
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOFT: LOW-RANK ADAPTATION THAT BEHAVES
LIKE FULL FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large pre-trained models are commonly adapted to downstream tasks using
parameter-efficient fine-tuning methods such as Low-Rank Adaptation (LoRA),
which injects small trainable low-rank matrices instead of updating all weights.
While LoRA dramatically reduces trainable parameters with little overhead, it can
still underperform full fine-tuning in accuracy and often converges more slowly.
We introduce LoFT, a novel low-rank adaptation method that behaves like full
fine-tuning by aligning the optimizer’s internal dynamics with those of updating all
model weights. LoFT not only learns weight updates in a low-rank subspace (like
LoRA) but also properly projects the optimizer’s first and second moments (Adam’s
momentum and variance) into the same subspace, mirroring full-model updates. By
aligning the low-rank update itself with the full update, LoFT eliminates the need
for tuning extra hyperparameters, e.g., LoRA scaling factor α. Empirically, this
approach substantially narrows the performance gap between adapter-based tuning
and full fine-tuning and consistently outperforms standard LoRA-style methods,
all without increasing inference cost.

1 INTRODUCTION

Fine-tuning large-scale pre-trained models for specific tasks has become a standard paradigm in
natural language processing and other domains. However, as model sizes grow into the billions
of parameters, full fine-tuning (i.e., updating every weight) becomes computationally expensive
and impractical, especially in multi-task (Chronopoulou et al., 2023) or multi-user (Yi et al., 2023)
settings. Parameter-efficient fine-tuning (PEFT) techniques address this challenge by updating only
a small subset of parameters while reusing the vast majority of pre-trained weights. Among these,
Low-Rank Adaptation (LoRA) has emerged as a popular and effective solution. LoRA freezes the
original weights and injects trainable low-rank matrices into selected layers, substantially reducing
the number of learnable parameters. Remarkably, LoRA often matches – and sometimes can exceed
– the performance of full fine-tuning on certain benchmarks, all while incurring minimal runtime
overhead and no additional inference latency. This makes it an attractive alternative to other methods
like sequential adapters (Houlsby et al., 2019b; Pfeiffer et al., 2021), which typically introduce new
layers and increased latency. Despite its success, LoRA and similar low-rank approaches still fall
short of full fine-tuning in some settings. Empirical studies have reported a persistent performance
gap and slower convergence rates compared to full-model updates (Biderman et al., 2024; Wang et al.,
2024). These gaps indicate that the optimization dynamics of LoRA differ in important ways from
those of full fine-tuning. Recent work (Liu et al., 2024; Wang et al., 2025) has attempted to close
this gap by focusing on more accurate gradient approximations within the low-rank subspace. This
is motivated by the observation that LoRA’s updates can omit or misestimate important directions
in the full gradient, leading to suboptimal solutions. In this work, we demonstrate that this is only
part of the story: optimizer state misalignment – specifically in the first and second moments used by
AdamW (Loshchilov & Hutter, 2019), the de facto optimizer in large-scale training – also plays a
critical role. When these internal statistics are not properly aligned with the low-rank constraint, it
undermines the effectiveness of the adaptation.

Finally, a practical complication in standard LoRA is the introduction of a scaling hyperparameter, α,
often normalized by the rank. This scaling factor modulates the contribution of the low-rank update
and must be carefully tuned. Improper settings can lead to poor performance or even divergence
by overpowering the backbone model (Lee et al., 2025; Malinovsky et al., 2024). Altogether,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Always Updated

Full Fine-Tuning AdamW

Momentum:

Second moment:

Adam Update:

Momentum:

Second moment:

LoFT Update:

Frozen
Alternating Update

Full Gradients

 : Projection of to
 : Projection matrix to

-update LoFT-AdamW

Figure 1: LoFT visualization. LoFT can be interpreted as the tightest approximation to full fine-
tuning under the constraint that each update lies in the subspace defined by V (when updating U).
The LoFT-AdamW update consists of a momentum and second-moment estimate constructed using
projected gradients. The final update is then projected back onto the subspace of V to respect the
low-rank constraint. When V is the updated component instead of U , the roles of U and V are simply
exchanged, and the update is applied to W⊤ instead of W .

these challenges – i.e., the gradient and optimizer state misalignment, as well as the additional
hyperparameter sensitivity – limit LoRA’s ability to fully replicate the robustness and effectiveness of
unconstrained full fine-tuning.

Our main contributions are summarized as follows:

• We identify that not only gradients but also optimizer states (i.e., first and second moments) suffer
from misalignment when approximating full fine-tuning with low-rank updates.

• We propose Low rank adaptation that mimics Full fine-Tuning (LoFT), a novel LoRA-based opti-
mizer that addresses these issues by closely approximating full fine-tuning across all optimization
dimensions. LoFT consists of five core components: gradient scaling, alternating updates, optimizer
state calibration, construction of a projected full fine-tuning update followed by low-rank projection,
and projected full fine-tuning-aware clipping.

• To the best of our knowledge, LoFT is the first low-rank adaptation method that exactly reduces to
AdamW (Loshchilov & Hutter, 2019) in the full-rank limit.

• We conduct extensive experiments on both synthetic and real-world tasks across multiple modalities,
demonstrating the effectiveness and generality of LoFT.

2 METHOD

We focus on the standard fine-tuning setup, where a pre-trained model is adapted to a downstream
task. In full fine-tuning, each weight matrix W is updated by a full-rank increment ∆W . To reduce
computational cost, LoRA proposes a low-rank reparameterization

W = W0 +∆W = W0 + UV ⊤,

where W ∈ Rm×n, U ∈ Rm×r, V ∈ Rn×r, and r ≪ min{m,n}. Only U and V are trainable,
reducing the gradient and optimizer state footprint to O((m + n)r) compared to O(mn) in full
fine-tuning. LoRA typically introduces a scaling factor α > 0 to modulate the magnitude of the
low-rank update. However, in our study, we set α = 1 and attribute the need for this hyperparameter
to a misalignment between LoRA and full fine-tuning, which we address in the subsequent sections.

2.1 GRADIENT DESCENT FOR FULL FINE-TUNING VS. LORA
Let f(W) : Rm×n → R denote a scalar loss function with W representing the parameters of a single
linear layer. In standard full fine-tuning with gradient descent, the update is

W+ = W − η∇W f(W), (1)

where η > 0 is the learning rate, and∇W f(W) is the gradient of the loss with respect to W . With
LoRA parametrization, the update becomes

W+ = W0 + U+(V +)⊤ = W0 + (U − η∇Uf(W))(V − η∇V f(W))⊤. (2)

Applying the chain rule yields

∇Uf(W) = ∇W f(W)V, ∇V f(W) = ∇W f(W)⊤U.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: The six core building blocks of LoFT for aligning low-rank adaptation with full fine-tuning.

Component Purpose
Alternating Updates (1) Eliminate second-order cross terms from LoRA dynamics.
Gradient Scaling (2) Ensure scale-invariance of low-rank updates.
Optim. States Calibration (3, 4) Align moments estimates across changing low-rank spaces.
Projected Full Update (5) Reconstruct the full-model update and project it onto the low-rank subspace.
Gradient Clipping (6) Match full fine-tuning clipping behavior.

Substituting these into (2) gives

W+ = W − η
(
∇W f(W)V V ⊤ + UU⊤∇W f(W)

)
+ η2∇W f(W)UV ⊤∇W f(W). (3)

Equation (3) highlights the first discrepancy between LoRA and full fine-tuning: the additional η2
term, which depends quadratically on the gradient. While seemingly small, this term can materially
affect convergence, as we show later in a controlled experiment. A straightforward way to eliminate
this term is through alternating updates.

Building Block 1: Alternating Updates

Do not update U and V simultaneously, but perform alternating updates.

Without loss of generality, assuming we update only U , the resulting update to W becomes

W+ = W − η∇W f(W)V V ⊤. (4)

However, this update suffers from a scale ambiguity: for any c ̸= 0, UV ⊤ = (cU)(V/c)⊤, but the
update scales differently with c. To resolve this, observe that the update direction lies in the column
space of V , allowing us to scale the update using an r × r matrix1

(
V ⊤V

)−1

W+ = W − η∇W f(W)V
(
V ⊤V

)−1
V ⊤ = W − η∇W f(W)PV , (5)

where PV = V (V ⊤V)−1V ⊤ is the projection matrix onto the column space of V . This ensures the
update is the closest low-rank approximation to ∇W f(W) under the given subspace. The associated
computational cost is O(nr2 + r3). This update defines our second building block.

Building Block 2: Use Scaled Gradients

∇̃Uf(W) = ∇Uf(W)
(
V ⊤V

)−1
, ∇̃V f(W) = ∇V f(W)⊤

(
U⊤U

)−1
.

We are not the first to suggest this; Zhang & Pilanci (2024) derived a similar result from the perspective
of Riemannian optimization.

2.2 FIRST MOMENT MISALIGNMENT

In practice, gradients are often estimated using momentum. Specifically, the first moment mk is
computed as mk = β1mk−1 + (1− β1)gk, where β1 ∈ [0, 1) is the momentum coefficient and gk is
the stochastic gradient, and the subscript denotes iteration counter. For full fine-tuning, the resulting
momentum update is

mW
k = (1− β1)

k∑
i=0

βk−i
1 ∇W f(Wi). (6)

When updating U under the LoRA parameterization, the effect on W becomes

mU
k V

⊤ = (1− β1)

k∑
i=0

βk−i
1 ∇̃Uf(Wi)V

⊤ = (1− β1)

k∑
i=0

βk−i
1 ∇W f(Wi)Vi

(
V ⊤
i Vi

)−1
V ⊤
k ,

1We assume V is of full rank. If not, we can use the pseudo-inverse.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

which does not represent a proper projection due to the mismatch between Vi and Vk. To address this,
we introduce a recalibration step

mU
k = β1m

U
k−1Ck + (1− β1)∇̃Uf(Wi), (7)

where CV
k

def
= (V ⊤

k−1Vk)(V
⊤
k Vk)

−1 is a calibration matrix. Substituting this back gives

m̃U
k = mU

k V
⊤
k = (1− β1)

k∑
i=0

βk−i
1 ∇W f(Wi)P∩k

j=iVj
= (1− β1)

k∑
i=0

βk−i
1 gVi , (8)

where P∩k
j=iVj

=
∏k

j=i PVj
is the projection onto the intersection of the column spaces of Vj for

j = i to k. Let gVi
def
= ∇W f(Wi)P∩k

j=iVj
. This expression provides the tightest possible estimate (in

ℓ2 distance) of the momentum under the constraints of the evolving low-rank subspaces defined by
Vi’s. Storing previous iterates {Vk−1, Uk−1} incurs an additional memory cost of O((m+ n)r).

Building Block 3: Recalibrate Momentum

mU
k = β1m

U
k−1C

V
k + (1− β1)∇̃Uf(Wi),

mV
k = β1m

V
k−1C

U
k + (1− β1)∇̃V f(Wi).

2.3 SECOND MOMENT MISALIGNMENT

Analogically, for Adam-style updates, the ideal update to W when U is being updated, given subspace
constraints, would be

m̃U
k/(1−βk

1)√
ṽU
k/(1−βk

2) + ε
PVk

, s.t. m̃U
k = (1− β1)

k∑
i=0

βk−i
1 gVi , ṽUk = (1− β1)

k∑
i=0

βk−i
1 gVi ⊙ gVi , (9)

where m̃U
k is as defined in (8), and ṽUk = (1−β2)

∑k
i=0 β

k−i
2 gVi ⊙gVi is the second moment estimate.

The symbol ⊙ denotes element-wise multiplication. Note that this update is constructed to lie in
the subspace defined by Vk, since this is a necessary constraint due to the update rule; see (4). To
compute ṽUk efficiently, we use the following identities from Slyusar (1999)

(A •B)(C ⊗D) = (AC) • (BD), (AB)⊙ (CD) = (A • C)(B ∗D) (10)
where ⊗ is the Kronecker product, • is the transposed Khatri–Rao product, and ∗ is the standard
Khatri–Rao product. We define the calibrated second-moment accumulator as

pUk = β2p
U
k−1(C

V
k ⊗ CV

k) + (1− β2)(∇̃Uf(Wi) • ∇̃Uf(Wi)), (11)

where pUk is a matrix of size nr × r that stores the cross-terms necessary to reconstruct the second
moment after transformation. The associated memory overhead is O((m + n)r2), which is the
main limitation of our approach. For this reason, maintaining a small rank r is crucial for memory
efficiency. In practice, this constraint is acceptable as long as r ≤

√
min{m,n}, which we find to

be both reasonable and sufficient for capturing effective low-rank updates. In the experiment, LoFT
leads to the memory increase of up to 25.65% compared to LoRA (Hu et al., 2022), but improves
or matches the memory of more performant DoRA (Liu et al., 2024). Furthermore, we notice that
by omitting second-moment calibration, we limit memory increase to less than 6% against LoRA
and only incur marginal performance degradation (∼ 0.1%). Details are provided in Appendix E.5.
Furthermore, to avoid this issue in future work, we plan to investigate variants of LoFT using LLM-
specific optimizers where all optimizer states are linear functions of stochastic gradients, such as
Muon (Jordan et al., 2024).

Building Block 4: Second Moment Alignment

Use cross-terms for second moment accumulation to enable second moment recalibration

pUk = β2p
U
k−1(C

V
k ⊗ CV

k) + (1− β2)(∇̃Uf(Wi) • ∇̃Uf(Wi)),

pVk = β2p
V
k−1(C

U
k ⊗ CU

k) + (1− β2)(∇̃V f(Wi) • ∇̃V f(Wi)).
(12)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Using pUk , we compute ṽUk = pUk (Vk ∗ Vk) and apply the following update.

Building Block 5: Reconstruct Full Update Followed by Projection

For the Adam version of LoFT, update U and V as

Uk+1 = Uk − ηk
mU

k Vk/(1−βk
1)√

pU
k (Vk∗Vk)/(1−βk

2) + ε
Vk(V

⊤
k Vk)

−1,

Vk+1 = Vk − ηk
mV

k Uk/(1−βk
1)√

pV
k (Uk∗Uk)/(1−βk

2) + ε
Uk(U

⊤
k Uk)

−1.

(13)

2.4 GRADIENT CLIPPING AND WEIGHT DECAY

We apply no special modifications to weight decay. Since only one of U or V is updated at a time, the
effect of standard weight decay correctly reduces the low-rank update as UV ⊤ → (1− ληk)UV ⊤.
The full AdamW-LoFT algorithm is provided in the appendix. With all six building blocks described
above, LoFT-AdamW exactly recovers full fine-tuning when r = max{m,n} and Uk, Vk are full-rank.
To our knowledge, LoFT is the first low-rank adaptation method that provably recovers full fine-tuning
in this limit.

Building Block 6: Gradient Clipping

To approximate full fine-tuning during gradient clipping, when updating U , we use
∇̃Uf(W)V ⊤ = ∇W f(W)PW as the effective gradient for the corresponding layer W .

2.5 SIMULATED EXPERIMENT

0 50 100 150 200 250 300
Steps

10 10

10 7

10 4

10 1

102

105

Lo
ss

LoRA
LoFT (No Alternate Update)
LoFT (No State Calibration)
LoFT
Full Fine-Tuning

Figure 2: Comparison of LoRA, LoFT, and
Full Fine-tuning with Adam on f(W) =
∥W −A∥2F .

In the previous remark, we argued that for full-rank
adaptation, LoFT recovers full fine-tuning. We now
demonstrate that if the target solution is low-rank,
LoFT matches the performance of full fine-tuning
if the correct rank is selected. We consider the op-
timization problem f(W) = ∥W − A∥2F , where A
is a randomly generated matrix with rank(A) = r.
We compare LoFT, LoRA, and full fine-tuning using
the AdamW optimizer. To demonstrate how LoFT
can efficiently approximate full fine-tuning, the step
size is tuned for full fine-tuning and reused for all
baselines. We initialize W = 0, and for LoFT we
follow the standard LoRA initialization (Hu et al.,
2022), which also yields UV ⊤ = 0 initially. We set
m = 1024, n = 512, and r = 8. In addition to LoFT and LoRA, we also include ablated variants of
LoFT to highlight the importance of its design components: one without alternating updates, and one
without optimizer state calibration. As shown in Figure 2, LoFT closely matches the performance
of full fine-tuning. In contrast, omitting any of its core components leads to significantly slower
convergence and worse final performance, confirming the necessity of the full LoFT design.

3 EXPERIMENTS

We conduct extensive experiments across both language and vision domains to evaluate the effective-
ness of our method. Our primary baselines include LoRA (Hu et al., 2022), DoRA (Liu et al., 2024),
and full fine-tuning, and we apply these methods to a range of model backbones: LLaMA-7B (Tou-
vron et al., 2023a), LLaMA2-7B (Touvron et al., 2023b), LLaMA3-8B (Grattafiori et al., 2024), and
ViT-Base (Wu et al., 2020). The evaluation spans two major fronts: (i) commonsense reasoning tasks
in the language domain, and (ii) image classification tasks involving highly imbalanced and domain-
specific datasets, including several medical imaging datasets and DomainNet. We focus on LoRA and
DoRA as our primary baselines since they are the most widely adopted and directly comparable PEFT
methods, while results with additional baselines (namely full finetuning, rsLoRA (Kalajdzievski,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of parameter-efficient fine-tuning methods, LoRA, DoRA, and our
method LoFT, on a suite of commonsense reasoning benchmarks using LLaMA-7B, LLaMA2-7B,
and LLaMA3-8B models. The table reports accuracy scores across multiple tasks with average
performance shown in the final column. r denotes the rank used in the respective adaptation method.
Bold and underlined scores highlight the best and second-best performance per task, respectively.

Model Method BoolQ PIQA SIQA HS WG ARC-C ARC-E OBQA avg.

LLaMA-7B

LoRAr=16 65.38 76.71 75.69 79.81 68.03 65.27 80.30 77.40 73.57
DoRAr=16 54.13 73.94 79.38 58.01 79.40 64.68 79.76 79.60 71.11

LoFTr=16 68.62 82.80 78.27 82.69 73.32 64.30 80.26 78.40 76.08
LoFTr=4 67.34 80.96 76.20 80.50 76.40 63.62 79.21 75.40 74.95
LoFTr=2 68.03 79.16 75.84 78.86 76.24 64.51 78.03 71.00 73.96
LoFTr=1 67.09 78.35 74.46 76.14 74.82 58.87 76.85 70.80 72.17

LLaMA2-7B

LoRAr=16 50.09 59.03 76.41 65.45 77.51 64.68 79.12 77.20 68.69
DoRAr=16 71.93 82.92 79.22 88.90 83.03 66.98 82.70 82.00 79.71

LoFTr=16 71.80 83.51 79.02 90.59 82.72 70.65 84.43 81.00 80.46
LoFTr=4 70.49 81.94 79.80 88.85 81.37 69.11 84.88 79.80 79.53
LoFTr=2 70.55 81.18 77.74 83.01 79.01 66.72 82.83 78.80 77.48
LoFTr=1 68.69 80.58 76.36 72.95 76.80 64.08 82.37 77.20 74.88

LLaMA3-8B

LoRAr=16 74.46 88.14 81.37 94.81 85.08 80.72 89.18 86.00 84.97
DoRAr=16 74.56 88.52 80.09 95.17 86.74 79.78 90.19 84.60 84.96

LoFTr=16 75.63 88.85 80.35 95.64 86.11 80.89 91.16 86.40 85.63
LoFTr=4 74.53 88.52 80.04 95.45 85.32 78.92 89.73 84.20 84.59
LoFTr=2 73.76 87.11 79.84 94.72 84.29 79.61 89.98 84.60 84.24
LoFTr=1 69.33 87.49 79.27 93.79 84.06 76.11 87.12 82.20 82.42

2023), AdaLoRA (Zhang et al., 2023), LoRA-Pro (Wang et al., 2025), LoRA-GA (Wang et al., 2024),
LoRA+ (Hayou et al., 2024)) are provided in Appendix E.8.

In addition to the typical low-rank configuration (e.g., rank ≥ 4), we explore extremely constrained
settings by reducing the rank to as low as 1, demonstrating the robustness of our method under
stringent parameter budgets. This allows us to highlight not just absolute performance but also
the parameter efficiency and scalability of our approach relative to existing baselines. Further
implementation and dataset details are provided in Appendix C. For additional baselines, LoFT
derivatives (LoFT (simple), which removes second-moment calibration to reduce memory and latency
overhead, and quantized LoFT), as well as ablations, training dynamics, memory footprint, and
latency analysis, please refer to Appendix E.

3.1 COMMONSENSE REASONING

Setup. To evaluate the efficacy of LoFT in the language domain, we conduct experiments on a
suite of commonsense reasoning benchmarks, including BoolQ, PIQA, SIQA, HellaSwag (HS),
Winogrande (WG), ARC-Challenge (ARC-C), ARC-Easy (ARC-E), and OpenBookQA (OBQA). We
fine-tune three prominent large language models, LLaMA-7B (Touvron et al., 2023a), LLaMA2-7B
(Touvron et al., 2023b), and LLaMA3-8B (Grattafiori et al., 2024), using parameter-efficient methods:
LoRA, DoRA, and our proposed LoFT, each evaluated at multiple rank settings, notably including
very low ranks (e.g., 1, 2, 4). Following the setting of Hu et al. (2023), we combine the training
sets from all eight benchmarks into a single unified training dataset, and then conduct evaluation
separately on each task’s official test set. This unified training strategy enables more stable fine-tuning
and fairer comparisons across tasks and adaptation methods.

Overall Performance Results. As shown in Table 2, LoFT consistently achieves superior perfor-
mance across all model scales and rank configurations. For LLaMA-7B, LoFT at rank 16 achieves the
highest average accuracy of 76.08%, outperforming both LoRA (73.57%) and DoRA (71.11%) by
notable margins. Even at lower ranks, LoFT maintains strong performance, only a 1.1% drop at rank 4
and 3.9% at rank 1, demonstrating its robustness in extremely low-rank regimes. The trend continues
for LLaMA2-7B, where LoFT at rank 16 reaches an average accuracy of 80.46%, surpassing LoRA
by 11.7% and slightly edging out DoRA. Remarkably, LoFT remains highly competitive down to
rank 1, scoring 74.88%, which still outperforms LoRA by a significant margin. For the largest model,
LLaMA3-8B, LoFT achieves the highest average accuracy of 85.63% at rank 16. The gains over

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 2 4 8 16 32
Rank (r)

30

40

50

60

70

80

Av
g.

 A
cc

ur
ac

y (+5.5%) (+22.0%) (+25.2%) (+22.5%)

LLaMA-7B: LoRA vs LoFT

LoRA
LoFT

1 2 4 8 16 32
Rank (r)

(+14.1%) (+14.1%) (+40.0%) (+10.7%)

LLaMA-7B: DoRA vs LoFT

DoRA
LoFT

Figure 3: Rank-wise comparison of LoFT against LoRA (left) and DoRA (right) on LLaMA-7B
across commonsense reasoning tasks. LoFT maintains significantly higher accuracy, especially at
low ranks. Percentage gains denote improvement of LoFT over the respective baseline at each rank.

BoolQ

PIQA

SIQA

HS

WG

ARC-C

ARC-E

OBQA

Rank r = 4

20 40 60 80

BoolQ

PIQA

SIQA

HS

WG

ARC-C

ARC-E

OBQA

Rank r = 2

20 40 60 80

BoolQ

PIQA

SIQA

HS

WG

ARC-C

ARC-E

OBQA

Rank r = 1

20 40 60 80

LoRA DoRA LoFT

Figure 4: Task-wise performance comparison across LoRA (green), DoRA (red), and LoFT (blue) at
lower ranks (r = {4, 2, 1}) on LLaMA-7B. LoFT maintains high performance across all tasks, even
under extreme compression, unlike baselines that degrade sharply on several benchmarks.

LoRA and DoRA are less dramatic, but LoFT’s performance remains consistently on top. Importantly,
the drop-off in performance with decreasing rank is significantly more graceful for LoFT.

Rank-Wise Comparison. To better illustrate LoFT’s robustness and performance scalability, we
present a rank-wise comparison in Figure 3. The left panel compares LoFT against LoRA, and the
right panel compares it against DoRA, both on LLaMA-7B. We observe that LoFT consistently
outperforms both baselines across all rank settings, but the gap becomes especially pronounced at
low ranks. Notably, at rank 4, LoFT surpasses DoRA by an impressive +40% and LoRA by +25%,
highlighting LoFT’s extreme efficiency in constrained settings.

Interestingly, while LoRA and DoRA both suffer steep accuracy drops at lower ranks, LoFT exhibits
a much flatter accuracy curve, showing that it retains high performance even with minimal trainable
parameters. This makes LoFT particularly appealing for low-resource deployment scenarios.

These results validate two important properties of our method: (i) LoFT matches or exceeds the
performance of existing PEFT methods even at high capacity (r = 16), and (ii) it remains highly
effective at extremely low ranks, highlighting its efficiency and applicability in constrained settings.
Overall, LoFT achieves the best balance between accuracy and parameter count across diverse
commonsense reasoning tasks, while using the same number of parameters as LoRA – without
introducing any additional overhead.

Task-Specific Analysis at Low Ranks. To further analyze performance under parameter-
constrained settings, we examine how LoRA, DoRA, and LoFT behave across individual tasks
at lower ranks r = {4, 2, 1} using LLaMA-7B. Figure 4 shows radar plots for all eight commonsense
reasoning benchmarks at each of these low ranks. These visualizations reveal that while LoRA and
DoRA suffer inconsistent and often sharp performance drops across tasks, LoFT maintains stable and
competitive accuracy across the board.

In particular, DoRA shows substantial instability at ranks 4 and 2, with near zero scores on certain
tasks such as WinoGrande, whereas LoRA suffers large dips on more complex tasks like HellaSwag
and SIQA. In contrast, LoFT retains high task-wise accuracy, especially on harder benchmarks (e.g.,
HellaSwag, ARC-C), even at rank 1, demonstrating its robust generalization when adaptation budgets

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Comparison of parameter-efficient fine-tuning methods on image classification benchmarks
using the ViT-Base model. We evaluate full fine-tuning (Full FT), LoRA, DoRA, and our proposed
method, LoFT, across four datasets: ISIC2019, HAM10000, Diabetic Retinopathy, and DomainNet.
Accuracy (mean ± standard deviation) is reported for each setting.

Model Method ISIC2019 HAM10000 Diabetic
Retinopathy DomainNet avg.

ViT-Base

Full FT 80.69± 0.18 93.22± 0.64 56.07± 0.23 73.46± 1.20 75.86

LoRAr=16 81.02± 1.10 91.56± 0.66 57.87± 0.43 71.39± 0.10 75.46

DoRAr=16 80.35± 0.17 90.78± 0.81 57.66± 0.56 70.18± 2.02 74.74

LoFTr=16 81.06± 0.13 93.13± 0.28 58.33± 0.19 71.97± 0.16 76.12
LoFTr=8 80.36± 0.21 91.78± 0.68 57.89± 0.48 70.11± 0.77 75.04
LoFTr=4 79.31± 0.36 91.45± 0.73 56.98± 0.27 69.32± 0.55 74.27

are extremely constrained. For a comprehensive view of the exact numerical breakdowns per task
and rank, we refer readers to the appendix.

3.2 IMAGE CLASSIFICATION

To assess the generality of our approach beyond the language domain, we evaluate it on image
classification tasks using the ViT-Base model (Wu et al., 2020) pretrained on ImageNet-21K (Deng
et al., 2009). Vision models, unlike language models, are known to be more sensitive to low-rank
constraints, often requiring higher intrinsic ranks to preserve performance. Therefore, we restrict our
analysis to ranks r ≥ 4, focusing on whether LoFT can match or exceed strong baselines under such
challenging constraints.

We conduct experiments on four diverse and challenging datasets: ISIC2019 (Codella et al., 2019)
and HAM10000 (Tschandl et al., 2018): medical skin lesion classification datasets with long-tailed
label distributions; Diabetic Retinopathy (Graham, 2015): a medical imaging dataset with ordinal
severity levels, and DomainNet (Peng et al., 2019): a large-scale highly skewed benchmark.

We compare our method (LoFT) against full fine-tuning (Full FT), LoRA, and DoRA using a
consistent configuration (rank r = 16 unless specified otherwise). For each dataset, we report the
mean and standard deviation over three runs.

0 100 200 300
Training Iterations

10 1

100

Lo
ss

 (l
og

)

0.157

0.085

0.208

LoRA
LoFT
Full FT

Figure 5: Training log. loss on HAM10000.

As shown on Table 3, LoFT at rank 16 achieves
the highest average accuracy 76.12%, outperform-
ing both LoRA (75.46%) and DoRA (74.74%), and
even slightly surpassing full fine-tuning (75.86%).
LoFT also achieves the top score on two of four in-
dividual datasets, including ISIC2019 and Diabetic
Retinopathy. Notably, LoRA performs competitively
on ISIC2019 but exhibits degraded performance on
HAM10000 and DomainNet, suggesting it may strug-
gle with skewed datasets. DoRA generally underper-
forms across datasets, indicating instability in visual
domains with skewed/out-of-domain datasets. In contrast, LoFT maintains strong performance, even
when the rank is reduced to 8 and 4, with only a 2-point drop in average accuracy at rank 4, further
reinforcing its resilience to low-rank degradation in vision tasks.

In addition to the final accuracy gains reported in Table 3, we also present the training dynamics on
HAM10000 in Figure 5. Remarkably, LoFT’s training loss curve closely overlaps with that of full
fine-tuning from the very first iterations, indicating that our updates follow the same optimization
trajectory as Full FT right from the start. In contrast, LoRA starts with a noticeably higher loss and
converges more slowly, never fully matching Full FT’s initial descent. This early alignment between
LoFT and Full FT demonstrates that, despite updating far fewer parameters, LoFT preserves the
model’s capacity to adapt rapidly.

Throughout the remainder of training, LoFT maintains a small gap behind Full FT, which we attribute
to the growing rank of the full fine-tuning solution, as explained by greedy low-rank learning
theory (Li et al., 2021). Nevertheless, LoFT significantly outperforms LoRA across the full training
trajectory. Interestingly, LoFT ultimately achieves better final performance than full fine-tuning,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

suggesting that Full FT may overfit, whereas LoFT benefits from implicit regularization due to the
low-rank structure of its updates.

4 RELATED WORK

Parameter-Efficient Fine-Tuning. As aforementioned, the advent of Large Language Models has
exploded the computational and memory requirements of running neural workloads, at training and
inference time, thus limiting running such tasks to a few players. Towards this end, a significant
amount of research has focused on efficient ways of fine-tuning LLMs for downstream tasks. Param-
eter Efficient Fine-Tuning (PEFT) collectively refers to techniques that only tune a small number
of parameters towards the optimization objective. Such methods take various shapes, ranging from
token-level (i.e., prompt-tuning) (Lester et al., 2021) and intermediate state parameters (i.e., prefix-
tuning) (Li & Liang, 2021) to block-level parameters interspersed in the transformer block, either
sequentially (Houlsby et al., 2019b; Pfeiffer et al., 2021) or in parallel (He et al., 2022).

Low-Rank Adaptation. Closer to our method, LoRA (Hu et al., 2022) introduces low-rank adapters
parallel to the attention and linear layers of the transformer block, which build upon the assump-
tion that the changes in model weights during adaptation exhibit a low-rank structure and thus
reparametrize updated weights as such. While seminal, LoRA often falls short of the full fine-tuning
potential of the model. Subsequent work has tried to tackle this in various ways. Specifically,
DoRA (Liu et al., 2024) decomposes the model weights into their directional and magnitude compo-
nents and fine-tunes both, but only the former remains low-rank. Similar in nature is DeLoRA (Bini
et al., 2025), decouples the direction and strength of low-rank weight updates via normalization and
learnable scaling. On the contrary, Zhu et al. (2024) note the distinct function of A and B low-rank
matrices and propose training only the latter for efficiency, while Hayou et al. (2024) adopts different
learning rates for each matrix. LoRA-Pro (Wang et al., 2025) shows the equivalence of low-rank
adaptation and low-rank gradient and enhances LoRA by minimizing the distance between the true
gradient and the low-rank matrices A and B in closed form. Zhang & Pilanci (2024) introduce a
Riemannian preconditioner to enhance the stability and efficiency of LoRA with SGD and AdamW
optimizers across tasks. PiSSA (Meng et al., 2024), on the other hand, pinpoints the issue with the
initialization of LoRA matrices and proposes SVD decomposition and freezing only the residual
components of the weights. All of the above methods attempt to more faithfully approximate the
gradients in the low-rank subspace and close the performance gap of LoRA with full fine-tuning.
Contrary to prior work, our primary goal focuses on the optimization dynamics of low-rank models
and aligning the optimizer state to full fine-tuning. By doing so, we are able to get state-of-the-art
results without sacrificing accuracy or efficiency.

More efficient LoRA. While low-rank adaptation significantly drops the computational and memory
requirements of training large-scale LLMs, it still can require a significant amount of resources, espe-
cially in constrained edge or cross-device federated learning settings (Cho et al., 2024). Towards this
end, several approaches further optimize low-rank adaptation to minimize the overhead. Specifically,
VeRA (Kopiczko et al., 2024) proposes freezing shared random low-rank matrices and only training
scaling vectors. LoRA-xs (Bałazy et al., 2024) freezes SVD-initialized low-rank matrices and only
trains a small r × r matrix for adaptation. Last, LoRA-SB (Ponkshe et al., 2024) more carefully
initializes the low-rank matrices to more faithfully approximate the full fine-tuning gradient directions
during adaptation. Contrary to such approaches, LoFT can scale to truly low ranks by careful tuning
of the optimization process, rather than altering the adaptation modeling.

5 CONCLUSION

In this work, we have presented LoFT, a low-rank adaptation framework that aligns the optimizer’s
internal dynamics to full fine-tuning, by means of alternating LoRA updates, gradient projection
and scaling, first and second moments calibration, and gradient clipping approximations. These
mechanisms enable significant performance and efficiency gains with minimal loss in accuracy, across
different tasks and model sizes, and pave the way for training even more efficiently for downstream
tasks. Towards this end, we plan to explore the interplay between our LoFT and quantization to
further boost efficiency and sustainability in training, as well as how it can be combined with noisy
Differential Privacy updates, which can enable distributed private training at scale.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adaptation
with extremely small number of parameters. arXiv preprint arXiv:2405.17604, 2024.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Con-
nor Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney,
and John Patrick Cunningham. LoRA learns less and forgets less. Transactions on Machine
Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=
aloEru2qCG. Featured Certification.

Massimo Bini, Leander Girrbach, and Zeynep Akata. Decoupling angles and strength in low-rank
adaptation. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=X1U74IwuxG.

Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong Lu, Jifeng Dai, and Yu Qiao. Vision
transformer adapter for dense predictions. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=plKu2GByCNW.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, and Gauri Joshi. Heterogeneous lora for federated
fine-tuning of on-device foundation models. In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 12903–12913, 2024.

Alexandra Chronopoulou, Matthew E Peters, Alexander Fraser, and Jesse Dodge. Adaptersoup:
Weight averaging to improve generalization of pretrained language models. In Findings of the
Association for Computational Linguistics: EACL 2023, pp. 2054–2063, 2023.

Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen Dusza, David
Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion
analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging
collaboration (isic). arXiv preprint arXiv:1902.03368, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Ben Graham. Kaggle diabetic retinopathy detection competition report. University of Warwick, 22
(9), 2015.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models. In
International Conference on Machine Learning, pp. 17783–17806. PMLR, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=0RDcd5Axok.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP.
In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp. 2790–2799. PMLR, 09–15 Jun 2019a. URL https://proceedings.mlr.press/v97/
houlsby19a.html.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019b.

10

https://openreview.net/forum?id=aloEru2qCG
https://openreview.net/forum?id=aloEru2qCG
https://openreview.net/forum?id=X1U74IwuxG
https://openreview.net/forum?id=plKu2GByCNW
https://openreview.net/forum?id=0RDcd5Axok
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 5254–5276, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-
main.319. URL https://aclanthology.org/2023.emnlp-main.319/.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European conference on computer vision, pp. 709–727.
Springer, 2022.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. arXiv preprint
arXiv:2312.03732, 2023.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=NjNfLdxr3A.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Toronto, ON, Canada, 2009.

Ariel Lee, Cole Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful refinement of llms.
In NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following, 2025.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=AHOs7Sm5H7R.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Con-
ference on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Grigory Malinovsky, Umberto Michieli, Hasan Abed Al Kader Hammoud, Taha Ceritli, Hayder
Elesedy, Mete Ozay, and Peter Richtárik. Randomized asymmetric chain of lora: The first
meaningful theoretical framework for low-rank adaptation. arXiv preprint arXiv:2410.08305,
2024.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. Advances in Neural Information Processing Systems, 37:
121038–121072, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017.

11

https://aclanthology.org/2023.emnlp-main.319/
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=AHOs7Sm5H7R
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking the
potential of slms in grade school math. arXiv preprint arXiv:2402.14830, 2024.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1406–1415, 2019.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapterfu-
sion: Non-destructive task composition for transfer learning. In Proceedings of the 16th Conference
of the European Chapter of the Association for Computational Linguistics: Main Volume, pp.
487–503, 2021.

Kaustubh Ponkshe, Raghav Singhal, Eduard Gorbunov, Alexey Tumanov, Samuel Horvath, and
Praneeth Vepakomma. Initialization using update approximation is a silver bullet for extremely
efficient low-rank fine-tuning. arXiv preprint arXiv:2411.19557, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

VI Slyusar. A family of face products of matrices and its properties. Cybernetics and systems analysis,
35(3):379–384, 1999.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large collection of
multi-source dermatoscopic images of common pigmented skin lesions. Scientific data, 5(1):1–9,
2018.

Kerem Turgutlu, Jonathan Whitaker, and J. H. Fsdp, qlora, and llama 3: A recipe for
efficient fine-tuning. https://www.answer.ai/posts/2024-04-26-fsdp-qdora-
llama3.html, 2024. URL https://www.answer.ai/posts/2024-04-26-fsdp-
qdora-llama3.html. Accessed: 2025-05-21.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
Advances in Neural Information Processing Systems, 37:54905–54931, 2024.

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. LoRA-pro: Are low-rank adapters
properly optimized? In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=gTwRMU3lJ5.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
image representation and processing for computer vision, 2020.

Liping Yi, Han Yu, Gang Wang, Xiaoguang Liu, and Xiaoxiao Li. pfedlora: model-heterogeneous
personalized federated learning with lora tuning. arXiv preprint arXiv:2310.13283, 2023.

Fangzhao Zhang and Mert Pilanci. Riemannian preconditioned LoRA for fine-tuning foundation
models. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Confer-
ence on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
59641–59669. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
zhang24ax.html.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh Inter-
national Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=lq62uWRJjiY.

12

https://www.answer.ai/posts/2024-04-26-fsdp-qdora-llama3.html
https://www.answer.ai/posts/2024-04-26-fsdp-qdora-llama3.html
https://www.answer.ai/posts/2024-04-26-fsdp-qdora-llama3.html
https://www.answer.ai/posts/2024-04-26-fsdp-qdora-llama3.html
https://openreview.net/forum?id=gTwRMU3lJ5
https://proceedings.mlr.press/v235/zhang24ax.html
https://proceedings.mlr.press/v235/zhang24ax.html
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez de Ocáriz Borde, Rickard Brüel
Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
Asymmetry in low-rank adapters of foundation models. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=txRZBD8tBV.

13

https://openreview.net/forum?id=txRZBD8tBV

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table of Contents
A Limitations 15

B Theoretical Properties of LoFT for Matrix Factorization 15

C Implementation Details 17
C.1 Datasets . 17
C.2 Hyperparameters . 17

D LoFT Algorithm 19
D.1 LoFT-Muon . 19

E Additional Experimental Results 22
E.1 Commonsense Reasoning Results . 22
E.2 Quantized LoFT . 22
E.3 Ablation Study . 23
E.4 Training Dynamics . 24
E.5 Memory Footprint . 25
E.6 Training Latency . 26
E.7 DomainNet: Domain-Specific Results . 27
E.8 Comparison with Additional Baseline Methods 28
E.9 Comparison with Vision-Centric Baselines . 29

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A LIMITATIONS

In this paper, we have proposed a technique for producing parameter-efficient fine-tuning via low-rank
adaptation that behaves like full-finetuning. While we have evaluated our approach in various settings,
including LLMs and ViTs of varying sizes and shapes, our evaluation has been focused on networks
of up to 8B parameters, due to computational constraints. However, we have no reason to believe that
our results would not extrapolate to scaling up.

Moreover, while our technique offers significant efficiency gains compared to full-finetuning and
DoRA, it has an increased memory consumption compared to LoRA (due to storing previous iterates
Vk−1, Uk−1), to the benefit of increased accuracy (see Section E.5). Having said that, even for the
same memory footprint of LoRA, LoFT is able to achieve better downstream accuracy.

Last, we applied our technique on top of the AdamW optimizer, as the most popularly used in LLM
optimization. We leave applications to other optimizers, like Muon, as future work.

B THEORETICAL PROPERTIES OF LOFT FOR MATRIX FACTORIZATION

In Section 2.4, we argue that when UV ⊤ is of full rank, then LoFT recovers full fine-tuning.
Furthermore, for the matrix factorization problem, we showed that if the true solution is of low rank,
then LoFT also empirically recovers full fine-tuning. In this section, we further extend these results.
In particular, we focus on the matrix factorization problem

min
U∈Rm×r,V ∈Rn×r

{
f(U, V)

def
=

1

2
∥UV ⊤ −A∥2F

}
. (14)

Let A = ŨΣṼ ⊤ be the SVD decomposition of A. Then, by the Eckart-Young theorem, we have that
every solution of (14) has the following form:

U⋆ = ŨrΣrQ,

V ⋆ = Ṽr

(
Q−1

)T
,

where Ũr,Σr, Ṽr contain the first r singular vectors of A and Q ∈ Rr×r is a full rank matrix. In
the next lemma, we show that if U and V start in the correct space, then LoFT applied to gradient
descent with momentum recovers full fine-tuning with momentum.

Lemma 1. Let U0 = ŨrX0 and V0 = ṼrY0, where X0, Y0 ∈ Rr×r are full rank matrices. Then,
LoFT-GD with momentum applied to the matrix factorization problem exactly recovers GD with
momentum applied to f(W) = 1

2∥W −A∥2F initialized at W0 = U0V
⊤
0 .

Proof. The gradient of f(W) with respect to W has the following form:

∇W f(W0) = W0 −A = Ũr

(
X0Y

⊤
0 − Σr

)
Ṽ ⊤
r .

The left and right spaces correspond to Ũr and Ṽr, respectively. Using (5) and (8), we get

gV0 = gU0 = ∇W f(W0) and m̃V
0 = m̃U

0 = m0 = ∇W f(W0).

Since momentum is also the update, we have by induction that ∀k ≥ 0, Uk = ŨrXk and Vk = ṼrYk,
where Xk, Yk ∈ Rr×r. Therefore,

gVk = gUk = ∇W f(Wk), and

m̃V
k = m̃U

k = mk = (1− β1)

k∑
i=0

βk−i
1 ∇W f(Wi).

One interesting consequence of the above lemma is that if we apply LoFT with step size 1 with
the initialization in the correct space, LoFT finds the optimal solution in a single step. Notice that

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

without scaling, the smoothness constant of (14) with respect to both optimization variables can be
unbounded, since

∥∇Uf(U1, V)−∇Uf(U2, V)∥F = ∥(U1V
T −A)V − (U2V

T −A)V ∥F
= ∥(U1 − U2)V

⊤V ∥F
can be unbounded as ∥V ∥F can be unbounded. In practice, we would need to restrict ∥U∥F and
∥V ∥F to guarantee smoothness. On the other hand, LoFT scaled version of the gradient satisfies:

∥∇̃Uf(U1, V)− ∇̃Uf(U2, V)∥F = ∥(U1V
T −A)V

(
V ⊤V

)−1 − (U2V
T −A)V

(
V ⊤V

)−1∥F
= ∥(U1 − U2)V

⊤V
(
V ⊤V

)−1∥F
= 1∥U1 − U2∥F .

Therefore, LoFT gradients are smooth with the smoothness constant 1 without any restrictions. The
above highlights another desirable property of LoFT introduced in the following lemma.
Lemma 2. LoFT-GD with step size η = 1 applied to the matrix factorization (14) corresponds to the
Alternating Least Squares algorithm.

Proof. Without loss of generality, we assume U is updated. Let Ek = UkV
⊤
k −A, then:

Ek+1 = Uk+1V
⊤
k −A =

(
Uk − EkVk

(
V ⊤
k Vk

)−1
)
V ⊤
k −A

= Ek − EkVk

(
V ⊤
k Vk

)−1
V ⊤
k

= Ek (I − PVk
) .

Therefore,

f(Uk+1, Vk) =
1

2
∥Ek+1∥2F =

1

2
∥Ek (I − PVk

) ∥2F = min
U∈Rm×r

1

2
∥UV ⊤

k −A∥2F = min
U∈Rm×r

f(U, Vk).

Analogically, we can derive

f(Uk, Vk+1) = min
V ∈Rn×r

f(Uk, V),

which concludes the proof.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION DETAILS

Compute Information. All experiments reported in this paper were conducted using a single
NVIDIA A100-SXM4-40GB GPU. This setup was used consistently across all experimental runs.
Time of execution and memory usage varied slightly depending on the model configuration, but all
runs were completed on a single-GPU setup. No additional or external compute (e.g., cloud services)
was used during these experiments.

The implementation of LoFT used in our experiments can be found at the following anonymized
github repository: https://anonymous.4open.science/r/loft-D1500/.

C.1 DATASETS

Commonsense Reasoning. To evaluate language models’ reasoning capabilities, we use a curated
commonsense reasoning benchmark COMMONSENSE170K (Hu et al., 2023) consisting of 170K
diverse examples. These examples are drawn from multiple existing commonsense QA datasets and
span a variety of tasks, including physical reasoning, social intuition, temporal understanding, and
cause-effect inference.

Image Classification. We conduct experiments on four diverse and challenging datasets to evaluate
the generalization ability of our method in the image classification domain:

• ISIC2019 (Codella et al., 2019) is a medical dataset composed of 25300 training and 8238
test dermoscopic images spanning eight skin lesion categories. It presents a long-tailed
distribution, with the largest class heavily overrepresented relative to rare malignancies
such as dermatofibroma or vascular lesions. The dataset is particularly challenging due to
inter-class visual similarity and intra-class variability.

• HAM10000 (Tschandl et al., 2018) contains {8.2K+1.2K} (training + test) high-resolution
dermoscopic images categorized into seven skin lesion types. In includes lesions from
diverse populations and acquisition sources. Similar to ISIC2019, this dataset suffers from
severe class imbalance.

• Diabetic Retinopathy (Graham, 2015) consists of {115K + 14.2K} (training + test) retinal
fundus images annotated with ordinal labels representing five stages of diabetic retinopathy
severity. The task involves predicting these severity levels from fundus scans.

• DomainNet (Peng et al., 2019) is a large-scale dataset designed for domain generalization
and adaptation. It contains approximately 587000 images from 345 categories across six
domains: real, clipart, infograph, painting, quickdraw, and sketch. Its substantial domain
shift and high class diversity make it a valuable benchmark for testing superiority of the
methods.

Math Reasoning. To assess mathematical reasoning in large language models, we use the ORCA-
MATH dataset (Mitra et al., 2024), a benchmark of 200K diverse math problems spanning arithmetic,
algebra, geometry, calculus, and probability. Each problem requires multi-step reasoning and
symbolic manipulation, making the dataset well-suited for evaluating fine-tuning strategies.

Language Modeling. To evaluate language modeling and text generation under low-resource con-
ditions, we use the WIKITEXT2 dataset (Merity et al., 2017), a widely adopted benchmark consisting
of over 100K tokens from cleaned Wikipedia articles. The dataset preserves natural long-range
dependencies by retaining full articles and punctuation, making it suitable for assessing perplexity
and generalization in autoregressive models. We follow the original data split and preprocessing
protocol established by Radford et al. (2019).

C.2 HYPERPARAMETERS

We report training configurations for the main experiments: commonsense reasoning and image
classification. For clarity and reproducibility, the full hyperparameter settings for each task are
presented in tables below. Hyperparameters for the remaining tasks, including math reasoning and
language modeling, are detailed separately in Section E.2 and Section E.8, respectively.

17

https://anonymous.4open.science/r/loft-D1500/

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameter configurations used for LoRA/DoRA (as in (Liu et al., 2024)) and our
method, LoFT, across LLaMA model variants on commonsense reasoning tasks. Unlike prior method
that tune the LoRA scaling factor α, LoFT sets α = r consistently across all models without the need
for tuning.

Hyperparameter
LoRA/DoRA LoFT

LLaMA-7B LLaMA2-7B LLaMA3-8B LLaMA-7B LLaMA2-7B LLaMA3-8B

Rank r r r
Alpha scaler α 2×r r
Dropout 0.05 0.05
Optimizer AdamW AdamW
Learning rate 2×10−4 3×10−4 1×10−4 2×10−4 3×10−4 1×10−4

LR scheduler Linear Linear
Batch size 16 16
Micro-batch size 16 16
Warmup steps 100 100
Training epochs 3 3
Low-rank targets Q,K,V,Up,Down Q,K,V,Up,Down

Table 5: Training hyperparameters for ViT-B/16 across four image classification datasets. All methods
(Full FT, LoRA, DoRA, and LoFT) are trained using the same configuration for fair comparison.

Dataset Rank r Batch Size LR Epochs Target Modules LoRA/DoRA α LoFT α

ISIC2019 r 64 5×10−4 3 Q,K,V,Dense 2×r r
HAM10000 r 64 5×10−4 3 Q,K,V,Dense 2×r r
Retinopathy r 64 5×10−4 3 Q,K,V,Dense 2×r r
DomainNet r 256 5×10−4 3 Q,K,V,Dense 2×r r

Common settings: Optimizer = AdamW, LR scheduler = Linear, Warmup ratio = 0.1, Dropout = 0.1,
Micro-batch size = Batch size.

Commonsense Reasoning. We evaluate three generations of LLaMA family models, LLaMA-7B,
LLaMA2-7B, and LLaMA3-8B, to test whether our proposed LoFT approach scales consistently
across architectural updates. For each backbone, we compare against two strong parameter-efficient
baselines, LoRA (Hu et al., 2022) and DoRA (Liu et al., 2024). For these experiments, we adopt
the optimal hyperparameter settings reported in (Liu et al., 2024). We adopt the same learning rate,
learning rate scheduler, warmup steps, batch size, and the same Q,K,V,Up,Down matrices for
applying LoRA. The full configuration is summarized in Table 4.

Image Classification. We conduct image classification experiments using the ViT-B/16 model
across four datasets: ISIC2019, HAM10000, Diabetic Retinopathy, and DomainNet. The input
resolution is fixed to 224×224 pixels, and the patch size is set to 16. All methods, including full
fine-tuning, LoRA, DoRA, and our proposed LoFT, share the same training configuration to ensure a
fair comparison.

Specifically, we fix the learning rate to 5×10−4 across all datasets. The batch size is set to 64 for
medical datasets and increased to 256 for DomainNet due to its scale. All models are trained for 3
epochs using the AdamW optimizer, with a linear learning rate scheduler and a warmup ratio of 0.1.
A dropout rate of 0.1 is applied, and low-rank methods target both the Q,K,V attention layers and
the Dense layers. These hyperparameters are summarized in Table 5.

Scaling Factor. We clarify the role of the scaling hyperparameter α. As noted in Section 2, we set
α = 1 in LoFT. In practice, the HuggingFace PEFT library implements scaling as α/r, so setting
α = r yields an effective scaling factor of 1, thereby removing the need for hyperparameter tuning.
For LoRA and DoRA baselines, we followed the recommended setting α = 2r (see Table 10 in
Liu et al. (2024)) to ensure fairness. One of LoFT’s design goals is precisely to eliminate this
hyperparameter, which we emphasize in the main text.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D LOFT ALGORITHM

Algorithm 1 LoFT-AdamW with Alternating Updates

Require: Pretrained weights W0, low-rank factors U0, V0, learning rate ηk, weight decay rate λ,
AdamW parameters β1, β2, ε

1: Initialize first and second moments: mU
0 ,m

V
0 , p

U
0 , p

V
0 ← 0

2: Set alternating update flag: update_U← False
3: for k = 1, 2, . . . do
4: Wk ←W0 + UkV

⊤
k # Reconstruct full weight matrix

5: gW ← ∇W f(Wk) # Get full gradient (only for notational purposes)
6: gU ← gWVk, gV ← g⊤WUk # Project gradients to low-rank factors
7: CV

k ← (V ⊤
k−1Vk)(V

⊤
k Vk)

−1, CU
k ← (U⊤

k−1Uk)(U
⊤
k Uk)

−1

8: g̃U ← gU (V
⊤
k Vk)

−1, g̃V ← gV (U
⊤
k Uk)

−1

9: mU
k ← β1m

U
k−1C

V
k + (1− β1)g̃U # First moment calibration

10: mV
k ← β1m

V
k−1C

U
k + (1− β1)g̃V

11: pUk ← β2p
U
k−1(C

V
k ⊗ CV

k) + (1− β2)(g̃U • g̃U) # Second moment calibration
12: pVk ← β2p

V
k−1(C

U
k ⊗ CU

k) + (1− β2)(g̃V • g̃V)
13: if update_U then # Alternating updates
14: vUk ← pUk (Vk ∗ Vk) # Reconstruct second moment in projected space
15: m̃U

k ← mU
k V

⊤
k /(1− βk

1)
16: ṽUk ← vUk /(1− βk

2)

17: ∆U ← ηk ·
m̃U

k√
ṽUk + ε

Vk(V
⊤
k Vk)

−1 # Update U with projection

18: Uk+1 ← (1− ληk)Uk −∆U
19: Vk+1 ← Vk

20: else
21: vVk ← pVk (Uk ∗ Uk) # Reconstruct second moment in projected space
22: m̃V

k ← mV
k U

⊤
k /(1− βk

1)
23: ṽVk ← vVk /(1− βk

2)

24: ∆V ← ηk ·
m̃V

k√
ṽVk + ε

Uk(U
⊤
k Uk)

−1 # Update V with projection

25: Vk+1 ← (1− ληk)Vk −∆V
26: Uk+1 ← Uk

27: end if
28: update_U← not update_U # Alternate update direction
29: end for

D.1 LOFT-MUON

In this section, we provide an extension of our approach to Muon (Jordan et al., 2024) algorithm.
Firstly, we introduce the original Muon in Algorithm 2.

Algorithm 2 Muon

Require: Learning rates ηk, momentum µ
1: Initialize m0 ← 0
2: for k = 1, 2, . . . do
3: gW ← ∇W f(Wk) # Compute full gradient
4: mk ← µmk−1 + gW # Compute momentum
5: ok ← NewtonSchulz5(mk) # Algorithm 3
6: Wk+1 ←Wk − ηkok # Update Parameters
7: end for

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 3 NewtonSchulz5

Require: number of steps nsteps, ε = 1e−7, G ∈ Rm×n, (a, b, c) = (3.4445,−4.7750, 2.0315)
1: X ← G/(∥G∥F + ε) # Proper initialization
2: if m > n then # For efficient computations
3: X ← X⊤

4: end if
5: for k = 1, 2, . . . , nsteps do
6: A← XX⊤

7: B ← bA+ cA2

8: X ← aX +BX
9: end for

10: if m > n then
11: X ← X⊤

12: end if
13: return X

Examining the Muon algorithm, we observe that, like Adam, it employs first-order momentum;
therefore, to adapt it to the LoFT setting, we can directly apply the first three building blocks.
Furthermore, we can reconstruct an estimate of the full-finetuning momentum using (8), i.e., m̃U

k =
mU

k V
⊤
k . We note that the m̃U

k is at most rank r, but NewtonSchulz5 (Algortihm 3) can’t take advantage
of that and directly plugging in m̃U

k to NewtonSchulz5 would not benefit computations as we would
be working with large m × n matrix. Therefore, we design efficient version of NewtonSchulz5
algortihm that accounts for low-rank inputs, see below.

Algorithm 4 NewtonSchulz5_LowRank

Require: number of steps nsteps, ε = 10−7, U ∈ Rm×r, V ∈ Rn×r (G = UV ⊤), (a, b, c) =
(3.4445,−4.7750, 2.0315)

1: if m > n then # For efficient computations (mirror of dense case)
2: U, V ← V,U # Flip U, V
3: end if
4: UtU ← U⊤U ∈ Rr×r; V tV ← V ⊤V ∈ Rr×r

5: ∥G∥F ←
√
tr
(
(U⊤U)(V ⊤V)

)
Proper initialization (low-rank)

6: Xc ←
1

∥G∥F + ε
Ir # Core r × r variable; X = UXcV

⊤

7: for k = 1, 2, . . . , nsteps do
8: S ← XcV tV X⊤

c # r × r form of XX⊤

9: A ← SUtU
10: B ← bA + cA2

11: Xc ← aXc +BXc

12: end for
13: XU ← UXc # X ← UXcV

⊤, we use only UXc as V is added implicitly via V ⊤
k /

Uk(U/V -update)
14: if m > n then
15: XU ← V X⊤

c
16: end if
17: return XU # Partial polar factors of G; cost per step O((m+ n)r2 + r3)

We note that the cost per step of this algorithm is only O((m+ n)r2 + r3). Finally, we are ready to
proceed with LoFT-Muon, which only requires extra memory of O((m+ n)r), thus matching the
standard LoRA memory requirements.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 5 LoFT-Muon

Require: learning rates ηk, momentum parameter µ,
1: Initialize mU

0 ,m
V
0 ← 0, weight decay rate λ

2: Set alternating update flag: update_U← False
3: for k = 1, 2, . . . do
4: # Reconstruct full weight matrix
5: Wk ←W0 + UkV

⊤
k

6: # Get full gradient (only for notational purposes)
7: gW ← ∇W f(Wk)
8: # Project gradients to low-rank factors
9: gU ← gWVk, gV ← g⊤WUk

10: CV
k ← (V ⊤

k−1Vk)(V
⊤
k Vk)

−1, CU
k ← (U⊤

k−1Uk)(U
⊤
k Uk)

−1

11: g̃U ← gU (V
⊤
k Vk)

−1, g̃V ← gV (U
⊤
k Uk)

−1

12: # First moment calibration
13: mU

k ← µmU
k−1C

V
k + g̃U

14: mV
k ← µmV

k−1C
U
k + g̃V

15: # Alternating updates
16: if update_U then
17: ∆U ← NewtonSchulz5_LowRank(mU

k , Vk)
18: Uk+1 ← (1− ληk)Uk −∆U
19: Vk+1 ← Vk

20: else
21: ∆V ← NewtonSchulz5_LowRank(mV

k , Uk)
22: Vk+1 ← (1− ληk)Vk −∆V
23: Uk+1 ← Uk

24: end if
25: # Alternate update direction
26: update_U← not update_U
27: end for

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 COMMONSENSE REASONING RESULTS

For completeness, Table 6 provides the exact task-wise accuracy scores for all methods and rank
settings shown in Figure 4 of the main paper. These results quantify how LoRA, DoRA, and LoFT
behave across eight commonsense reasoning benchmarks when applied to LLaMA-7B with rank
r ∈ {4, 2, 1}.
As noted in the main text, LoFT maintains high and stable accuracy across all tasks, even under
extreme compression (rank 1), whereas both LoRA and DoRA degrade substantially – especially on
more complex tasks like HellaSwag (HS), Winogrande (WG), and SIQA. Notably, DoRA at r=4
and r=2 exhibits drastic task-level failures, with near-zero performance on WG and erratic behavior
across others, reflecting instability under constrained adaptation. In contrast, LoFT consistently
performs well across ranks, confirming its robustness under limited parameter budgets.

See Table 6 for the exact per-task numbers.

Table 6: Task-wise performance of LoRA, DoRA, and LoFT on commonsense reasoning benchmarks
at lower ranks (r = {4, 2, 1}) using LLaMA-7B. While LoFT maintains stable accuracy across all
tasks, both LoRA and DoRA show significant drops – particularly on complex benchmarks such as
HellaSwag and Winogrande – indicating their limited reliability under extreme parameter constraints.

Model Method BoolQ PIQA SIQA HS WG ARC-C ARC-E OBQA avg.

LLaMA-7B

LoRAr=4 66.15 43.47 42.12 24.46 72.85 47.18 53.03 48.80 49.76
LoRAr=2 67.77 66.50 40.63 21.85 53.28 50.26 63.51 52.00 51.97
LoRAr=1 66.15 74.05 73.58 35.24 77.19 59.56 76.43 70.80 66.62

DoRAr=4 32.35 7.13 47.03 27.54 0.00 52.65 66.37 46.60 34.96
DoRAr=2 57.55 70.38 76.41 48.55 9.71 62.03 78.66 75.40 59.84
DoRAr=1 67.16 77.26 76.25 31.38 20.60 57.34 70.50 64.00 58.06

LoFTr=4 67.34 80.96 76.20 80.50 76.40 63.62 79.21 75.40 74.95
LoFTr=2 68.03 79.16 75.84 78.86 76.24 64.51 78.03 71.00 73.96
LoFTr=1 67.09 78.35 74.46 76.14 74.82 58.87 76.85 70.80 72.17

E.2 QUANTIZED LOFT

Setup. We evaluate exact-match accuracy on the Orca-Math dataset (Mitra et al., 2024) using
LLaMA2 and LLaMA3 models. Our experimental setup is largely based on the QLoRA fine-tuning
recipe outlined by Answer.ai (Turgutlu et al., 2024), with a few key modifications. Specifically,
we quantize the pre-trained model to 4-bit and fine-tune each model for 3 epochs on 200k training
examples using bf16 precision, a global batch size of 32, the AdamW optimizer, and a shortened
context window of 256 tokens. Evaluation is performed on 500 held-out examples using exact-match
comparison, following the original methodology. We adopt the zero-shot and five-shot prompting
results directly from the blog post: for LLaMA2, these are 0.07 and 0.08, and for LLaMA3, 0.23 and
0.27, respectively.

For parameter-efficient fine-tuning, we compare QLoRA (Dettmers et al., 2023) with our proposed
method, QLoFT – a quantized variant of LoFT designed for greater efficiency. We evaluate QLoRA
at a fixed rank of 16, yielding 0.15 accuracy on LLaMA2 and 0.292 accuracy on LLaMA3. Under
the same rank (r=16), QLoFT achieves higher accuracy: 0.16 on LLaMA2 and 0.324 on LLaMA3.
To assess robustness under constrained parameter budgets, we further reduce QLoFT’s rank to 8, 4
and 1. Even with 75% fewer trainable parameters (r=4), QLoFT maintains strong performance –
0.148 on LLaMA2 and 0.318 on LLaMA3 – matching or exceeding QLoRA’s results. At r=1, it still
performs competitively, reaching 0.164 on LLaMA2 and 0.276 on LLaMA3.

Overall, QLoFT consistently outperforms QLoRA at equivalent ranks across both model backbones,
demonstrating better adaptation capacity with identical parameter budgets. More importantly, the
performance drop as the rank decreases is surprisingly small, highlighting QLoFT’s ability to
retain strong accuracy even in highly constrained regimes. On LLaMA3, the benefits are even
more pronounced: QLoFT outperforms QLoRA by over 3 points at r=16, and continues to lead

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Ze
ro

-s
ho

t

Fiv
e-

sh
ot

QL
oR

A
(r=

16
)

QL
oF

T
(r=

16
)

QL
oF

T
(r=

8)

QL
oF

T
(r=

4)

QL
oF

T
(r=

1)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ac
cu

ra
cy

0.070
0.080

0.150
0.160 0.154 0.148

0.164
LLaMA2

Ze
ro

-s
ho

t

Fiv
e-

sh
ot

QL
oR

A
(r=

16
)

QL
oF

T
(r=

16
)

QL
oF

T
(r=

8)

QL
oF

T
(r=

4)

QL
oF

T
(r=

1)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.230

0.270
0.292

0.324 0.312 0.318

0.276

LLaMA3

Figure 6: Accuracy comparison on the Orca-Math dataset using LLaMA2 and LLaMA3 models.
We compare our method, QLoFT, quantized version of LoFT, with QLoRA. QLoFT is evaluated
at various ranks (r = {16, 8, 4, 1}) and consistently outperforms QLoRA, demonstrating superior
performance in parameter-efficient fine-tuning for mathematical reasoning.

at r={8, 4}. This suggests that QLoFT better leverages the capacity of larger models, effectively
leveraging their increased capacity for improved tuning.

E.3 ABLATION STUDY

In this ablation study, we investigate the contribution of key components in our proposed LoFT
method by selectively disabling them and observing the impact on performance. The goal is to isolate
the effectiveness of (i) state calibration, and (ii) alternate updates. The experiments are conducted on
the WikiText-2 dataset using a GPT-2 model in a causal language modeling setup.

We evaluate four variants:

• LoFT (full method): includes both alternate updates and state calibration.
• LoFT without alternate updates: removes the alternation mechanism while keeping calibration.
• LoFT without state calibration: disables calibration while retaining alternating updates.
• LoFT without either: disables both the alternation and state calibration.

0 100 200 300 400 500
Training Iterations

30

40

50

60

70

Pe
rp

le
xi

ty

Training

100 200 300 400 500
Training Iterations

32.5

35.0

37.5

40.0

42.5

45.0

47.5
Evaluation

LoFT (No Alternation + No State Calibration) LoFT (No State Calibration) LoFT (No Alternate Update) LoFT

Figure 7: Ablation study of the proposed approach on a language modeling task. We train a GPT-2
model on the WikiText-2 dataset and evaluate the effect of key components of LoFT by incrementally
removing (i) state calibration, (ii) alternate update, and (iii) both. Training perplexity (left) shows
smoothed curves with shaded raw values, while evaluation perplexity (right) presents the unsmoothed
results.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Training and evaluation perplexities are reported in Figure 7. For training curves, we show smoothed
perplexity (3-step centered moving average) with raw values shaded underneath; evaluation perplexity
is shown unsmoothed.

The best-performing variant in this specific setting is LoFT without alternate updates, which slightly
outperforms the full LoFT setup. This is likely due to the fact that removing alternation effectively
doubles the update frequency of LoFT parameters, which proves beneficial on WikiText-2 with
GPT-2. We can see a significant decrease in performance when considering variants that do not have
state calibration.

These results highlight the importance of state calibration, while they also suggest that LoFT can be
slightly improved if we consider parallel updates. We attribute this to the small step size and gradient
clipping, which limit the impact of the cross term that could be problematic in some cases.

Scaling up to LLaMA and ViT. To further assess generality, we conduct additional ablations on
one large language model benchmark and one vision benchmark. Specifically, we evaluate LoFT on
LLaMA-7B with commonsense reasoning tasks and on ViT-Base for CIFAR-100 classification. In
each case, we remove LoFT components one at a time. The results are reported in Tables 7 and 8.

Table 7: Ablation results on CIFAR-100 with ViT-Base.

LoFT variant Accuracy
Full method 91.18
No alternation 91.60
No state calibration 89.38
No alternation + no state calibration 89.94

Table 8: Ablation results on LLaMA-7B with commonsense reasoning benchmarks.

LoFT Variant BoolQ PIQA SIQA HS WG ARC-C ARC-E OBQA avg.
Full method 67.34 80.96 76.20 80.50 76.40 63.62 79.21 75.40 74.95
No alternation 68.56 79.26 77.33 77.16 78.37 62.97 79.42 74.40 74.68
No state calibration 03.18 48.80 66.43 21.17 68.90 55.03 75.63 66.00 50.64
No alt. + no state cal. 57.31 62.24 55.58 17.27 65.27 56.48 73.06 68.60 56.98

Across both language and vision benchmarks, the results align with our GPT-2 findings. LoFT without
alternation sometimes matches or slightly outperforms the full method, likely due to increased update
frequency. In contrast, removing state calibration consistently causes large performance drops,
particularly dramatic on LLaMA-7B. Overall, these ablations confirm that both alternation and state
calibration are important contributors, with calibration being indispensable for LoFT’s stability and
effectiveness.

E.4 TRAINING DYNAMICS

In Figure 5 of the main paper, we presented the training performance curves on the HAM10000
dataset. Here, in Appendix Figure 8, we show analogous training-loss dynamics (log scale) for the
three remaining image-classification benchmarks: ISIC2019, Diabetic Retinopathy, and DomainNet.
Each panel plots the raw per-step loss (α=0.25) beneath a 10-step centered moving average, with a
zoomed inset in the upper-right corner of the latter two datasets to highlight differences in the final
epochs.

Across all three tasks, LoFT (magenta) consistently outperforms LoRA (blue) and closes much of the
gap to full fine-tuning (black). In particular:

• Diabetic Retinopathy: LoFT achieves the lowest training loss of all three methods through-
out, demonstrating its strongest advantage in this medical imaging dataset.

• ISIC2019 & DomainNet: LoFT again reduces loss more quickly than LoRA and tracks
very closely to full fine-tuning, especially in the later stages. While full FT still attains the
absolute minimum loss, LoFT narrows the difference relative to LoRA.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 250 500 750
Training Iterations

100
Lo

ss
 (l

og
)

ISIC2019

0 2000 4000
Training Iterations

100

6 × 10 1

Diabetic Retinopathy

0 5000 10000 15000 20000
Training Iterations

2 × 100

3 × 100

4 × 100

6 × 100
DomainNet

4750 5000 5250

0.55

0.60

0.65

17000 18000 19000
1.2

1.4

LoRA Full FT LoFT

Figure 8: Additional training-loss dynamics for image classification. For the remaining bench-
marks, ISIC2019 (left), Diabetic Retinopathy (center), and DomainNet (right), we plot training loss.
LoFT (magenta) consistently outperforms LoRA (blue) and closely tracks full fine-tuning (black),
achieving the lowest loss on Diabetic Retinopathy and substantially narrowing the gap on ISIC2019
and DomainNet. See Figure 5 in the main paper for the HAM10000 curves.

E.5 MEMORY FOOTPRINT

We evaluate the memory efficiency of LoFT in comparison to LoRA, DoRA, and DoRA (simple)
under two configurations: rank r=16 and rank r=4. All experiments were conducted using the
LLaMA-7B model on commonsense reasoning tasks (Tables 9 and 10).

Theoretical analysis. For AdamW, LoRA requires

mn [W0] + (m+ n)r [U, V] + 4(m+ n)r [optimizer states] = mn+ 5(m+ n)r,

while LoFT requires

mn [W0] + (m+ n)r [U, V] + 2(m+ n)r [previous iterates] + 2(m+ n)r [momentum]

+ 2(m+ n)r2 [cross-terms] = mn+ 5(m+ n)r + 2(m+ n)r2.

The additional 2(m+ n)r2 term arises from cross-terms for optimizer state recalibration. Crucially,
this scales with (m+n) rather than mn, ensuring LoFT remains far more efficient than full fine-tuning
when r is small.

Empirical results. At rank r=16, LoFT matches LoRA in terms of trainable parameter percentage
(0.4145%) with no increase, while incurring only a +25.65% increase in memory usage. This
memory cost is nearly identical to DoRA (simple), which also maintains a low overhead (+25.23%),
and significantly lower than full DoRA, which increases memory by over 341%.

At the lower rank setting r=4, LoFT maintains parameter parity with LoRA (0.1040%) and achieves
a very modest memory increase of just +6.71%, compared to the large 342% increase with DoRA.
While DoRA (simple) also limits memory to some extent, it still shows over 25% overhead and
increases trainable parameters by 12.4%.

Table 9: Comparison of trainable parameter percentage and memory usage for different methods at
rank r=16 using LLaMA-7B on commonsense reasoning tasks.

Method Trainable params (%) + Relative Incr. Memory (GB) + Relative Incr.
LoRA 0.4145 +0.00% 28.50 +0.00%
DoRA 0.4274 +3.11% 125.95 +341.93%
DoRA (simple) 0.4274 +3.11% 35.69 +25.23%

LoFT 0.4145 +0.00% 35.81 +25.65%

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 10: Comparison of trainable parameter percentage and memory usage for different methods at
rank r=4 using LLaMA-7B on commonsense reasoning tasks.

Method Trainable params (%) + Relative Incr. Memory (GB) + Relative Incr.
LoRA 0.1040 +0.00% 28.15 +0.00%
DoRA 0.1169 +12.40% 124.47 +342.17%
DoRA (simple) 0.1169 +12.40% 35.27 +25.29%

LoFT 0.1040 +0.00% 30.04 +6.71%

Accuracy-efficiency trade-off. Although LoFT introduces extra memory overhead relative to
LoRA, it achieves higher accuracy at substantially smaller ranks. For instance, LoFT with r = 4
surpasses LoRA with r = 16 on LLaMA-7B, and LoFT with r = 1 surpasses LoRA with r = 16
on LLaMA-2-7B (see Table 2). Importantly, unlike DoRA, LoFT adds no backward-pass memory
overhead (cf. Section 4.3 in DoRA (Liu et al., 2024)). Thus, the modest increase is offset by
substantial performance gains at lower ranks.

LoFT (simple). We further identify that the main bottleneck in LoFT stems from the second-
moment calibration. Since its effect on accuracy is marginal (∼ 0.1% drop at LLaMA-7B, r=16)
(Table 11), we propose LoFT (simple), which omits this step. As shown in Table 12, LoFT (simple)
reduces overhead to under 6% compared to LoRA, while maintaining nearly identical accuracy.

Table 11: Performance comparison between LoFT and LoFT (simple) (LLaMA-7B, rank r = 16).

Method BoolQ PIQA SIQA HS WG ARC-C ARC-E OBQA avg.
LoFT 68.62 82.80 78.27 82.69 73.32 64.30 80.26 78.40 76.08
LoFT (simple) 68.50 81.18 78.20 76.87 78.93 64.85 81.14 78.20 75.98

Table 12: LoFT (simple) memory overhead on LLaMA-7B under ranks r = 16 and r = 4.

Method Memory (GB) + Relative Incr.
LoRA 28.50 +0.00%
LoFT (simple) (r = 16) 30.02 +5.35%
LoFT (simple) (r = 4) 29.61 +5.18%

Overall, LoFT offers the same parameter efficiency as LoRA while delivering competitive per-
formance with substantially lower memory demands than DoRA variants. This makes LoFT a
memory-efficient alternative suitable for deployment in resource-constrained settings.

We refer the reader to (Liu et al., 2024) for detailed definitions of DoRA and DoRA (simple). In our
experiments, we exclusively used DoRA (simple), as recommended by DoRA’s authors. Also, the full
DoRA implementation requires substantially more memory and is impractical to run on one GPU.

E.6 TRAINING LATENCY

We also evaluate the training latency of LoFT relative to LoRA and DoRA (simple). LoFT introduces
additional overhead due to optimizer state alignment and recalibration. Table 13 summarizes the
latency (forward + backward + optimizer step) on LLaMA-7B across different ranks.

To better understand the main sources of overhead, we conducted ablations of LoFT variants at rank
r=4. The results are shown in Table 14.

These results indicate that the main bottleneck of LoFT arises from second-moment calibration.
Omitting this step yields LoFT (simple), which reduces latency to within ∼ 30% of LoRA while
being ∼ 2× faster than the stronger baseline DoRA.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 13: Relative training latency of LoRA, DoRA (simple), LoFT, and LoFT (simple) on LLaMA-
7B. Latency is reported as a multiplicative factor relative to LoRA.

Method r = 16 r = 4 r = 1

LoRA 1.00× 1.00× 1.00×
DoRA (simple) 2.38× 2.54× 2.54×
LoFT 3.23× 2.26× 1.76×
LoFT (simple) 1.32× 1.27× 1.22×

Table 14: Latency breakdown (in seconds) for LoFT variants at rank (r = 4) (LLaMA-7B).

LoFT Variant Latency (s)
LoFT (full) 1.0903
No alternation 1.5703
No state calibration 0.5810
No alternation + no state calibration 0.6146
No second moment calibration [LoFT (simple)] 0.6265

Implementation note. All latency measurements are based on a plain PyTorch implementation.
We expect substantial speed-ups with a dedicated CUDA kernel implementations, which we plan as
future work.

E.7 DOMAINNET: DOMAIN-SPECIFIC RESULTS

We would like to include the extended results of the experiment on the DomainNet dataset, including
domain-specific performance results.

Table 15 complements the cross-dataset comparison in Table 3 (main paper) by breaking the Domain-
Net dataset results down by domain (clipart, infograph, painting, quickdraw, real, and sketch). All
runs use the same ViT-Base backbone and optimization protocol described in Section C.

Table 15: Domain-specific accuracy results on the DomainNet dataset. While overall DomainNet
results are presented in the main paper, this table provides detailed per-domain accuracy for various
parameter-efficient fine-tuning methods.

Model Method
DomainNet Dataset

clipart infograph painting quickdraw real sketch avg

ViT-Base

Full FT 78.92 44.09 73.11 69.15 83.92 69.00 69.70

LoRAr=16 77.64 42.86 72.44 66.59 84.50 67.21 68.54

DoRAr=16 73.15 40.14 69.46 60.83 82.60 64.38 65.09

LoFTr=16 78.11 42.95 72.80 68.10 84.55 68.37 69.15
LoFTr=8 76.77 42.04 71.56 65.99 84.30 67.09 67.96
LoFTr=4 73.38 40.15 69.58 60.98 82.83 64.10 65.17

The overall DomainNet numbers reported in Table 3 already show that LoFTr=16 narrows the gap to
Full FT and outperforms both LoRA and DoRA. However, DomainNet’s six domains differ markedly
in style and label distribution; the per-domain breakdown reveals how each method copes with this
heterogeneity.

Main observations:

• Full fine-tuning remains strongest on average (69.7%), topping five of six domains.
• LoFT with r=16 trails Full FT by only 0.55pp on average and surpasses the full FT on the

real domain (84.55%).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

• LoRA lags LoFT on every domain except real, where both methods are statistically tied.

• DoRA and low-rank LoFT variants (r={8, 4}) show the expected accuracy drop, but LoFT
retains at least parity with the corresponding LoRA/DoRA settings.

In the main paper, we reported validation-set accuracy to keep the test labels unseen. For the extended
analysis here we evaluate on the official test split (176743 images) to give a complete picture of
domain-level generalization. No hyper-parameters were tuned on the test set; models are exactly
those used in the main paper.

E.8 COMPARISON WITH ADDITIONAL BASELINE METHODS

Experimental Setup. We first fine-tune the original GPT-2 (137M) on WikiText2 using the
same data split and preprocessing as Radford et al. (2019). All methods share the same training
hyperparameters: 1 epoch, AdamW optimizer, batch size 64, learning rate 2×10−4 with linear decay.
For adapter-based baselines (Hu et al., 2022; Kalajdzievski, 2023; Zhang et al., 2023; Wang et al.,
2024; 2025) we set the rank r=4; LoRA+ uses its default temperature and dropout as in the official
repository. After convergence, we evaluate on the WikiText-2 validation set and report perplexity
(lower is better).

Limitations of certain baselines. VeRA (Kopiczko et al., 2024) and DoRA (Liu et al., 2024)
only handle Linear layers. Because GPT-2 implements attention weights as Conv1D layers,
reproducing these methods would require serious surgery and a major rewrite; we therefore omit
them. In practice, this means VeRA and DoRA cannot be applied unchanged to a large family of
models that rely on Conv1D parameterizations.

Table 16: Perplexity (PPL) results on the Wiki-
Text2 dataset for various fine-tuning methods ap-
plied to GPT-2. Lower values indicate better per-
formance. LoFT achieves the best result, outper-
forming other parameter-efficient techniques.

Model Method WikiText2 (PPL ↓)

GPT-2

Zero-Shot 60.38
Full FT 29.51

LoRAr=4 34.80
rsLoRAr=4 32.96
AdaLoRAr=4 55.67
LoRA-Pror=4 32.79
LoRA-GAr=4 37.34
LoRA+r=4 36.15

LoFTr=4 31.75

Table 17: Perplexity (PPL) on WikiText2 for
GPT-2 Large using various fine-tuning methods.
LoFT achieves the best performance, outperform-
ing full fine-tuning and other parameter-efficient
techniques.

Model Method WikiText2 (PPL ↓)

GPT-2
Large

Zero-Shot 38.87
Full FT 19.42

LoRAr=4 19.78
rsLoRAr=4 19.62
AdaLoRAr=4 23.31
LoRA-Pror=4 20.06
LoRA-GAr=4 21.44
LoRA+r=4 19.73

LoFTr=4 19.26

Results on GPT-2. Table 16 reports validation perplexity. LoFT yields the lowest PPL (31.75),
outperforming all other parameter-efficient baselines and coming within 2.2 points of full fine-
tuning while updating only a small fraction of parameters. AdaLoRA (Zhang et al., 2023) performs
noticeably worse in this low-resource regime. Training and evaluation curves are visualized in
Figure 9: LoFT converges smoothly and tracks Full FT closely throughout training, whereas other
methods plateau higher.

Scaling to GPT-2 Large. We repeat the experiment on GPT-2 Large (812M) with the same data
and hyper-parameters (batch size reduced to 32 to fit memory for full fine-tuning). Table 17 extends
the comparison to this larger model. The zero-shot model perplexity is 38.87. Full fine-tuning brings
this down to 19.42, but LoFT achieves an even lower 19.26 while updating only a small fraction of
weights. The other adapter-style baselines cluster a few tenths higher (LoRA 19.78, rsLoRA 19.62,
LoRA+ 19.73), and AdaLoRA again lags behind at 23.31. In relative terms, LoFT improves on the
vanilla LoRA baseline by 2.6% and narrows (indeed, slightly surpasses) the gap to full fine-tuning,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Training Iterations

102

3 × 101

4 × 101

6 × 101

2 × 102

Pe
rp

le
xi

ty

Training

100 200 300 400 500
Training Iterations

3 × 101

4 × 101

6 × 101

Evaluation

450 500 550

30

40

50

Full-FT LoRA rsLoRA AdaLoRA LoRA-Pro LoRA-GA LoRA+ LoFT Zero-shot

Figure 9: Training and evaluation perplexity curves for GPT-2 on WikiText-2 dataset. The left panel
shows smoothed training perplexity (3-point moving average) for seven fine-tuning methods (Full-FT,
LoRA, rsLoRA, AdaLoRA, LoRA-Pro, LoRA-GA, LoRA+, and LoFT), with the raw PPL shaded
beneath each curve. The right panel reports evaluation PPL for the same methods, with a dashed
horizontal line at 60.38 marking the zero-shot baseline. Table for a reference: Table 16.

0 200 400 600 800 1000
Training Iterations

2 × 101

3 × 101

4 × 101

6 × 101

Pe
rp

le
xi

ty

Training

0 200 400 600 800 1000
Training Iterations

2 × 101

3 × 101

4 × 101

Evaluation

800 1000
15

20

25

900 1000 1100
19.25

19.50

19.75

Full-FT LoRA rsLoRA AdaLoRA LoRA-Pro LoRA-GA LoRA+ LoFT Zero-shot

Figure 10: Training and evaluation perplexity curves for GPT-2 LARGE on WikiText-2 dataset. The
left panel shows smoothed training perplexity (3-point centered moving average) for seven fine-tuning
methods (Full-FT, LoRA, rsLoRA, AdaLoRA, LoRA-Pro, LoRA-GA, LoRA+, and LoFT). The
right panel presents evaluation perplexity curves, with a dashed horizontal line at 38.87 marking the
zero-shot baseline. Table for a reference: Table 17.

confirming that the gains observed on the smaller GPT-2 model persist and even strengthen at a larger
scale.

Figure 10 highlights an interesting trend: on GPT-2 Large, Full FT achieves the lowest training
perplexity, but its evaluation perplexity stalls above LoFT, evidence of overfitting as model capacity
grows. By contrast, the low-rank structure of LoFT provides a built-in regularizer: it follows Full-FT
during training yet generalizes better, maintaining leading evaluation PPL. On the smaller GPT-2
(137M), Full-FT still wins on both train and evaluation – there, capacity is not large enough to overfit
the WikiText2 dataset – whereas at 812M parameters, the risk of memorization rises and LoFT’s
parameter-efficient updates prove more robust.

E.9 COMPARISON WITH VISION-CENTRIC BASELINES

We further compare LoFT against two representative vision adaptation baselines: Visual Prompt
Tuning (VPT) (Jia et al., 2022) and ViT-Adapter (Houlsby et al., 2019a; Chen et al., 2023). To cover
both standard and challenging scenarios, we evaluate on CIFAR-100 (general image classification)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

(Krizhevsky et al., 2009) and Diabetic Retinopathy (a medical imaging dataset) (Graham, 2015).
Table 18 summarizes the results.

Table 18: Comparison of LoFT with VPT and ViT-Adapter on CIFAR-100 and Diabetic Retinopathy
datasets using ViT-Base.

Method CIFAR-100 Diabetic Retinopathy
Adapter 85.93 51.82
VPT 90.03 50.28

LoFT 91.20 58.49

LoFT achieves the best performance across both datasets. While VPT and Adapter perform well on
CIFAR-100, they struggle on the more complex medical dataset, whereas LoFT maintains strong
results in both settings.

30

	I Main
	Introduction
	Method
	Gradient Descent for Full Fine-Tuning vs. LoRA
	First Moment Misalignment
	Second Moment Misalignment
	Gradient Clipping and Weight Decay
	Simulated Experiment

	Experiments
	Commonsense Reasoning
	Image Classification

	Related Work
	Conclusion
	Appendix

	II
	Limitations
	Theoretical Properties of LoFT for Matrix Factorization
	Implementation Details
	Datasets
	Hyperparameters

	LoFT Algorithm
	LoFT-Muon

	Additional Experimental Results
	Commonsense Reasoning Results
	Quantized LoFT
	Ablation Study
	Training Dynamics
	Memory Footprint
	Training Latency
	DomainNet: Domain-Specific Results
	Comparison with Additional Baseline Methods
	Comparison with Vision-Centric Baselines

