, we propose Clustering Diversified Evolutionary
Search (CDES) based on B*-Tree representation. CDES maintains an initial population of layouts
and clusters them into multiple subpopulations based on layout features. Each individual is ranked
based on a weighted combination of its quality score and novelty score. Elite layouts are selected
from each subpopulation and a new layout population is generated by perturbing these elites. Through
the above iterations, CDES facilitates a more comprehensive exploration of the solution space. In
the reinforcement process, we employ B*-Tree representation to model the floorplanning problem
as a Markov Decision Process (MDP). We then adopt Proximal Policy Optimization (PPO) [37] to
learn a policy network that makes step-by-step layout decisions. This process allows us to utilize
finer-grained information for policy learning efficiently. To efficiently collaborate EAs and RL, we
propose two collaboration mechanisms: (1) Reinforcement-driven Mechanism accelerates population
evolution by injecting complete layout solutions obtained from RL into the population. (2) Evolution-

guided Mechanism maintains an archive of the best layouts discovered by EAs. The layouts that
are better than RL’s current performance are leveraged to guide the RL policy by imitation learning.
Through these mechanisms, EAs and RL can achieve efficient collaboration. In the experiment,
we evaluate our framework on two widely used benchmarks, MCNC and GSRC. Our experimental
results demonstrate that CORE outperforms other strong baselines in terms of wirelength and area
utilization metrics. Specifically, CORE achieves an average improvement of 12.9% in wirelength for
each case compared to the best wirelengths achieved by other algorithms

We summarize the contributions as follows: (1) Firstly, we propose an EA-RL hybrid framework
CORE and design collaboration mechanisms for efficient optimization. (2) Secondly, we propose the
Clustering-based Diversified Evolutionary Search to maintain population diversity, thereby enhancing
global optimization efficiency. (3) Thirdly, we model the floorplanning problem as a sequential
decision problem using the B*-Tree representation. Then we employ PPO to learn a policy for
floorplanning, aiming to enhance local guidance capabilities and improve optimization efficiency.
To the best of our knowledge, we are the first to use RL with B*-Tree representation to solve
the floorplanning problem. (4) Finally, experimental results demonstrate that CORE significantly
outperforms other strong baselines, achieving a 12.9% improvement in wirelength.

2 Background

2.1 Floorplanning Problem

The core of the floorplanning problem lies in how to effectively arrange various functional modules
to meet specific design objectives and constraints. The floorplanning problem involves the following
three fundamental elements:

* Modules: Modules are the basic units in circuit design, denoted as M =
{my,ma,...,my, }. Bach module m; is characterized by a rectangular shape with di-
mensions length /; and width w;, centered at coordinates (x;, y;).

* Ports: Ports are utilized for input and output signal transmission of current die, denoted as
P = {p1,p2,...,Pn, }- Each port p; is located at a specific position (x;, y;).

* Netlist: The netlist E describes the connectivity within modules and ports. Each
connection e; € F represents a net that encompasses a set of modules and ports

{m§€i)7m/56i)7 e)ngi)7pg€i)7 Tt }-

A layout is formed after all the modules are placed. The optimization objectives are minimizing area,
Half Perimeter Wire Length (HPWL), or other criteria. In these objectives, HPWL serves as a widely
used indicator to assess the quality of a layout and is defined as follows:

HPWL =)~ { (Ibne%f {zv} — min {xb}> + (Ibne%i‘ {vp} — min {yb}) } ¢))

e;€E
2.2 B#*-Tree Representation

B*-Tree [31] is an ordered binary tree that
represents a compact placement. The pro-
cess of converting a B*-Tree to a floorplan 9

is illustrated in Figure 1. Each node n; in e o @

the B*-Tree represents a module m;. We tra-

verse the B*-Tree using Depth-First Search E> @ @
and determine the topological positions of e o

each module according to the following rules: é)"'@“@
The root node of the B*-Tree corresponds to o

the bottom-left corner, i.e., (0,0). The left
child n; of node n; represents module m; as
the nearest right adjacent module to my, i.e.,
x; = x; + w;. The right child ny, of node n; represents the first module 1, above m; with the same

x-coordinate, i.e., x; = x;. To compute the y-coordinate, the B*-Tree utilizes a contour structure [38]
— a doubly linked list of modules that records the contour line in the current compaction direction.

Figure 1: B*-Tree-based floorplan representation.

We choose the B*-Tree representation for three main reasons:

* Efficient evaluation and update. Since the MDP depends on the chosen representation, the
computational cost of each state—action transition must be carefully considered. Unlike other
representations, the B*-Tree avoids building constraint graphs or computing shortest paths,
greatly reducing overhead. It also supports incremental evaluation, making it well-suited for
sequential decision-making.

» Compact search space. A B*-tree encodes fewer permutations compared to most alternative
representations, resulting in a more compact search space that facilitates efficient exploration
and learning.

* Modifiable open-source infrastructure. Effective heuristics such as SA have already
been developed for B*-Tree, and robust open-source implementations are readily available,
making it easier to integrate and extend.

2.3 Evolutionary Algorithms

Evolutionary Algorithms (EA) [39, 40] are a class of black-box optimization methods. Below is
a simplified optimization process: EA maintains a population of solutions P = {s1, s2,...,Sn}
in which evolution is iteratively performed. In each iteration, we first evaluate all solutions to get
the fitness { f(s1), f(s2), ..., f(sn)} where f(s;) needs to be defined specifically according to the
optimization objective. The solution with higher fitness is more likely to be selected as parents to
produce the next generation with variation operators. The definition of the variation operator relies
on expert experience tailored specifically to the problem. EAs iteratively optimize through the above
process until a feasible solution is found.

2.4 Reinforcement Learning

Reinforcement Learning (RL) [23] is a category of learning algorithms primarily employed for
solving sequential decision problems. RL involves modeling the problem as a Markov decision
process [29], defined by a tuple (S, A, P, R,~,T). At each step t, the agent uses a policy 7 to select
an action a; ~ 7(-|s¢) € A according to the state s, € S and the environment transits to the next
state s,y according to transition function P(+|s, a;) and the agent receives a reward r; = R(s¢, az).

The return is defined as the discounted cumulative reward, denoted by R; = Z?:t v ~tr; where
v € [0,1) is the discount factor and T is the maximum episode horizon. The goal of RL is to learn
an optimal policy 7* that maximizes the expected return. PPO is a representative RL algorithm with
convergence guarantees, which achieves significant success in various application scenarios. The key
feature of PPO is the clipped objective function, which helps to prevent large policy updates that may
destabilize training. This clipping mechanism ensures that the policy does not deviate too far from its
previous version, thereby improving stability and convergence.

2.5 Evolutionary Reinforcement Learning

Evolutionary Reinforcement Learning (ERL) refers to a family of hybrid algorithms that integrate
EAs with RL. It constitutes a broad research area encompassing multiple directions [36], including
EA-assisted RL, RL-assisted EA, and synergistic optimization of EA and RL. In recent years,
several ERL algorithms focus on integrating EAs and RL to achieve more efficient policy search.
Representative methods such as ERL [41], CERL [42], PDERL [43], CEM-RL [44], ERL-Re? [45],
VEB-RL [46], and EvoRainbow [47] show strong performance in various tasks involving games,
locomotion, and manipulation. In addition, some works apply ERL-inspired ideas for reward function
design, including Evo-Reward [48], Eureka [49], and R* [50]. Moreover, some works explore areas
such as multi-agent systems [51, 52] and game testing [53]. In contrast, CORE focuses on complex
combinatorial optimization problems with constraints. To the best of our knowledge, CORE is the
first ERL algorithm successfully applied to solving complex floorplanning problems.

3 Collaborative Optimization with RL and EA

This section introduces our framework Collaborative Optimization with RL and EA (CORE). We
begin by introducing the overall framework of CORE, followed by the details of its three key

p——
1 .
1 @ Evolutionary Process 1
1 Initial population Clustering based on Evaluation in Each clustered class Elite Layouts New Population
! layout features]
1 - = == ————
L B e R
1 0" ! I
H [1 IP1+N1||P5+N5 Layout 2
Hl Layout 2 S Y /) o m=x |l I : 4
7
H " S [N I P2 + Nz | P74+ N7, Vorlahon
! . | @ 1 1 . I Layout 8
I \ ! 1 H 1 . I Layou‘r 8
! Layout 8 R [) // e e e !
i ~_ - Ve Best Layouts i
- 1
L '
1.
r=—= - =-—=1 - ===
! ®Learning Process ! ' Convert ¥ 1
H Optimize Policy 1Imitation 1 !
. Value Gradients . I Learning isi EA La
cpences QMR poicy =L | Decen o [EL T
1
1
L- £ 3 —_—- : Select Better Layouts than RL's
\ -
1 i Complete Layout
Inserted Module ! !
— PR .
1
) Target Module Placement : - 9
@ — Policy —4— [1B3] — — 5] |— —
Ports, Modules, Netlist Rotation & Left/Right : 1] 13
i 11 1 10 [N|®
State H p) P
i Action Selecflon I [
| @ Interaction Process ! | @ Collaboration Process
- - [T

Figure 2: The framework illustration of CORE.

components: Clustering-based Diversified Evolutionary Search, B*-Tree-based RL, and EA-RL
collaboration mechanisms.

3.1 Overall Framework of CORE

CORE is a novel ERL framework based on B*-Tree representation. The principal idea is to achieve
efficient collaboration between EAs and RL for optimization, leveraging the strong search and global
optimization capabilities of EAs along with the powerful learning abilities of RL. This synergy allows
for efficient search and optimization within the vast solution space of floorplanning.

The framework illustration is shown in Figure 2, which comprises three parts: Evolutionary Process
(Circle 1), Reinforcement Process (Circles 2 and 3), and Collaboration Process (Circle 4).

* The Evolutionary Process performs variation on the layouts within a population, aiming to
search for layouts with higher quality scores and greater diversity.

* The Reinforcement Process requires the RL policy to interact with the environment and
place modules step by step to construct a complete layout solution (Circle 2). Through these
interactions, experiences are gathered to optimize the value function and policy (Circle 3).

* The collaboration process includes leveraging RL to accelerate population evolution and
using EAs to guide RL policy learning.

In the following, we provide comprehensive introductions to the three key processes.

3.2 Clustering-based Diversified Evolutionary Search

Although EAs have strong search and global optimization capabilities due to the redundancy and
randomness of their populations, relying solely on these properties can reduce diversity and make the
population get stuck in suboptimal solutions. Improving population diversity can effectively solve
this problem, as demonstrated by numerous Quality Diversity methods [54—57]. Motivated by this,
we propose the Clustering-based Diversified Evolutionary Search (CDES). Specifically, as illustrated
in Figure 2, CDES comprises five processes:

1. Population Initialization: Initialize the population P = {sy, ..., sy} with size N where
each individual s; represents a complete layout solution, all modules are planned.

Concatenate

6raph Network Embedding

@_, =}ZT

-_—— -
————

i1

| —
—_— SoftMax
= Mok
Q - —» | Transformer | —> ‘:'E P . MLP " g a
-
l Mean Pooling e ————=-

@~ -)
Graph Embedding Z; e — — Qur

Figure 3: The policy architecture of PPO.

2. Population Clustering: We construct the layout features based on the positions of all
modules, i.e., F(s;) = {Zm,,Ym1s-->ZTm,, »Ym,, }> and then utilize these features to
cluster the population into C' clusters using K-Means [58].

3. Subpopulation Evaluation: Within each cluster, we evaluate the quality and novelty score
of each layout. The novelty score N(s;) is defined as the negative average of the two
highest cosine similarities between the current layout feature and the layout features of
other individuals within the same cluster. Considering the top two similarities helps avoid
situations where two layouts have the highest similarity to each other, making it challenging
to rank them. Therefore, we consider the top two to enhance discrimination. The quality
score P(s;) is constructed based on the optimization objectives, such as the negative of
HPWL to minimize the wirelength.

4. Elite Selection: We combine the quality and novelty score to calculate the final fitness score,
defined as follows:
f(si) =aP(s;) + (1 —a)N(s;),)
where « is used to weight P(s;) and N (s;). A larger f(s;) indicates a better performance
achieved by the layout and higher novelty simultaneously.

5. New Population Construction: We mutate the elite layouts within each cluster to generate
offspring, forming a new population. The variation operation follows the principles of the
B*-Tree-based SA [31] and includes three operators: (I) Rotation Operator: randomly select
a module and rotate it 90 degrees. (2) Exchange Operator: randomly select two modules and
swap them, 3) Deletion and Insertion Operator: remove a module that does not have both
left and right children simultaneously, and insert the module into the B*-Tree as the left or
right child of the target module.

Step 1 is executed only once at the beginning, while steps 2-4 are executed in a loop until the
algorithm terminates. With CDES, we can maintain diverse layouts within the population, preserving
population diversity and thus avoiding convergence to suboptimal solutions.

3.3 B#*-Tree-based Reinforcement Learning

As heuristic algorithms, EAs rely on random exploration for layout optimization and often fail
to leverage the experiences collected during the optimization process. These characteristics lead
to inefficiency. In contrast, RL, as a learning algorithm, can utilize finer-grained information,
approximate value functions, and optimize policies. Compared to EAs, RL offers more targeted
optimization directions and stronger local optimization capabilities.

To fully exploit the strengths of RL, we model the floorplanning problem as an MDP based on the
B*-Tree representation. The problem can be viewed as constructing a binary tree from scratch,
wherein different modules are sequentially inserted into the tree. Specifically, we design the following
five elements within the MDP (S, A, P, R, T):

* States S: The state comprises information about all modules, ports, and netlist, i.e., s =
{sm, sp, sg}. Each module or port includes coordinates of the starting and ending points,
length, width, whether it has been placed, whether it has a left child or right child in the
tree, and the layout order (the order of adjustments in the B*-Tree). For ports, the length,
width, presence of left/right child, and layout order are all set to 0. Netlist represents the
connections between modules and ports.

» Actions A: The action space comprises three types of actions: choosing the module to be
inserted, selecting the target module, and determining whether the inserted module should
be placed as the left or right child of the target module, along with the option to rotate the
inserted module. Hence, the size of the action space is 4n,,2.

* State Transition P: We adjust the layout according to the B*-Tree to avoid overlaps and
obtain the adjusted layout.

* Reward R: When we optimize the HPWL, we scale it with 10~* and use the negative
change in HPWL relative to the previous step as the reward, i.e., r; = —10~*AHPWL,
If none of the modules involved in a net e; are planned, the wirelength for that net is not
calculated. When we optimize both HPWL and area utilization U € (0, 1], we define the area
ratio as the area of the placed modules divided by the bounding box area, and use its change
as the area reward. The final reward combines both terms: r; = —10"*AHPWL + AU.

¢ Maximum episode horizon 7: When all modules are planned, the episode is done, so T
equals 7.

After modeling the MDP, we propose a policy architecture to process the complex state information.
As depicted in Figure 3, we adapt a graph neural network [59] as the initial structure to process
the current modules state s;s, the port states sp, and netlist state sg, Then we get the module
embedding and port embedding by employing the Transformer [60] to process the output of the graph
neural network. We use the mean pooling to obtain the current layout representation. Subsequently,
we employ hierarchical conditional dependencies for action selection. Firstly, we concatenate
representations of all modules with the current layout representation as input to MLP. Then, we select
the inserted module by applying the action mask to remove actions corresponding to selecting modules
on the panel. Secondly, we concatenate the inserted module representation with representations
of all modules and the layout representation as input. Following the same procedure, we obtain
the target module. Finally, we concatenate the inserted module representation, the target module
representation, and the layout representation, and pass them through MLP and mask operator to
obtain a four-dimensional input corresponding to the 4-dimensional action space, i.e., whether to
rotate and whether to be the left or right child.

Based on the MDP modeling and the architecture design described above, we employ the PPO
algorithm. The choice of PPO over other algorithms is motivated by several factors: 1) its guarantee
of monotonic improvement and convergence, 2) its superior parallelization properties, and 3) the
elimination of the need to maintain a state-action value function for the excessively large joint action
space. For example, in a large case with 300 modules, the joint action space amounts to 360,000,
making it challenging to approximate the values accurately. In addition to maintaining the policy
as described above, PPO also requires the maintenance of a state value function. We use a separate
representation processing module with the same architecture as the policy. The obtained layout
representation is then passed through MLP to predict the value of the current state. We update the
parameters of the policy network with the following loss:

Lciip(f) =E [min (ﬂ-a(atlst)AGAE(st,at), clip (7T9(at|st), 1—¢1+ 6) AGAE(st, at)>] ,

014 (at|st) ﬂ—eold,(at‘st)
3

where 6,4 is the parameter of the policy before the update, € is a hyperparameter used to constrain the
update step size, and ASAE(s;, a;) is the advantage, which is calculated with Generalized Advantage
Estimation (GAE) [61]. The state value network is optimized using the following loss:

Ly(¢) =E [(V¢(St) _ Vttarget)2} 7 @)

where V;"*" = V,(s;) + A%E(s;,a;). To improve the exploration capability, we introduce an
entropy loss to encourage the policy for more diverse exploration, defined as follows:

,CE(ﬂ') =E

Zw(a|st)log7r(a|st)1 5)
Based on the definition provided, we can learn a policy with PPO for the floorplanning problem. It
is worth noting that the action space for the initial module differs from that of subsequent modules
because there are no selectable target modules. Therefore, we randomly sample the initial module,

while subsequent modules are selected through RL.

3.4 EA-RL Collaboration Mechanisms

In the previous two subsections, we ex-
plore solving the floorplanning problem us-

- ~

ing EAs and RL independently. However, TSy T I .- Y
' (@ N .-~ Correction
these two processes are decoupled, and the I~ 5 | , h
’ =T LI b
performance of the final solution equals the ! Blite . O 1] / ! i
best performance obtained by each method '@ replaced oo —® |
. g 7/
separately. To break through this perfor- \ “ =y o/, Guidance ,/

. (o 7 I \ e
mance bottleneck, we propose EA-RL col- Ve - \ -
laboration mechanisms, which comprise 1) APt |- -
Reinforcement-Driven Mechanism and 2)] I
Evolutionary-Guided Mechanism, as depicted ‘L7 New elites —> Improvement Paths
in Figure 4. The Reinforcement-Driven Mech- ® EASolutions O RL solution
anism aims to leverage RL to accelerate the 7, Old elites ® Better EA solution

evolution of EAs. Specifically, we inject com-

plete solutions constructed by RL into the pop- Figure 4: The EA-RL collaboration mechanisms.
ulation of EAs. Subsequently, based on the

defined fitness score, inferior layout solutions are removed to maintain a constant population size. If
the solution discovered by RL achieves a higher score, it will replace other old elites in the population,
thereby guiding population exploration. Conversely, if RL fails to provide better layout solutions,
these layouts are promptly discarded without hindering the population’s evolution.

The Evolutionary-Guided Mechanism is designed to utilize EAs to guide RL learning. For each
module using different rotations as the root node, we store the best layout discovered by EAs into
an archive L 4. Additionally, we also maintain the layouts constructed by RL with different root
nodes. Then we compare the layouts in L 4 and the RL layout with the same root. If the EA layout is
better, we convert it into a decision sequence (i.e., state-action pairs) based on the B*-Tree placement
rule and store it in Dga. Subsequently, we incorporate an Imitation Learning loss term into the PPO
learning process, defined as follows:

Ly = Eshat"’DEA [_ logﬂ-(at‘st)] . (6)

Through this approach, we enable RL to employ imitation learning to adjust the learning direction
when the layouts it learns are inferior to those discovered by EAs. This allows RL to quickly grasp
the superior layout and conduct more efficient local exploration around it. Thus, the final loss of PPO
in CORE can be defined as:

Lp = Lciip + WenLE + Wvae Ly + wiLLi, @)

where wWey, Wvane, and wy are hyperparameters. The pseudocode is provided in Algorithm 1.

4 [Experiments

4.1 Benchmarks & Baselines

Our experiments are conducted on two widely used floorplanning benchmarks: MCNC and GSRC.
For the MCNC benchmark, we use the ami33 and ami49 designs. The GSRC benchmark includes
six designs with module counts ranging from 10 to 300. The MCNC and GSRC benchmarks were
designed based on the practical requirements of floorplanning. In industrial scenarios, floorplanning
tasks typically involve fewer than 100 modules. In all cases, we reserve 10% of the area as whitespace
and ensure a 1:1 aspect ratio for the boundary. We then project the ports to the new boundary. We
consider two metrics for floorplanning: HPWL and Area Utilization (AU).

We compare with five competitive methods using different floorplan representations: Corblivar [14],
SP-FP [13], B*-Tree SA [31], GoodFloorplan [27], and CBL-RL [28]. SP-FP, Corblivar, and B*-
Tree SA are open-source. Both GoodFloorplan [27] and CBL-RL [28] are RL-based methods
without open-source code. Based on the same setting, results from the literature are included in
results tables. It is worth noting that they do not report area utilization, only HPWL. Therefore,
we assume their area utilization to be 90%, which aligns with practical usage requirements. The
convergence performance intuitively reflects the effectiveness of the algorithm. Previous methods
all provide the best convergence performance. To enable a fair comparison, we train CORE and the

Table 1: Convergence Performance Comparison Based on HPWL and Area Optimization. CORE
achieves shorter HPWL compared to other strong baselines while maintaining a comparable AU.

| Corblivar | SP-FP | B*TreeSA | GoodFloorplan | CBL-RL | CORE
Case | HPWL AU | HPWL AU | HPWL AU | HPWL AU | HPWL AU | HPWL AU
nl0 43082 0.897 | 36514 0916 | 36044 0.859 - - 41019 0900 | 35170 0911
n30 124918 0.885 | 108835 0.913 | 111496 0.812 - - 111793 0.900 | 99964 0.912
n50 164044 0902 | 137516 0912 | 140716 0.851 - - 162600 0.900 | 124890 0.948
nl00 | 271747 0.881 | 222559 0.911 | 218976 0.741 | 309320 0.900 | 337284 0.900 | 191349 0.915
n200 | 535212 0.874 | 410438 0.912 | 388562 0.775 | 558330 0.900 | 351735 0.900 | 348956 0.917
n300 | 764890 0.862 | 569820 0.910 | 626997 0.700 | 690760 0.900 | 476765 0.900 | 469242 0.901
ami33 80298 0.830 | 64315 0910 | 81629 0.869 | 87540 0.900 | 81767 0.900 | 52672 0.940
ami49 | 1649560 0.822 | 930836 0.911 | 1180549 0.788 | 1067590 0.900 | 1375114 0.900 | 656068 0.918
Table 2: HPWL Comparison of CORE with macro placement methods.

Method nl0 n30 n50 nl100 n200 n300 ami33 ami49
MaskPlace 54105 150706 201743 355918 666599 960487 126360 2410415
ChipFormer 54954 122035 165600 264180 500447 693501 88129 1377496
CORE 35170 99964 124890 191349 348956 469242 52672 656068

available open-source algorithm B*-Tree SA for the same number environment steps, running each
algorithm five times and reporting the best convergence performance achieved. The experimental
setting is consistent with prior literature. The average performance and error bar over five runs is
provided in Appendix C (consistently outperforming the second-best baseline). We provide details
on hyperparameter settings, network architecture, and training configurations in Appendix A. It is
important to emphasize that floorplanning requires structural representations to achieve compact,
gap-free placement, which makes macro placement algorithms inefficient for this task. We provide
comparisons with the state-of-the-art macro placement algorithms in Appendix C.

4.2 Performance Evaluation

We compare CORE with other baselines on |

8 cases. The experiment results in Table 1
show that CORE typically achieves comparable
area utilization while maintaining a significantly

'

N

[

T

shorter HPWL. CORE achieves an average im- —
provement of 12.9% in wirelength compared [F
to the best results obtained by other algorithms I |_|

across all cases, with a 22.6% improvement on |
Figure 5: Visualization of the compact layout.

the n300 case and a 29.5% improvement on the
ami49 case. This demonstrates that CORE has
superior capabilities in layout search and op-
timization. Besides, we observe that compared to B*-Tree SA, which uses the same floorplan
representation, CORE demonstrates significant advantages in both HPWL and area utilization. More-
over, the performance gap increases with larger cases. This advantage primarily stems from CORE ’s
superior search and optimization capabilities, whereas B*-Tree SA is more prone to getting stuck
in suboptimal solutions. When compared to the two RL methods, GoodFloorplan and CBL-RL,
CORE also shows better performance metrics. The improvement stems from both the favorable
solution space enabled by the B*-Tree representation and the complementary synergy between EA
and RL in CORE. In addition, we provide the visualization results in Figure 5, demonstrating that
CORE can achieve compact layout solutions. We also conduct experiments focusing solely on HPWL
optimization in Appendix C. The results demonstrate that CORE consistently outperforms other
baselines, achieving superior wirelength metrics, further validating its efficiency. Further details can
be found in the appendix.

We also provide a comparison with macro placement methods. Unlike macro placement, the scale
of floorplanning in real-world industry is typically under 100 blocks. Thus current floorplanning
benchmarks are designed at this smaller scale. Floorplanning tasks generally rely on compact
representations such as B*-Tree or CBL to minimize HPWL and area, ensuring gap-free placement.

In contrast, macro placement tasks often involve congestion constraints, requiring spacing between
macros to allow for standard cell placement. This fundamental difference means that compact
floorplanning representations are not suitable for macro placement tasks. Likewise, due to the lack of
compact structural modeling, macro placement algorithms tend to perform poorly on floorplanning.
To support our claim, we compare with two SOTA macro placement algorithms, MaskPlace [4] and
ChipFormer [5]. The results are shown in Table 2. CORE, designed for floorplanning, significantly
outperforms both MaskPlace and ChipFormer.

4.3 Analysis of CORE

In this section, we 'del\'/e ipto each component Table 3: Ablation study on CORE.

of CORE to assess its significance. CORE com-

prises the evolutionary algorithm CDES, the RL Case | CDES B*Tree PPO CORE
algorithm PPO, and the collaboration mecha-
nisms. We first compare the performance of nl0 35076 34604 34296
CORE with CDES and PPO. To intuitively re- n30 | 104045 99561 98713
flect the algorithm’s efficiency, we focus solely n50 | 126047 124683 123195
on minimizing HPWL in our comparisons. nl00 | 199483 189151 188376
Experimental results in Table 3 show that CORE n200 | 382955 346382 342693
achieves shorter HPWL compared to PPO and “390 574579 468089 461219
CDES. This highlights CORE’s effective col- ~ ami33 | 53773 49903 46849
laboration between RL and EAs, enabling it to ami49 | 679473 042811 627620
surpass the performance of both methods. More

hyperparameter analysis and ablation study are provided in Appendix C.

In addition, we conduct a detailed analysis
of CORE’s collaboration mechanisms. We . Better Data Number Success rate
present the changes in the number of layouts 16000
maintained by the archive that outperform i
those constructed by PPO, along with the prob- ~ £'%®

Z 8000

ability of layouts constructed by PPO being re- 6000
tained after injection into the population. The 0
former indicates the extent to which evolu-
tionary search can guide RL. Consistently low
data volume suggests that EAs are unable to
find layouts superior to RL, thereby failing to
provide effective guidance. The latter reflects
the extent of PPO’s involvement in population
evolution. If layouts constructed by PPO are
immediately eliminated upon being added to
the population, it indicates that EA layouts are significantly superior. Consequently, PPO layouts
cannot be injected into the population, demonstrating that PPO does not contribute to population
evolution. In Figure 6, we present the results for the n100 case. We observe that the number of
samples in the archive that outperform RL-constructed layouts consistently remains at a high level,
indicating that EAs continuously provide effective guidance to RL. Additionally, the success rate of
PPO layout injections into the population has consistently remained above 0.6, indicating that RL
continues to influence the population evolution. The above two mechanisms complement each other,
thus achieving better synergy. More experiments on runtime, CDES, and comparisons with ERL are
provided in Appendix C.

Probability
o o o =
g 2 &

3

o
>

o
by

1 2 3 4 5 - 1 2 3 4 5
Environment Steps (x1e®) Environment Steps (x1e®)
Figure 6: Analysis experiment on the collaboration
mechanisms. The left side reflects the amount of data
used for PPO imitation learning, while the right side
reflects the success rate of RL-constructed layouts
being injected into the EA population.

5 Conclusion

This paper proposes an efficient hybrid framework, CORE, which combines EAs and RL to solve
the floorplanning problem. CORE involves three main processes: the evolutionary process, the
reinforcement process, and the collaboration process. Specifically, we introduce the clustering-based
diversified evolutionary search to ensure robust global optimization capabilities. Additionally, we
propose a complete reinforcement learning process with B*-Tree representation for floorplanning.
Furthermore, we design effective collaboration mechanisms for EAs and RL. Our experimental results
demonstrate that CORE outperforms strong baselines on two widely used floorplanning benchmarks.

10

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 62422605,
624B2101, 92370132). We would like to thank all the anonymous reviewers for their valuable
comments and constructive suggestions, which have greatly improved the quality of this paper.

References

[1] K. I. Gubbi, S. Aresh B., T. D. Sheaves, S. Salehi, S. Manoj P. D., S. Rafatirad, A. Sasan, and
H. Homayoun. Survey of machine learning for electronic design automation. In GLSVLSI,
2022.

[2] D. Sanchez, L. Servadei, G. z. Kiprit, R. Wille, and W. Ecker. A comprehensive survey on
electronic design automation and graph neural networks: Theory and applications. ACM
Transactions on Design Automation of Electronic Systems, 2023.

[3] Y. Shi, K. Xue, S. Lei, and C. Qian. Macro placement by wire-mask-guided black-box
optimization. NeurIPS, 2024.

[4] Y. Lai, Y. Mu, and P. Luo. Maskplace: Fast chip placement via reinforced visual representation
learning. NeurlPS, 2022.

[5] Y. Lai, J. Liu, Z. Tang, B. Wang, J. Hao, and P. Luo. Chipformer: Transferable chip placement
via offline decision transformer. In ICML, 2023.

[6] A.Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. M. Songhori, S. Wang, Y. Lee, E. Johnson,
et al. A graph placement methodology for fast chip design. Nat., 2021.

[7] X.Jiang, Y. Zhao, Y. Lin, R. Wang, R. Huang, et al. Circuitnet 2.0: An advanced dataset for
promoting machine learning innovations in realistic chip design environment. In /CLR, 2024.

[8] Z. Geng,J. Wang, Z. Liu, S. Xu, Z. Tang, M. Yuan, J. Hao, Y. Zhang, and F. Wu. Reinforcement
learning within tree search for fast macro placement. In ICML, 2024.

[9] R. Cheng, X. Lyu, Y. Li, J. Ye, J. Hao, and J. Yan. The policy-gradient placement and generative
routing neural networks for chip design. NeurIPS, 2022.

[10] R. Cheng and J. Yan. On joint learning for solving placement and routing in chip design.
NeurlPS, 2021.

[11] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan. Dreamplace: Deep learning
toolkit-enabled gpu acceleration for modern vlsi placement. In DAC, 2019.

[12] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VIsi module placement based on
rectangle-packing by the sequence-pair. IEEE TCAD, 1996.

[13] Q. Xu, S. Chen, and B. Li. Combining the ant system algorithm and simulated annealing for
3d/2d fixed-outline floorplanning. ASC, 2016.

[14] J. Knechtel, E. F. Young, and J. Lienig. Structural planning of 3d-ic interconnects by block
alignment. In ASP-DAC, 2014.

[15] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi. Optimization by simulated annealing. Science,
1983.

[16] A. B. Kahng and Q. Wang. Implementation and extensibility of an analytic placer. In ISPD,
2004.

[17] J. Lin, T. Chen, Y. Chang, W. Chang, Y. Shyu, Y. Chang, and J. Lu. A fast thermal-aware
fixed-outline floorplanning methodology based on analytical models. In ICCAD, 2018.

[18] J. Lin and J. Wu. F-fm: Fixed-outline floorplanning methodology for mixed-size modules
considering voltage-island constraint. JEEE TCAD, 2014.

11

[19] F. Huang, D. Liu, X. Li, B. Yu, and W. Zhu. Handling orientation and aspect ratio of modules
in electrostatics-based large scale fixed-outline floorplanning. In IEEE ICCAD, 2023.

[20] X.Li, K. Peng, F. Huang, and W. Zhu. Pef: Poisson’s equation based large-scale fixed-outline
floorplanning. IEEE TCAD, 2022.

[21] J. Lin, T. Chen, H. Hsieh, Y. Shyu, Y. Chang, and J. Lu. Thermal-aware fixed-outline floorplan-
ning using analytical models with thermal-force modulation. /IEEE TVLSI, 2021.

[22] M. Kuwano. Stable-lse based analytical placement with overlap removable length. Proc. of
SASIMI, 2010.

[23] R. S. Sutton and A. G. Barto. Reinforcement learning - an introduction. Adaptive computation
and machine learning. 1998.

[24] Z. He, Y. Ma, L. Zhang, P. Liao, N. Wong, B. Yu, and M. D. F. Wong. Learn to floorplan
through acquisition of effective local search heuristics. In /CCD. IEEE, 2020.

[25] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H. Lee, and Song Han. GCN-RL circuit designer:
Transferable transistor sizing with graph neural networks and reinforcement learning. In DAC.
IEEE, 2020.

[26] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. J. Jiang, E. M. Songhori, S. Wang, Y. J. Lee,
E. Johnson, O. Pathak, S. Bae, A. Nazi, J. Pak, A. Tong, K. Srinivasa, W. Hang, E. Tuncer,
A. Babu, Q. V. Le, J. Laudon, R. Ho, R. Carpenter, and J. Dean. Chip placement with deep
reinforcement learning. Nature, 2021.

[27] Q. Xu, H. Geng, S. Chen, B.Yuan, C. Zhuo, Y. Kang, and X. Wen. Goodfloorplan: Graph
convolutional network and reinforcement learning-based floorplanning. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., 2022.

[28] M. Amini, Z. Zhang, S. Penmetsa, Y. Zhang, J. Hao, and W. Liu. Generalizable floorplanner
through corner block list representation and hypergraph embedding. In KDD, 2022.

[29] M. L Puterman. Markov decision processes. Handbooks ORMS, 1990.

[30] L. Jain and A. Singh. Non slicing floorplan representations in vlsi floorplanning: A summary.
IJCA, 2013.

[31] Y. Chang, Y. Chang, G. Wu, and S. Wu. B*-trees: A new representation for non-slicing
floorplans. In DAC, 2000.

[32] M. Mitchell. An introduction to genetic algorithms. MIT Press, 1998.

[33] M. M. Drugan. Reinforcement learning versus evolutionary computation: A survey on hybrid
algorithms. Swarm Evol. Comput., 2019.

[34] O. Sigaud. Combining evolution and deep reinforcement learning for policy search: a survey.
arXiv preprint, 2022.

[35] H. Bai, R. Cheng, and Y. Jin. Evolutionary reinforcement learning: A survey. arXiv preprint,
2023.

[36] P.Li, J. Hao, H. Tang, X. Fu, Y. Zheng, and K. Tang. Bridging evolutionary algorithms and
reinforcement learning: A comprehensive survey. IEEE TEVC, 2024.

[37] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint, 2017.

[38] P. Guo, C. Cheng, and T. Yoshimura. An o-tree representation of non-slicing floorplan and its
applications. In DAC, 1999.

[39] K. A. De Jong. Evolutionary computation: a unified approach. In GECCO 2020. ACM, 2020.

[40] Z. Zhou, Y. Yu, and C. Qian. Evolutionary learning: Advances in theories and algorithms.
2019.

12

[41] S. Khadka and K. Tumer. Evolution-guided policy gradient in reinforcement learning. In
NeurlIPS, 2018.

[42] S. Khadka, S. Majumdar, T. Nassar, Z. Dwiel, E. Tumer, S. Miret, Y. Liu, and K. Tumer.
Collaborative evolutionary reinforcement learning. In ICML, 2019.

[43] C. Bodnar, B. Day, and P. Li6. Proximal distilled evolutionary reinforcement learning. In AAAI,
2020.

[44] A. Pourchot and O. Sigaud. CEM-RL: combining evolutionary and gradient-based methods for
policy search. In ICLR, 2019.

[45] J. Hao, P. Li, H. Tang, Y. Zheng, X. Fu, and Z. Meng. Erl-re$"2$: Efficient evolutionary
reinforcement learning with shared state representation and individual policy representation. In
ICLR, 2023.

[46] P.Li, J. Hao, H. Tang, Y. Zheng, and Z. Barez. Value-evolutionary-based reinforcement learning.
In ICML, 2024.

[47] P. Li, Y. Zheng, H. Tang, X. Fu, and J. Hao. Evorainbow: Combining improvements in
evolutionary reinforcement learning for policy search. In ICML, 2024.

[48] S. Niekum, A. G. Barto, and L. Spector. Genetic programming for reward function search.
IEEE Trans. Auton. Ment. Dev., 2010.

[49] Y. Jason Ma, W. Liang, G. Wang, D. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and
A. Anandkumar. Eureka: Human-level reward design via coding large language models. In
ICLR, 2024.

[50] P. Li, J. HAO, H. Tang, Y. Yuan, J. Qiao, Z. Dong, and Y. ZHENG. R*: Efficient reward
design via reward structure evolution and parameter alignment optimization with large language
models. In ICML, 2025.

[51] S. Majumdar, S. Khadka, S. Miret, S. McAleer, and K. Tumer. Evolutionary reinforcement
learning for sample-efficient multiagent coordination. In ICML, 2020.

[52] P. Li, J. Hao, H. Tang, Y. Zheng, and X. Fu. Race: Improve multi-agent reinforcement learning
with representation asymmetry and collaborative evolution. In ICML, 2023.

[53] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen, Y. Chen, and C. Fan. Wuji:
Automatic online combat game testing using evolutionary deep reinforcement learning. In ASE.
IEEE, 2019.

[54] O. Nilsson and A. Cully. Policy gradient assisted map-elites. In GECCO, 2021.
[55] J. Mouret and J. Clune. Illuminating search spaces by mapping elites. arXiv preprint, 2015.
[56] J. Lehman and K. O Stanley. Novelty search and the problem with objectives. GPTP IX, 2011.

[57] B. Tjanaka, M. C. Fontaine, J. Togelius, and S. Nikolaidis. Approximating gradients for
differentiable quality diversity in reinforcement learning. In GECCO, 2022.

[58] M. Ahmed and R. Seraj and S. M. S. Islam. The k-means algorithm: A comprehensive survey
and performance evaluation. Electronics, 2020.

[59] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs.
NeurlPS, 2017.

[60] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. NeurIPS, 2017.

[61] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv preprint, 2015.

13

Algorithm 1: Collaborative Optimization with RL and EA (CORE)

1 Initialize RL: the PPO policy network 7y, the PPO value network V, the experience buffer D.

2 Initialize EA: the population P = {s1,..., sy} with size N, the @ to combine quality scores and
novelty scores, the number of clusters C, elite number e in each cluster, The EA layout Archive L 4,
EA experience buffer Dga.

3 repeat

4 # (D EA Process

5 Population Clustering: Perform K-Means clustering in the population based on the features F'(s;)
of each individual, resulting in the construction of C' clusters.

6 Subpopulation Evaluation: In each cluster, evaluate the quality score P(s;) and novelty score
N (s;) of each layout

7 Elite Selection: Combine quality scores and novelty scores to obtain the final fitness:

f(s;) = aP(s;) + (1 — a)N(s;), and then select the top e elite layouts from each cluster based
on the fitness.
8 New Population Construction: Mutate the elite layouts to create new layouts, replacing the
non-elite layouts.

9 # (2 Evolutionary-Guided Mechanism
10 Try to add the layouts within the population into the EA archive L 4 (Maintaining the best layouts
for each module acting as the root, based on different rotations). Compare the layouts in L 4 with
RL’s layouts based on the same root node, and convert the EA better layouts into decision
sequences, and then add the sequences into Dga.

11 If Dga is not empty, calculate the imitation learning loss L, based on the experiences in Dga.

12 # @ RL Process:

13 RL Interaction: RL interacts with the environment to collect experiences, which are stored in D
14 RL Optimization: Optimize PPO using experiences from D and the imitation learning loss Ly,

15 # @ Reinforcement-Driven Mechanism: Add the complete layout constructed by RL to the
population, calculate the score f(s;) for each individual, and keep the top N individuals to ensure
the population size remains unchanged.

6 until reaches maximum training steps;

—

A Method Implementation Details

All experiments are carried out on NVIDIA GTX 2080 Ti GPU with Intel(R) Xeon(R) CPU E5-2680
v4 @ 2.40GHz.

A.1 Baselines and Benchmark

We compare CORE with five baselines: Corblivar [14], SP-FP [13], B*-Tree SA [31], GoodFloor-
plan [27], and CBL-RL [28]. We utilize the open-source implementations of Corblivar®, SP-FP*,
and B*-Tree SA’. For GoodFloorplan and CBL-RL, since the experimental setups are identical,
we directly use the results from the original papers. Evaluation is conducted on two widely used
benchmarks, MCNC® and GSRC’. All algorithms are trained to convergence over 5 runs, and the
best performances are reported.

A.2 Algorithm Pseudocode

The pseudocode for CORE is presented in Algorithm 1. The entire process of CORE contains three
main parts: (1) Evolutionary Process, (2) Reinforcement Process, and (3) Collaboration Process. To
improve clarity, we break down the Collaboration Process into the Evolutionary-Guided Mechanism
and Reinforcement-Driven Mechanism.

Specifically, CORE begins with the Evolutionary Process. Here, population individuals are clustered
to form subpopulations, evaluated within these subpopulations, elite individuals are selected, and
a new population is constructed based on these elites. Subsequently, we initiate the Evolutionary-

3https://github.com/DfX-NYUAD/Corblivar
*http://staff.ustc.edu.cn/ songch/package.htm
Shttps://github.com/Ashley990921/B-Star-Tree
Shttp://vlsicad.eecs.umich.edu/BK/MCNCbench/
http://vlsicad.eecs.umich.edu/BK/GSRCbench/

14

Table 4: Details of setting for the policy and value networks.

Model Selection
Activation Function ReLU
GNN Type SAGEConv
The layer number of the GNN 2
GNN input size 10
GNN hidden size 64
GNN output size 64
The layer number of the Transformer 2
The number of the Transformer attention head 2
Transformer input size 64
Transformer hidden size 64
Transformer output size 64
The layer number of the MLP for insert modules 2
MLP input size for insert modules 128
MLP hidden size for insert modules 64
MLP output size for insert modules 1
The layer number of the MLP for target modules 2
MLP input size for target modules 192
MLP hidden size for target modules 64
MLP output size for target modules 1
The layer number of the MLP for rotation and left/right 2
MLP input size for rotation and left/right 192
MLP hidden size for rotation and left/right 64
MLP output size for rotation and left/right 4
The layer number of the MLP for value prediction 2
MLP input size for value prediction 64
MLP hidden size for value prediction 64
MLP output size for value prediction 1

Guided Mechanism, aiming to add population layouts into an archive L4 based on their quality
scores. The archive maintains the best layouts (If there are multiple optimization objectives, the
Pareto frontier is maintained) for each module under different rotations as the root node. Then we
compare the layouts in L 4 with RL’s layouts and convert the layouts that are better (e.g., Pareto
dominance) than RL’s into decision sequences. The sequences are stored into a buffer Dga. If Dgy is
not empty, calculate the RL imitation learning loss £y based on the experiences in Dga.

Following this, we proceed to the Reinforcement Process. In this process, PPO interacts with the
environment to collect experiences into D. We optimize PPO using collected experiences and the
imitation learning loss Ly . Next, we activate the Reinforcement-Driven Mechanism to introduce
fully constructed RL layouts into the population. Individuals in the population are evaluated based on
their quality and diversity, yielding f(s;). The top e layouts are retained to maintain the population
size unchanged. The above process iterates until convergence.

A.3 Network Architecture

This section provides a detailed description of our network architectures for PPO. In Figure 3, we
present the specific process, and here we provide the detailed architectural design.

The PPO mainly consists of three parts:

* Representation Module: The graph neural network consists of two layers of SAGE
convolutional layers with ReLU activation. Each module or port contains 10-dimension
information, so the input dimension for SAGE is 10. The output dimension is 64. The
Transformer employs PyTorch’s integrated Transformer encoder layer with 2 layers, 2
attention heads, and a hidden size of 64. Therefore, each module or port representation is
64-dimension, and the graph representation, obtained by mean pooling across all modules
and ports, is also 64-dimensional. The activation function is ReLU.

15

Table 5: Details of hyperparameters.

Parameter Value
Optimizer Adam
Learning rate 2.5e —4
Batch size 128
Gamma 0.99
GAE Gamma 0.95
Scale for HPWL 1x1074
Population size N 100
Number of clusters C' 4
Elite size e in each subpopulation 2
The weight to balance quality score and novelty score o in CDES 0.8
The weight to balance area utilization and HPWL in CDES 0.1 for U and 0.9 for HPWL
Clip ratio 7 0.1
The weight of entropy loss wgy 0.01
The weight of value network 10ss wWvae 0.5
The weight of imitation learning loss wy, 0.1

Table 6: Algorithm Comparison Based on HPWL Optimization.

Case #Modules #Nets | Corblivar | SP-FP | B*-Tree SA | CORE

nl0 10 118 43344 36204 34873 34296

n30 30 349 131253 | 113498 106365 98713

n50 50 485 171832 | 143920 130937 123195
nl100 100 885 266013 | 244956 223317 188376
n200 200 1585 527828 | 464062 400560 342693
n300 300 1632 753813 | 661199 621663 461219
ami33 33 123 85116 57782 57815 46849
ami49 49 408 1722410 | 913264 900802 627620

* Decision Module: The MLP input for deciding target modules is 128-dimensional, com-
posed of 64 dimensions from module representations and 64 from graph representations.
The MLP consists of two layers: input size 128, hidden layer size 64, and output size 1, deter-
mining the modules to be inserted. The inserted modules’ representations are concatenated
with the earlier 128-dimensional representation, yielding a 192-dimensional representation.
This undergoes another two-layer MLP to select the inserted modules. The target module
and inserted module representations, along with the graph representation, are concatenated
and processed through a two-layer MLP with a hidden size of 64 and an output dimension
of 4. This step determines actions such as whether to rotate and insert as the left or right
child. All MLPs utilize ReLU as its activation function.

* Value Network: The value network starts with a separate representation module with the
same structure. It takes modules, ports, and netlists as input to derive a graph representation.
The graph representation then is fed into a two-layer MLP for value prediction. The MLP
has an input dimension of 64, a hidden layer size of 64, and an output dimension of 1. ReLU
serves as the activation function for the MLP.

A.4 Hyperparameters

This section provides two aspects of hyperparameter selection: one for the evolutionary algorithm
CDES and another for the RL algorithm PPO. Below, we present detailed hyperparameter choices.

For the CDES’s hyperparameters, we define them as follows:

* Population size NV is set to 100.
¢ Number of clusters C'is 4.

* The number of elites in each subpopulation e is set to 2.

16

 The balancing parameter «, which balances quality and diversity, is set to 0.8.
* When optimizing solely for HPWL, its weight is 1.0.

* When optimizing for both HPWL and area utilization, we assign a weight of 0.1 to area
utilization and 0.9 to HPWL.

For the selection of RL’s hyperparameters, we define them as follows:

* Optimizer: Adam with a learning rate of 2.5 x 10~
* Batch size: 128.

e Gamma: 0.99.

* GAE Gamma: 0.95.

* Clip ratio for PPO: 0.1

» The weight of entropy loss wgp: 0.01

* The weight of value network 1oss wvyaye: 0.5

* The weight of imitation learning loss wy: 0.1

» When optimizing solely for HPWL, HPWL is multiplied by a scaling factor of 1 x 10~ as
the reward at each step, i.e., r; = —10~* « HPWL.

* When optimizing for both HPWL and area utilization, the reward is computed by adding the
area utilization U and HPWL scaled by 1 x 1074, i.e., r, = —10"*HPWL + U.

Throughout the algorithmic process of CORE, RL interacts with the environment I times per epoch,
i.e., complete [layouts. We set I to 30, resulting in RL completing 30 full episodes of interaction
with the environment. Following this, we inject I complete layouts into the population. The number
of evolutionary iterations equals the game length 7" multiplied by I, divided by the population size
N. This ensures that EAs and RL interact with the environment on as equal terms as possible from
the perspective of environment steps. We train CORE on n200 and n300 for 20,000 epochs, while
10,000 epochs for other cases.

B Parallel Framework

We observe that due to the requirements of interaction and training, especially RL requires network
forward passes for action selection. The algorithm is time-consuming. This is a common challenge
faced by all RL-based algorithms.

To demonstrate this, we analyze the proportion of time cost for each component: RL interaction time
accounts for approximately 65%, primarily due to the neural network processing inputs and selecting
actions during each interaction, which is time-consuming. Training time accounts for 20.4%, and the
evolutionary process accounts for around 15%. We can observe that the main source of time cost is
the RL interaction.

To mitigate this, we develop a parallel framework, focusing on parallelizing interactions. This
allows us to concurrently interact with multiple environments, thus significantly reducing runtime.
Specifically, upon algorithm initiation, we initiate L sub-processes. Subsequently, the main process
sends the current network parameters of PPO to subprocesses, which initialize their networks based on
these parameters and interact with the environment. Subprocesses collect complete experiences and
return them to the main process. Once the main process gathers experiences from all subprocesses,
it begins training the network parameters. With the aforementioned parallel interaction approach,
we can greatly reduce the runtime. For example, on n30, the time consumption decreases from 11
hours to 3.78 hours, and on n50, it decreases from 23.6 hours to 8.3 hours. Additionally, we find that
parallel sampling during the EA phase is possible. If the EA phase is also parallelized, the time for
n30 will decrease from 3.78 hours to 2.54 hours, and for n50, it will decrease from 8.3 hours to 4.72
hours. but we have not implemented this version yet, leaving it for future work.

17

Table 7: Analysis of Population Size on HPWL.
Pop size n50 n100 ami49

50 126147 211774 711931
100 126047 199488 679473
200 124849 198223 680698

Table 8: Analysis of Cluster Number on HPWL.
Cluster Number n50 nl100 n200 ami49

1 132708 229737 417632 790673
2 127841 226644 403261 759635
4 126047 199488 382955 679473
10 144938 192398 357297 993230

C Additional Experiments

We also compare CORE with Corblivar, SP-FP, and B*-Tree SA in the setting where only HPWL is
optimized. In this context, HPWL provides a more intuitive measure of the algorithm’s search and
optimization performance. We train all algorithms until convergence and report their convergence
performance. The experimental results, shown in Table 6, show that CORE significantly outperforms
the other algorithms, further highlighting the efficiency of CORE.

Here we present a hyperparameter sensitivity analysis. It is worth noting that all hyperparameters
remain fixed across all cases without any fine-tuning throughout the entire study.

Population Size: We first analyze CDES independently (excluding the influence of RL), with the
objective of minimizing HPWL. The results are shown in Table 7: We observe that larger population
sizes generally lead to better performance.

Cluster Number: The results are shown in Table 8. For the number of clusters, a setting of 4
performs better on smaller-scale problems, while 10 is more effective for larger-scale instances.

Novelty Weight: The results are shown in Table 9. The novelty weight « = 0.8 yields better
performance.

Elite size: The results are shown in Table 10. n = 1 performs better on larger-scale tasks, whereas
n=2 works better for smaller-scale cases.

Imitation learning coefficient: The results are shown in Table 10. For the imitation learning
coefficient, we observe that the algorithm performs best when the coefficient is set to 0.1.

It is worth noting that we did not fine-tune these parameters—across all tasks, we consistently
used population size 100, 4 clusters, elite size 2, o = 0.8 and w=0.1.

In the main text, we report the best results following prior works. Below, we present the mean
and standard deviation across five runs, as well as a performance comparison with the second-best
floorplanning algorithm. The results are shown in Table 12. We observe that CORE consistently
outperforms the best performance of other baselines.

Runtime comparison between CORE and other methods. CORE introduces RL, which results
in additional time overhead compared to heuristic methods. Thus we design a parallel architecture
to improve efficiency. Unfortunately, existing learning-based methods for floorplanning have not
released open-source implementations. Therefore, we compare the runtime and achieved HPWL with
the available baselines in Table 13. CORE achieves better HPWL compared to baselines, and requires
more time than EA. However, it outperforms other learning-based method MaskPlace.

Ablation study on CORE. We present the results of our ablation study in Table 14, which clearly
demonstrate that the integration of both mechanisms leads to improved performance.

Comparison between CORE and ERL. We additionally implement a parameter-centric ERL
framework. It is important to note that such frameworks typically rely on off-policy algorithms, such

18

Table 9: Analysis of o on HPWL.
o n50 n100 n200 ami49

0.0 138954 234500 408446 837418
0.2 138592 231034 411872 805013
0.5 136496 225504 418917 766239
0.8 126047 199488 382955 679473
1.0 191069 341052 835619 1729777

Table 10: Analysis of elite size e on HPWL.
Elite size e n50 nl100 n200 ami49

1 135760 191708 359261 824228
2 126047 199488 382955 679473
5 130018 225533 410475 731270

as TD3 or SAC, which face inherent challenges when applied to discrete action spaces. To ensure
a fair and consistent comparison, we adapt the baseline methods to use B* tree-based PPO, which
is better suited for discrete structural representations. The corresponding experimental results are
presented in Table 15: We observe that CORE consistently outperforms the ERL-based methods
across all cases.

Comparison between CDES and EA. We compare our proposed CDES with a vanilla EA that does
not incorporate the clustering method. The results in Table 16 show that CDES achieves significantly
better optimization performance than the vanilla EA.

Comparison between B* Tree and other representation. We evaluate the effectiveness of the
B*-Tree modeling approach against alternative structure Sequence pair. The results in Table 17
indicate that the B*-Tree model consistently yields superior performance.

Ablation Study on the Transformer Module. It is important to note that the network input includes a
netlist, whose topological structure naturally lends itself to graph neural networks (GNNs). Therefore,
the use of a GNN is essential. We introduce transformer layers primarily for better representation.
The ablation study is shown in Table 18. We observe that the Transformer module contributes to
better model performance.

19

Table 11: Analysis of wrr, on HPWL.
WL n50 n100 ami33 ami49

1.0 124319 189956 48437 634400
0.1 123195 188376 46849 627620
0.01 124054 189103 47619 631599
0.0 124172 189009 48403 635198

Table 12: Comparison Between CORE and the Best Baseline on HPWL (mean =+ std).

Method nl0 n30 n50 nl00 n200 n300 ami33
Best baseline 36044 108835 137516 218976 351735 476765 64315
CORE 35290 +294 100733 £ 1113 125132 +473 191610 4 840 348416 & 1140 470296 + 701 52930 + 753

Table 13: Runtime and HPWL Comparison between CORE and baselines.

Case EA Maskplace CORE

n30 1.65]104045 4.15|150706 3.78]99964
n50 3.54|126047 6.37|201743 8.3|124890

Table 14: Ablation study of CORE on different cases.

Method n30 n50 ami33 ami49
CORE w/ Injection 98888 123938 49061 641670
CORE w/ IL 99302 124172 48403 635198
CORE w/o both 99561 124683 49903 642811
CORE 98713 123195 46849 627620

Table 15: HPWL Comparison between CORE and ERL.
Method nl0 n30 n50 nl00

ERL 34645 99911 124418 190343
CORE 34296 98713 123195 188376

Table 16: Comparison between CORE variants with EA and CDES.
Method n30 n50 ami33 ami49

CORE w/ EA 101252 127929 52604 698285
CORE w/ CDES 98713 123195 46849 627620

Table 17: HPWL Comparison between Sequence Pair and B* Tree Representations (x 10%).

(x10%) nl00 n200 0300 ami33
Sequence pair 209.8 404.5 556.9 59.0
B* tree 1913 3490 3692 527

Table 18: Ablation Study on the Transformer Module.
Method n30 n50 ami33 ami49

w/o transformer 99744 124954 52820 699215
w/ transformer 99561 124683 49903 642811

20

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We primarily focus on integrating EA and RL to address the floorplanning
problem, and our claims are supported by experimental results. The main claims made in
the abstract and introduction accurately reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix B.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

21

Answer:[NA]

Justification: Our work focuses on empirical evaluation and does not provide theoretical
proofs or formal analysis. We leave the development of theoretical guarantees and formal
analysis as future work.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed pseudocode and experimental hyperparameter settings in
the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

22

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper does not include experiments requiring code. We will open-source
the code after the public release.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setup and details are provided in detail in both the main text
and the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Following the experimental settings of prior work, we conduct each experi-
ment with 5 independent runs and report error bars (in Appendix C) to reflect statistically
significant variability.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: These details are provided in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in this paper fully conforms with the NeurIPS
Code of Ethics in all respects.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This paper presents work whose goal is to advance the field of floorplanning.
There are many potential societal consequences of our work, none which we feel must be
specifically highlighted here.

Guidelines:

24

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all creators and original owners of the assets used in the paper are properly
credited and fully respected.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

25

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

26

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Floorplanning Problem
	B*-Tree Representation
	Evolutionary Algorithms
	Reinforcement Learning
	Evolutionary Reinforcement Learning

	Collaborative Optimization with RL and EA
	Overall Framework of CORE
	Clustering-based Diversified Evolutionary Search
	B*-Tree-based Reinforcement Learning
	EA-RL Collaboration Mechanisms

	Experiments
	Benchmarks & Baselines
	Performance Evaluation
	Analysis of CORE

	Conclusion
	Method Implementation Details
	Baselines and Benchmark
	Algorithm Pseudocode
	Network Architecture
	Hyperparameters

	Parallel Framework
	Additional Experiments

