
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SAMG: OFFLINE-TO-ONLINE REINFORCEMENT
LEARNING VIA STATE-ACTION-CONDITIONAL OF-
FLINE MODEL GUIDANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline-to-online (O2O) reinforcement learning (RL) pre-trains models on offline
data and refines policies through online fine-tuning. However, existing O2O RL
algorithms typically require maintaining the tedious offline datasets to mitigate
the effects of out-of-distribution (OOD) data, which significantly limits their effi-
ciency in exploiting online samples. To address this deficiency, we introduce a new
paradigm for O2O RL called State-Action-Conditional Offline Model Guidance
(SAMG). It freezes the pre-trained offline critic to provide compact offline under-
standing for each state-action sample, thus eliminating the need for retraining on
offline data. The frozen offline critic is incorporated with the online target critic
weighted by a state-action-conditional coefficient. This coefficient aims to capture
the offline degree of samples at the state-action level, and is updated adaptively dur-
ing training. In practice, SAMG could be easily integrated with Q-function-based
algorithms. Theoretical analysis shows good optimality and lower estimation error.
Empirically, SAMG outperforms state-of-the-art O2O RL algorithms on the D4RL
benchmark.

1 INTRODUCTION

Offline reinforcement learning (Lowrey et al., 2019; Fujimoto et al., 2019; Mao et al., 2022; Rafailov
et al., 2023) has gained significant popularity due to its isolation from online environments. It
relies exclusively on offline datasets, which can be generated by one or several policies, constructed
from historical data, or even generated randomly. This paradigm eliminates the risks and costs
associated with online interactions and offers a safe and efficient pathway to pre-train well-behaved
RL agents. However, offline RL algorithms exhibit an inherent limitation in that the offline dataset
only covers a partial distribution of the state-action space (Prudencio et al., 2023). Therefore, standard
online RL algorithms fail to resist the cumulative overestimation on samples out of the offline
distribution (Nakamoto et al., 2023). To this end, most offline RL algorithms limit the decision-
making scope of the estimated policy within the offline dataset distribution (Kumar et al., 2019; Yu
et al., 2021). Accordingly, offline RL algorithms are conservative and are confined in performance by
the limited distribution.

To overcome the performance limitation of offline RL algorithms and further improve their perfor-
mance, it is inspiring to perform an online fine-tuning process with the offline pre-trained model.
Similar to the successful paradigm of transfer learning in deep learning (Weiss et al., 2016; Iman
et al., 2023), this paradigm, categorized as offline-to-online (O2O) RL algorithms, is anticipated to
enable substantially faster convergence compared to pure online RL. However, the online fine-tuning
process inevitably encounters out-of-distribution (OOD) samples laid aside in the offline pre-training
process. This leads to another dilemma: the conservative pre-trained model may be misguided toward
structural damage and performance deterioration when coming across OOD samples (Nair et al.,
2020; Kostrikov et al., 2022). Therefore, O2O RL algorithms tend to remain unchanged or even
sharply decline in the initial stage of the fine-tuning process. Existing algorithms conquer this by
maintaining access to the offline dataset and retraining on the offline data during online iterations to
restore offline information and restrict OOD deterioration.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Specifically, most fine-tuning algorithms directly inherit the offline dataset as online replay buffer
and only get access to online data by incrementally replacing offline data with online ones through
iterations (Lyu et al., 2022; Lee et al., 2022; Wen et al., 2024; Wang et al., 2024). This paradigm is
tedious given that the sample size of the offline datasets tends to exceed the order of millions (Fu
et al., 2020). Hence, these algorithms exhibit low inefficiency in leveraging online data. Other
algorithms (Nakamoto et al., 2023; Zheng et al., 2023; Guo et al., 2023; Liu et al., 2024) maintain an
online buffer and an offline one and sample from the two replay buffers with hybrid setting (Song
et al., 2023) or priority sampling technique. Though these settings mitigate the inefficiency, they still
visit a considerable amount of offline data and have not departed from the burden of offline data. In
summary, existing algorithms severely compromise the efficiency of utilizing online data to mitigate
the negative impact of OOD samples.

This compromise results in several undesirable outcomes. Training with offline data can potentially
hindering algorithmic improvement given the sub-optimal nature of some offline data. Meanwhile,
the inefficiency in accessing online samples limits the ability to explore and exploit novel information,
making model improvement more challenging. In summary, this setting poses a challenge to the goal
of the fine-tuning process to improve algorithm performance with limited training budget.

A recent work WSRL explores initializing the replay buffer in the online phase without retaining
offline data (Zhou et al., 2024). However, WSRL takes a relatively straightforward approach of
Q-ensemble techniques (Chen et al., 2021) to enhance algorithm generalization and resist distribution
shift, a technique that inherently increases model complexity and computational overhead.

To tackle the challenge of low online sample utilization while not introducing excessive computational
burdens, it is inspiring to directly leverage the offline critic, which is learned from the offline dataset,
forming a compact abstraction of the offline information. To this end, this paper introduces a novel
online fine-tuning paradigm named State-Action-Conditional Offline Model Guidance (SAMG),
which eliminates the need for retaining offline data and achieves 100% online sample utilization.
SAMG freezes the offline pre-trained critic, which contains the offline cognition of the values given
a state-action pair and offers offline guidance for online fine-tuning process. SAMG combines the
offline critic with online target critic weighted by a state-action-conditional coefficient to provide a
compound comprehension perspective. The state-action-conditional coefficient represents a class
of functions that quantify the offline confidence of a given state-action pair and is instantiated as a
Conditional Variational Autoencoder (C-VAE) model. It is adaptively updated during training to
provide accurate probability estimation. SAMG only introduces minimal computational overhead
while achieving excellent performance. It avoids introducing inappropriate intrinsic rewards by
leveraging this probability-based mechanism. It does not affect offline algorithms and can be easily
deployed on Q-function-based RL algorithms, demonstrating strong applicability.

The main contributions of this paper are summarized as follows: (1) The tedious offline data is
eliminated to facilitate more effective online sample utilization. (2) The compact offline information
generated by offline model is integrated to provide offline guidance. A novel class of state-action-
conditional function is designed and updated to estimate the offline confidence. (3) Rigorous
theoretical analysis demonstrates good convergence and lower estimation error. SAMG is integrated
into four Q-learning-based algorithms, showcasing remarkable advantages.

2 PRELIMINARIES

Reinforcement learning task is defined as a sequential decision-making process, where an RL agent
interacts with an environment modeled as a Markov Decision Process (MDP):M = (S,A, P, r, γ, τ).
S represents the state space and A represents the action space. P (s′|s, a) denotes the unknown
function of transition model and r(s, a) denotes the reward model bounded by |r(s, a)| ≤ Rmax.
γ ∈ (0, 1) denotes the discount factor for future reward and τ denotes the initial state distribution.
The goal of the RL agent is to acquire a policy π(a|s) to maximize the cumulative discounted
reward, defined as state-action value function Qπ(s, a) = Eπ

[∑∞
k=0 γ

kr(sk, ak)|s0 = s, a0 = a
]
.

The training process for actor-critic algorithms alternates between policy evaluation and policy
improvement phases. Policy evaluation phase maintains an estimated Q-function Qθ(s, a) pa-
rameterized by θ and updates it by applying the Bellman operator: BπQ .

= r + γPπQ, where
PπϕQ(s, a) = Es′∼P (s′|s,a),a′∼πϕ(a′|s′)

[
Q(s′, a′)

]
. In the policy improvement phase, the policy

πϕ(a|s) is parameterized by ϕ and updated to achieve higher expected returns.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 SAMG: METHODOLOGY

In this section, we introduce the SAMG paradigm, which leverages the pre-trained offline model to
guide the online fine-tuning process without relying on tedious offline data. This approach raises
three key questions: (1) How can we accurately extract the information contained within the offline
model? (2) How can we assess the reliability of this information? (3) How can we adaptively adjust
the level of reliability throughout the training process? To resolve these challenges, We propose a
novel model-guidance technique and introduce an adaptive state-action-conditional coefficient.

3.1 OFFLINE-MODEL-GUIDANCE PARADIGM

Offline-model-guidance paradigm is designed to address Problem 1. Intuitively, the offline pre-trained
value function Qoff

θ (s, a) of an algorithm estimates the quality of a specific state-action pair in the
perspective of the offline dataset. This well-trained offline Q-network can be frozen and preserved
to provide offline opinion when encountering online state-action pairs. To leverage both offline
and online sights, the frozen offline Q-values are integrated with online Q-values weighted by a
state-action-conditional coefficient. This approach brings several advantages: it can adaptively utilize
the offline information based on its reliability and mitigate the introduction of undesirable intrinsic
rewards, which will be discussed later. Formally, the policy evaluation equation is as follows:

Q(s, a) = r(s, a) + γ
[
(1− p(s, a))Q(s′, a′) + p(s, a)Qoff (s′, a′)

]
. (1)

where Q(s, a) represents the estimated Q-function and p ∈ (0, 1) denotes a function class that gives
a state-action-conditional coefficient and could be implemented with any reasonable form. The novel
parts of the equation compared to the standard Bellman equation are marked in blue.

3.2 STATE-ACTION-CONDITIONAL COEFFICIENT

State-action-conditional coefficient is proposed to address Problem 2. Intuitively, we tend to allocate
higher values to samples within the offline distribution, as these samples are well-represented in the
offline data and the model is thoroughly pre-trained on them. Conversely, we have limited knowledge
about samples distant from the offline distribution (treated as OOD samples), so lower values are
appropriate. In summary, the state-action-conditional coefficient should capture the offline confidence
of given samples, which resembles the role of behavior policy in offline RL (Prudencio et al., 2023).
This coefficient attempts to depict the characteristics of the complex distribution represented by
the offline dataset. Any structure that satisfies the criteria can serve as an instantiation of p(s, a).
However, considering the high-dimensional and continuous property of the state-action data, it is
challenging to directly extract the probability characteristics from the state-action pair.

In this work, we adopt the C-VAE model to instantiate p(s, a). C-VAE is a generative model
designed to capture complex conditional data distributions by incorporating additional information.
It can properly approximate the behavior policy and capture the underlying structure by introducing
conditional variables such as actions or states. Therefore, it is widely used to estimate the behavior
policies in offline RL (Fujimoto et al., 2019; Kumar et al., 2019; Xu et al., 2022; Guo et al., 2023).
Its encoder Encψ1

maps the input data to the mean zm and variance zv parameters of a Gaussian
distribution N (zm, zv). Latent vector z is then sampled from this estimated distribution and then fed
to the decoder Decψ2 to reconstruct the data (Kingma et al., 2014). The N (zm, zv) extracted from
the encoder represents a lower-dimensional representation of the offline data distribution, which not
only facilitates coefficient approximation but also enables OOD detection.

Nevertheless, previous work has mainly focused on the quality of the generated data, with limited
attention to whether the distribution N (zm, zv) carries meaningful information. Consequently, the
latent distribution tends to collapse towards the standard normal distribution due to the KL-divergence
regularization, and z is meaningless—a phenomenon known as posterior collapse (Lucas et al., 2019;
Wang et al., 2021), as evidenced in Appendix C.1. This phenomenon is detrimental in our setting
because we need the latent output to calculate the state-action-conditional coefficient. However, under
posterior collapse, the model fails to function and the sampled latent variable z is only normal noise.

To mitigate the adverse impacts of posterior collapse, we extend the variational conditional infor-
mation to include state-action pairs and reconstruct the next state from the decoder. This approach
complicates the modeling process and develops a state-action-conditional structure. Additionally,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

we employ the KL-annealing technique (Bowman et al., 2015) to further alleviate posterior collapse,
with a detailed explanation in Appendix C.2. Formally, the C-VAE component of SAMG is trained
by optimizing the evidence lower bound (ELBO) objective function as commonly used in the C-VAE
frameworks:

max
ψ1,ψ2

Ez∼Encψ1

[
logDecψ2(s

′|z, s, a)
]
− βDKL

[
qEnc(z|s, a)||pprior(z)

]
(2)

where Encψ1(z|s, a) and Decψ2(s
′|z, s, a) represent the encoder and decoder structure respectively;

Decψ2(z) denotes the prior distribution of the encoder; and DKL [p||q] denotes the KL divergence.
The former error term denotes the reconstruction loss while the latter denotes the KL divergence
between the encoder distribution and the prior distribution.

3.3 COEFFICIENT GENERATION AND ADAPTIVE UPDATES

STATIC COEFFICIENT GENERATION

To validate the effectiveness of improved C-VAE structure, we evaluate the offline dataset by inputting
each sample to the trained C-VAE model and recording the mean and variance values of encoder
output. The result is illustrated in the Appendix C.3. The results indicate that posterior collapse
is significantly alleviated. However, the normal distribution of encoder output N (zm, zv) is still
relatively narrow. It is unreliable to directly utilize the latent information z which is sampled from this
narrow distribution because the sampling randomness may overshadow the distribution information.

To address this issue, we resort to utilize the deterministic information of (zm, zv) in place of less
reliable z. Because we have collected a sufficient number of (zm, zv) from the offline dataset, we can
fit the distribution of these samples. This fitted distribution can then serve as a representation of the
offline dataset distribution. Since the statistical distributions of (zm, zv) on offline dataset closely
approximates a normal distributions, as evidenced by the minimal fitting error in Appendix C.3, we fit
these samples to the corresponding normal distributions. Specifically, zm is modeled as N (µm, σm),
denoted as Zm, while zv is modeled as N (µv, σv), denoted as Zv. Accordingly, for some observed
sample (zm, zv), we compute the probability that Zm (Zv) falls within the same distance from the
mean as zm (zv) as shown below. Refer to Appendix C.4 for the complete derivation.

P (|Zm − µm| > |zm − µm|) =2FZm(µm − |zm − µm|)
P (|Zv − µv| > |zv − µv|) =2FZv (µv − |zv − µv|)

(3)

where FX(x) is the cumulative distribution function. The intermediate probability can be obtained:

pint(s, a) = ωP (|Zm − µm| > |zm − µm|) + (1− ω)P (|Zv − µv| > |zv − µv|) (4)

where ω is the weight of mean and standard and is set to 1 because the estimation error of the mean is
significantly smaller than that of the standard in practice.

Moreover, in cases where the sample diverges notably from the offline distribution, the information
about the sample is unknown and the offline guidance may be biased. Such samples are considered as
OOD samples. To identify these samples, we use the intermediate probability pint, which quantifies
the probability of a sample belonging to the offline distribution. Specifically, samples with pint below
poffm are regarded as OOD samples, with a threshold probability poffm introduced.

The eventual equation to calculate the probability poff given a sample (zm, zv) is illustrated below:

poff (s, a) =

{
pint(s, a), pint(s, a) ≥ poffm

0, pint(s, a) < poffm

(5)

By integrating the C-VAE form state-action-conditional coefficients into Eq. (1), the following
practical updating equation can be obtained and the structure of SAMG is illustrated in Fig. 1.

Q(s, a) = r(s, a) + γ
[
(1− poff (s, a))Q(s′, a′) + poff (s, a)Qoff (s′, a′)

]
. (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

OnlineOffline

weight

Adaptive Coefficient time

. . . (𝜇, 𝜎)

 𝑧

Off Critic

Off Critic

On Critic

Mix Critic

Figure 1: Architecture of SAMG. This figure illustrates the structure of SAMG, highlighting the transition
from offline pre-training to online fine-tuning. It outlines key components, including offline critic, VAE model,
offline-guidance technique, and adaptive coefficient.

ADAPTIVE COEFFICIENT UPDATES

As the online fine-tuning processes, the agent’s understanding of OOD samples evolves. Samples
initially considered OOD by the static VAE might become well-understood by the online agent. To
maintain the relevance of poff , we propose an adaptive update mechanism for the VAE (Problem
3). Periodically, online samples initially deemed OOD samples (poff < poffm) are re-evaluated.
Those samples now mastered by the online agent (exhibiting low online Bellman error) are used to
fine-tune the VAE model. This refinement allows poff to better reflect the agent’s current capabilities
in modulating the guidance. Refer to Appendix C.5 for complete implementation. The process of
Section 3.3 is depicted in the green region of Fig. 1.

4 ANALYSIS OF SAMG

4.1 INTRINSIC REWARD ANALYSIS OF SAMG

Intrinsic Reward Analysis highlights the importance of the probability-based coefficient paradigm.
Specifically, Eq. (6) can be derived as below:

Q(s, a) =
[
r(s, a) + rin(s, a)

]
+ γQ(s′, a′). (7)

where rin(s, a) = γp(s, a)(Qoff (s′, a′)−Q(s′, a′)). Eq. (7) indicates that the introduced offline
information could be treated as the intrinsic reward.

Previous work has revealed that intrinsic reward may cause training instability or even algorithm
degradation (Chen et al., 2022; McInroe et al., 2024). However, the intrinsic reward form of SAMG
is reasonable and stable thanks to the probability-shape coefficient. Specifically, the intrinsic reward
term describes the difference between offline and online Q-values, weighted by the state-action-
conditional coefficient. It can be analyzed in two scenarios. Firstly, if the state-action pair lies
within the offline distribution (ID), where the offline Q-value is well trained and the state-action-
conditional coefficient α is significant. For the ID condition, although Q is initialized by Qoff ,
due to the challenges of O2O training, Q may be significantly affected and thus deviate from the
correct value for ID samples.In this case, this term suggests that higher offline Q-values correspond
to higher potential returns. Hence, it encourages exploring state-action pairs with higher performance.
Conversely, if the state-action pair falls outside the offline distribution, where the offline Q-value may
be erroneously estimated. This term becomes negligible or is even set to zero, as specified in Eq.
(5). Therefore, it can filter out inaccurate and unreliable information. In summary, SAMG is able to
properly retain the offline knowledge without introducing inappropriate intrinsic rewards.

Moreover, the intrinsic reward term is directly based on the Q-function, offering long-horizon
guidance that is directly grounded in the function itself, offering a more temporally coherent learning
signal.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 THEORETICAL ANALYSIS OF SAMG

In this section, we adopt the temporal difference paradigm (Sutton, 1988; Haarnoja et al., 2018) in the
tabular setting and prove that Eq. (6) still converges to the same optimality, even with an extra term
induced. For the theoretical tools, SAMG gets rid of the offline dataset and therefore diverges from
the hybrid realm of Song et al. (Song et al., 2023) and offline RL scope limited by the dataset, but
aligns with online RL algorithms (T. Jaakkola & Singh, 1994; Thomas, 2014; Haarnoja et al., 2018).

Contraction Property is considered and proven to still hold since the Bellman operator is modi-
fied (Keeler & Meir, 1969). The related theorem and detailed proof can be found in Appendix B.1.

Convergence Optimality. Formally, iterative TD updating form of Eq. (6) is demonstrated below:

Qk+1(s, a)−Qk(s, a) =αk(s, a) [Qk(s, a)− (rk+1 + γQk(sk+1, ak+1))]−
αk(s, a)γp(s, a)

(
Qoff (sk+1, ak+1)−Qk(sk+1, ak+1)

) (8)

where the estimated state-value function at time-step k for given (s, a) pair is denoted as Qk(s, a).
The learning rate at time-step k is represented as αk. For simplicity, the state-action conditional
coefficient poff (s, a) and threshold poffm (s, a) are denoted as p(s, a) and pm(s, a), respectively.

Our theoretical analysis first focuses on the convergence properties of the policy evaluation step under
the modified Bellman operator. We show that for any fixed policy π, the Q-values estimated using
SAMG’s update rule converge to the true Qπ(s, a). For the complete proof, refer to Appendix B.2.

Theorem 4.1 (Convergence property of SAMG). For a given policy π, by the TD updating paradigm,
Qk(s, a) of SAMG converges almost surely to Qπ(s, a) as k → ∞ for all s ∈ S and a ∈ A if∑
k αk(s, a) =∞ and

∑
k α

2
k(s, a) <∞ for all s ∈ S and a ∈ A.

Convergence Speed. Moreover, the specific expression for the contraction coefficient is proven as
follows, illustrating the faster convergence speed of SAMG. See Appendix B.3 for further details.

Theorem 4.2 (Convergence speed of SAMG). The Bellman operator of SAMG satisfies the contrac-
tion property

∥∥B(x)− B(y)∥∥ ≤ γo
∥∥x, y∥∥ for all x, y ∈ Q. Q represents the Q function space. The

contraction coefficient of SAMG γo(s, a) is bounded above by the following expression:{
(1− p(s, a)) γ + γγFp(s, a)C, p(s, a) ≥ pm

γ, p(s, a) < pm
(9)

where C =
∥∥∆off (s, a)

∥∥
∞

/∥∥∆k(s, a)
∥∥
∞ denotes the ratio of the offline and online suboptimality

bounds,
∥∥∆off (s, a)

∥∥
∞ denotes the offline suboptimality bound [V ∗(s)− V πoff (s)],

∥∥∆k(s, a)
∥∥
∞

denotes the suboptimality bound of the k-th iteration of online fine-tuning and 0 < γF < 1 denotes
the convergence coefficient of offline algorithm class F .

The upper equation of Theorem 4.2 holds for in-distribution samples, which are well mastered by
the offline model. Therefore, the offline suboptimality bound is substantially tighter compared to
the online bound. This illustrates that the offline model guidance significantly accelerates the online
fine-tuning process by providing more accurate estimations for in-distribution samples. Specifically,
for these samples, the convergence speed depends on the offline confidence implied by p(s, a), i.e.,
a higher p(s, a) indicates a higher degree of offline-ness, corresponding to a smaller error term
constrained by the term (1− p(s, a)) and ensuring faster convergence. For the OOD samples, the
algorithm degenerates into the traditional algorithm because p(s, a) is set to zero as defined in Eq.
(5). This theoretical result is highly consistent with the analysis of the expected performance as stated
in Section 4.1. Furthermore, it indicates that the extent of algorithm improvement is influenced by
the sample coverage rate of the offline dataset. Specifically, the offline guidance is more reliable with
more complex sample coverage, whereas the guidance is constrained with limited sample diversity.

5 EXPERIMENTAL RESULTS

Our experimental evaluations focus on the performance of SAMG during the online fine-tuning
process based on three state-of-the-art algorithms within D4RL (Fu et al., 2020), covering diverse
environments and task complexities, as detailed below.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison. The D4RL normalized score (Fu et al., 2020) is evaluated for
standard base algorithms (including CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022) and
AWAC (Nair et al., 2020), denoted as “Vanilla") in comparison to the base algorithms augmented with
SAMG (referred to as “Ours"), as well as three baselines (TD3BC (Chen et al., 2020), SPOT (Wu
et al., 2022), Cal_QL (Nakamoto et al., 2023) and EDIS (Liu et al., 2024)). The superior scores
are highlighted in blue . The result is the average normalized score of 5 random seeds ± (standard
deviation).

Dataset1 CQL AWAC IQL TD3BC SPOT Cal_QL EDISVanilla Ours Vanilla Ours Vanilla Ours
Hopp-mr 100.6(1.8) 103.7 (1.3) 99.4(1.3) 108.3 (0.2) 86.2(16.1) 100.4 (0.9) 64.4(21.5) 68.0(11.2) 80.9(38.2) 83.0(26.8)

Hopp-m 60.2(2.7) 88.3 (6.0) 88.2(14.6) 102.5 (1.8) 62.1(7.4) 68.4 (2.9) 66.4(3.5) 54.6(7.1) 78.1(8.7) 30.1(8.9)

Hopp-me 110.8(1.0) 113.0 (0.3) 101.9(20.5) 112.8 (7.2) 103.5(8.7) 108.1 (3.1) 101.2(9.1) 82.6(11.5) 109.1(0.2) 78.4(3.5)

Half-mr 48.0(0.5) 57.8 (1.7) 48.9(1.1) 62.8 (3.3) 45.1(0.6) 49.6 (1.0) 44.8(0.6) 42.4 (3.7) 51.6(0.8) 82.9(1.2)

Half-m 47.6(0.2) 59.0 (0.7) 54.2(1.1) 69.5 (0.9) 49.3(0.1) 62.5 (1.5) 48.1(0.2) 45.9(2.4) 63.2(2.5) 66.4(11.7)

Half-me 95.2(1.0) 97.2 (0.8) 94.8(1.3) 96.7 (1.0) 91.6 (0.9) 82.3(11.7) 90.8(6.0) 87.4(7.4) 95.6(4.3) 90.2(1.4)

Walk-mr 82.7(0.7) 88.4 (5.0) 93.8(3.4) 120.1 (3.1) 87.1(3.3) 99.5 (2.4) 85.6(4.0) 69.2 (6.2) 97.1(2.5) 46.9(23.6)

Walk-m 60.2(2.7 82.9 (1.8) 87.8(0.8) 103.6 (4.5) 83.4(1.6) 88.6 (4.7) 82.7(4.8) 79.5(2.4) 83.6(0.8) 76.2(16.7)

Walk-me 109.5(0.5) 112.5 (0.7) 112.7(0.9) 129.2 (3.6) 113.6(1.1) 116.3 (3.7) 110.0(0.4) 87.8(3.9) 110.7(0.4) 107.9(10.3)

Ant-u 92.0(1.7) 97.0 (1.4) 70.0(40.4) 87.0 (13.2) 83.3(6.1) 94.0 (1.2) 70.8(39.2) 30.8(12.9) 96.8(0.4) 95.0(7.0)

Ant-ud 58.0(32.0) 62.4 (12.4) 15.0(35.3) 75.0 (7.0) 33.2(4.4) 77.8 (0.8) 44.8(11.6) 44.8(6.5) 63.8(43.4) 72.4(32.5)

Ant-md 82.4(2.2) 89.2 (3.5) 0.0(0.0) 0.0(0.0) 76.4(5.4) 96.6 (1.9) 0.4(0.4) 36.2(11.0) 93.4(3.6) 82.4(4.8)

Ant-mp 85.6(6.6) 86.4 (1.1) 0.0(0.0) 0.0(0.0) 76.2(4.6) 95.2 (1.6) 0.4(0.4) 38.4(8.7) 94.0(2.2) 60.0(51.9)

Ant-ld 62.8(7.4) 63.8 (5.9) 0.0(0.0) 0.0(0.0) 45.4(7.7) 81.4 (7.9) 0.0(0.0) 0.0(0.0) 78.8(5.8) 32.6(15.0)

Ant-lp 55.0(8.4) 60.8 (1.5) 0.0(0.0) 0.0(0.0) 48.8(7.7) 74.8 (8.4) 0.0(0.0) 0.0(0.0) 73.0(19.4) 35.0(17.3)

Pen-c 90.0(4.6) 96.2 (4.0) 63.3(39.7) 70.1 (26.6) 86.7(24.6) 106.0 (27.8) 6.4(4.37) 2.80(11.82) -0.03(4.10) 8.99(17.18)

Door-c -0.34(0.01) 70.8 (2.8) 0.00(0.01) 7.29 (3.14) -0.06(0.03) 13.08 (3.20) -0.32(0.01) -0.16(0.05) -0.33(0.01) 0.09(0.03)

Relo-c -0.28(0.12) 75.0 (2.1) -8.84(1.22) -7.82 (0.93) -0.01(0.04) 0.24 (0.03) -0.21(0.01) -0.14(0.10) -0.31(0.03) -0.34(0.02)

1 Hopp: Hopper, Half: HalfCheetah, Walk: Walker2d, Ant: Antmaze, Relo: Relocate, mr: medium-replay, me:
medium-expert, d: diverse, p: play, u: umaze, ud: umaze-diverse, md: medium-diverse, mp: medium-play, ld:
large-diverse, lp: large-play, c: cloned.

Baselines. (i) SAMG algorithms, the SAMG paradigm is constructed on a variety of state-of-
the-art O2O RL algorithms, including CQL (Kumar et al., 2020) and AWAC (Nair et al., 2020),
IQL (Kostrikov et al., 2022). The pseudo-code of SAMG is provided in Appendix D.1. (ii) O2O
RL algorithms, we implement the aforementioned O2O RL algorithms (CQL, AWAC and IQL).
We also implement SPOT (Wu et al., 2022) (iii) Hybrid RL, we implement SOTA hybrid-RL-based
algorithms, including Cal_QL (Nakamoto et al., 2023) and EDIS (Liu et al., 2024). (iv) Behavior
Cloning (BC), we implement Behavior cloning based algorithm TD3+BC (Fujimoto & Gu, 2021).
All algorithms are implemented based on CORL library (Tarasov et al., 2024) with implementation
details in Appendix D.2. To ensure a fair comparison, all algorithms are pre-trained offline for 1M
iterations followed by 200k iterations of online fine-tuning, which is significantly shorter than
previous work.

Benchmark tasks. We evaluate SAMG and the baselines across multiple benchmark tasks: (1)
The Mujuco locomotion tasks (Fu et al., 2020), including three different kinds of environments
(HalfCheetah, Hopper, Walker2d) where robots are manipulated to complete various tasks on three
different levels of datasets. (2) The AntMaze tasks that an “Ant” robot is controlled to explore and
navigate to random goal locations in six levels of environments. (3) The Adroit tasks include Pen,
Door, and Relocate environments. Details are stated in Appendix D.3.

5.1 EMPIRICAL RESULTS

The normalized scores of the vanilla algorithms with and without SAMG integrated are shown in
Table 1. SAMG consistently outperforms the vanilla algorithms in the majority of environments,
illustrating the superiority of SAMG. SAMG converges significantly faster than vanilla algorithms
and can achieve higher performance. Notably, SAMG achieves the best performance with the
simpler algorithm AWAC, while delivering substantial improvements with other algorithms. The
reason for this counter-intuitive phenomenon is discussed in Appendix D.4, which just illustrates the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0 0.4 0.8 1.2 1.6 2.0

Environment Steps (×105)
40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

N
or

m
al

iz
ed

 S
co

re

SAMG
SAMG-random
SAMG-even
SAMG-static
Vanilla

(a)

0.0 0.4 0.8 1.2 1.6 2.0

Environment Steps (×105)

10

20

30

40

50

60

70

80

90

N
or

m
al

iz
ed

 S
co

re

poff
m =0.2

poff
m =0.5

poff
m =0.6

poff
m =0.7

poff
m =0.8

(b)

30 40 50 60 70

Offline Data Coverage (%)

5

10

15

20

25

30

Sc
or

e
Im

pr
ov

em
en

t

AWAC
IQL
CQL

(c)

Figure 2: The left figure (a) illustrates ablation analysis of the state-action-conditional coefficient.
The middle figure (b) demonstrates the sensitivity test for the coefficient threshold poffm (Please note
that the curve poffm = 0.2 and poffm = 0.5 are overlapped). The right figure (c) plots the average
improvement of the normalized score over the offline data coverage.

effectiveness of SAMG. We present the cumulative regrets on Antmaze in Appendix D.5, further
demonstrating the outstanding online sample efficiency of SAMG.

Although SAMG performs well in most environments, it is still worthwhile to notice SAMG may
occasionally behave unsatisfactory (e.g., IQL-SAMG on HalfCheetah-medium-expert task). We
discuss in Appendix D.6 that this exception is caused by the environment rather than the defect of
SAMG. We notice that the AWAC algorithm performs poorly in the Antmaze environment, resulting
in SAMG struggling to initiate. This is because AWAC is relatively simple and not competent for the
complex task of Antmaze; it is an inherent limitation of AWAC, rather than an issue with SAMG.

We further compare the offline-data-free algorithms SAMG and WSRL in Appendix D.7, high-
lighting the superiority and contribution of SAMG.

5.2 ABLATION ANALYSIS OF THE COEFFICIENT

The state-action-conditional coefficient p(s, a), instantiated as poff (s, a), estimates the offline degree
for a given (s, a) pair and is adaptively updated during training. To demonstrate the impact of
this adaptive state-action-conditional coefficient, we compare several different architectures on the
environment HalfCheetah with CQL-SAMG, including: (i) adopted SAMG setting (denoted as
SAMG), (ii) static state-action-conditional coefficient (which means the VAE model is fixed once pre-
trained offline, denoted as SAMG-static) (iii) the offline and online critics are combined with equal
weights (0.5 each) for each state-action pair. (denoted as SAMG-even), (iv) the mixing coefficient for
each state-action pair is randomly sampled from a uniform distribution (denoted as SAMG-random),
(v) the vanilla RL algorithms (denoted as Vanilla). The results are illustrated in Fig. 2 (a).

SAMG shows consistent and significant improvement compared to other settings. Casual selections of
C-VAE (SAMG-even and SAMG-random) exhibit notably inferior algorithm performance during the
initial training phase, demonstrating the effectiveness of state-action-conditional coefficient structure.
However, they catch up with and surpass the performance of the vanilla algorithms, highlighting the
advantage of SAMG paradigm and offline information. SAMG improves over the SAMG-static and
SAMG-even algorithms by 15.3% and 21.8% respectively.

5.3 SENSITIVITY ANALYSIS OF COEFFICIENT THRESHOLD

This crucial hyperparameter, poffm , holds the lower threshold of OOD samples. We evaluate the
sensitivity on Antmaze with IQL-SAMG across a range of numbers including 0.2, 0.5, 0.6, 0.7
(chosen value), and 0.8. The results shown in Fig. 2 (b) illustrates that the influence of poffm is
systematic and interpretable. A slight change in the value of poffm (corresponding to 0.6 and 0.8)
leads to an insignificant influence to the algorithm performance. If the value is too small, all samples
are regarded as in-distribution samples and the poff (s, a) is identical to pint(s, a). Therefore the
performance remains identical across different poffm , as evidenced by the overlapping curves for 0.2

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

and 0.5 in Fig. 2. In summary, tuning poffm is controllable and the range of 0.6 to 0.8 is sufficient, and
the performance remains relatively stable within this interval.

5.4 FURTHER COMPARISONS WITH HYBRID RL ALGORITHMS

We compare SAMG with Hybrid RL based algorithms in Table 1. A natural problem arises: would the
algorithm performance improve if the hybrid RL setting were replaced with offline-guidance setting?
To illustrate this question, we modify the Cal_QL algorithm with SAMG setting and eliminate
the offline data. The results, presented in Table 2, indicate that SAMG still outperforms Cal_QL,
demonstrating the superiority of SAMG paradigm. As for EDIS algorithm, it relies heavily on the
offline dataset, making it impractical to adapt to offline-guidance setting.

5.5 DOES SAMG RELY ON OFFLINE DATA COVERAGE?

This part aims to showcase the relationship between algorithm performance improvement and the
coverage rate of the offline dataset. To quantify the data coverage of a specific offline dataset, we
apply t-SNE (Van der Maaten & Hinton, 2008) to perform dimensionality reduction and then cluster
data points across all levels of datasets within a given environment, as detailed in Appendix D.8.

As shown Fig. 2 (c) (left: medium-replay, middle: medium and right: medium-expert), we observe
consistent performance improvement of SAMG across all dataset levels. Notably, middle sample
coverage rate yields more significant performance improvement. This is because extremely low
coverage induces a narrow distribution of the offline dataset, resulting in limited information of the
offline model. Conversely, high coverage contributes to satisfaction with the offline model, thus
leaving limited room for further enhancement. Moreover, moderate coverage scenarios are common
in practical offline datasets, making the observed behavior particularly relevant in real-world settings.

Table 2: Algorithm performance of Cal_QL and SAMG. The algorithms performance of Cal_QL
compared to SAMG integrated Cal_QL algorithms. The setting and notions are the same as Table 1.

Hopp-mr Hopp-m Hopp-me Half-mr Half-m Half-me Walk-mr Walk-m Walk-me
Cal_QL 80.9(38.2) 78.1(8.7) 109.1(0.2) 51.6(0.8) 63.2(2.5) 95.6(4.3) 97.1(2.5) 83.6(0.8) 110.7(0.4)

SAMG 101.6(0.6) 99.8(2.1) 111.7(0.6) 56.4(1.5) 65.1(1.0) 96.3(0.5) 101.2(0.1) 97.8(1.7) 112.3(0.8)

Ant-u Ant-ud Ant-mp Ant-md Ant-lp Ant-ld Pen-c Door-c Relo-c
Cal_QL 96.8(0.4) 63.8(43.4) 93.4(3.6) 94.0(2.2) 78.8(5.8) 73.0(19.4) -0.03(4.10) -0.33(0.01) -0.31(0.03)

SAMG 99.0(1.0) 66.4(23.0) 91.6(2.4) 96.0(1.6) 79.8(2.4) 72.4(11.2) 5.01(12.01) 1.35(0.57) 3.89(0.34)

6 RELATED WORK

Offline-to-online RL. Some offline RL algorithms are directly applied for O2O setting (Nair et al.,
2020; Kumar et al., 2020; Kostrikov et al., 2022). A series of Q-ensemble based algorithms are
proposed, while combined with balanced experience replay (Lee et al., 2022), state-dependent balance
coefficient (Wang et al., 2024), uncertainty quantification guidance (Guo et al., 2023), uncertainty
penalty and smoothness regularization (Wen et al., 2024) and optimistic exploration (Zhao et al.,
2024). Model-based O2O RL algorithms combined with prioritized sampling scheme (Mao et al.,
2022), or energy-guided diffusion sampling technique (Liu et al., 2024) are proposed to mitigate O2O
distribution shift. Recently some work attempts to efficiently explore the environment to accelerate
the fine-tuning process: O3F optimistically takes actions with higher expected Q-values (Mark et al.,
2022), PEX introduces an extra policy to adaptively explore and learn (Zhang et al., 2023), OOO
framework maintains an exploration policy to collect data and an exploitation policy to train on all
data (Mark et al., 2024) and PTGOOD utilizes planning procedure to explore high-reward areas
distant from offline distribution (McInroe et al., 2024). There are some other independent works:
SPOT brings out a density-based regularization term to model the behavior policy (Wu et al., 2022),
Td3+BC integrates behavioural cloning /constraint that decays over time (Beeson & Montana, 2022),
Cal-QL calibrates the learned Q-values at reasonable scale with some reference policy (Nakamoto
et al., 2023). OLLIE proposes the O2O imitation learning (Yue et al., 2024).

We observe that a current work WSRL explores to initialize the replay buffer without retaining
offline data (Zhou et al., 2024). Nevertheless, it only adopts the Q-ensemble technique to resist

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

the distribution shift, while SAMG proposes an elegant and computationally efficient solution.
Appendix D.7 offers a comprehensive comparison between SAMG and WSRL. We also note that
DMG (Mao et al., 2024), an offline reinforcement learning algorithm, also involves mixing Q-values,
but its core differs significantly from that of SAMG. Specifically, DMG mixes the maximum Q-values
of in-distribution (ID) and OOD data and directly modifies the target values; in contrast, SAMG
mixes offline and online Q-values and adaptively mixes the two target values. Furthermore, the two
algorithms differ in both their algorithmic domains and theoretical frameworks.

7 CONCLUSION

This paper proposes a novel paradigm named SAMG to eliminate the tedious usage of offline data and
leverage the pre-trained offline critic model instead, thereby ensuring 100% online sample utilization
and better fine-tuning performance. SAMG seamlessly combines online and offline critics with a
state-action-conditional coefficient without introducing undesirable or questionable intrinsic rewards.
This coefficient estimates the complex distribution of the offline dataset and provides the probability
of a given state-action sample. Theoretical analysis proves the convergence optimality and lower
estimation error. Experimental results demonstrate the superiority of SAMG over vanilla baselines.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on offline-to-online reinforcement learning algorithms and does not involve human
or animal subjects, personally identifiable data, or any interventions that could raise ethical concerns.
No potentially harmful or offensive content is generated, and there are no safety issues associated
with this research.

REPRODUCIBILITY STATEMENT

We have made considerable efforts to ensure our work can be reproduced. The method is detailed in
Sec. 3, including model design and training paradigm. Related environments and base algorithms are
clearly stated in Sec. 5. The pesudo code is provided in Appendix D.1 and all training details are in
Appendix D.2. These provide enough information to replicate our experiments. We also attach the
source code in the supplementary materials.

REFERENCES

Alex Beeson and Giovanni Montana. Improving td3-bc: Relaxed policy constraint for offline learning
and stable online fine-tuning. arXiv preprint arXiv:2211.11802, 2022.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio.
Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

Eric Chen, Zhang-Wei Hong, Joni Pajarinen, and Pulkit Agrawal. Redeeming intrinsic rewards via
constrained optimization. Advances in Neural Information Processing Systems, 35:4996–5008,
2022.

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. Bail: Best-
action imitation learning for batch deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:18353–18363, 2020.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double q-learning:
Learning fast without a model. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=AY8zfZm0tDd.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Proceedings of the 36th International Conference on Machine Learning, 2019.

Siyuan Guo, Yanchao Sun, Jifeng Hu, Sili Huang, Hechang Chen, Haiyin Piao, Lichao Sun, and
Yi Chang. A simple unified uncertainty-guided framework for offline-to-online reinforcement
learning. arXiv preprint arXiv:2306.07541, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Mohammadreza Iman, Hamid Reza Arabnia, and Khaled Rasheed. A review of deep transfer learning
and recent advancements. Technologies, 11(2):40, 2023.

EMMETT Keeler and A Meir. A theorem on contraction mappings. J. Math. Anal. Appl, 28:326–329,
1969.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. Advances in neural information processing systems, 27,
2014.

11

https://openreview.net/forum?id=AY8zfZm0tDd

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=68n2s9ZJWF8.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, pp. 11761–11771, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Xu-Hui Liu, Tian-Shuo Liu, Shengyi Jiang, Ruifeng Chen, Zhilong Zhang, Xinwei Chen, and Yang
Yu. Energy-guided diffusion sampling for offline-to-online reinforcement learning. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=hunSEjeCPE.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=Byey7n05FQ.

James Lucas, George Tucker, Roger Grosse, and Mohammad Norouzi. Understanding posterior
collapse in generative latent variable models, 2019. URL https://openreview.net/
forum?id=r1xaVLUYuE.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
reinforcement learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, 2022.

Yihuan Mao, Chao Wang, Bin Wang, and Chongjie Zhang. Moore: Model-based offline-to-online
reinforcement learning. arXiv preprint arXiv:2201.10070, 2022.

Yixiu Mao, Cheems Wang, Yun Qu, Yuhang Jiang, and Xiangyang Ji. Doubly mild generalization for
offline reinforcement learning. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=7QG9R8urVy.

Max Sobol Mark, Ali Ghadirzadeh, Xi Chen, and Chelsea Finn. Fine-tuning offline policies with
optimistic action selection. In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.

Max Sobol Mark, Archit Sharma, Fahim Tajwar, Rafael Rafailov, Sergey Levine, and Chelsea Finn.
Offline RL for online RL: Decoupled policy learning for mitigating exploration bias, 2024. URL
https://openreview.net/forum?id=lWe3GBRem8.

Trevor McInroe, Adam Jelley, Stefano V Albrecht, and Amos Storkey. Planning to go out-of-
distribution in offline-to-online reinforcement learning. Reinforcement Learning Journal, 2:
516–546, 2024.

Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms. arXiv preprint
arXiv:1109.2378, 2011.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Yuexiang Zhai, Anikait Singh, Yi Ma, Chelsea Finn, Aviral Kumar, and Sergey
Levine. Cal-QL: Calibrated offline RL pre-training for efficient online fine-tuning. In Workshop
on Reincarnating Reinforcement Learning at ICLR 2023, 2023. URL https://openreview.
net/forum?id=PhCWNmatOX.

12

https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=hunSEjeCPE
https://openreview.net/forum?id=hunSEjeCPE
https://openreview.net/forum?id=Byey7n05FQ
https://openreview.net/forum?id=Byey7n05FQ
https://openreview.net/forum?id=r1xaVLUYuE
https://openreview.net/forum?id=r1xaVLUYuE
https://openreview.net/forum?id=7QG9R8urVy
https://openreview.net/forum?id=lWe3GBRem8
https://openreview.net/forum?id=PhCWNmatOX
https://openreview.net/forum?id=PhCWNmatOX

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on offline
reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Rafael Rafailov, Kyle Beltran Hatch, Victor Kolev, John D Martin, Mariano Phielipp, and Chelsea
Finn. MOTO: Offline to online fine-tuning for model-based reinforcement learning. In Workshop
on Reincarnating Reinforcement Learning at ICLR 2023, 2023. URL https://openreview.
net/forum?id=cH8XVu9hUV.

Yuda Song, Yifei Zhou, Ayush Sekhari, Drew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hybrid
RL: Using both offline and online data can make RL efficient. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=yyBis80iUuU.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3:
9–44, 1988.

M. I. Jordan T. Jaakkola and S. P. Singh. On the convergence of stochastic iterative dynamic
programming algorithms. Neural Computation, 6, 1994.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov. Corl:
Research-oriented deep offline reinforcement learning library. Advances in Neural Information
Processing Systems, 36, 2024.

Philip Thomas. Bias in natural actor-critic algorithms. In International conference on machine
learning, pp. 441–448. PMLR, 2014.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Shenzhi Wang, Qisen Yang, Jiawei Gao, Matthieu Lin, Hao Chen, Liwei Wu, Ning Jia, Shiji Song, and
Gao Huang. Train once, get a family: State-adaptive balances for offline-to-online reinforcement
learning. Advances in Neural Information Processing Systems, 36, 2024.

Yixin Wang, David Blei, and John P Cunningham. Posterior collapse and latent variable non-
identifiability. Advances in Neural Information Processing Systems, 34:5443–5455, 2021.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of
Big data, 3:1–40, 2016.

Xiaoyu Wen, Xudong Yu, Rui Yang, Chenjia Bai, and Zhen Wang. Towards robust offline-to-online
reinforcement learning via uncertainty and smoothness. Journal of Artificial Intelligence Research
(JAIR), 2024.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy optimiza-
tion for offline reinforcement learning. arXiv preprint arXiv:2202.06239, 2022.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

Sheng Yue, Xingyuan Hua, Ju Ren, Sen Lin, Junshan Zhang, and Yaoxue Zhang. OLLIE: Imitation
learning from offline pretraining to online finetuning. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=eG42XBhV9a.

Haichao Zhang, Wei Xu, and Haonan Yu. Policy expansion for bridging offline-to-online rein-
forcement learning. In The Eleventh International Conference on Learning Representations,
2023.

Kai Zhao, Jianye Hao, Yi Ma, Jinyi Liu, Yan Zheng, and Zhaopeng Meng. Enoto: Improving
offline-to-online reinforcement learning with q-ensembles, 2024. URL https://arxiv.org/
abs/2306.06871.

13

https://openreview.net/forum?id=cH8XVu9hUV
https://openreview.net/forum?id=cH8XVu9hUV
https://openreview.net/forum?id=yyBis80iUuU
https://openreview.net/forum?id=yyBis80iUuU
https://openreview.net/forum?id=eG42XBhV9a
https://arxiv.org/abs/2306.06871
https://arxiv.org/abs/2306.06871

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Han Zheng, Xufang Luo, Pengfei Wei, Xuan Song, Dongsheng Li, and Jing Jiang. Adaptive policy
learning for offline-to-online reinforcement learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 37(9):11372–11380, Jun. 2023. doi: 10.1609/aaai.v37i9.26345.

Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online rein-
forcement learning fine-tuning need not retain offline data. arXiv preprint arXiv:2412.07762,
2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing and writing this paper, we used large language models (LLMs) only as an auxiliary tool
to help with language polishing and grammar checking. The research ideas, experimental design,
analysis, and core technical writing were entirely carried out by the authors without relying on LLMs.
The authors take full responsibility for the final cont ent.

B THEORETICAL ANALYSIS

B.1 CONTRACTION PROPERTY

Our algorithm actually breaks the typical Bellman Equation of the RL algorithm denoted as Q =
max
π∈Π
Bπ = max

π∈Π
(rπ + γPπQ). Instead we promote Eq. (1). In order to prove the convergence of the

updating equation, we introduce the contraction mapping theorem which is widely used to prove the
convergence optimality of RL algorithm.

Theorem B.1 (Contraction mapping theorem). For an equation that has the form of x = f(x) where
x and f(x) are real vectors, if f is a contraction mapping which means that ∥f(x1) − f(x2)∥ ≤
γ∥x1 − x2∥(0 < γ < 1), then the following properties hold.

Existence: There exists a fixed point x∗ that satisfies f(x∗) = x∗.

Uniqueness: The fixed point x∗ is unique.

Algorithm: Given any initial state x0, consider the iterative process: xk+1 = f(xk), where k =
0, 1, 2, Then xk convergences to x∗ as k →∞ at an exponential convergence rate.

We just need to prove that this equation satisfies the contraction property of theorem B.1 and naturally
we can ensure the convergence of the algorithm.

Take the right hand of Eq. (equation 1) as function f(Q) and consider any two vectors Q1, Q2 ∈ RS ,
and suppose that:

π∗
1

.
= argmax

π
(f(Q1)) = argmax

π

[
(1− p(s, a))BπQ1 + p(s, a)BπQoff)

]
π∗
2

.
= argmax

π
(f(Q2)) = argmax

π

[
(1− p(s, a))BπQ2 + p(s, a)BπQoff)

]
.

(10)

Then,

f(Q1) =max
π

[
(1− p(s, a))BπQ1 + p(s, a)BπQoff)

]
=(1− p(s, a))Bπ

∗
1Q1 + p(s, a)Bπ

∗
1Qoff

≥(1− p(s, a))Bπ
∗
2Q1 + p(s, a)Bπ

∗
2Qoff ,

(11)

and similarly:

f(Q2) ≥ (1− p(s, a))Bπ
∗
1Q2 + p(s, a)Bπ

∗
1Qoff . (12)

To simplify the derivation process, we use pπ to represent p(s, π(a|s)) considering that values of p
function class are determined by the policy π of any given state. As a result,

f(Q1)− f(Q2)

=(1− pπ
∗
1)Bπ

∗
1Q1 + pπ

∗
1Bπ

∗
1Qoff −

[
(1− pπ

∗
2)Bπ

∗
2Q2 + pπ

∗
2Bπ

∗
2Qoff

]
≤(1− pπ

∗
1)Bπ

∗
1Q1 + pπ

∗
1Bπ

∗
1Qoff −

[
(1− pπ

∗
1)Bπ

∗
1Q2 + pπ

∗
1Bπ

∗
1Qoff

]
=(1− pπ

∗
1)(Bπ

∗
1Q1 − Bπ

∗
1Q2)

=γ(1− pπ
∗
1)Pπ

∗
1 (Q1 −Q2)

≤γPπ
∗
1 (Q1 −Q2).

(13)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We can see that the result reduces to that of the normal Bellman equation and therefore, the following
derivation is omitted. As a result, we get,

∥f(Q1)− f(Q2)∥∞ ≤ γ∥Q1 −Q2∥∞, (14)

which concludes the proof of the contraction property of f(Q).

B.2 CONVERGENCE OPTIMALITY

We consider a tabular setting for simplicity. We first write down the iterative form of Eq. (6) as below:

if s = sk, a = ak,

Qk+1(s, a) =Qk(s, a)− αk(s, a)
[
Qk(s, a)− (rk+1 + γQk(sk+1, ak+1))

]
− αk(s, a)γp(s, a)

(
Qoff (sk+1, ak+1)−Qk(sk+1, ak+1)

)
.

(15)

else,

Qk+1(s, a) = Qk(s, a). (16)

The error of estimation is defined as:

∆k(s, a)
.
= Qk(s, a)−Q(s, π). (17)

where Qπ(s, a) is the state action value s under policy π. Deducting Qπ(s, a) from both sides of 8
gets:

∆k+1(s, a) = (1− αk(s, a))∆k(s, a) + αk(s, a)ηk(s, a), s = sk, a = ak. (18)

where
ηk(s, a)

=
[
rk+1 + γQk(sk+1, ak+1)−Qπ(s, a)

]
+ γp(s, a)

[
Qoff (sk+1, ak+1)−Qk(sk+1, ak+1)

]
=
[
rk+1 + γQk(sk+1, ak+1)−Qπ(s, a)

]
+

γp(s, a)
{[

Qoff (sk+1, ak+1)−Qπ(sk+1, ak+1)
]
+

[
Qπ(sk+1, ak+1)−Qk(sk+1, ak+1)

]}
=
[
rk+1 + γQk(sk+1, ak+1)−Qπ(s, a)

]︸ ︷︷ ︸
Γ1

− γp(s, a)
[
Qk(sk+1, ak+1)−Qπ(sk+1, ak+1)

]︸ ︷︷ ︸
Γ2

+ γp(s, a)
[
Qoff (sk+1, ak+1)−Qπ(sk+1, ak+1)

]︸ ︷︷ ︸
Γ3

=Γ1 − Γ2 + Γ3.
(19)

Similarly, deducting Qπ(s, a) from both side of Eq. (16) gets:

∆k+1(s, a) = (1− αk(s, a))∆k(s, a) + αk(s, a)ηk(s, a), s ̸= sk or a ̸= ak.

this expression is the same as 18 except that αk(s, a) and ηk(s, a) is zero. Therefore we observe the
following unified expression:

∆k+1(s, a) = (1− αk(s, a))∆k(s, a) + αk(s, a)ηk(s, a).

To further analyze the convergence property, we introduce Dvoretzky’s theorem (T. Jaakkola & Singh,
1994):
Theorem B.2 (Dvoretzky’s Throrem). Consider a finite set S of real numbers. For the stochastic
process:

∆k+1(s) = (1− αk(s))∆k(s) + βk(s)ηk(s).

it holds that ∆k(s) convergences to zero almost surely for every s ∈ S if the following conditions are
satisfied for s ∈ S:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a)
∑
k αk(s) =∞,

∑
k α

2
k(s) <∞,

∑
k

β2
k(s) <∞, E[βk(s)|Hk] ≤ E[αk(s)|Hk] uniformly

almost surely;

(b)
∥∥E[ηk(s)|Hk]∥∥∞ ≤ γ

∥∥∆k

∥∥
∞, with γ ∈ (0, 1);

(c) var [ηk(s)|Hk] ≤ C
(
1 +

∥∥∆k(s)
∥∥
∞

)2
, with C a constant.

Here, Hk = {∆k,∆k−1, · · · , ηk−1, · · · , αk−1, · · · , βk−1, · · · } denotes the historical information.
The term ∥ · ∥∞ represents the maximum norm.

To prove SAMG is well-converged, we just need to validate that the three conditions are satisfied.
Nothing changes in our algorithm compared to normal RL algorithms when considering the first
condition so it is naturally satisfied. Please refer to (T. Jaakkola & Singh, 1994) for detailed proof.
For the second condition, due to the Markovian property, ηt(s, a) does not depend on the historical
information and is only dependent on s and a. Then, we get E[ηk(s, a)|Hk] = E[ηk(s, a)].

Specifically, for s = st, a = at, we have:

E[ηk(s, a)] = E[ηk(sk, ak)] = E[Γ1]− E[Γ2] + E[Γ3].

For the first term,

E[Γ1] =E
[
rk+1 + γQk(sk+1, ak+1)−Qπ(sk, ak) |sk, ak

]
=E

[
rk+1 + γQk(sk+1, ak+1) |sk, ak

]
−Qπ(sk, ak).

Since Qπ(sk, ak) = E [rk+1 + γQπ(sk+1, ak+1) |sk, ak], the above equation indicates that,

E[Γ1] =γE
[
Qk(sk+1, ak+1)−Qπ(sk+1, ak+1) |sk, ak

]
.

For the second term,

E[Γ2] =γp(sk, ak)E
[
Qk(sk+1, ak+1)−Qπ(sk+1, ak+1) |sk, ak

]
.

Combining these two terms gets:

E[Γ1]− E[Γ2] =γ (1− p(sk, ak))E
[
Qk(sk+1, ak+1)−Qπ(sk+1, ak+1) |sk, ak

]
.

Then, ∥∥E[Γ1]− E[Γ2]
∥∥
∞

=γ (1− p(sk, ak))
∥∥∥ ∑
a′∈A

∑
s′∈S

t (s′, a′ |sk, ak)
∣∣Qk(s

′, a′)−Qπ(s′, a′)
∣∣∥∥∥

∞

=γ (1− p(sk, ak)) max
s′∈S,a′∈A

{ ∑
a′∈A

∑
s′∈S

t (s′, a′ |sk, ak)
∣∣Qk(s

′, a′)−Qπ(s′, a′)
∣∣}

≤γ (1− p(sk, ak))
∑
a′∈A

∑
s′∈S

t (s′, a′ |sk, ak) max
s′∈S,a′∈A

[∣∣Qk(s
′, a′)−Qπ(s′, a′)

∣∣]
=γ (1− p(sk, ak)) max

s′∈S,a′∈A

[∣∣Qk(s
′, a′)−Qπ(s′, a′)

∣∣]
=γ (1− p(sk, ak))

∥∥∆k(s, a)
∥∥
∞.

For the third term, to simplify the derivation, we mildly abuse the notation of s′, a′ to represent
sk+1, ak+1,

E[Γ3] =E
[
γp(sk, ak)

(
Qoff (sk+1, ak+1)−Qπ(sk+1, ak+1)

)]
=γ

∑
a′∈A

∑
s′∈S

t (s′, a′ |sk, ak) p(sk, ak)
∣∣Qoff (s′, a′)−Qπ(s′, a′)

∣∣ .
17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

It follows that:∥∥E[Γ3]
∥∥
∞

=
∥∥∥γ ∑

a′∈A

∑
s′∈S

t (s′, a′ |sk, ak) p(sk, ak)
∣∣Qoff (s′, a′)−Qπ(s′, a′)

∣∣∥∥∥
∞

=γp(sk, ak) max
s′∈S,a′∈A

{ ∑
a′∈A

∑
s′∈S

t (s′, a′ |sk, ak)
∣∣Qoff (s′, a′)−Qπ(s′, a′)

∣∣}
≤γp(sk, ak)

∑
a′∈A

∑
s′∈S

t (s′, a′ |sk, ak) max
s′∈S,a′∈A

[∣∣Qoff (s′, a′)−Qπ(s′, a′)
∣∣]

=γp(sk, ak) max
s′∈S,a′∈A

[∣∣Qoff (s′, a′)−Qπ(s′, a′)
∣∣].

If the sample (s′, a′) is in the distribution of offline dataset, We notice that the probability (s′, a′) is
significant and the Qk(s

′, a′) is a good estimation of the optimal value Qπ(s
′, a′) and the specific

form of TD error depends on the offline algorithm, and we can uniformly formulate this by:∥∥E[Γ3]
∥∥
∞ = γγFp(sk, ak) max

s′,a′∈D

[∣∣Qoff (s′, a′)−Qπ(s′, a′)
∣∣]

= γγFp(sk, ak)
∥∥∆N (s, a)

∥∥
∞.

where F denotes the function class of offline algorithm, 0 < γF < 1 denotes the convergence
coefficient of offline algorithm class F and N denotes the iterative number of offline pre-training.

But while (s′, a′) falls out of the distribution of offline dataset, the probability p(s′, a′) is trivial
with an upper bound constrained to a diminutive number ξOOD, denoted as p(s′, a′) < ξOOD(s

′, a′),
and we know little about the |Qπ(s

′, a′)−Qk(s
′, a′)| but it is inherently restricted by the maximum

reward Rmax. Then this term is limited by 2γξOOD(s
′, a′)Rmax and we cut the probability p(s′, a′)

to zero in practice. Combining the above two cases gets the following upper limit:∥∥E[Γ3]
∥∥
∞ ≤max

{
γγFp(sk, ak)

∥∥∆N (s, a)
∥∥
∞, 2γξOOD(s

′, a′)Rmax

}
=γγFp(sk, ak)

∥∥∆N (s, a)
∥∥
∞.

Therefore,∥∥E[ηk(s, a)]∥∥∞ =
∥∥E[Γ1]− E[Γ2] + E[Γ3]

∥∥
∞

≤γ (1− p(sk, ak))
∥∥∆k(s, a)

∥∥
∞ + γγFp(sk, ak)

∥∥∆N (s, a)
∥∥
∞.

Because N is big enough that
∥∥∆N (s, a)

∥∥
∞ is a high-order small quantity compared to

∥∥∆k(s, a)
∥∥
∞

and can be written as O(
∥∥∆k(s, a)

∥∥
∞). Therefore,∥∥E[ηk(s, a)]∥∥∞ ≤γ (1− p(sk, ak))

∥∥∆k(s, a)
∥∥
∞ + γγFp(sk, ak)O(

∥∥∆k(s, a)
∥∥
∞. (20)

where 0 < γ (1− p(sk, ak)) < 1 and the second condition is satisfied. Finally, regarding the third
condition, we have when s = sk, a+ ak,

var
[
ηk(s)|Hk

]
=var

{[
rk+1 + γQk(sk+1, ak+1)−Qπ(s, a)

]
+ γp(s, a)

[
Qoff (sk+1, ak+1)−Qk(sk+1, ak+1)

]}
.

and var [ηk(s)|Hk] = 0 for s ̸= sk or a ̸= ak.

Since rk+1 and E [ηk(s)|Hk] are both bounded, the third condition can be proven easily. And
Therefore SAMG is well converged.

DISCUSSION OF THE CONVERGENCE

Theorem 4.1 establishes that the SAMG update rule is a convergent policy evaluation method. While
this does not directly prove convergence to the optimal Q-function, Q∗, for the full Q-learning control

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

loop (which involves policy improvement), it is a critical prerequisite, demonstrating that the value
estimation process itself is sound under our proposed modification.

While a full proof of convergence to Q∗ for SAMG in a control setting with function approximation
is complex and beyond the scope of this paper’s analysis, the convergence of the evaluation step is a
positive indication of stability. SAMG operator only modifies and accelerates the policy evaluation
process, and is integrated with algorithms like CQL, IQL and AWAC, which themselves have their
own mechanisms for handling policy improvement.

While our current theoretical analysis focuses on the convergence of policy evaluation, the strong
empirical performance of SAMG when integrated with established Q-learning based algorithms
across various challenging benchmarks (Section 5) suggests its effectiveness in the practical control
setting, leading to policies that achieve high returns.

B.3 CONVERGENCE SPEED

In this section, we give a more detailed analysis of the convergence speed of SAMG. For vanilla
RL algorithms, the contraction coefficient γ represents the convergence speed because it controls
the contraction speed of Q-iteration. For SAMG, we give a rough derivation in Appendix B.1 that
SAMG possesses a smaller contraction coefficient. But how small could that be? We actually have
already derived the specific form of contraction factor in Appendix B.2, as specified in Eq. (20).
However, Eq. (20) just covers the in-distribution situation of the contraction coefficient. As for the
OOD situation, the contraction coefficient share the same coefficient as the normal Bellman equation.
To sum up, we write the whole the contraction coefficient as below:

γo ≤

 (1− p(sk, ak)) γ + γγFp(sk, ak)

∥∥∆off (s, a)
∥∥
∞∥∥∆k(s, a)

∥∥
∞

, p(sk, ak) ≥ pm

γ, p(sk, ak) < pm

(21)

where 0 < γF < 1 denotes the convergence coefficient of offline algorithm class F and∥∥∆off (s, a)
∥∥
∞ denotes the offline suboptimality bound [V ∗(s)− V πoff (s)] and

∥∥∆k(s, a)
∥∥
∞

denotes the suboptimality bound of the k-th iteration of online fine-tuning.

The upper equation holds for in-distribution samples, which are well mastered by the offline model.
Therefore, the offline suboptimality bound is substantially tighter compared to the online bound. This
illustrates that the offline model guidance significantly accelerates the online fine-tuning process by
providing accurate estimations for in-distribution samples.

C STATE-ACTION-CONDITIONAL COEFFICIENT

C.1 POSTERIOR COLLAPSE SITUATION

we observe that the previous C-VAE structure suffers from posterior collapse, as shown in Fig. 3.
Posterior collapse implies that the encoder structure completely fails. The KL-divergence loss
vanishes to zero for any input, and the latent output is just a standard normal distribution (0 for the
mean and 1 for the variance). Thus, the decoder structure takes noise z ∼ N (0, 1) as input and
reconstructs samples all by itself.

Fig. 3 illustrates the KL loss values with posterior collapse (with “s-hopper-m" and “s-hopper-me"
legend) and without posterior collapse (with “sa-hopper-m" and “sa-hopper-me" legend), representing
the distribution error between the output distribution of encoder and standard normal distribution. It
can be observed that situations with posterior collapse possess much lower loss term (approximately
by four orders of magnitude). Though the loss is lower for the posterior collapse situation, the output
of all state-action samples are 0 and 1 for mean and standard respectively. Therefore the encoder
totally fails to function.

C.2 VAE IMPLEMENTATIONS

For the C-VAE module, we employ the same VAE structure as Xu (Xu et al., 2022) except that
we change the input to (state, action) and the output to next state. Furthermore, we adopt the KL-
annealing technique in the hopper environments where we do not introduce the KL loss initially

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 3: Illustration of the posterior collapse of C-VAE structure The blue curve represents the normal
KL loss term while the green term represents the posterior collapse situation.

Figure 4: Statistical results of the output from the C-VAE model, including (a) the mean values and (b)
the standard values

by manually setting it to zero and slowly increasing the KL loss weight with time. KL-annealing
could result in more abundant representations of the encoder and is less likely to introduce posterior
collapse. We also simplify the decoder of the C-VAE module in hopper and Walker2d environments to
avoid posterior collapse. Notably, avoid normalizing the states and the actions because the normalized
states are highly likely to result in the posterior collapse. In terms of experimental experience, the
algorithm performs best when the KL loss converges to around 0.03. The information of the next state
is supplemented in the training phase to better model the offline distribution and statistical techniques
are combined with neural networks to obtain more reasonable probability estimation.

C.3 PRACTICAL VAE DISTRIBUTION

In practice implementation, the offline data is input to C-VAE model, and the statistical result of
output from the C-VAE model, including mean (zm) and standard (zv), are shown in the Fig. 4.
From the figure we can conclude that the statistical distributions of the mean and standard exhibits a
near-Gaussian distribution and fitting the variable with a normal distribution yields very small mean
squared error: around 10 for the mean and 100 for the standard (with up to 1 million data). Therefore,
we can consider the fitted distribution as the offline distribution and resort to this fitted distribution to
infer the coefficient.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.4 DERIVATION OF THE PROBABILITY OF C-VAE

We derive the probability for the mean Zm below and the derivation for the standard is similar.

P (|Zm − µm| > |zm − µm|)
=P (Zm > µm + |zm − µm|) + P (Zm < µm − |zm − µm|)
=2P (Zm < µm − |zm − µm|)
=2FZm(µm − |zm − µm|)

(22)

where the second equation comes from the symmetry of the normal distribution about its mean and
the second equation comes from the definition of the cumulative distribution function.

C.5 ADAPTIVE VAE COEFFICIENT

At fixed intervals (Nupdate steps, set to 10k in our implementation, meaning that only a few updates
are required throughout the fine-tuning process), we first collect data from the current period (all
data from the previous to the current interval) and then filter out OOD samples, whose poff < poffm .
From this set, we identify "mastered OOD samples". Since the model is lack of awareness of OOD
samples, estimated Q-values tend to introduce significant errors and large online-critic loss terms
during training. Therefore, the magnitude of the error between the estimated critic during online
fine-tuning and the true Q-values can be used as a measure of how well the OOD samples have been
mastered. However, in practice, the ground truth of the Q-values is unavailable, so the exact error
can not be obtained. To address this, we adopted several potential approaches to estimate the error,
which will be detailed later. After obtaining error estimates, we select samples with minimal errors as
mastered OOD samples (set to less than 1e-1 in our implementation). These are OOD samples for
which the online agent now demonstrates good predictive accuracy. These samples are then further
fine-tune the existing VAE model parameters. This allows the VAE to expand its representation of
"understood" or "in-distribution-like" state-action regions, consequently refining the coefficient for
future online steps.

In the actual implementation, the error estimation methods replace the true Q-values with sampling
(as referenced in (Kumar et al., 2020)) and use the practical Bellman operator, where the target
Q-value serves as an estimate. We found that the results of these two methods are similar, with over
80% overlap in the filtered OOD samples, and both lead to comparable improvements in algorithm
performance (with the sampling-based method performing slightly better). Considering the trade-
off between the computation overhead and algorithm performance, we choose to use the Bellman
operator. Additionally, we set the update interval to 10,000 steps. Since this interval exceeds the
target Q network update interval (typically set to 1,000), we consistently refer to the target-Q network
at the beginning of the period to ensure fairness. Given that the target network is already saved at this
point, no additional computation overhead is introduced. Minimal error is defined as the smallest
10% of errors among the filtered samples.

Moreover, as the update of VAE model, the corresponding guidance of offline critic should also
be updated as situations previously deemed out-of-distribution may now be well captured, with
the associated probabilistic model having been revised accordingly. Consequently, the offline
model can be substituted with the current Q-function model. This operation actually treats the
current time step as the beginning of a new online phase, with all prior experiences regarded
as offline knowledge. Since the algorithm relies on offline guidance during each update cycle,
this transition does not introduce significant errors and retains the knowledge embedded in the
previous offline model. Therefore, replacing the offline model with the current Q-function is a
reasonable choice. Furthermore, continuously updating the offline model ensures that the algorithm
progressively improves its understanding of the sample space, allowing the model to keep improving
until convergence. We also experimented with the idea of adaptive tuning the threshold poffm .
Specifically, after each update of the C-VAE, we collected C-VAE outputs on the offline dataset plus
the set of mastered OOD samples, fitted the updated empirical distribution, and recomputed a new
poffm based on the distribution.

Empirically, we observed that the recomputed threshold changed only minimally throughout fine-
tuning. This stability indicates that the initially estimated threshold is already a good approximation
and that a fixed threshold works reliably in practice. Therefore, we opted for using a fixed value,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 50000 100000 150000 200000
Train Steps

0.598

0.600

0.602

0.604

0.606

0.608

0.610

Va
lu

e

poff
m over Training Steps (every 10k)

Walker2d-medium
Antmaze-medium-play
Pen-cloned

Figure 5: The values of poffm through training.

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
Value of p(s, a)

0.0

0.5

1.0

1.5

2.0

2.5

Pe
rc

en
ta

ge
 (%

)

Histogram of p(s,a) for ID and OOD Distributions
OOD Distribution
ID Distribution

Figure 6: The histogram of p(s, a) of ID and OOD dataset, the results are average across the Mujuco
locomotion tasks. The ordinate represents the data percentage of each histogram bin.

which simplifies the algorithm, avoids additional computation overhead, and still provides accurate
and stable performance. The values of poffm through training is shown below:

C.6 THE RELIABILITY OF C-VAE MODULE

To illustrate the reliability of C-VAE module as the state-action-conditional coefficient, we con-
ducted the following two experiments. First, after pre-training the VAE, we collected two datasets:
in-distribution (ID) and out-of-distribution (OOD), to showcase the model’s excellent ability to
distinguish data from different sources. Specifically, the OOD dataset was selected by choosing
samples with the lowest trajectory similarity to the ID dataset across all levels of the environment.
We present the output statistics of p(s, a) on both datasets (as shown in Fig. 6), and the results indi-
cate that the VAE exhibits strong capability in distinguishing ID from OOD samples. Additionally,
this discriminative ability provides effective guidance for hyperparameter selection—setting it to
approximately 0.6 yields optimal results.

To further visualize the modeling capability of the VAE, we analyzed the latent space outputs of the
C-VAE for both datasets and applied t-SNE dimensionality reduction to project these outputs into a
2D space, as shown in Fig 7. In the figure, light blue points represent in-distribution (ID) samples,
while dark blue points represent out-of-distribution (OOD) samples. The results indicate high overlap
between ID and OOD samples in the t-SNE-reduced space, with only a few discrete OOD points.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

ID
OOD

Figure 7: Visualization results of the latent space output by the VAE, dimensionality-reduced to 2D using
t-SNE. Here, light blue points represent in-distribution samples, while dark blue points denote out-of-distribution
samples.

This demonstrates that the C-VAE can effectively model the state-action density and cover both ID
and OOD samples, further verifying its excellent modeling ability.

We also present a specific example. For instance, in Halfcheetah, the joint acceleration at the start of
the environment is generally positive (indicating forward acceleration applied to the joints), which
yields positive rewards—most samples in the offline dataset fall into this category. In contrast,
we examined samples with negative joint acceleration at the environment’s initiation, which are
completely out-of-distribution. We found that the C-VAE outputs approximately 0.7 for the former
and 0.4 for the latter, demonstrating its excellent modeling capability.

C.7 HARD CUTOFF V.S. SOFT SCHEDULE FOR p(s, a)

We experimented with soft schedules instead of hard cutoff, denoted as SAMG-S, which performed
slightly worse in our standard benchmarks, as shown in Table 3. The hard cutoff simplifies im-
plementation and ensures that OOD samples with very low probability do not dominate updates.

Table 3: Hard cutoff v.s. Soft Schedule for p(s, a)
Hopp-mr Hopp-m Ant-md Ant-mp

IQL 86.2 62.1 76.4 76.2
SAMG 100.4 68.4 96.6 95.2
SAMG-S 98.0 67.4 94.8 92.0

C.8 CURVES OF p(s, a) DURING ONLINE FINE-TUNING

We plotted and present the training curves of p(s, a), focusing on two representative environments:
door-cloned and halfcheetah-medium-replay. The results show that p(s, a) gradually decreases with
training, indicating the agent transitions from in-distribution (ID) samples to out-of-distribution
(OOD) samples—this behavior is fully consistent with expectations.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 8: The curves of the state-action-conditional coefficient through the training on environment Door-
cloned.

Figure 9: The curves of the state-action-conditional coefficient through the training on environment Halfcheetah-
medium-replay.

D ALGORITHM IMPLEMENTATION

D.1 SAMG PSEUDO-CODE

To illustrate the whole procedure of SAMG, we represent the pseudo-code of SAMG implemented
based on AWAC (Nair et al., 2020) below:

D.2 IMPLEMENTATION DETAILS

Only some minimal adjustments are needed to implement SAMG on AWAC, and IQL (Kostrikov
et al., 2022) as well. We just need to maintain a much smaller replay buffer filled with online samples
and insert and sample from this “online replay buffer". Before conducting normal gradient update
step, we need to calculate the mixed Qtarget according to Eq. (6). As for IQL, we freeze and query

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 1 Offline-to-Online Reinforcement Learning via State-Action-Conditional Offline Model
Guidance (Implemented on AWAC)

Require: offline Q-network Qoff
ϕ , policy πoffθ and trained VAE model

1: πθ ← πoffθ , Qϕ ← Qoff
ϕ

2: Initialize the replay buffer D with N samples collected by Qϕ

3: for iteration i = 1, 2, ... do
4: for every environment step do
5: at ∼ πϕ(st|st)
6: st+1, dt ∼ p(st+1|st, at)
7: insert (st, at, rt, st+1, dt) into D
8: end for
9: for every update step do

10: get Qtarget and Qoff
target according to AWAC

11: get poffm with C-VAE according to Section 3.2
12: Qtarget ← (1− pom)Qtarget + pomQoff

target
13: Update ϕ according to Eq. 9 in (Nair et al., 2020) with Qtarget

14: Update θ according to Eq. 13 in (Nair et al., 2020)
15: if This step % coefficient update interval == 0 then
16: Filter mastered OOD samples
17: Finetune the VAE model with collected samples
18: Update the VAE model and the offline critic
19: end if
20: end for
21: end for

the offline pre-trained value function instead because IQL separately trains a value function to serve
as the target information. Other implementations are similar to AWAC and are omitted.

As for CQL and Cal_QL, these two algorithms share a similar implementation procedure and align
with AWAC when calculating the Qtarget. However, CQL adds one extra penalty term to minimize
the expected Q-value based on a distribution µ(a|s), formulated as Es∼D,a∼µ(a|s) [Q(s, a)]. This
term is separated from the standard Bellman equation and serves an important role in making sure
the learned Q-function is lower-bounded. However, this term is unrestricted in our paradigm and
may cause algorithm divergence. So we add an offline version of the term still weighted by the
state-action-conditional coefficient. This slightly avoids our setting but is reasonable that this setting
shares the consistent updating direction with the Bellman equation error term.

We implement all the algorithms based on the benchmark CORL (Tarasov et al., 2024), whose
open source code is available at https://github.com/tinkoff-ai/CORL and the license
is Apache License 2.0 with detail in the GitHub link. Our code is attached in the supplementary
material.

In practice, we strictly adopt the CORL setting to train the offline model and the vanilla fine-
tuning training, including the training process and hyperparameters. As for SAMG training, for
mujoco environments (halfcheetah, hopper, walker2d), SAMG algorithms share the same set of
hyperparameters with the fine-tuning process to illustrate fairness. In the antmaze environment,
we slightly reduce the weight of the Q-value maximization term, which corresponds to the α
hyperparameter of CQL, to highlight the impact of SAMG for algorithms CQL and Cal_QL, from 5
to 2. For the threshold poffm , we adopt the value of 0.6 in most environments (including HalfCheetah,
Hopper, Walker2d and Adroit) which seems large but only a small portion satisfies the condition.
For the antmaze environment, we take 0.7 for CQL and 0.6 for the others. We found that in our
setting, reducing the size of the replay buffer allows for more efficient utilization of samples, thereby
improving the algorithm’s performance. Specifically, we set the buffer size to be 50,000 for Anrmaze
environment and 20,000 for the other environments. We initialize the replay buffer with 2000 samples
utilizing the offline model (2000 is the normal length of an episode in most environments). The
details of C-VAE have been stated in Appendix C. All the hyperparameters are summarized below:

25

https://github.com/tinkoff-ai/CORL

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameters for AWAC and IQL.
Locomotion Antmaze Door Pen

learning rate of SAMG 1e-4 2e-5 1e-4 1e-4
poffm 0.6 0.6 0.6 0.6
Update frequency 10k 10k 10k 10k
Size of replay buffer 20k 50k 20k 20k
Latent dimension of C-VAE 256 512 256 256
learning rate of C-VAE 1e-3 1e-3 1e-3 1e-3
batch size 32 32 32 32

Table 5: Hyperparameters for CQL.
Locomotion Antmaze Door Pen

learning rate of SAMG 1e-4 2e-5 1e-4 1e-4
poffm 0.6 0.7 0.6 0.6
Update frequency 10k 10k 10k 10k
Size of replay buffer 20k 50k 20k 20k
Latent dimension of C-VAE 256 512 256 256
learning rate of C-VAE 1e-3 1e-3 1e-3 1e-3
batch size 32 32 32 32

D.3 DATASETS

D4RL (Datasets for Deep Data-Driven Reinforcement Learning) (Fu et al., 2020) is a standard
benchmark including a variety of environments. SAMG is tested across four environments within
D4RL: HalfCheetah, hopper, walker2d and antmaze.

1 HalfCheetah: The halfcheetah environments simulates a two-legged robot similar to a
cheetah, but only with the lower half of the cheetah. The goal is to navigate and move
forward by coordinating the movements of its two legs. It is a challenging environment due
to the complex dynamics of the motivation.

2 Hopper: In the Hopper environment, the agent is required to control a one-legged hopping
robot, whose objective is similar to that of the HalfCheetah. The agent needs to learn to make
the hopper move forward while maintaining balance and stability. The Hopper environment
presents challenges related to balancing and controlling the hopping motion.

3 Walker2d: Walker2d is an environment controlling a two-legged robot, which resembles
a simplified human walker. The goal of Walker2d is to move the walker forward while
maintaining stability. walker2d poses challenges similar to HalfCheetah environment
but introduces additional complexities related to humanoid structure. The above three
environments have three different levels of datasets, including medium-expert, medium-
replay, medium.

4 AntMaze: In the AntMaze environment, the agent controls an ant-like robot to navigate
through maze-like environments to reach a goal location. The agent receives a sparse reward
that the agent only receives a positive reward when it successfully reaches the goal. this
makes the task more difficult. The maze configurations vary from the following environments
that possess different level of complexity, featuring dead ends and obstacles. There are
totally six different levels of datasets, including: maze2d-umaze, maze2d-umaze-diverse,
maze2d-medium-play, maze2d-medium-diverse, maze2d-large-play, maze2d-large-diverse.

5 Adroit: In the Adroit environment, the agent controls a robotic hand to finish various
manipulation tasks, including pen balancing, door opening and object relocation. The
agent only receives a positive reward when the task is successfully completed, otherwise,
the reward is zero, which makes the tasks more challenging. We focus on three specific
tasks: the pen agent must manipulate a pen to keep it balanced in some orientation; the
door agent must grasp and open a door handle; the relocate agent must pick up an object
and move it to a target location. We adopt the mixed setting of Cal_QL (Nakamoto et al.,
2023), which combines the cloned-level and human-level dataset. However, we follow
the reward mechanism used in the “cloned” environment, rather than adopting the binary
reward formulation used in Cal_QL, which can explain the negative reward in these three

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0.0 2.0 4.0 6.0 8.0 10.0

Environment Steps (×105)

60

70

80

90

100
N

or
m

al
iz

ed
 S

co
re

Antmaze-medium-play

0.0 2.0 4.0 6.0 8.0 10.0

Environment Steps (×105)

60

65

70

75

80

85

90

95

100

N
or

m
al

iz
ed

 S
co

re

Antmaze-medium-diverse

0.0 2.0 4.0 6.0 8.0 10.0

Environment Steps (×105)

30

40

50

60

70

80

N
or

m
al

iz
ed

 S
co

re

Antmaze-large-play

0.0 2.0 4.0 6.0 8.0 10.0

Environment Steps (×105)

30

40

50

60

70

80

90

N
or

m
al

iz
ed

 S
co

re

Antmaze-large-diverse

0.0 2.0 4.0 6.0 8.0 10.0

Environment Steps (×105)

70

75

80

85

90

95

N
or

m
al

iz
ed

 S
co

re

Antmaze-umaze

0.0 2.0 4.0 6.0 8.0 10.0

Environment Steps (×105)

10

20

30

40

50

60

70

80

90

N
or

m
al

iz
ed

 S
co

re

Antmaze-umaze-diverse

SAMG Vanilla

Figure 10: Performance comparison. This figure illustrates the asymptotic performance of IQL-based SAMG
(denoted as SAMG) and IQL (denoted as Vanilla) across Antmaze tasks with 5 random seeds

environments: the reward is normalized between a random policy and an expert policy. As a
result, algorithms that perform worse than the random policy achieve negative rewards—a
phenomenon commonly observed in the Adroit environment (see CORL (Tarasov et al.,
2024) for reference). We also denote them as “cloned” and thus introduces tree different
tasks: Pen-cloned, Door-cloned and Relocate-cloned.

D.4 SAMG PERFORMANCE

We present the training curves of IQL and SAMG (based on IQL) in Fig. 10. All experiments are
conducted with five random seeds, and the results show that SAMG converges much faster than IQL
while achieving a better final convergence value.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 6: Cumulative regret of online fine-tuning algorithms. The cumulative regret of standard base
algorithms (including CQL, IQL, AWAC and Cal_QL, denoted as “Vanilla") compared to SAMG integrated
algorithms (referred to as “Ours"). The result is the average normalized score of 5 random seeds± (standard
deviation). All algorithms are conducted for 500k iterations.

Dataset CQL AWAC IQL Cal_QL
Vanilla Ours Vanilla Ours Vanilla Ours Vanilla Ours

antmaze-u 0.051(0.005) 0.021(0.002) 0.081(0.046) 0.080(0.021) 0.072(0.005) 0.063(2.0) 0.023(0.003) 0.031(0.002)

antmaze-ud 0.185(0.061) 0.191(0.075) 0.875(0.046) 0.378(0.090) 0.392(0.116) 0.182(0.021) 0.142(0.124) 0.133(0.091)

antmaze-md 0.148(0.004) 0.131(0.010) 1.0(0.0) 1.0(0.0) 0.108(0.007) 0.102(0.008) 0.069(0.012) 0.076(0.025)

antmaze-mp 0.136(0.023) 0.078(0.369) 1.0(0.0) 1.0(0.0) 0.115(0.009) 0.143(0.020) 0.057(0.009) 0.071(0.008)

antmaze-ld 0.359(0.036) 0.382(0.023) 1.0(0.0) 1.0(0.0) 0.367(0.033) 0.305(0.041) 0.223(0.111) 0.219(0.157)

antmaze-lp 0.344(0.023) 0.317(0.052) 1.0(0.0) 1.0(0.0) 0.335(0.032) 0.321(0.043) 0.203(0.095) 0.211(0.114)

As illustrated in Section 5.1, SAMG performs best when integrated with AWAC compared to other
algorithms.

The reason why AWAC-SAMG performs the best is detailed below. AWAC stands for advantage
weighted actor critic, which is an algorithm to optimize the advantage function Aπk(s, a), while
constraining the policy to stay close to offline data. AWAC does not contain any other tricks to
under-estimate the value function as other offline RL algorithms (Kumar et al., 2020; Nakamoto et al.,
2023), therefore AWAC could produce an accurate estimation of the values of offline data and serves
as a perfect partner of SAMG.

For the other algorithms, they adopt various techniques to achieve conservative estimation of Q values
in order to counteract the potential negative effects of OOD samples. Therefore, the offline guidance
they provide is a little less accurate. However, these algorithms are more robust due to conservative
settings and can cope with more complex tasks, as illustrated in Section 5 of CQL (Kumar et al.,
2020). However, it is always impossible to produce ideal Q values for offline RL algorithms due
to the limitations of offline datasets. The offline models trained by these algorithms could still
provide guidance for the online fine-tuning process because the error of the estimation is trivial and
the guidance is valuable and reliable. Furthermore, to resist the negative impact of conservative
estimation, we cut the offline guidance and revert to the vanilla algorithms after a specific period of
time in practice.

Overall, SAMG is a novel and effective paradigm, which is coherently conformed by theoretical
analysis and abundant experiments.

D.5 CUMULATIVE REGRET

The cumulative regrets of the Antmaze environment of four vanilla algorithms and SAMG are shown
in Table 6.

It can be concluded from the table that SAMG possesses significantly lower regret than the vanilla
algorithms, at least 40.12% of the vanilla algorithms in the scale. This illustrate the effectiveness of
our algorithms in utilizing online samples and experimentally demonstrates the superiority of SAMG
paradigm.

D.6 UNSATISFACTORY PERFORMANCE ON PARTICULAR ENVIRONMENT

We think the hyperparameter τ and the environment property may account for the unsatisfactory per-
formance of IQL-SAMG on the environment Halfcheetah-medium-expert, rather than the integration
of IQL and SAMG.

In detail, as stated in the paper on IQL, the estimated function will gain on the optimal value as τ → 1.
However, τ is not chosen to be 1 in practice and is quite low in the poorly performing environment.
Additionally, this environment is relatively narrow and the training score is abnormally higher than
the evaluation score. Therefore, we believe the unsatisfactory performance in this environment is just
an exception and does not indicate problems of the SAMG paradigm.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D.7 COMPARISON WITH WSRL

WSRL (Zhou et al., 2024) identifies the issue of not retaining the offline dataset, which is highly
valuable. However, offline data can resist visiting too many online data, thus resisting the impact of
distribution shift. However, directly discarding the offline data on top of previous O2O RL algorithms
can lead to severe degradation, as the distribution shift is much severe. Therefore, additional
mechanisms are required to mitigate the impact.

WSRL takes a relatively straightforward approach to compensate for the absence of offline data,
including warm-up and Q-ensemble techniques. As for the method, rather than simply utilizing more
models, we take a deeper focus on the model itself, effectively leveraging its information to resist
distribution shift without introducing excessive complexity. As for the warm up, we also adopt a
warm-up strategy as discussed in Appendix D.1. Both warm-up strategies are reasonable, which is
also confirmed by WSRL in Appendix L in (Zhou et al., 2024).

In certain environments, SAMG (implemented based on CQL) achieves performance comparable to
WSRL, as shown in Table 7.

Table 7: Algorithm performance of WSRL and SAMG. The algorithms performance of WSRL
compared to SAMG(implemented based on CQL). The result is the average normalized score of 5
random seeds. The notions of each environments are the same as Table 1.

Hopp-mr Hopp-m Hopp-me Half-mr Half-m Half-me Walk-mr Walk-m Walk-me
SAMG 103.7 88.3 113.0 57.8 59.0 97.2 88.4 82.9 112.5
WSRL 69.3 73.8 96.2 78.4 83.5 102.4 101.0 81.2 85.1

Furthermore, SAMG is also compatible with Q-ensemble technique, and combining the two yields
significant performance improvements, which are substantially superior to the performance of WSRL,
as shown in Table 8.

Table 8: Algorithm performance of WSRL, SAMG
and Q-ensemble-based SAMG.

Ant-ld Ant-lp Ant-mp Ant-md
SAMG 63.8 60.8 86.4 89.2
WSRL 90.0 87.6 90.0 85.0
SAMG-ensemble 95.0 96.4 100.0 96.0

As for the computational burdens of SAMG and WSRL, assuming the same base model is used
(typically ranging from 1MB for SAC based algorithm to 10MB, denoted as C), SAMG only requires
computational resources proportional to 2C + c, where c ≈ 70kB is the size of the VAE model under
our architecture. In contrast, WSRL requires approximately 10C compute, which demonstrates a
substantially higher computational burden than SAMG.

D.8 DATA COVERAGE RATE OF OFFLINE DATASET

To get the data coverage of a specific dataset, we aggregate all levels of datasets of a given environment,
i.e., expert, medium-expert, medium-replay, medium, random level of datasets of environments
HalfCheetah, Hopper, Walker2d. Thinking that the state and action are high-dimensional, we first
perform dimensionality reduction. We uniformly and randomly select part of the data due to its
huge scale and then perform t-SNE (Van der Maaten & Hinton, 2008) separately on the actions and
states of this subset for dimensionality reduction. Given that it is hard to model the distribution of
the continuous dimensional-reduced data, We then conduct hierarchical clustering (Müllner, 2011)
to calculate and analyze the distribution of the data. We compute the clustering results of each
environment and calculate the coverage rate based on the clustering results. To be specific, we select
10 percent of all data each time to cluster and repeat this process for 10 random seeds. For each
clustering result, we calculate the data coverage rate of each level of offline dataset by counting the
proportion of clustering center points. We consider one level of offline dataset to possess a clustering
center if there exist more than 50 samples labeled with this clustering center.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E LIMITATIONS

The performance improvement is limited if the offline dataset distribution is extremely narrow. This
limitation could potentially be mitigated by designing specific update strategies for OOD samples,
which is an interesting direction for future work.

F COMPUTE RESOURCES

All the experiments in this paper are conducted on a Linux server with Intel(R) Xeon(R) Gold 6226R
CPU @ 2.90GHz and NVIDIA Geforce RTX 3090. We totally use 8 GPU in the experiments and
each experiment takes one GPU and roughly occupies around 30% of the GPU. It takes approximately
3 hours to 24 hours to run an experiment on one random seed, depending on the specific algorithms
and environments. Specifically, the average time cost of experiments on Mujoco environments
(HalfCheetah, Hopper, Walker2d) is 4.5 hours while it takes an average time of 20 hours in environ-
ment AntMaze. All experiments took a total of two months. Approximately ten days were spent on
exploration, while twenty days were dedicated to completing preliminary offline algorithms.

G POTENTIAL SOCIETAL IMPACTS

Our paradigm SAMG could be plugged in a variety of O2O RL algorithms and implemented with a
small amount of computational cost. SAMG share similar societal impacts most offline-to-online
RL algorithms. SAMG could not guarantee that the performance will always improve in the online
fine-tuning process and the performance may fulctuate, which is limited by the offline RL setting.
Furthermore,SAMG could not promise 100 percent safe decision-making, which aligns with most
RL algorithms. Therefore, we suggest that the SAMG users should notice the potential risks and
cautiously and safely use SAMG in online environments.

30

	Introduction
	Preliminaries
	SAMG: Methodology
	Offline-model-guidance paradigm
	State-action-conditional coefficient
	Coefficient generation and adaptive updates

	Analysis of SAMG
	Intrinsic reward analysis of SAMG
	Theoretical analysis of SAMG

	Experimental results
	Empirical results
	Ablation analysis of the coefficient
	Sensitivity analysis of coefficient threshold
	Further comparisons with hybrid RL algorithms
	Does SAMG rely on offline data coverage?

	Related work
	Conclusion
	Use of Large Language Models (LLMs)
	Theoretical analysis
	Contraction property
	Convergence optimality
	Convergence Speed

	State-action-conditional coefficient
	Posterior collapse situation
	VAE implementations
	Practical VAE distribution
	Derivation of the probability of C-VAE
	Adaptive VAE Coefficient
	The Reliability of C-VAE module
	Hard cutoff v.s. Soft Schedule for p(s,a)
	Curves of p(s,a) during online fine-tuning

	Algorithm Implementation
	SAMG pseudo-code
	Implementation Details
	Datasets
	SAMG performance
	Cumulative regret
	Unsatisfactory performance on particular environment
	Comparison with WSRL
	Data coverage rate of offline dataset

	Limitations
	Compute resources
	Potential societal impacts

