

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LOFT: LOW-RANK ADAPTATION THAT BEHAVES LIKE FULL FINE-TUNING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Large pre-trained models are commonly adapted to downstream tasks using
012 parameter-efficient fine-tuning methods such as Low-Rank Adaptation (LoRA),
013 which injects small trainable low-rank matrices instead of updating all weights.
014 While LoRA dramatically reduces trainable parameters with little overhead, it can
015 still underperform full fine-tuning in accuracy and often converges more slowly.
016 We introduce LoFT, a novel low-rank adaptation method that behaves like full
017 fine-tuning by aligning the optimizer’s internal dynamics with those of updating all
018 model weights. LoFT not only learns weight updates in a low-rank subspace (like
019 LoRA) but also properly projects the optimizer’s first and second moments (Adam’s
020 momentum and variance) into the same subspace, mirroring full-model updates. By
021 aligning the low-rank update itself with the full update, LoFT eliminates the need
022 for tuning extra hyperparameters, e.g., LoRA scaling factor α . Empirically, this
023 approach substantially narrows the performance gap between adapter-based tuning
024 and full fine-tuning and consistently outperforms standard LoRA-style methods,
025 all without increasing inference cost.

1 INTRODUCTION

027 Fine-tuning large-scale pre-trained models for specific tasks has become a standard paradigm in
028 natural language processing and other domains. However, as model sizes grow into the billions
029 of parameters, full fine-tuning (i.e., updating every weight) becomes computationally expensive
030 and impractical, especially in multi-task (Chronopoulou et al., 2023) or multi-user (Yi et al., 2023)
031 settings. Parameter-efficient fine-tuning (PEFT) techniques address this challenge by updating only
032 a small subset of parameters while reusing the vast majority of pre-trained weights. Among these,
033 Low-Rank Adaptation (LoRA) has emerged as a popular and effective solution. LoRA freezes the
034 original weights and injects trainable low-rank matrices into selected layers, substantially reducing
035 the number of learnable parameters. Remarkably, LoRA often matches – and sometimes can exceed
036 – the performance of full fine-tuning on certain benchmarks, all while incurring minimal runtime
037 overhead and no additional inference latency. This makes it an attractive alternative to other methods
038 like sequential adapters (Houlsby et al., 2019b; Pfeiffer et al., 2021), which typically introduce new
039 layers and increased latency. Despite its success, LoRA and similar low-rank approaches still fall
040 short of full fine-tuning in some settings. Empirical studies have reported a persistent performance
041 gap and slower convergence rates compared to full-model updates (Biderman et al., 2024; Wang et al.,
042 2024). These gaps indicate that the optimization dynamics of LoRA differ in important ways from
043 those of full fine-tuning. Recent work (Liu et al., 2024; Wang et al., 2025) has attempted to close
044 this gap by focusing on more accurate gradient approximations within the low-rank subspace. This
045 is motivated by the observation that LoRA’s updates can omit or misestimate important directions
046 in the full gradient, leading to suboptimal solutions. In this work, we demonstrate that this is only
047 part of the story: optimizer state misalignment – specifically in the first and second moments used by
048 AdamW (Loshchilov & Hutter, 2019), the de facto optimizer in large-scale training – also plays a
049 critical role. When these internal statistics are not properly aligned with the low-rank constraint, it
050 undermines the effectiveness of the adaptation.

051 Finally, a practical complication in standard LoRA is the introduction of a scaling hyperparameter, α ,
052 often normalized by the rank. This scaling factor modulates the contribution of the low-rank update
053 and must be carefully tuned. Improper settings can lead to poor performance or even divergence
by overpowering the backbone model (Lee et al., 2025; Malinovsky et al., 2024). Altogether,

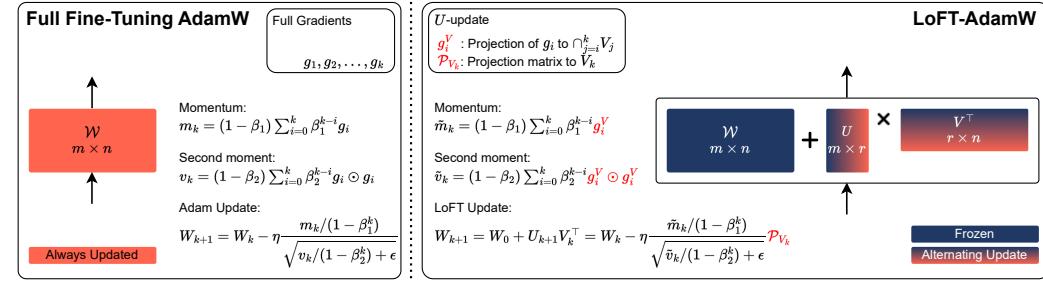


Figure 1: LoFT visualization. LoFT can be interpreted as the tightest approximation to full fine-tuning under the constraint that each update lies in the subspace defined by V (when updating U). The LoFT-AdamW update consists of a momentum and second-moment estimate constructed using projected gradients. The final update is then projected back onto the subspace of V to respect the low-rank constraint. When V is the updated component instead of U , the roles of U and V are simply exchanged, and the update is applied to W^\top instead of W .

these challenges – i.e., the gradient and optimizer state misalignment, as well as the additional hyperparameter sensitivity – limit LoRA’s ability to fully replicate the robustness and effectiveness of unconstrained full fine-tuning.

Our main contributions are summarized as follows:

- We identify that not only gradients but also optimizer states (i.e., first and second moments) suffer from misalignment when approximating full fine-tuning with low-rank updates.
- We propose Low rank adaptation that mimics Full fine-Tuning (LoFT), a novel LoRA-based optimizer that addresses these issues by closely approximating full fine-tuning across all optimization dimensions. LoFT consists of five core components: gradient scaling, alternating updates, optimizer state calibration, construction of a projected full fine-tuning update followed by low-rank projection, and projected full fine-tuning-aware clipping.
- To the best of our knowledge, LoFT is the first low-rank adaptation method that exactly reduces to AdamW (Loshchilov & Hutter, 2019) in the full-rank limit.
- We conduct extensive experiments on both synthetic and real-world tasks across multiple modalities, demonstrating the effectiveness and generality of LoFT.

2 METHOD

We focus on the standard fine-tuning setup, where a pre-trained model is adapted to a downstream task. In full fine-tuning, each weight matrix W is updated by a full-rank increment ΔW . To reduce computational cost, LoRA proposes a low-rank reparameterization

$$W = W_0 + \Delta W = W_0 + UV^\top,$$

where $W \in \mathbb{R}^{m \times n}$, $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$, and $r \ll \min\{m, n\}$. Only U and V are trainable, reducing the gradient and optimizer state footprint to $\mathcal{O}((m+n)r)$ compared to $\mathcal{O}(mn)$ in full fine-tuning. LoRA typically introduces a scaling factor $\alpha > 0$ to modulate the magnitude of the low-rank update. However, in our study, we set $\alpha = 1$ and attribute the need for this hyperparameter to a misalignment between LoRA and full fine-tuning, which we address in the subsequent sections.

2.1 GRADIENT DESCENT FOR FULL FINE-TUNING VS. LORA

Let $f(W) : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ denote a scalar loss function with W representing the parameters of a single linear layer. In standard full fine-tuning with gradient descent, the update is

$$W^+ = W - \eta \nabla_W f(W), \quad (1)$$

where $\eta > 0$ is the learning rate, and $\nabla_W f(W)$ is the gradient of the loss with respect to W . With LoRA parametrization, the update becomes

$$W^+ = W_0 + U^+(V^+)^\top = W_0 + (U - \eta \nabla_U f(W))(V - \eta \nabla_V f(W))^\top. \quad (2)$$

Applying the chain rule yields

$$\nabla_U f(W) = \nabla_W f(W)V, \quad \nabla_V f(W) = \nabla_W f(W)^\top U.$$

108 Table 1: The six core building blocks of LoFT for aligning low-rank adaptation with full fine-tuning.
109

110 Component	111 Purpose
112 Alternating Updates (1)	<i>Eliminate second-order cross terms from LoRA dynamics.</i>
113 Gradient Scaling (2)	<i>Ensure scale-invariance of low-rank updates.</i>
114 Optim. States Calibration (3, 4)	<i>Align moments estimates across changing low-rank spaces.</i>
115 Projected Full Update (5)	<i>Reconstruct the full-model update and project it onto the low-rank subspace.</i>
116 Gradient Clipping (6)	<i>Match full fine-tuning clipping behavior.</i>

117 Substituting these into (2) gives

118
$$W^+ = W - \eta (\nabla_W f(W) V V^\top + U U^\top \nabla_W f(W)) + \eta^2 \nabla_W f(W) U V^\top \nabla_W f(W). \quad (3)$$

119

120 Equation (3) highlights the first discrepancy between LoRA and full fine-tuning: the additional η^2
121 term, which depends quadratically on the gradient. While seemingly small, this term can materially
122 affect convergence, as we show later in a controlled experiment. A straightforward way to eliminate
123 this term is through alternating updates.
124125 **Building Block 1: Alternating Updates**126 Do not update U and V simultaneously, but perform alternating updates.
127129 Without loss of generality, assuming we update only U , the resulting update to W becomes

130
$$W^+ = W - \eta \nabla_W f(W) V V^\top. \quad (4)$$

131

132 However, this update suffers from a scale ambiguity: for any $c \neq 0$, $U V^\top = (cU)(V/c)^\top$, but the
133 update scales differently with c . To resolve this, observe that the update direction lies in the column
134 space of V , allowing us to scale the update using an $r \times r$ matrix¹ $(V^\top V)^{-1}$
135

136
$$W^+ = W - \eta \nabla_W f(W) V (V^\top V)^{-1} V^\top = W - \eta \nabla_W f(W) \mathcal{P}_V, \quad (5)$$

137

138 where $\mathcal{P}_V = V (V^\top V)^{-1} V^\top$ is the projection matrix onto the column space of V . This ensures the
139 update is the closest low-rank approximation to $\nabla_W f(W)$ under the given subspace. The associated
140 computational cost is $\mathcal{O}(nr^2 + r^3)$. This update defines our second building block.
141142 **Building Block 2: Use Scaled Gradients**

143
$$\tilde{\nabla}_U f(W) = \nabla_U f(W) (V^\top V)^{-1}, \quad \tilde{\nabla}_V f(W) = \nabla_V f(W)^\top (U^\top U)^{-1}.$$

144

145 We are not the first to suggest this; Zhang & Pilanci (2024) derived a similar result from the perspective
146 of Riemannian optimization.
147148 **2.2 FIRST MOMENT MISALIGNMENT**149 In practice, gradients are often estimated using momentum. Specifically, the first moment m_k is
150 computed as $m_k = \beta_1 m_{k-1} + (1 - \beta_1) g_k$, where $\beta_1 \in [0, 1]$ is the momentum coefficient and g_k is
151 the stochastic gradient, and the subscript denotes iteration counter. For full fine-tuning, the resulting
152 momentum update is
153

154
$$m_k^W = (1 - \beta_1) \sum_{i=0}^k \beta_1^{k-i} \nabla_W f(W_i). \quad (6)$$

155
156

157 When updating U under the LoRA parameterization, the effect on W becomes
158

159
$$m_k^U V^\top = (1 - \beta_1) \sum_{i=0}^k \beta_1^{k-i} \tilde{\nabla}_U f(W_i) V^\top = (1 - \beta_1) \sum_{i=0}^k \beta_1^{k-i} \nabla_W f(W_i) V_i (V_i^\top V_i)^{-1} V_k^\top,$$

160

161 ¹We assume V is of full rank. If not, we can use the pseudo-inverse.

162 which does not represent a proper projection due to the mismatch between V_i and V_k . To address this,
 163 we introduce a recalibration step

$$164 \quad m_k^U = \beta_1 m_{k-1}^U \mathbf{C}_k + (1 - \beta_1) \tilde{\nabla}_U f(W_i), \quad (7)$$

166 where $\mathbf{C}_k^V \stackrel{\text{def}}{=} (V_{k-1}^\top V_k)(V_k^\top V_k)^{-1}$ is a calibration matrix. Substituting this back gives
 167

$$168 \quad \tilde{m}_k^U = m_k^U V_k^\top = (1 - \beta_1) \sum_{i=0}^k \beta_1^{k-i} \nabla_W f(W_i) \mathcal{P}_{\cap_{j=i}^k V_j} = (1 - \beta_1) \sum_{i=0}^k \beta_1^{k-i} g_i^V, \quad (8)$$

170 where $\mathcal{P}_{\cap_{j=i}^k V_j} = \prod_{j=i}^k \mathcal{P}_{V_j}$ is the projection onto the intersection of the column spaces of V_j for
 171 $j = i$ to k . Let $g_i^V \stackrel{\text{def}}{=} \nabla_W f(W_i) \mathcal{P}_{\cap_{j=i}^k V_j}$. This expression provides the tightest possible estimate (in
 172 ℓ_2 distance) of the momentum under the constraints of the evolving low-rank subspaces defined by
 173 V_i 's. Storing previous iterates $\{V_{k-1}, U_{k-1}\}$ incurs an additional memory cost of $\mathcal{O}((m+n)r)$.
 174

176 Building Block 3: Recalibrate Momentum

$$178 \quad m_k^U = \beta_1 m_{k-1}^U \mathbf{C}_k^V + (1 - \beta_1) \tilde{\nabla}_U f(W_i),$$

$$179 \quad m_k^V = \beta_1 m_{k-1}^V \mathbf{C}_k^U + (1 - \beta_1) \tilde{\nabla}_V f(W_i).$$

182 2.3 SECOND MOMENT MISALIGNMENT

184 Analogically, for Adam-style updates, the ideal update to W when U is being updated, given subspace
 185 constraints, would be

$$186 \quad \frac{\tilde{m}_k^U / (1 - \beta_1^k)}{\sqrt{\tilde{v}_k^U / (1 - \beta_2^k)} + \varepsilon} \mathcal{P}_{V_k}, \text{ s.t. } \tilde{m}_k^U = (1 - \beta_1) \sum_{i=0}^k \beta_1^{k-i} g_i^V, \quad \tilde{v}_k^U = (1 - \beta_1) \sum_{i=0}^k \beta_1^{k-i} g_i^V \odot g_i^V, \quad (9)$$

189 where \tilde{m}_k^U is as defined in (8), and $\tilde{v}_k^U = (1 - \beta_2) \sum_{i=0}^k \beta_2^{k-i} g_i^V \odot g_i^V$ is the second moment estimate.
 190 The symbol \odot denotes element-wise multiplication. Note that this update is constructed to lie in
 191 the subspace defined by V_k , since this is a necessary constraint due to the update rule; see (4). To
 192 compute \tilde{v}_k^U efficiently, we use the following identities from Slyusar (1999)

$$193 \quad (A \bullet B)(C \otimes D) = (AC) \bullet (BD), \quad (AB) \odot (CD) = (A \bullet C)(B * D) \quad (10)$$

194 where \otimes is the Kronecker product, \bullet is the transposed Khatri–Rao product, and $*$ is the standard
 195 Khatri–Rao product. We define the calibrated second-moment accumulator as

$$197 \quad p_k^U = \beta_2 p_{k-1}^U (\mathbf{C}_k^V \otimes \mathbf{C}_k^V) + (1 - \beta_2) (\tilde{\nabla}_U f(W_i) \bullet \tilde{\nabla}_U f(W_i)), \quad (11)$$

198 where p_k^U is a matrix of size $nr \times r$ that stores the cross-terms necessary to reconstruct the second
 199 moment after transformation. The associated memory overhead is $\mathcal{O}((m+n)r^2)$, which is the
 200 **main limitation** of our approach. For this reason, maintaining a small rank r is crucial for memory
 201 efficiency. In practice, this constraint is acceptable as long as $r \leq \sqrt{\min\{m, n\}}$, which we find to
 202 be both reasonable and sufficient for capturing effective low-rank updates. In the experiment, LoFT
 203 leads to the memory increase of up to 25.65% compared to LoRA (Hu et al., 2022), but **improves**
 204 or **matches** the memory of more performant DoRA (Liu et al., 2024). Furthermore, we notice that
 205 by omitting second-moment calibration, we limit memory increase to less than 6% against LoRA
 206 and only incur marginal performance degradation ($\sim 0.1\%$). Details are provided in Appendix E.5.
 207 Furthermore, to avoid this issue in future work, we plan to investigate variants of LoFT using LLM-
 208 specific optimizers where all optimizer states are linear functions of stochastic gradients, such as
 209 Muon (Jordan et al., 2024).

210 Building Block 4: Second Moment Alignment

212 Use cross-terms for second moment accumulation to enable second moment recalibration

$$213 \quad p_k^U = \beta_2 p_{k-1}^U (\mathbf{C}_k^V \otimes \mathbf{C}_k^V) + (1 - \beta_2) (\tilde{\nabla}_U f(W_i) \bullet \tilde{\nabla}_U f(W_i)),$$

$$214 \quad p_k^V = \beta_2 p_{k-1}^V (\mathbf{C}_k^U \otimes \mathbf{C}_k^U) + (1 - \beta_2) (\tilde{\nabla}_V f(W_i) \bullet \tilde{\nabla}_V f(W_i)). \quad (12)$$

216 Using p_k^U , we compute $\tilde{v}_k^U = p_k^U(V_k * V_k)$ and apply the following update.
 217

218 **Building Block 5: Reconstruct Full Update Followed by Projection**
 219

220 For the Adam version of LoFT, update U and V as
 221

$$U_{k+1} = U_k - \eta_k \frac{m_k^U V_k / (1 - \beta_1^k)}{\sqrt{p_k^U (V_k * V_k) / (1 - \beta_2^k)} + \varepsilon} V_k (V_k^\top V_k)^{-1}, \quad (13)$$

$$V_{k+1} = V_k - \eta_k \frac{m_k^V U_k / (1 - \beta_1^k)}{\sqrt{p_k^V (U_k * U_k) / (1 - \beta_2^k)} + \varepsilon} U_k (U_k^\top U_k)^{-1}.$$

227 **2.4 GRADIENT CLIPPING AND WEIGHT DECAY**

228 We apply no special modifications to weight decay. Since only one of U or V is updated at a time, the
 229 effect of standard weight decay correctly reduces the low-rank update as $UV^\top \rightarrow (1 - \lambda \eta_k)UV^\top$.
 230 The full AdamW-LoFT algorithm is provided in the appendix. *With all six building blocks described*
 231 *above, LoFT-AdamW exactly recovers full fine-tuning when $r = \max\{m, n\}$ and U_k, V_k are full-rank.*
 232 *To our knowledge, LoFT is the first low-rank adaptation method that provably recovers full fine-tuning*
 233 *in this limit.*

235 **Building Block 6: Gradient Clipping**
 236

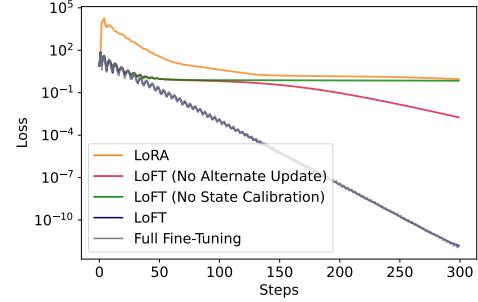
237 To approximate full fine-tuning during gradient clipping, when updating U , we use
 238 $\tilde{\nabla}_U f(W) V^\top = \nabla_W f(W) \mathcal{P}_W$ as the effective gradient for the corresponding layer W .
 239

240 **2.5 SIMULATED EXPERIMENT**

241 In the previous remark, we argued that for full-rank
 242 adaptation, LoFT recovers full fine-tuning. We now
 243 demonstrate that if the target solution is low-rank,
 244 LoFT matches the performance of full fine-tuning
 245 if the correct rank is selected. We consider the
 246 optimization problem $f(W) = \|W - A\|_F^2$, where A
 247 is a randomly generated matrix with $\text{rank}(A) = r$.
 248 We compare LoFT, LoRA, and full fine-tuning using
 249 the AdamW optimizer. To demonstrate how LoFT
 250 can efficiently approximate full fine-tuning, the step
 251 size is tuned for full fine-tuning and reused for all
 252 baselines. We initialize $W = 0$, and for LoFT we
 253 follow the standard LoRA initialization (Hu et al.,
 254 2022), which also yields $UV^\top = 0$ initially. We set
 255 $m = 1024$, $n = 512$, and $r = 8$. In addition to LoFT and LoRA,
 256 we also include ablated variants of LoFT to highlight the importance of its design components:
 257 one without alternating updates, and one without
 258 optimizer state calibration. As shown in Figure 2,
 259 LoFT closely matches the performance of full fine-tuning.
 260 In contrast, omitting any of its core components leads to significantly slower
 261 convergence and worse final performance, confirming the necessity of the full LoFT design.

262 **3 EXPERIMENTS**

263 We conduct extensive experiments across both language and vision domains to evaluate the effectiveness
 264 of our method. Our primary baselines include LoRA (Hu et al., 2022), DoRA (Liu et al., 2024),
 265 and full fine-tuning, and we apply these methods to a range of model backbones: LLaMA-7B (Touvron
 266 et al., 2023a), LLaMA2-7B (Touvron et al., 2023b), LLaMA3-8B (Grattafiori et al., 2024), and
 267 ViT-Base (Wu et al., 2020). The evaluation spans two major fronts: (i) commonsense reasoning tasks
 268 in the language domain, and (ii) image classification tasks involving highly imbalanced and domain-
 269 specific datasets, including several medical imaging datasets and DomainNet. We focus on LoRA and
 270 DoRA as our primary baselines since they are the most widely adopted and directly comparable PEFT
 271 methods, while results with additional baselines (namely full finetuning, rsLoRA (Kalajdzievski,



262 Figure 2: Comparison of LoRA, LoFT, and
 263 Full Fine-tuning with Adam on $f(W) =$
 264 $\|W - A\|_F^2$.

265 To our knowledge, LoFT is the first low-rank adaptation method that provably recovers full fine-tuning
 266 in this limit.

270
271
272
273
274
Table 2: Performance comparison of parameter-efficient fine-tuning methods, LoRA, DoRA, and our
method LoFT, on a suite of commonsense reasoning benchmarks using LLaMA-7B, LLaMA2-7B,
and LLaMA3-8B models. The table reports accuracy scores across multiple tasks with average
performance shown in the final column. r denotes the rank used in the respective adaptation method.
Bold and underlined scores highlight the best and second-best performance per task, respectively.

275 Model	276 Method	277 BoolQ	278 PIQA	279 SIQA	280 HS	281 WG	282 ARC-C	283 ARC-E	284 OBQA	285 avg.
276 LLaMA-7B	277 LoRA $_{r=16}$	278 65.38	279 76.71	280 75.69	281 79.81	282 68.03	283 65.27	284 80.30	285 77.40	286 73.57
	277 DoRA $_{r=16}$	278 54.13	279 73.94	280 79.38	281 58.01	282 79.40	283 <u>64.68</u>	284 79.76	285 79.60	286 71.11
	277 LoFT $_{r=16}$	278 68.62	279 82.80	280 78.27	281 82.69	282 73.32	283 64.30	284 80.26	285 78.40	286 76.08
	277 LoFT $_{r=4}$	278 67.34	279 <u>80.96</u>	280 76.20	281 <u>80.50</u>	282 <u>76.40</u>	283 63.62	284 79.21	285 75.40	286 74.95
	277 LoFT $_{r=2}$	278 68.03	279 79.16	280 75.84	281 78.86	282 76.24	283 64.51	284 78.03	285 71.00	286 73.96
	277 LoFT $_{r=1}$	278 67.09	279 78.35	280 74.46	281 76.14	282 74.82	283 58.87	284 76.85	285 70.80	286 72.17
	277 LoRA $_{r=16}$	278 50.09	279 59.03	280 76.41	281 65.45	282 77.51	283 64.68	284 79.12	285 77.20	286 68.69
	277 DoRA $_{r=16}$	278 71.93	279 <u>82.92</u>	280 <u>79.22</u>	281 <u>88.90</u>	282 83.03	283 66.98	284 82.70	285 82.00	286 79.71
284 LLaMA2-7B	285 LoFT $_{r=16}$	286 71.80	287 83.51	288 79.02	289 90.59	290 <u>82.72</u>	291 70.65	292 84.43	293 81.00	294 80.46
	285 LoFT $_{r=4}$	286 70.49	287 81.94	288 79.80	289 88.85	290 81.37	291 <u>69.11</u>	292 84.88	293 79.80	294 79.53
	285 LoFT $_{r=2}$	286 70.55	287 81.18	288 77.74	289 83.01	290 79.01	291 66.72	292 82.83	293 78.80	294 77.48
	285 LoFT $_{r=1}$	286 68.69	287 80.58	288 76.36	289 72.95	290 76.80	291 64.08	292 82.37	293 77.20	294 74.88
295 LLaMA3-8B	296 LoRA $_{r=16}$	297 74.46	298 88.14	299 81.37	300 94.81	301 85.08	302 <u>80.72</u>	303 89.18	304 <u>86.00</u>	305 84.97
	296 DoRA $_{r=16}$	297 <u>74.56</u>	298 <u>88.52</u>	299 80.09	300 95.17	301 86.74	302 79.78	303 <u>90.19</u>	304 84.60	305 84.96
	296 LoFT $_{r=16}$	297 75.63	298 88.85	299 80.35	300 95.64	301 <u>86.11</u>	302 80.89	303 91.16	304 86.40	305 85.63
	296 LoFT $_{r=4}$	297 74.53	298 <u>88.52</u>	299 80.04	300 <u>95.45</u>	301 85.32	302 78.92	303 89.73	304 84.20	305 84.59
306 LLaMA3-8B	307 LoFT $_{r=2}$	308 73.76	309 87.11	310 79.84	311 94.72	312 84.29	313 79.61	314 89.98	315 84.60	316 84.24
	307 LoFT $_{r=1}$	308 69.33	309 87.49	310 79.27	311 93.79	312 84.06	313 76.11	314 87.12	315 82.20	316 82.42

293
294
295
2023), AdaLoRA (Zhang et al., 2023), LoRA-Pro (Wang et al., 2025), LoRA-GA (Wang et al., 2024),
296
297
298
299
LoRA⁺ (Hayou et al., 2024)) are provided in Appendix E.8.

300
301
302
In addition to the typical low-rank configuration (e.g., rank ≥ 4), we explore extremely constrained
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
553100
553101
553102
553103
553104
553105
553106
553107
553108
553109
553110
553111
553112
553113
553114
553115
553116
553117
553118
553119
553120
553121
553122
553123
553124
553125
553126
553127
553128
553129
553130
553131
553132
553133
553134
553135
553136
553137
553138
553139
553140
553141
553142
553143
553144
553145
553146
553147
553148
553149
553150
553151
553152
553153
553154
553155
553156
553157
553158
553159
553160
553161
553162
553163
553164
553165
553166
553167
553168
553169
553170
553171
553172
553173
553174
553175
553176
553177
553178
553179
553180
553181
553182
553183
553184
553185
553186
553187
553188
553189
553190
553191
553192
553193
553194
553195
553196
553197
553198
553199
553200
553201
553202
553203
553204
553205
553206
553207
553208
553209
553210
553211
553212
553213
553214
553215
553216
553217
553218
553219
553220
553221
553222
553223
553224
553225
553226
553227
553228
553229
553230
553231
553232
553233
553234
553235
553236
553237
553238
553239
553240
553241
553242
553243
553244
553245
553246
553247
553248
553249
553250
553251
553252
553253
553254
553255
553256
553257
553258
553259
553260
553261
553262
553263
553264
553265
553266
553267
553268
553269
553270
553271
553272
553273
553274
553275
553276
553277
553278
553279
553280
553281
553282
553283
553284
553285
553286
553287
553288
553289
553290
553291
553292
553293
553294
553295
553296
553297
553298
553299
553300
553301
553302
553303
553304
553305
553306
553307
553308
553309
553310
553311
553312
553313
553314
553315
553316
553317
553318
553319
553320
553321
553322
553323
553324
553325
553326
553327
553328
553329
553330
553331
553332
553333
553334
553335
553336
553337
553338
553339
553340
553341
553342
553343
553344
553345
553346
553347
553348
553349
553350
553351
553352
553353
553354
553355
553356
553357
553358
553359
553360
553361
553362
553363
553364
553365
553366
553367
553368
553369
553370
553371
553372
553373
553374
553375
553376
553377
553378
553379
553380
553381
553382
553383
553384
553385
553386
553387
553388
553389
553390
553391
553392
553393
553394
553395
553396
553397
553398
553399
553400
553401
553402
553403
553404
553405
553406
553407
553408
553409
553410
553411
553412
553413
553414
553415
553416
553417
553418
553419
553420
553421
553422
553423
553424
553425
553426
553427
553428
553429
553430
553431
553432
553433
553434
553435
553436
553437
553438
553439
553440
553441
553442
553443
553444
553445
553446
553447
553448
553449
553450
553451
553452
553453
553454
553455
553456
553457
553458
553459
553460
553461
553462
553463
553464
553465
553466
553467
553468
553469
553470
553471
553472
553473
553474
553475
553476
553477
553478
553479
553480
553481
553482
553483
553484
553485
553486
553487
553488
553489
553490
553491
553492
553493
553494
553495
553496
553497
553498
553499
553500
553501
553502
553503
553504
553505
553506
553507
553508
553509
553510
553511
553512
553513
553514
553515
553516
553517
553518
553519
553520
553521
553522
553523
553524
553525
553526
553527
553528
553529
553530
553531
553532
553533
553534
553535
553536
553537
553538
553539
553540
553541
553542
553543
553544
553545
553546
553547
553548
553549
553550
553551
553552
553553
553554
553555
553556
553557
553558
553559
553560
553561
553562
553563
553564
553565
553566
553567
553568
553569
553570
553571
553572
553573
553574
553575
553576
553577
553578
553579
553580
553581
553582
553583
553584
553585
553586
553587
553588
553589
553590
553591
553592
553593
553594
553595
553596
553597
553598
553599
553600
553601
553602
553603
553604
553605
553606
553607
553608
553609
553610
553611
553612
553613
553614
553615
553616
553617
553618
553619
553620
553621
553622
553623
553624
553625
553626
553627
553628
553629
553630
553631
553632
553633
553634
553635
553636
553637
553638
553639
553640
553641
553642
553643
553644
553645
553646
553647
553648
553649
553650
553651
553652
553653
553654
553655
553656
553657
553658
553659
553660
553661
553662
553663
553664
553665
553666
553667
553668
553669
553670
553671
553672
553673
553674
553675
553676
553677
553678
553679
553680
553681
553682
553683
553684
553685
553686
553687
553688
553689
553690
553691
553692
553693
553694
553695
553696
553697
553698
553699
553700
553701
553702
553703
553704
553705
553706
553707
553708
553709
553710
553711
553712
553713
553714
553715
553716
553717
553718
553719
553720
553721
553722
553723
553724
553725
553726
553727
553728
5

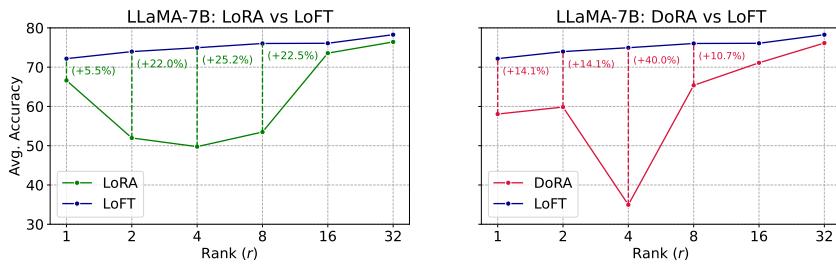


Figure 3: Rank-wise comparison of LoFT against LoRA (left) and DoRA (right) on LLaMA-7B across commonsense reasoning tasks. LoFT maintains significantly higher accuracy, especially at low ranks. Percentage gains denote improvement of LoFT over the respective baseline at each rank.

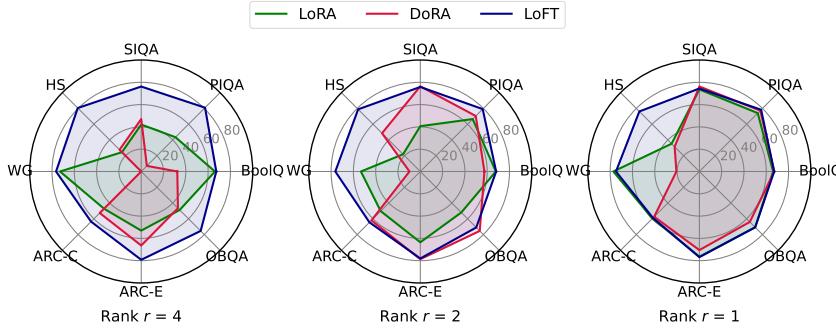


Figure 4: Task-wise performance comparison across LoRA (green), DoRA (red), and LoFT (blue) at lower ranks ($r = \{4, 2, 1\}$) on LLaMA-7B. LoFT maintains high performance across all tasks, even under extreme compression, unlike baselines that degrade sharply on several benchmarks.

LoRA and DoRA are less dramatic, but LoFT’s performance remains consistently on top. Importantly, the drop-off in performance with decreasing rank is significantly more graceful for LoFT.

Rank-Wise Comparison. To better illustrate LoFT’s robustness and performance scalability, we present a rank-wise comparison in Figure 3. The left panel compares LoFT against LoRA, and the right panel compares it against DoRA, both on LLaMA-7B. We observe that LoFT consistently outperforms both baselines across all rank settings, but the gap becomes especially pronounced at low ranks. Notably, at rank 4, LoFT surpasses DoRA by an impressive +40% and LoRA by +25%, highlighting LoFT’s extreme efficiency in constrained settings.

Interestingly, while LoRA and DoRA both suffer steep accuracy drops at lower ranks, LoFT exhibits a much flatter accuracy curve, showing that it retains high performance even with minimal trainable parameters. This makes LoFT particularly appealing for low-resource deployment scenarios.

These results validate two important properties of our method: *(i) LoFT matches or exceeds the performance of existing PEFT methods even at high capacity ($r = 16$), and (ii) it remains highly effective at extremely low ranks*, highlighting its efficiency and applicability in constrained settings. Overall, LoFT achieves the best balance between accuracy and parameter count across diverse commonsense reasoning tasks, while using the same number of parameters as LoRA – without introducing any additional overhead.

Task-Specific Analysis at Low Ranks. To further analyze performance under parameter-constrained settings, we examine how LoRA, DoRA, and LoFT behave across individual tasks at lower ranks $r = \{4, 2, 1\}$ using LLaMA-7B. Figure 4 shows radar plots for all eight commonsense reasoning benchmarks at each of these low ranks. These visualizations reveal that while LoRA and DoRA suffer inconsistent and often sharp performance drops across tasks, LoFT maintains stable and competitive accuracy across the board.

In particular, DoRA shows substantial instability at ranks 4 and 2, with near zero scores on certain tasks such as WinoGrande, whereas LoRA suffers large dips on more complex tasks like HellaSwag and SIQA. In contrast, LoFT retains high task-wise accuracy, especially on harder benchmarks (e.g., HellaSwag, ARC-C), even at rank 1, demonstrating its robust generalization when adaptation budgets

378
 379
 380
 381
 382 Table 3: Comparison of parameter-efficient fine-tuning methods on image classification benchmarks
 383 using the ViT-Base model. We evaluate full fine-tuning (Full FT), LoRA, DoRA, and our proposed
 384 method, LoFT, across four datasets: ISIC2019, HAM10000, Diabetic Retinopathy, and DomainNet.
 385 Accuracy (mean \pm standard deviation) is reported for each setting.

Model	Method	ISIC2019	HAM10000	Diabetic Retinopathy	DomainNet	avg.
ViT-Base	Full FT	80.69 \pm 0.18	93.22 \pm 0.64	56.07 \pm 0.23	73.46 \pm 1.20	75.86
	LoRA _{r=16}	81.02 \pm 1.10	91.56 \pm 0.66	57.87 \pm 0.43	71.39 \pm 0.10	75.46
	DoRA _{r=16}	80.35 \pm 0.17	90.78 \pm 0.81	57.66 \pm 0.56	70.18 \pm 2.02	74.74
	LoFT _{r=16}	81.06 \pm 0.13	93.13 \pm 0.28	58.33 \pm 0.19	71.97 \pm 0.16	76.12
	LoFT _{r=8}	80.36 \pm 0.21	91.78 \pm 0.68	57.89 \pm 0.48	70.11 \pm 0.77	75.04
	LoFT _{r=4}	79.31 \pm 0.36	91.45 \pm 0.73	56.98 \pm 0.27	69.32 \pm 0.55	74.27

390
 391 are extremely constrained. For a comprehensive view of the exact numerical breakdowns per task
 392 and rank, we refer readers to the appendix.

3.2 IMAGE CLASSIFICATION

395 To assess the generality of our approach beyond the language domain, we evaluate it on image
 396 classification tasks using the ViT-Base model (Wu et al., 2020) pretrained on ImageNet-21K (Deng
 397 et al., 2009). Vision models, unlike language models, are known to be more sensitive to low-rank
 398 constraints, often requiring higher intrinsic ranks to preserve performance. Therefore, we restrict our
 399 analysis to ranks $r \geq 4$, focusing on whether LoFT can match or exceed strong baselines under such
 400 challenging constraints.

401 We conduct experiments on four diverse and challenging datasets: **ISIC2019** (Codella et al., 2019)
 402 and **HAM10000** (Tschandl et al., 2018): medical skin lesion classification datasets with long-tailed
 403 label distributions; **Diabetic Retinopathy** (Graham, 2015): a medical imaging dataset with ordinal
 404 severity levels, and **DomainNet** (Peng et al., 2019): a large-scale highly skewed benchmark.

405 We compare our method (LoFT) against full fine-tuning (Full FT), LoRA, and DoRA using a
 406 consistent configuration (rank $r = 16$ unless specified otherwise). For each dataset, we report the
 407 mean and standard deviation over three runs.

409 As shown on Table 3, LoFT at rank 16 achieves
 410 the highest average accuracy 76.12%, outperforming
 411 both LoRA (75.46%) and DoRA (74.74%), and
 412 even slightly surpassing full fine-tuning (75.86%).
 413 LoFT also achieves the top score on two of four
 414 individual datasets, including ISIC2019 and Diabetic
 415 Retinopathy. Notably, LoRA performs competitively
 416 on ISIC2019 but exhibits degraded performance on
 417 HAM10000 and DomainNet, suggesting it may strug-
 418 gle with skewed datasets. DoRA generally underper-
 419 forms across datasets, indicating instability in visual
 420 domains with skewed/out-of-domain datasets. In contrast,
 421 LoFT maintains strong performance, even
 422 when the rank is reduced to 8 and 4, with only a 2-point drop in average accuracy at rank 4, further
 423 reinforcing its resilience to low-rank degradation in vision tasks.

424 In addition to the final accuracy gains reported in Table 3, we also present the training dynamics on
 425 HAM10000 in Figure 5. Remarkably, LoFT’s training loss curve closely overlaps with that of full
 426 fine-tuning from the very first iterations, indicating that our updates follow the same optimization
 427 trajectory as Full FT right from the start. In contrast, LoRA starts with a noticeably higher loss and
 428 converges more slowly, never fully matching Full FT’s initial descent. This early alignment between
 429 LoFT and Full FT demonstrates that, despite updating far fewer parameters, LoFT preserves the
 430 model’s capacity to adapt rapidly.

431 Throughout the remainder of training, LoFT maintains a small gap behind Full FT, which we attribute
 432 to the growing rank of the full fine-tuning solution, as explained by greedy low-rank learning
 433 theory (Li et al., 2021). Nevertheless, LoFT significantly outperforms LoRA across the full training
 434 trajectory. Interestingly, LoFT ultimately achieves better final performance than full fine-tuning,

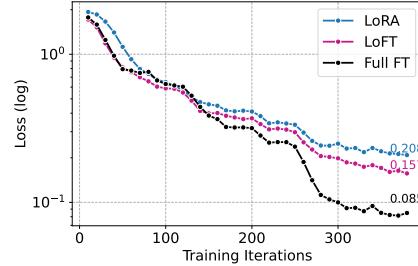


Figure 5: Training log. loss on HAM10000.

432 suggesting that Full FT may overfit, whereas LoFT benefits from implicit regularization due to the
 433 low-rank structure of its updates.
 434

435 4 RELATED WORK

437 **Parameter-Efficient Fine-Tuning.** As aforementioned, the advent of Large Language Models has
 438 exploded the computational and memory requirements of running neural workloads, at training and
 439 inference time, thus limiting running such tasks to a few players. Towards this end, a significant
 440 amount of research has focused on efficient ways of fine-tuning LLMs for downstream tasks. Param-
 441 eter Efficient Fine-Tuning (PEFT) collectively refers to techniques that only tune a small number
 442 of parameters towards the optimization objective. Such methods take various shapes, ranging from
 443 token-level (i.e., prompt-tuning) (Lester et al., 2021) and intermediate state parameters (i.e., prefix-
 444 tuning) (Li & Liang, 2021) to block-level parameters interspersed in the transformer block, either
 445 sequentially (Houlsby et al., 2019b; Pfeiffer et al., 2021) or in parallel (He et al., 2022).

446 **Low-Rank Adaptation.** Closer to our method, LoRA (Hu et al., 2022) introduces low-rank adapters
 447 parallel to the attention and linear layers of the transformer block, which build upon the assump-
 448 tion that the changes in model weights during adaptation exhibit a low-rank structure and thus
 449 reparametrize updated weights as such. While seminal, LoRA often falls short of the full fine-tuning
 450 potential of the model. Subsequent work has tried to tackle this in various ways. Specifically,
 451 DoRA (Liu et al., 2024) decomposes the model weights into their directional and magnitude compo-
 452 nents and fine-tunes both, but only the former remains low-rank. Similar in nature is DeLoRA (Bini
 453 et al., 2025), decouples the direction and strength of low-rank weight updates via normalization and
 454 learnable scaling. On the contrary, Zhu et al. (2024) note the distinct function of A and B low-rank
 455 matrices and propose training only the latter for efficiency, while Hayou et al. (2024) adopts different
 456 learning rates for each matrix. LoRA-Pro (Wang et al., 2025) shows the equivalence of low-rank
 457 adaptation and low-rank gradient and enhances LoRA by minimizing the distance between the true
 458 gradient and the low-rank matrices A and B in closed form. Zhang & Pilanci (2024) introduce a
 459 Riemannian preconditioner to enhance the stability and efficiency of LoRA with SGD and AdamW
 460 optimizers across tasks. PiSSA (Meng et al., 2024), on the other hand, pinpoints the issue with the
 461 initialization of LoRA matrices and proposes SVD decomposition and freezing only the residual
 462 components of the weights. All of the above methods attempt to more faithfully approximate the
 463 gradients in the low-rank subspace and close the performance gap of LoRA with full fine-tuning.
 464 Contrary to prior work, our primary goal focuses on the optimization dynamics of low-rank models
 465 and aligning the optimizer state to full fine-tuning. By doing so, we are able to get state-of-the-art
 466 results without sacrificing accuracy or efficiency.

467 **More efficient LoRA.** While low-rank adaptation significantly drops the computational and memory
 468 requirements of training large-scale LLMs, it still can require a significant amount of resources, espe-
 469 cially in constrained edge or cross-device federated learning settings (Cho et al., 2024). Towards this
 470 end, several approaches further optimize low-rank adaptation to minimize the overhead. Specifically,
 471 VeRA (Kopiczko et al., 2024) proposes freezing shared random low-rank matrices and only training
 472 scaling vectors. LoRA-xs (Bałazy et al., 2024) freezes SVD-initialized low-rank matrices and only
 473 trains a small $r \times r$ matrix for adaptation. Last, LoRA-SB (Ponkshe et al., 2024) more carefully
 474 initializes the low-rank matrices to more faithfully approximate the full fine-tuning gradient directions
 475 during adaptation. Contrary to such approaches, LoFT can scale to truly low ranks by careful tuning
 476 of the optimization process, rather than altering the adaptation modeling.

477 5 CONCLUSION

478 In this work, we have presented LoFT, a low-rank adaptation framework that aligns the optimizer’s
 479 internal dynamics to full fine-tuning, by means of alternating LoRA updates, gradient projection
 480 and scaling, first and second moments calibration, and gradient clipping approximations. These
 481 mechanisms enable significant performance and efficiency gains with minimal loss in accuracy, across
 482 different tasks and model sizes, and pave the way for training even more efficiently for downstream
 483 tasks. Towards this end, we plan to explore the interplay between our LoFT and quantization to
 484 further boost efficiency and sustainability in training, as well as how it can be combined with noisy
 485 Differential Privacy updates, which can enable distributed private training at scale.

486 REFERENCES
487488 Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adaptation
489 with extremely small number of parameters. *arXiv preprint arXiv:2405.17604*, 2024.490 Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Con-
491 nor Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney,
492 and John Patrick Cunningham. LoRA learns less and forgets less. *Transactions on Machine
493 Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=aloEru2qCG>. Featured Certification.
494495 Massimo Bini, Leander Girrbach, and Zeynep Akata. Decoupling angles and strength in low-rank
496 adaptation. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
497 <https://openreview.net/forum?id=X1U74IwuxG>.
498499 Zhe Chen, Yuchen Duan, Wenhui Wang, Junjun He, Tong Lu, Jifeng Dai, and Yu Qiao. Vision
500 transformer adapter for dense predictions. In *The Eleventh International Conference on Learning
501 Representations*, 2023. URL <https://openreview.net/forum?id=plKu2GBYCNW>.
502503 Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, and Gauri Joshi. Heterogeneous lora for federated
504 fine-tuning of on-device foundation models. In *Proceedings of the 2024 Conference on Empirical
505 Methods in Natural Language Processing*, pp. 12903–12913, 2024.
506507 Alexandra Chronopoulou, Matthew E Peters, Alexander Fraser, and Jesse Dodge. Adaptersoup:
508 Weight averaging to improve generalization of pretrained language models. In *Findings of the
509 Association for Computational Linguistics: EACL 2023*, pp. 2054–2063, 2023.
510511 Noel Codella, Veronica Rotemberg, Philipp Tschiandl, M Emre Celebi, Stephen Dusza, David
512 Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion
513 analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging
514 collaboration (isic). *arXiv preprint arXiv:1902.03368*, 2019.
515516 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
517 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
518 pp. 248–255. Ieee, 2009.
519520 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
521 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.
522523 Ben Graham. Kaggle diabetic retinopathy detection competition report. *University of Warwick*, 22
524 (9), 2015.
525526 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
527 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
528 models. *arXiv preprint arXiv:2407.21783*, 2024.
529530 Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models. In
531 *International Conference on Machine Learning*, pp. 17783–17806. PMLR, 2024.
532533 Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
534 a unified view of parameter-efficient transfer learning. In *International Conference on Learning
535 Representations*, 2022. URL <https://openreview.net/forum?id=0RDcd5Axok>.
536537 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
538 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP.
539 In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International
Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*,
540 pp. 2790–2799. PMLR, 09–15 Jun 2019a. URL <https://proceedings.mlr.press/v97/houlsby19a.html>.
541542 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
543 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
544 nlp. In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019b.
545

540 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 541 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
 542

543 Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
 544 Poria, and Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of large
 545 language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023*
 546 *Conference on Empirical Methods in Natural Language Processing*, pp. 5254–5276, Singapore,
 547 December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-
 548 main.319. URL <https://aclanthology.org/2023.emnlp-main.319/>.
 549

549 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 550 Ser-Nam Lim. Visual prompt tuning. In *European conference on computer vision*, pp. 709–727.
 551 Springer, 2022.

552 Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
 553 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL <https://kellerjordan.github.io/posts/muon/>.
 555

556 Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. *arXiv preprint*
 557 *arXiv:2312.03732*, 2023.

558 Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
 559 adaptation. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 560 <https://openreview.net/forum?id=NjNfLdxr3A>.
 561

562 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 563 *Toronto, ON, Canada*, 2009.

564 Ariel Lee, Cole Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful refinement of llms.
 565 In *NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following*, 2025.

566

567 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 568 tuning. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language*
 569 *Processing*, pp. 3045–3059, 2021.

570 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the*
 571 *11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*,
 572 pp. 4582–4597, 2021.

573

574 Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
 575 for matrix factorization: Greedy low-rank learning. In *International Conference on Learning*
 576 *Representations*, 2021. URL <https://openreview.net/forum?id=AH0s7Sm5H7R>.
 577

578 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 579 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Forty-first*
 580 *International Conference on Machine Learning*, 2024.

581 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Con-*
 582 *ference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.
 583

585 Grigory Malinovsky, Umberto Michieli, Hasan Abed Al Kader Hammoud, Taha Ceritli, Hayder
 586 Elesey, Mete Ozay, and Peter Richtárik. Randomized asymmetric chain of lora: The first
 587 meaningful theoretical framework for low-rank adaptation. *arXiv preprint arXiv:2410.08305*,
 588 2024.

589 Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
 590 adaptation of large language models. *Advances in Neural Information Processing Systems*, 37:
 591 121038–121072, 2024.

592

593 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 594 models. In *International Conference on Learning Representations*, 2017.

594 Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking the
 595 potential of slms in grade school math. *arXiv preprint arXiv:2402.14830*, 2024.

596

597 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 598 for multi-source domain adaptation. In *Proceedings of the IEEE/CVF international conference on*
 599 *computer vision*, pp. 1406–1415, 2019.

600 Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapterfu-
 601 sion: Non-destructive task composition for transfer learning. In *Proceedings of the 16th Conference*
 602 *of the European Chapter of the Association for Computational Linguistics: Main Volume*, pp.
 603 487–503, 2021.

604 Kaustubh Ponkshe, Raghav Singhal, Eduard Gorbunov, Alexey Tumanov, Samuel Horvath, and
 605 Praneeth Vepakomma. Initialization using update approximation is a silver bullet for extremely
 606 efficient low-rank fine-tuning. *arXiv preprint arXiv:2411.19557*, 2024.

607

608 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 609 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

610 VI Slyusar. A family of face products of matrices and its properties. *Cybernetics and systems analysis*,
 611 35(3):379–384, 1999.

612

613 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 614 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 615 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

616 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 617 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 618 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

619

620 Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large collection of
 621 multi-source dermatoscopic images of common pigmented skin lesions. *Scientific data*, 5(1):1–9,
 622 2018.

623 Kerem Turgutlu, Jonathan Whitaker, and J. H. Fsdp, qlora, and llama 3: A recipe for
 624 efficient fine-tuning. <https://www.answer.ai/posts/2024-04-26-fsdp-qdora-llama3.html>, 2024. URL <https://www.answer.ai/posts/2024-04-26-fsdp-qdora-llama3.html>. Accessed: 2025-05-21.

625

626 Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
 627 *Advances in Neural Information Processing Systems*, 37:54905–54931, 2024.

628

629 Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. LoRA-pro: Are low-rank adapters
 630 properly optimized? In *The Thirteenth International Conference on Learning Representations*,
 631 2025. URL <https://openreview.net/forum?id=gTwRMU31J5>.

632

633 Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
 634 Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
 635 image representation and processing for computer vision, 2020.

636

637 Liping Yi, Han Yu, Gang Wang, Xiaoguang Liu, and Xiaoxiao Li. pfedlora: model-heterogeneous
 638 personalized federated learning with lora tuning. *arXiv preprint arXiv:2310.13283*, 2023.

639

640 Fangzhao Zhang and Mert Pilanci. Riemannian preconditioned LoRA for fine-tuning foundation
 641 models. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
 642 Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference*
 643 *on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp.
 644 59641–59669. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/zhang24ax.html>.

645

646 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
 647 Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In *The Eleventh Inter-
 648 national Conference on Learning Representations*, 2023. URL [https://openreview.net/foru m?id=1q62uWRJjiY](https://openreview.net/foru

 649 m?id=1q62uWRJjiY).

648 Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez de Ocáriz Borde, Rickard Brüel
649 Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
650 Asymmetry in low-rank adapters of foundation models. In *Forty-first International Conference on*
651 *Machine Learning*, 2024. URL <https://openreview.net/forum?id=txRZBD8tBV>.
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Table of Contents

702	A Limitations	15
703		
704		
705	B Theoretical Properties of LoFT for Matrix Factorization	15
706		
707		
708	C Implementation Details	17
709		
710	C.1 Datasets	17
711	C.2 Hyperparameters	17
712	D LoFT Algorithm	19
713		
714	D.1 LoFT-Muon	19
715	E Additional Experimental Results	22
716		
717	E.1 Commonsense Reasoning Results	22
718	E.2 Quantized LoFT	22
719	E.3 Ablation Study	23
720	E.4 Training Dynamics	24
721	E.5 Memory Footprint	25
722	E.6 Training Latency	26
723	E.7 DomainNet: Domain-Specific Results	27
724	E.8 Comparison with Additional Baseline Methods	28
725	E.9 Comparison with Vision-Centric Baselines	29

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A LIMITATIONS**
 757

758 In this paper, we have proposed a technique for producing parameter-efficient fine-tuning via low-rank
 759 adaptation that behaves like full-finetuning. While we have evaluated our approach in various settings,
 760 including LLMs and ViTs of varying sizes and shapes, our evaluation has been focused on networks
 761 of up to 8B parameters, due to computational constraints. However, we have no reason to believe that
 762 our results would not extrapolate to scaling up.

763 Moreover, while our technique offers significant efficiency gains compared to full-finetuning and
 764 DoRA, it has an increased memory consumption compared to LoRA (due to storing previous iterates
 765 V_{k-1}, U_{k-1}), to the benefit of increased accuracy (see Section E.5). Having said that, even for the
 766 same memory footprint of LoRA, LoFT is able to achieve better downstream accuracy.

767 Last, we applied our technique on top of the AdamW optimizer, as the most popularly used in LLM
 768 optimization. We leave applications to other optimizers, like Muon, as future work.

770 **B THEORETICAL PROPERTIES OF LOFT FOR MATRIX FACTORIZATION**
 771

773 In Section 2.4, we argue that when UV^\top is of full rank, then LoFT recovers full fine-tuning.
 774 Furthermore, for the matrix factorization problem, we showed that if the true solution is of low rank,
 775 then LoFT also empirically recovers full fine-tuning. In this section, we further extend these results.
 776 In particular, we focus on the matrix factorization problem

$$777 \min_{U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}} \left\{ f(U, V) \stackrel{\text{def}}{=} \frac{1}{2} \|UV^\top - A\|_F^2 \right\}. \quad (14)$$

780 Let $A = \tilde{U}\Sigma\tilde{V}^\top$ be the SVD decomposition of A . Then, by the Eckart-Young theorem, we have that
 781 every solution of (14) has the following form:

$$782 \begin{aligned} U^* &= \tilde{U}_r\Sigma_rQ, \\ 783 V^* &= \tilde{V}_r(Q^{-1})^T, \end{aligned}$$

785 where $\tilde{U}_r, \Sigma_r, \tilde{V}_r$ contain the first r singular vectors of A and $Q \in \mathbb{R}^{r \times r}$ is a full rank matrix. In
 786 the next lemma, we show that if U and V start in the correct space, then LoFT applied to gradient
 787 descent with momentum recovers full fine-tuning with momentum.

789 **Lemma 1.** *Let $U_0 = \tilde{U}_rX_0$ and $V_0 = \tilde{V}_rY_0$, where $X_0, Y_0 \in \mathbb{R}^{r \times r}$ are full rank matrices. Then,
 790 LoFT-GD with momentum applied to the matrix factorization problem exactly recovers GD with
 791 momentum applied to $f(W) = \frac{1}{2}\|W - A\|_F^2$ initialized at $W_0 = U_0V_0^\top$.*

792 *Proof.* The gradient of $f(W)$ with respect to W has the following form:

$$793 \nabla_W f(W_0) = W_0 - A = \tilde{U}_r(X_0Y_0^\top - \Sigma_r)\tilde{V}_r^\top.$$

794 The left and right spaces correspond to \tilde{U}_r and \tilde{V}_r , respectively. Using (5) and (8), we get

$$795 g_0^V = g_0^U = \nabla_W f(W_0) \text{ and } \tilde{m}_0^V = \tilde{m}_0^U = m_0 = \nabla_W f(W_0).$$

796 Since momentum is also the update, we have by induction that $\forall k \geq 0$, $U_k = \tilde{U}_rX_k$ and $V_k = \tilde{V}_rY_k$,
 797 where $X_k, Y_k \in \mathbb{R}^{r \times r}$. Therefore,

$$802 g_k^V = g_k^U = \nabla_W f(W_k), \text{ and}$$

$$804 \tilde{m}_k^V = \tilde{m}_k^U = m_k = (1 - \beta_1) \sum_{i=0}^k \beta_1^{k-i} \nabla_W f(W_i).$$

805 \square

806 One interesting consequence of the above lemma is that if we apply LoFT with step size 1 with
 807 the initialization in the correct space, LoFT finds the optimal solution in a single step. Notice that

810 without scaling, the smoothness constant of (14) with respect to both optimization variables can be
 811 unbounded, since
 812

$$\begin{aligned} 813 \|\nabla_U f(U_1, V) - \nabla_U f(U_2, V)\|_F &= \|(U_1 V^T - A)V - (U_2 V^T - A)V\|_F \\ 814 &= \|(U_1 - U_2)V^T V\|_F \end{aligned}$$

815 can be unbounded as $\|V\|_F$ can be unbounded. In practice, we would need to restrict $\|U\|_F$ and
 816 $\|V\|_F$ to guarantee smoothness. On the other hand, LoFT scaled version of the gradient satisfies:
 817

$$\begin{aligned} 818 \|\tilde{\nabla}_U f(U_1, V) - \tilde{\nabla}_U f(U_2, V)\|_F &= \|(U_1 V^T - A)V(\mathbf{V}^\top \mathbf{V})^{-1} - (U_2 V^T - A)V(\mathbf{V}^\top \mathbf{V})^{-1}\|_F \\ 819 &= \|(U_1 - U_2)V^\top V(\mathbf{V}^\top \mathbf{V})^{-1}\|_F \\ 820 &= 1\|U_1 - U_2\|_F. \\ 821 \end{aligned}$$

822 Therefore, LoFT gradients are smooth with the smoothness constant 1 without any restrictions. The
 823 above highlights another desirable property of LoFT introduced in the following lemma.
 824

825 **Lemma 2.** *LoFT-GD with step size $\eta = 1$ applied to the matrix factorization (14) corresponds to the
 826 Alternating Least Squares algorithm.*

827 *Proof.* Without loss of generality, we assume U is updated. Let $E_k = U_k V_k^\top - A$, then:

$$\begin{aligned} 828 E_{k+1} &= U_{k+1} V_k^\top - A = \left(U_k - E_k V_k (\mathbf{V}_k^\top \mathbf{V}_k)^{-1} \right) V_k^\top - A \\ 829 &= E_k - E_k V_k (\mathbf{V}_k^\top \mathbf{V}_k)^{-1} V_k^\top \\ 830 &= E_k (I - \mathcal{P}_{V_k}). \\ 831 \end{aligned}$$

832 Therefore,

$$833 f(U_{k+1}, V_k) = \frac{1}{2} \|E_{k+1}\|_F^2 = \frac{1}{2} \|E_k (I - \mathcal{P}_{V_k})\|_F^2 = \min_{U \in \mathbb{R}^{m \times r}} \frac{1}{2} \|U V_k^\top - A\|_F^2 = \min_{U \in \mathbb{R}^{m \times r}} f(U, V_k).$$

834 Analogically, we can derive

$$835 f(U_k, V_{k+1}) = \min_{V \in \mathbb{R}^{n \times r}} f(U_k, V),$$

836 which concludes the proof. □

837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864
865

C IMPLEMENTATION DETAILS

866
867
868
869
870

Compute Information. All experiments reported in this paper were conducted using a single
NVIDIA A100-SXM4-40GB GPU. This setup was used consistently across all experimental runs.
Time of execution and memory usage varied slightly depending on the model configuration, but all
runs were completed on a single-GPU setup. No additional or external compute (e.g., cloud services)
was used during these experiments.

871
872
873

The implementation of LoFT used in our experiments can be found at the following anonymized
github repository: <https://anonymous.4open.science/r/loft-D1500/>.

874
875

C.1 DATASETS

876
877
878
879
880

Commonsense Reasoning. To evaluate language models’ reasoning capabilities, we use a curated
commonsense reasoning benchmark COMMONSENSE170K (Hu et al., 2023) consisting of 170K
diverse examples. These examples are drawn from multiple existing commonsense QA datasets and
span a variety of tasks, including physical reasoning, social intuition, temporal understanding, and
cause-effect inference.

881
882
883

Image Classification. We conduct experiments on four diverse and challenging datasets to evaluate
the generalization ability of our method in the image classification domain:

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

- **ISIC2019** (Codella et al., 2019) is a medical dataset composed of 25300 training and 8238
test dermoscopic images spanning eight skin lesion categories. It presents a long-tailed
distribution, with the largest class heavily overrepresented relative to rare malignancies
such as dermatofibroma or vascular lesions. The dataset is particularly challenging due to
inter-class visual similarity and intra-class variability.
- **HAM10000** (Tschandl et al., 2018) contains $\{8.2K + 1.2K\}$ (training + test) high-resolution
dermoscopic images categorized into seven skin lesion types. It includes lesions from
diverse populations and acquisition sources. Similar to ISIC2019, this dataset suffers from
severe class imbalance.
- **Diabetic Retinopathy** (Graham, 2015) consists of $\{115K + 14.2K\}$ (training + test) retinal
fundus images annotated with ordinal labels representing five stages of diabetic retinopathy
severity. The task involves predicting these severity levels from fundus scans.
- **DomainNet** (Peng et al., 2019) is a large-scale dataset designed for domain generalization
and adaptation. It contains approximately 587000 images from 345 categories across six
domains: real, clipart, infograph, painting, quickdraw, and sketch. Its substantial domain
shift and high class diversity make it a valuable benchmark for testing superiority of the
methods.

902
903
904
905

Math Reasoning. To assess mathematical reasoning in large language models, we use the ORCA-
MATH dataset (Mitra et al., 2024), a benchmark of 200K diverse math problems spanning arithmetic,
algebra, geometry, calculus, and probability. Each problem requires multi-step reasoning and
symbolic manipulation, making the dataset well-suited for evaluating fine-tuning strategies.

906
907
908
909
910
911
912

Language Modeling. To evaluate language modeling and text generation under low-resource conditions, we use the WIKITEXT2 dataset (Merity et al., 2017), a widely adopted benchmark consisting of over 100K tokens from cleaned Wikipedia articles. The dataset preserves natural long-range dependencies by retaining full articles and punctuation, making it suitable for assessing perplexity and generalization in autoregressive models. We follow the original data split and preprocessing protocol established by Radford et al. (2019).

913
914

C.2 HYPERPARAMETERS

915
916
917

We report training configurations for the main experiments: commonsense reasoning and image
classification. For clarity and reproducibility, the full hyperparameter settings for each task are
presented in tables below. Hyperparameters for the remaining tasks, including math reasoning and
language modeling, are detailed separately in Section E.2 and Section E.8, respectively.

918
 919 Table 4: Hyperparameter configurations used for LoRA/DoRA (as in (Liu et al., 2024)) and our
 920 method, LoFT, across LLaMA model variants on commonsense reasoning tasks. Unlike prior method
 921 that tune the LoRA scaling factor α , LoFT sets $\alpha = r$ consistently across all models without the need
 922 for tuning.

Hyperparameter	LoRA/DoRA			LoFT		
	LLaMA-7B	LLaMA2-7B	LLaMA3-8B	LLaMA-7B	LLaMA2-7B	LLaMA3-8B
Rank r	r			r		
Alpha scaler α		$2 \times r$		r		
Dropout		0.05		0.05		
Optimizer		AdamW		AdamW		
Learning rate	2×10^{-4}	3×10^{-4}	1×10^{-4}	2×10^{-4}	3×10^{-4}	1×10^{-4}
LR scheduler		Linear			Linear	
Batch size		16			16	
Micro-batch size		16			16	
Warmup steps		100			100	
Training epochs		3			3	
Low-rank targets	Q, K, V, Up, Down			Q, K, V, Up, Down		

935
 936 Table 5: Training hyperparameters for ViT-B/16 across four image classification datasets. All methods
 937 (Full FT, LoRA, DoRA, and LoFT) are trained using the same configuration for fair comparison.

Dataset	Rank r	Batch Size	LR	Epochs	Target Modules	LoRA/DoRA α	LoFT α
ISIC2019	r	64	5×10^{-4}	3	Q, K, V, Dense	$2 \times r$	r
HAM10000	r	64	5×10^{-4}	3	Q, K, V, Dense	$2 \times r$	r
Retinopathy	r	64	5×10^{-4}	3	Q, K, V, Dense	$2 \times r$	r
DomainNet	r	256	5×10^{-4}	3	Q, K, V, Dense	$2 \times r$	r

938
 939 *Common settings:* Optimizer = AdamW, LR scheduler = Linear, Warmup ratio = 0.1, Dropout = 0.1,
 940 Micro-batch size = Batch size.

941
 942 **Commonsense Reasoning.** We evaluate three generations of LLaMA family models, LLaMA-7B,
 943 LLaMA2-7B, and LLaMA3-8B, to test whether our proposed **LoFT** approach scales consistently
 944 across architectural updates. For each backbone, we compare against two strong parameter-efficient
 945 baselines, LoRA (Hu et al., 2022) and DoRA (Liu et al., 2024). For these experiments, we adopt
 946 the optimal hyperparameter settings reported in (Liu et al., 2024). We adopt the same learning rate,
 947 learning rate scheduler, warmup steps, batch size, and the same Q, K, V, Up, Down matrices for
 948 applying LoRA. The full configuration is summarized in Table 4.

949
 950 **Image Classification.** We conduct image classification experiments using the ViT-B/16 model
 951 across four datasets: ISIC2019, HAM10000, Diabetic Retinopathy, and DomainNet. The input
 952 resolution is fixed to 224×224 pixels, and the patch size is set to 16. All methods, including full
 953 fine-tuning, LoRA, DoRA, and our proposed LoFT, share the same training configuration to ensure a
 954 fair comparison.

955
 956 Specifically, we fix the learning rate to 5×10^{-4} across all datasets. The batch size is set to 64 for
 957 medical datasets and increased to 256 for DomainNet due to its scale. All models are trained for 3
 958 epochs using the AdamW optimizer, with a linear learning rate scheduler and a warmup ratio of 0.1.
 959 A dropout rate of 0.1 is applied, and low-rank methods target both the Q, K, V attention layers and
 960 the Dense layers. These hyperparameters are summarized in Table 5.

961
 962 **Scaling Factor.** We clarify the role of the scaling hyperparameter α . As noted in Section 2, we set
 963 $\alpha = 1$ in LoFT. In practice, the HuggingFace PEFT library implements scaling as α/r , so setting
 964 $\alpha = r$ yields an effective scaling factor of 1, thereby removing the need for hyperparameter tuning.
 965 For LoRA and DoRA baselines, we followed the recommended setting $\alpha = 2r$ (see Table 10 in
 966 Liu et al. (2024)) to ensure fairness. One of LoFT’s design goals is precisely to eliminate this
 967 hyperparameter, which we emphasize in the main text.

970

971

972 **D LOFT ALGORITHM**
973975 **Algorithm 1** LoFT-AdamW with Alternating Updates

976 **Require:** Pretrained weights W_0 , low-rank factors U_0, V_0 , learning rate η_k , weight decay rate λ ,
977 AdamW parameters $\beta_1, \beta_2, \varepsilon$

978 1: Initialize first and second moments: $m_0^U, m_0^V, p_0^U, p_0^V \leftarrow 0$

979 2: Set alternating update flag: $\text{update_U} \leftarrow \text{False}$

980 3: **for** $k = 1, 2, \dots$ **do**

981 4: $W_k \leftarrow W_0 + U_k V_k^\top$ # Reconstruct full weight matrix

982 5: $g_W \leftarrow \nabla_W f(W_k)$ # Get full gradient (only for notational purposes)

983 6: $g_U \leftarrow g_W V_k, g_V \leftarrow g_W^\top U_k$ # Project gradients to low-rank factors

984 7: $C_k^V \leftarrow (V_{k-1}^\top V_k)(V_k^\top V_k)^{-1}, C_k^U \leftarrow (U_{k-1}^\top U_k)(U_k^\top U_k)^{-1}$

985 8: $\tilde{g}_U \leftarrow g_U (V_k^\top V_k)^{-1}, \tilde{g}_V \leftarrow g_V (U_k^\top U_k)^{-1}$

986 9: $m_k^U \leftarrow \beta_1 m_{k-1}^U C_k^V + (1 - \beta_1) \tilde{g}_U$ # First moment calibration

987 10: $m_k^V \leftarrow \beta_1 m_{k-1}^V C_k^U + (1 - \beta_1) \tilde{g}_V$

988 11: $p_k^U \leftarrow \beta_2 p_{k-1}^U (C_k^V \otimes C_k^V) + (1 - \beta_2) (\tilde{g}_U \bullet \tilde{g}_U)$ # Second moment calibration

989 12: $p_k^V \leftarrow \beta_2 p_{k-1}^V (C_k^U \otimes C_k^U) + (1 - \beta_2) (\tilde{g}_V \bullet \tilde{g}_V)$

990 13: **if** update_U **then** # Alternating updates

991 14: $v_k^U \leftarrow p_k^U (V_k * V_k)$ # Reconstruct second moment in projected space

992 15: $\tilde{m}_k^U \leftarrow m_k^U V_k^\top / (1 - \beta_1^k)$

993 16: $\tilde{v}_k^U \leftarrow v_k^U / (1 - \beta_2^k)$

994 17: $\Delta U \leftarrow \eta_k \cdot \frac{\tilde{m}_k^U}{\sqrt{\tilde{v}_k^U + \varepsilon}} V_k (V_k^\top V_k)^{-1}$ # Update U with projection

995 18: $U_{k+1} \leftarrow (1 - \lambda \eta_k) U_k - \Delta U$

996 19: $V_{k+1} \leftarrow V_k$

997 20: **else**

998 21: $v_k^V \leftarrow p_k^V (U_k * U_k)$ # Reconstruct second moment in projected space

999 22: $\tilde{m}_k^V \leftarrow m_k^V U_k^\top / (1 - \beta_1^k)$

1000 23: $\tilde{v}_k^V \leftarrow v_k^V / (1 - \beta_2^k)$

1001 24: $\Delta V \leftarrow \eta_k \cdot \frac{\tilde{m}_k^V}{\sqrt{\tilde{v}_k^V + \varepsilon}} U_k (U_k^\top U_k)^{-1}$ # Update V with projection

1002 25: $V_{k+1} \leftarrow (1 - \lambda \eta_k) V_k - \Delta V$

1003 26: $U_{k+1} \leftarrow U_k$

1004 27: **end if**

1005 28: $\text{update_U} \leftarrow \text{not update_U}$ # Alternate update direction

1006 29: **end for**

1012 **D.1 LoFT-MUON**
1013

1014 In this section, we provide an extension of our approach to Muon (Jordan et al., 2024) algorithm.
1015 Firstly, we introduce the original Muon in Algorithm 2.

1017 **Algorithm 2** Muon

1018 **Require:** Learning rates η_k , momentum μ

1019 1: Initialize $m_0 \leftarrow 0$

1020 2: **for** $k = 1, 2, \dots$ **do**

1021 3: $g_W \leftarrow \nabla_W f(W_k)$ # Compute full gradient

1022 4: $m_k \leftarrow \mu m_{k-1} + g_W$ # Compute momentum

1023 5: $o_k \leftarrow \text{NewtonSchulz5}(m_k)$ # Algorithm 3

1024 6: $W_{k+1} \leftarrow W_k - \eta_k o_k$ # Update Parameters

1025 7: **end for**

1026 **Algorithm 3** NewtonSchulz5

```

1028 Require: number of steps  $n_{\text{steps}}$ ,  $\varepsilon = 1e^{-7}$ ,  $G \in \mathbb{R}^{m \times n}$ ,  $(a, b, c) = (3.4445, -4.7750, 2.0315)$ 
1029 1:  $X \leftarrow G / (\|G\|_F + \varepsilon)$  # Proper initialization
1030 2: if  $m > n$  then # For efficient computations
1031 3:  $X \leftarrow X^\top$ 
1032 4: end if
1033 5: for  $k = 1, 2, \dots, n_{\text{steps}}$  do
1034 6:  $A \leftarrow XX^\top$ 
1035 7:  $B \leftarrow bA + cA^2$ 
1036 8:  $X \leftarrow aX + BX$ 
1037 9: end for
1038 10: if  $m > n$  then
1039 11:  $X \leftarrow X^\top$ 
1040 12: end if
1041 13: return  $X$ 

```

1044 Examining the Muon algorithm, we observe that, like Adam, it employs first-order momentum;
1045 therefore, to adapt it to the LoFT setting, we can directly apply the first three building blocks.
1046 Furthermore, we can reconstruct an estimate of the full-finetuning momentum using (8), i.e., $\tilde{m}_k^U =$
1047 $m_k^U V_k^\top$. We note that the \tilde{m}_k^U is at most rank r , but NewtonSchulz5 (Algorithm 3) can't take advantage
1048 of that and directly plugging in \tilde{m}_k^U to NewtonSchulz5 would not benefit computations as we would
1049 be working with large $m \times n$ matrix. Therefore, we design efficient version of NewtonSchulz5
1050 algorithm that accounts for low-rank inputs, see below.

1053 **Algorithm 4** NewtonSchulz5_LowRank

```

1054 Require: number of steps  $n_{\text{steps}}$ ,  $\varepsilon = 10^{-7}$ ,  $U \in \mathbb{R}^{m \times r}$ ,  $V \in \mathbb{R}^{n \times r}$  ( $G = UV^\top$ ),  $(a, b, c) =$ 
1055  $(3.4445, -4.7750, 2.0315)$ 
1056 1: if  $m > n$  then # For efficient computations (mirror of dense case)
1057 2:  $U, V \leftarrow V, U$  # Flip  $U, V$ 
1058 3: end if
1059 4:  $UtU \leftarrow U^\top U \in \mathbb{R}^{r \times r}$ ;  $VtV \leftarrow V^\top V \in \mathbb{R}^{r \times r}$ 
1060 5:  $\|G\|_F \leftarrow \sqrt{\text{tr}((U^\top U)(V^\top V))}$  # Proper initialization (low-rank)
1061 6:  $X_c \leftarrow \frac{1}{\|G\|_F + \varepsilon} I_r$  # Core  $r \times r$  variable;  $X = UX_c V^\top$ 
1062 7: for  $k = 1, 2, \dots, n_{\text{steps}}$  do
1063 8:  $S \leftarrow X_c VtV X_c^\top$  #  $r \times r$  form of  $XX^\top$ 
1064 9:  $A \leftarrow SUtU$ 
1065 10:  $B \leftarrow bA + cA^2$ 
1066 11:  $X_c \leftarrow aX_c + BX_c$ 
1067 12: end for
1068 13:  $X_U \leftarrow UX_c$  #  $X \leftarrow UX_c V^\top$ , we use only  $UX_c$  as  $V$  is added implicitly via  $V_k^\top /$ 
1069  $U_k(U/V\text{-update})$ 
1070 14: if  $m > n$  then
1071 15:  $X_U \leftarrow VX_c^\top$ 
1072 16: end if
1073 17: return  $X_U$  # Partial polar factors of  $G$ ; cost per step  $\mathcal{O}((m+n)r^2 + r^3)$ 

```

1075
1076
1077
1078 We note that the cost per step of this algorithm is only $\mathcal{O}((m+n)r^2 + r^3)$. Finally, we are ready to
1079 proceed with LoFT-Muon, which only requires extra memory of $\mathcal{O}((m+n)r)$, thus matching the
standard LoRA memory requirements.

1080 **Algorithm 5** LoFT-Muon

1081 **Require:** learning rates η_k , momentum parameter μ ,

1082 1: Initialize $m_0^U, m_0^V \leftarrow 0$, weight decay rate λ

1083 2: Set alternating update flag: $\text{update_U} \leftarrow \text{False}$

1084 3: **for** $k = 1, 2, \dots$ **do**

1085 4: # Reconstruct full weight matrix

1086 5: $W_k \leftarrow W_0 + U_k V_k^\top$

1087 6: # Get full gradient (only for notational purposes)

1088 7: $g_W \leftarrow \nabla_W f(W_k)$

1089 8: # Project gradients to low-rank factors

1090 9: $g_U \leftarrow g_W V_k, g_V \leftarrow g_W^\top U_k$

1091 10: $C_k^V \leftarrow (V_{k-1}^\top V_k)(V_k^\top V_k)^{-1}, C_k^U \leftarrow (U_{k-1}^\top U_k)(U_k^\top U_k)^{-1}$

1092 11: $\tilde{g}_U \leftarrow g_U (V_k^\top V_k)^{-1}, \tilde{g}_V \leftarrow g_V (U_k^\top U_k)^{-1}$

1093 12: # First moment calibration

1094 13: $m_k^U \leftarrow \mu m_{k-1}^U C_k^V + \tilde{g}_U$

1095 14: $m_k^V \leftarrow \mu m_{k-1}^V C_k^U + \tilde{g}_V$

1096 15: # Alternating updates

1097 16: **if** update_U **then**

1098 17: $\Delta_U \leftarrow \text{NewtonSchulz5_LowRank}(m_k^U, V_k)$

1099 18: $U_{k+1} \leftarrow (1 - \lambda \eta_k)U_k - \Delta_U$

1100 19: $V_{k+1} \leftarrow V_k$

1101 **else**

1102 21: $\Delta_V \leftarrow \text{NewtonSchulz5_LowRank}(m_k^V, U_k)$

1103 22: $V_{k+1} \leftarrow (1 - \lambda \eta_k)V_k - \Delta_V$

1104 23: $U_{k+1} \leftarrow U_k$

1105 **end if**

1106 25: # Alternate update direction

1107 26: $\text{update_U} \leftarrow \text{not update_U}$

1108 **end for**

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

E ADDITIONAL EXPERIMENTAL RESULTS

1135

E.1 COMMONSENSE REASONING RESULTS

1136 For completeness, Table 6 provides the exact task-wise accuracy scores for all methods and rank
 1137 settings shown in Figure 4 of the main paper. These results quantify how LoRA, DoRA, and LoFT
 1138 behave across eight commonsense reasoning benchmarks when applied to LLaMA-7B with rank
 1139 $r \in \{4, 2, 1\}$.

1140 As noted in the main text, LoFT maintains high and stable accuracy across all tasks, even under
 1141 extreme compression (rank 1), whereas both LoRA and DoRA degrade substantially – especially on
 1142 more complex tasks like HellaSwag (HS), Winogrande (WG), and SIQA. Notably, DoRA at $r=4$
 1143 and $r=2$ exhibits drastic task-level failures, with near-zero performance on WG and erratic behavior
 1144 across others, reflecting instability under constrained adaptation. In contrast, LoFT consistently
 1145 performs well across ranks, confirming its robustness under limited parameter budgets.

1146 See Table 6 for the exact per-task numbers.

1147
 1148
 1149
 1150 Table 6: Task-wise performance of LoRA, DoRA, and LoFT on commonsense reasoning benchmarks
 1151 at lower ranks ($r = \{4, 2, 1\}$) using LLaMA-7B. While LoFT maintains stable accuracy across all
 1152 tasks, both LoRA and DoRA show significant drops – particularly on complex benchmarks such as
 1153 HellaSwag and Winogrande – indicating their limited reliability under extreme parameter constraints.

Model	Method	BoolQ	PIQA	SIQA	HS	WG	ARC-C	ARC-E	OBQA	avg.
LLaMA-7B	LoRA _{r=4}	66.15	43.47	42.12	24.46	72.85	47.18	53.03	48.80	49.76
	LoRA _{r=2}	67.77	66.50	40.63	21.85	53.28	50.26	63.51	52.00	51.97
	LoRA _{r=1}	66.15	74.05	73.58	35.24	77.19	59.56	76.43	70.80	66.62
	DoRA _{r=4}	32.35	7.13	47.03	27.54	0.00	52.65	66.37	46.60	34.96
	DoRA _{r=2}	57.55	70.38	76.41	48.55	9.71	62.03	78.66	75.40	59.84
	DoRA _{r=1}	67.16	77.26	76.25	31.38	20.60	57.34	70.50	64.00	58.06
	LoFT _{r=4}	67.34	80.96	76.20	80.50	76.40	63.62	79.21	75.40	74.95
	LoFT _{r=2}	68.03	79.16	75.84	78.86	76.24	64.51	78.03	71.00	73.96
	LoFT _{r=1}	67.09	78.35	74.46	76.14	74.82	58.87	76.85	70.80	72.17

1160

E.2 QUANTIZED LOFT

1161 **Setup.** We evaluate exact-match accuracy on the Orca-Math dataset (Mitra et al., 2024) using
 1162 LLaMA2 and LLaMA3 models. Our experimental setup is largely based on the QLoRA fine-tuning
 1163 recipe outlined by Answer.ai (Turgutlu et al., 2024), with a few key modifications. Specifically,
 1164 we quantize the pre-trained model to 4-bit and fine-tune each model for 3 epochs on 200k training
 1165 examples using bf16 precision, a global batch size of 32, the AdamW optimizer, and a shortened
 1166 context window of 256 tokens. Evaluation is performed on 500 held-out examples using exact-match
 1167 comparison, following the original methodology. We adopt the zero-shot and five-shot prompting
 1168 results directly from the blog post: for LLaMA2, these are 0.07 and 0.08, and for LLaMA3, 0.23 and
 1169 0.27, respectively.

1170 For parameter-efficient fine-tuning, we compare QLoRA (Dettmers et al., 2023) with our proposed
 1171 method, QLoFT – a quantized variant of LoFT designed for greater efficiency. We evaluate QLoRA
 1172 at a fixed rank of 16, yielding 0.15 accuracy on LLaMA2 and 0.292 accuracy on LLaMA3. Under
 1173 the same rank ($r=16$), QLoFT achieves higher accuracy: 0.16 on LLaMA2 and 0.324 on LLaMA3.
 1174 To assess robustness under constrained parameter budgets, we further reduce QLoFT’s rank to 8, 4
 1175 and 1. Even with 75% fewer trainable parameters ($r=4$), QLoFT maintains strong performance –
 1176 0.148 on LLaMA2 and 0.318 on LLaMA3 – matching or exceeding QLoRA’s results. At $r=1$, it still
 1177 performs competitively, reaching 0.164 on LLaMA2 and 0.276 on LLaMA3.

1178 Overall, QLoFT consistently outperforms QLoRA at equivalent ranks across both model backbones,
 1179 demonstrating better adaptation capacity with identical parameter budgets. More importantly, the
 1180 performance drop as the rank decreases is surprisingly small, highlighting QLoFT’s ability to
 1181 retain strong accuracy even in highly constrained regimes. On LLaMA3, the benefits are even
 1182 more pronounced: QLoFT outperforms QLoRA by over 3 points at $r=16$, and continues to lead
 1183

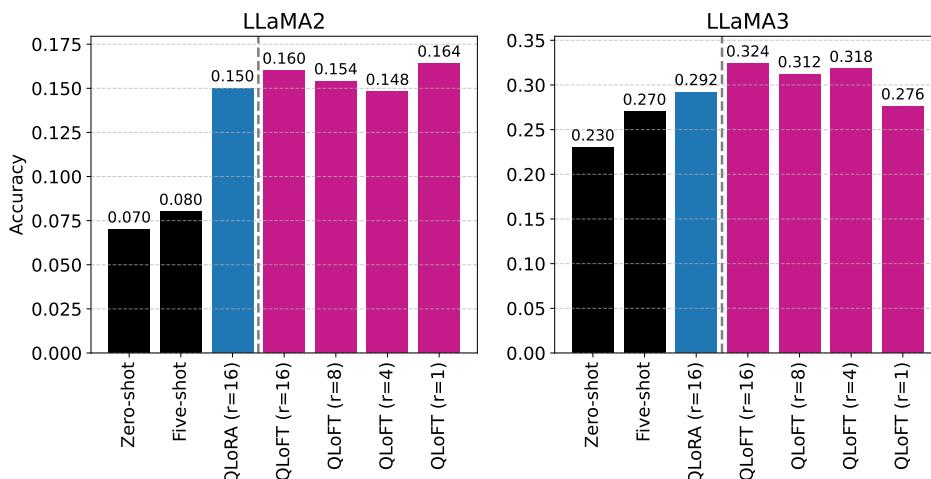


Figure 6: Accuracy comparison on the Orca-Math dataset using LLaMA2 and LLaMA3 models. We compare our method, QLoFT, quantized version of LoFT, with QLoRA. QLoFT is evaluated at various ranks ($r = \{16, 8, 4, 1\}$) and consistently outperforms QLoRA, demonstrating superior performance in parameter-efficient fine-tuning for mathematical reasoning.

at $r=\{8, 4\}$. This suggests that QLoFT better leverages the capacity of larger models, effectively leveraging their increased capacity for improved tuning.

E.3 ABLATION STUDY

In this ablation study, we investigate the contribution of key components in our proposed LoFT method by selectively disabling them and observing the impact on performance. The goal is to isolate the effectiveness of (i) state calibration, and (ii) alternate updates. The experiments are conducted on the WikiText-2 dataset using a GPT-2 model in a causal language modeling setup.

We evaluate four variants:

- **LoFT (full method):** includes both alternate updates and state calibration.
- **LoFT without alternate updates:** removes the alternation mechanism while keeping calibration.
- **LoFT without state calibration:** disables calibration while retaining alternating updates.
- **LoFT without either:** disables both the alternation and state calibration.

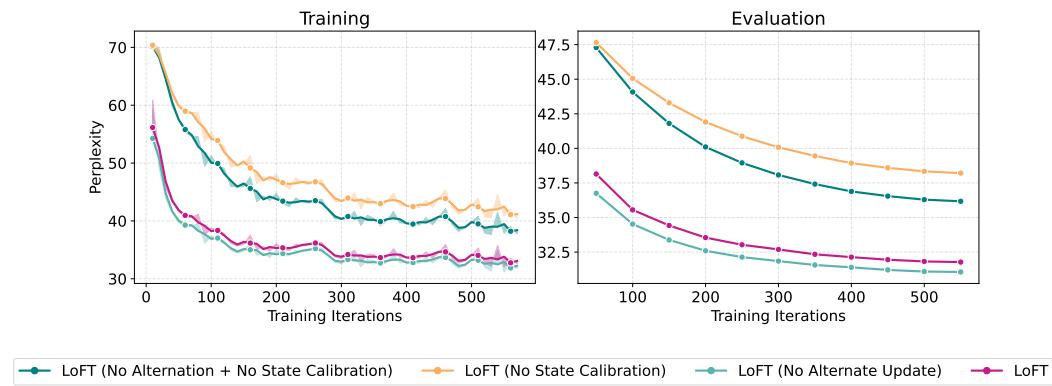


Figure 7: Ablation study of the proposed approach on a language modeling task. We train a GPT-2 model on the WikiText-2 dataset and evaluate the effect of key components of LoFT by incrementally removing (i) state calibration, (ii) alternate update, and (iii) both. Training perplexity (left) shows smoothed curves with shaded raw values, while evaluation perplexity (right) presents the unsmoothed results.

1242 Training and evaluation perplexities are reported in Figure 7. For training curves, we show smoothed
 1243 perplexity (3-step centered moving average) with raw values shaded underneath; evaluation perplexity
 1244 is shown unsmoothed.

1245 The best-performing variant in this specific setting is LoFT without alternate updates, which slightly
 1246 outperforms the full LoFT setup. This is likely due to the fact that removing alternation effectively
 1247 doubles the update frequency of LoFT parameters, which proves beneficial on WikiText-2 with
 1248 GPT-2. We can see a significant decrease in performance when considering variants that do not have
 1249 state calibration.

1250 These results highlight the importance of state calibration, while they also suggest that LoFT can be
 1251 slightly improved if we consider parallel updates. We attribute this to the small step size and gradient
 1252 clipping, which limit the impact of the cross term that could be problematic in some cases.

1253 **Scaling up to LLaMA and ViT.** To further assess generality, we conduct additional ablations on
 1254 one large language model benchmark and one vision benchmark. Specifically, we evaluate LoFT on
 1255 LLaMA-7B with commonsense reasoning tasks and on ViT-Base for CIFAR-100 classification. In
 1256 each case, we remove LoFT components one at a time. The results are reported in Tables 7 and 8.

1257 Table 7: Ablation results on CIFAR-100 with ViT-Base.

1259 LoFT variant	1260 Accuracy
1261 Full method	1262 <u>91.18</u>
1263 No alternation	1264 91.60
1265 No state calibration	89.38
1266 No alternation + no state calibration	89.94

1267 Table 8: Ablation results on LLaMA-7B with commonsense reasoning benchmarks.

1269 LoFT Variant	1270 BoolQ	1271 PIQA	1272 SIQA	1273 HS	1274 WG	1275 ARC-C	1276 ARC-E	1277 OBQA	1278 avg.
1270 Full method	67.34	80.96	76.20	80.50	76.40	63.62	79.21	75.40	74.95
1271 No alternation	68.56	79.26	77.33	77.16	78.37	62.97	79.42	74.40	<u>74.68</u>
1272 No state calibration	03.18	48.80	66.43	21.17	68.90	55.03	75.63	66.00	50.64
1273 No alt. + no state cal.	57.31	62.24	55.58	17.27	65.27	56.48	73.06	68.60	56.98

1279 Across both language and vision benchmarks, the results align with our GPT-2 findings. LoFT without
 1280 alternation sometimes matches or slightly outperforms the full method, likely due to increased update
 1281 frequency. In contrast, removing state calibration consistently causes large performance drops,
 1282 particularly dramatic on LLaMA-7B. Overall, these ablations confirm that both alternation and state
 1283 calibration are important contributors, with calibration being indispensable for LoFT’s stability and
 1284 effectiveness.

1285

E.4 TRAINING DYNAMICS

1286 In Figure 5 of the main paper, we presented the training performance curves on the HAM10000
 1287 dataset. Here, in Appendix Figure 8, we show analogous training-loss dynamics (log scale) for the
 1288 three remaining image-classification benchmarks: ISIC2019, Diabetic Retinopathy, and DomainNet.
 1289 Each panel plots the raw per-step loss ($\alpha=0.25$) beneath a 10-step centered moving average, with a
 1290 zoomed inset in the upper-right corner of the latter two datasets to highlight differences in the final
 1291 epochs.

1292 Across all three tasks, **LoFT (magenta)** consistently outperforms **LoRA (blue)** and closes much of the
 1293 gap to full fine-tuning (black). In particular:

- 1294 • **Diabetic Retinopathy:** LoFT achieves the lowest training loss of all three methods through-
 1295 out, demonstrating its strongest advantage in this medical imaging dataset.
- 1296 • **ISIC2019 & DomainNet:** LoFT again reduces loss more quickly than LoRA and tracks
 1297 very closely to full fine-tuning, especially in the later stages. While full FT still attains the
 1298 absolute minimum loss, LoFT narrows the difference relative to LoRA.

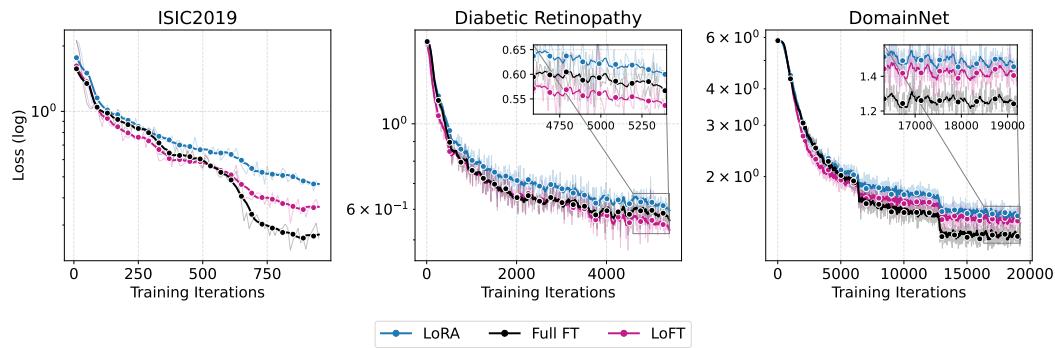


Figure 8: Additional training-loss dynamics for image classification. For the remaining benchmarks, ISIC2019 (left), Diabetic Retinopathy (center), and DomainNet (right), we plot training loss. **LoFT (magenta)** consistently outperforms **LoRA (blue)** and closely tracks **full fine-tuning (black)**, achieving the lowest loss on Diabetic Retinopathy and substantially narrowing the gap on ISIC2019 and DomainNet. See Figure 5 in the main paper for the HAM10000 curves.

E.5 MEMORY FOOTPRINT

We evaluate the memory efficiency of LoFT in comparison to LoRA, DoRA, and DoRA (simple) under two configurations: rank $r=16$ and rank $r=4$. All experiments were conducted using the LLaMA-7B model on commonsense reasoning tasks (Tables 9 and 10).

Theoretical analysis. For AdamW, LoRA requires

$$mn [W_0] + (m + n)r [U, V] + 4(m + n)r [\text{optimizer states}] = mn + 5(m + n)r,$$

while LoFT requires

$$\begin{aligned} mn [W_0] &+ (m + n)r [U, V] + 2(m + n)r [\text{previous iterates}] + 2(m + n)r [\text{momentum}] \\ &+ 2(m + n)r^2 [\text{cross-terms}] = mn + 5(m + n)r + 2(m + n)r^2. \end{aligned}$$

The additional $2(m + n)r^2$ term arises from cross-terms for optimizer state recalibration. Crucially, this scales with $(m + n)$ rather than mn , ensuring LoFT remains far more efficient than full fine-tuning when r is small.

Empirical results. At rank $r=16$, LoFT matches LoRA in terms of trainable parameter percentage (0.4145%) with no increase, while incurring only a **+25.65%** increase in memory usage. This memory cost is nearly identical to DoRA (simple), which also maintains a low overhead (**+25.23%**), and significantly lower than full DoRA, which increases memory by over 341%.

At the lower rank setting $r=4$, LoFT maintains parameter parity with LoRA (0.1040%) and achieves a very modest memory increase of just **+6.71%**, compared to the large 342% increase with DoRA. While DoRA (simple) also limits memory to some extent, it still shows over 25% overhead and increases trainable parameters by 12.4%.

Table 9: Comparison of trainable parameter percentage and memory usage for different methods at rank $r=16$ using LLaMA-7B on commonsense reasoning tasks.

Method	Trainable params (%)	+ Relative Incr.	Memory (GB)	+ Relative Incr.
LoRA	0.4145	+0.00%	28.50	+0.00%
DoRA	0.4274	+3.11%	125.95	+341.93%
DoRA (simple)	0.4274	+3.11%	35.69	+25.23%
LoFT	0.4145	+0.00%	35.81	+25.65%

1350 Table 10: Comparison of trainable parameter percentage and memory usage for different methods at
 1351 rank $r=4$ using LLaMA-7B on commonsense reasoning tasks.

Method	Trainable params (%)	+ Relative Incr.	Memory (GB)	+ Relative Incr.
LoRA	0.1040	+0.00%	28.15	+0.00%
DoRA	0.1169	+12.40%	124.47	+342.17%
DoRA (simple)	0.1169	+12.40%	35.27	+25.29%
LoFT	0.1040	+0.00%	30.04	+6.71%

1359
 1360 **Accuracy-efficiency trade-off.** Although LoFT introduces extra memory overhead relative to
 1361 LoRA, it achieves higher accuracy at substantially smaller ranks. For instance, LoFT with $r=4$
 1362 surpasses LoRA with $r=16$ on LLaMA-7B, and LoFT with $r=1$ surpasses LoRA with $r=16$
 1363 on LLaMA-2-7B (see Table 2). Importantly, unlike DoRA, LoFT adds no backward-pass memory
 1364 overhead (cf. Section 4.3 in DoRA (Liu et al., 2024)). Thus, the modest increase is offset by
 1365 substantial performance gains at lower ranks.

1366
 1367 **LoFT (simple).** We further identify that the main bottleneck in LoFT stems from the second-
 1368 moment calibration. Since its effect on accuracy is marginal ($\sim 0.1\%$ drop at LLaMA-7B, $r=16$)
 1369 (Table 11), we propose *LoFT (simple)*, which omits this step. As shown in Table 12, LoFT (simple)
 1370 reduces overhead to under 6% compared to LoRA, while maintaining nearly identical accuracy.

1372 Table 11: Performance comparison between LoFT and LoFT (simple) (LLaMA-7B, rank $r=16$).
 1373

Method	BoolQ	PIQA	SIQA	HS	WG	ARC-C	ARC-E	OBQA	avg.
LoFT	68.62	82.80	78.27	82.69	73.32	64.30	80.26	78.40	76.08
LoFT (simple)	68.50	81.18	78.20	76.87	78.93	64.85	81.14	78.20	75.98

1378
 1379 Table 12: LoFT (simple) memory overhead on LLaMA-7B under ranks $r=16$ and $r=4$.
 1380

Method	Memory (GB)	+ Relative Incr.
LoRA	28.50	+0.00%
LoFT (simple) ($r=16$)	30.02	+5.35%
LoFT (simple) ($r=4$)	29.61	+5.18%

1386 Overall, LoFT offers the same parameter efficiency as LoRA while delivering competitive per-
 1387 formance with substantially lower memory demands than DoRA variants. This makes LoFT a
 1388 memory-efficient alternative suitable for deployment in resource-constrained settings.

1389 We refer the reader to (Liu et al., 2024) for detailed definitions of DoRA and DoRA (simple). In our
 1390 experiments, we exclusively used DoRA (simple), as recommended by DoRA’s authors. Also, the full
 1391 DoRA implementation requires substantially more memory and is impractical to run on one GPU.
 1392

1394 E.6 TRAINING LATENCY

1396 We also evaluate the training latency of LoFT relative to LoRA and DoRA (simple). LoFT introduces
 1397 additional overhead due to optimizer state alignment and recalibration. Table 13 summarizes the
 1398 latency (forward + backward + optimizer step) on LLaMA-7B across different ranks.

1399 To better understand the main sources of overhead, we conducted ablations of LoFT variants at rank
 1400 $r=4$. The results are shown in Table 14.

1402 These results indicate that the main bottleneck of LoFT arises from second-moment calibration.
 1403 Omitting this step yields LoFT (simple), which reduces latency to within $\sim 30\%$ of LoRA while
 1404 being $\sim 2\times$ faster than the stronger baseline DoRA.

1404 Table 13: Relative training latency of LoRA, DoRA (simple), LoFT, and LoFT (simple) on LLaMA-
 1405 7B. Latency is reported as a multiplicative factor relative to LoRA.

Method	r = 16	r = 4	r = 1
LoRA	1.00×	1.00×	1.00×
DoRA (simple)	2.38×	2.54×	2.54×
LoFT	3.23×	2.26×	1.76×
LoFT (simple)	1.32×	1.27×	1.22×

1413 Table 14: Latency breakdown (in seconds) for LoFT variants at rank ($r = 4$) (LLaMA-7B).

LoFT Variant	Latency (s)
LoFT (full)	1.0903
No alternation	1.5703
No state calibration	0.5810
No alternation + no state calibration	0.6146
No second moment calibration [LoFT (simple)]	0.6265

1423 **Implementation note.** All latency measurements are based on a plain PyTorch implementation.
 1424 We expect substantial speed-ups with a dedicated CUDA kernel implementations, which we plan as
 1425 future work.

1427 E.7 DOMAINNET: DOMAIN-SPECIFIC RESULTS

1429 We would like to include the extended results of the experiment on the DomainNet dataset, including
 1430 domain-specific performance results.

1432 Table 15 complements the cross-dataset comparison in Table 3 (main paper) by breaking the Domain-
 1433 Net dataset results down by domain (*clipart*, *infograph*, *painting*, *quickdraw*, *real*, and *sketch*). All
 1434 runs use the same ViT-Base backbone and optimization protocol described in Section C.

1435 Table 15: Domain-specific accuracy results on the DomainNet dataset. While overall DomainNet
 1436 results are presented in the main paper, this table provides detailed per-domain accuracy for various
 1437 parameter-efficient fine-tuning methods.

Model	Method	DomainNet Dataset						avg
		clipart	infograph	painting	quickdraw	real	sketch	
ViT-Base	Full FT	78.92	44.09	73.11	69.15	83.92	69.00	69.70
	LoRA $_{r=16}$	77.64	42.86	72.44	66.59	84.50	67.21	68.54
	DoRA $_{r=16}$	73.15	40.14	69.46	60.83	82.60	64.38	65.09
	LoFT $_{r=16}$	<u>78.11</u>	<u>42.95</u>	<u>72.80</u>	<u>68.10</u>	84.55	<u>68.37</u>	<u>69.15</u>
	LoFT $_{r=8}$	76.77	42.04	71.56	65.99	84.30	67.09	67.96
	LoFT $_{r=4}$	73.38	40.15	69.58	60.98	82.83	64.10	65.17

1449 The overall DomainNet numbers reported in Table 3 already show that LoFT $_{r=16}$ narrows the gap to
 1450 Full FT and outperforms both LoRA and DoRA. However, DomainNet’s six domains differ markedly
 1451 in style and label distribution; the per-domain breakdown reveals how each method copes with this
 1452 heterogeneity.

1454 Main observations:

- 1455 • Full fine-tuning remains strongest on average (69.7%), topping five of six domains.
- 1456 • LoFT with $r=16$ trails Full FT by only **0.55pp** on average and surpasses the full FT on the
 1457 real domain (84.55%).

1458 • LoRA lags LoFT on every domain except real, where both methods are statistically tied.
 1459 • DoRA and low-rank LoFT variants ($r=\{8, 4\}$) show the expected accuracy drop, but LoFT
 1460 retains at least parity with the corresponding LoRA/DoRA settings.
 1461

1462 In the main paper, we reported validation-set accuracy to keep the test labels unseen. For the extended
 1463 analysis here we evaluate on the official test split (176743 images) to give a complete picture of
 1464 domain-level generalization. No hyper-parameters were tuned on the test set; models are exactly
 1465 those used in the main paper.
 1466

1467 E.8 COMPARISON WITH ADDITIONAL BASELINE METHODS

1469 **Experimental Setup.** We first fine-tune the original **GPT-2** (137M) on WikiText2 using the
 1470 same data split and preprocessing as Radford et al. (2019). All methods share the same training
 1471 hyperparameters: 1 epoch, AdamW optimizer, batch size 64, learning rate 2×10^{-4} with linear decay.
 1472 For adapter-based baselines (Hu et al., 2022; Kalajdzievski, 2023; Zhang et al., 2023; Wang et al.,
 1473 2024; 2025) we set the rank $r=4$; LoRA⁺ uses its default temperature and dropout as in the official
 1474 repository. After convergence, we evaluate on the WikiText-2 validation set and report *perplexity*
 1475 (lower is better).
 1476

1477 **Limitations of certain baselines.** VeRA (Kopczko et al., 2024) and DoRA (Liu et al., 2024)
 1478 only handle `Linear` layers. Because GPT-2 implements attention weights as `Conv1D` layers,
 1479 reproducing these methods would require serious surgery and a major rewrite; we therefore omit
 1480 them. In practice, this means VeRA and DoRA cannot be applied unchanged to a large family of
 1481 models that rely on `Conv1D` parameterizations.
 1482

1482 Table 16: Perplexity (PPL) results on the Wiki-
 1483 Text2 dataset for various fine-tuning methods ap-
 1484 plied to GPT-2. Lower values indicate better per-
 1485 formance. LoFT achieves the best result, outper-
 1486 forming other parameter-efficient techniques.
 1487

Model	Method	WikiText2 (PPL \downarrow)
GPT-2	Zero-Shot	60.38
	Full FT	29.51
	LoRA $_{r=4}$	34.80
	rsLoRA $_{r=4}$	32.96
	AdaLoRA $_{r=4}$	55.67
	LoRA-Pro $_{r=4}$	32.79
	LoRA-GA $_{r=4}$	37.34
LoFT $_{r=4}$	LoRA+ $_{r=4}$	36.15
	LoFT $_{r=4}$	31.75

1482 Table 17: Perplexity (PPL) on WikiText2 for
 1483 GPT-2 Large using various fine-tuning methods.
 1484 LoFT achieves the best performance, outper-
 1485 forming full fine-tuning and other parameter-efficient
 1486 techniques.
 1487

Model	Method	WikiText2 (PPL \downarrow)
GPT-2 Large	Zero-Shot	38.87
	Full FT	19.42
	LoRA $_{r=4}$	19.78
	rsLoRA $_{r=4}$	19.62
	AdaLoRA $_{r=4}$	23.31
	LoRA-Pro $_{r=4}$	20.06
	LoRA-GA $_{r=4}$	21.44
LoFT $_{r=4}$	LoRA+ $_{r=4}$	19.73
	LoFT $_{r=4}$	19.26

1499 **Results on GPT-2.** Table 16 reports validation perplexity. LoFT yields the lowest PPL (31.75),
 1500 outperforming all other parameter-efficient baselines and coming within 2.2 points of full fine-
 1501 tuning while updating only a small fraction of parameters. AdaLoRA (Zhang et al., 2023) performs
 1502 noticeably worse in this low-resource regime. Training and evaluation curves are visualized in
 1503 Figure 9: LoFT converges smoothly and tracks Full FT closely throughout training, whereas other
 1504 methods plateau higher.
 1505

1506 **Scaling to GPT-2 Large.** We repeat the experiment on **GPT-2 Large** (812M) with the same data
 1507 and hyper-parameters (batch size reduced to 32 to fit memory for full fine-tuning). Table 17 extends
 1508 the comparison to this larger model. The zero-shot model perplexity is 38.87. Full fine-tuning brings
 1509 this down to 19.42, but LoFT achieves an even lower 19.26 while updating only a small fraction of
 1510 weights. The other adapter-style baselines cluster a few tenths higher (LoRA 19.78, rsLoRA 19.62,
 1511 LoRA⁺ 19.73), and AdaLoRA again lags behind at 23.31. In relative terms, LoFT improves on the
 vanilla LoRA baseline by 2.6% and narrows (indeed, slightly surpasses) the gap to full fine-tuning,

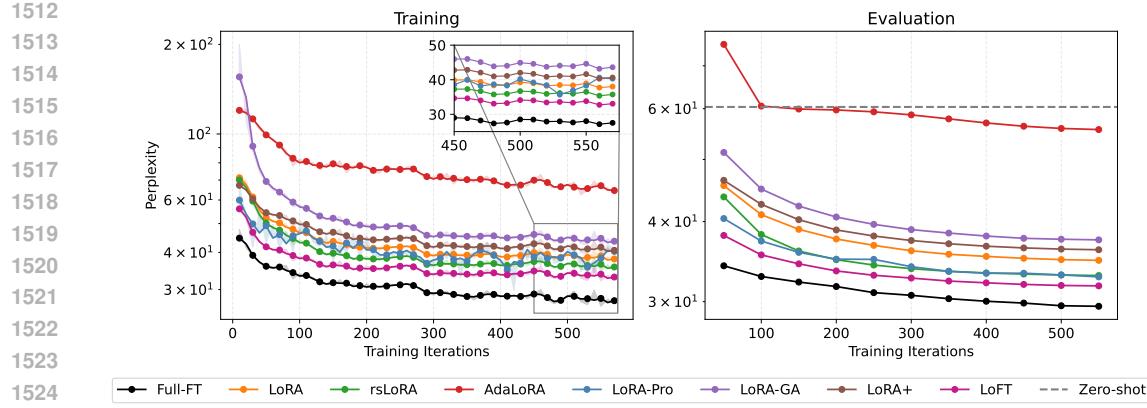


Figure 9: Training and evaluation perplexity curves for GPT-2 on WikiText-2 dataset. The left panel shows smoothed training perplexity (3-point moving average) for seven fine-tuning methods (Full-FT, LoRA, rsLoRA, AdaLoRA, LoRA-Pro, LoRA-GA, LoRA⁺, and LoFT), with the raw PPL shaded beneath each curve. The right panel reports evaluation PPL for the same methods, with a dashed horizontal line at 60.38 marking the zero-shot baseline. Table for a reference: Table 16.

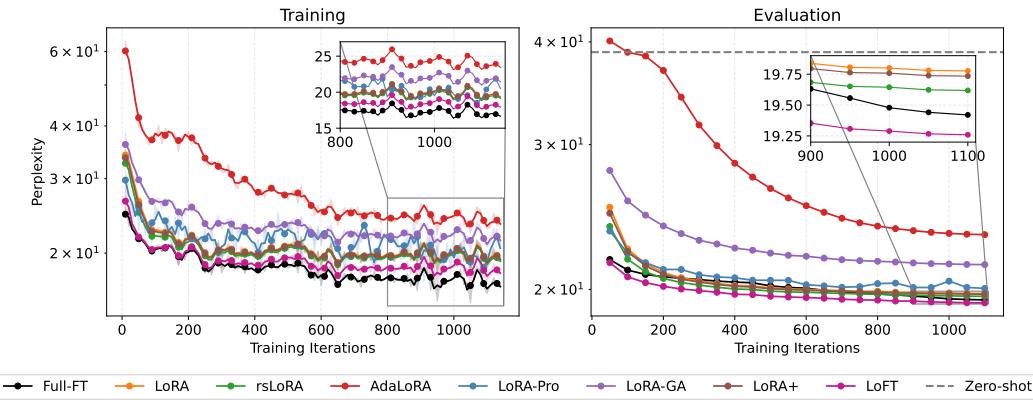


Figure 10: Training and evaluation perplexity curves for GPT-2 LARGE on WikiText-2 dataset. The left panel shows smoothed training perplexity (3-point centered moving average) for seven fine-tuning methods (Full-FT, LoRA, rsLoRA, AdaLoRA, LoRA-Pro, LoRA-GA, LoRA⁺, and LoFT). The right panel presents evaluation perplexity curves, with a dashed horizontal line at 38.87 marking the zero-shot baseline. Table for a reference: Table 17.

confirming that the gains observed on the smaller GPT-2 model persist and even strengthen at a larger scale.

Figure 10 highlights an interesting trend: on GPT-2 Large, Full FT achieves the lowest *training* perplexity, but its *evaluation* perplexity stalls above LoFT, evidence of *overfitting* as model capacity grows. By contrast, the low-rank structure of LoFT provides a built-in regularizer: it follows Full-FT during training yet generalizes better, maintaining leading evaluation PPL. On the smaller GPT-2 (137M), Full-FT still wins on both train and evaluation – there, capacity is not large enough to overfit the WikiText2 dataset – whereas at 812M parameters, the risk of memorization rises and LoFT’s parameter-efficient updates prove more robust.

E.9 COMPARISON WITH VISION-CENTRIC BASELINES

We further compare LoFT against two representative vision adaptation baselines: Visual Prompt Tuning (VPT) (Jia et al., 2022) and ViT-Adapter (Houlsby et al., 2019a; Chen et al., 2023). To cover both standard and challenging scenarios, we evaluate on CIFAR-100 (general image classification)

1566 (Krizhevsky et al., 2009) and Diabetic Retinopathy (a medical imaging dataset) (Graham, 2015).
 1567 Table 18 summarizes the results.
 1568

1569 Table 18: Comparison of LoFT with VPT and ViT-Adapter on CIFAR-100 and Diabetic Retinopathy
 1570 datasets using ViT-Base.

Method	CIFAR-100	Diabetic Retinopathy
Adapter	85.93	51.82
VPT	90.03	50.28
LoFT	91.20	58.49

1571
 1572 LoFT achieves the best performance across both datasets. While VPT and Adapter perform well on
 1573 CIFAR-100, they struggle on the more complex medical dataset, whereas LoFT maintains strong
 1574 results in both settings.
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619