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ABSTRACT

Standard Transformers apply a fixed amount of computation to every token, lim-
iting their expressive power, while more powerful iterative approaches often in-
troduce significant architectural complexity and cost. We introduce Fixed-Point
Self-Attention (FPSA), a parameter-free, drop-in replacement for self-attention that
enables a model to adaptively think longer” by iteratively refining each layer’s
representations to a fixed point. We train this recurrent process end-to-end using
implicit differentiation, ensuring that memory usage during training and inference
remains constant and identical to a standard Transformer layer, regardless of the
number of refinement steps. Without adding any parameters, FPSA significantly
improves strong baselines like BERT-Base and ELECTRA-Base on the GLUE
and SQuAD v2.0 benchmarks. We demonstrate similar consistent gains for vision
(ViT-B/16) and vision-language models, achieving accuracy improvements of up
to 20%. This performance boost comes at a modest computational cost: a median
of 3—6 refinement steps results in a =~ 1.6 x GFLOPs and ~ 1.3 — 1.4x latency
overhead compared to an equivalent BERT-Base model. Analysis shows FPSA
dynamically allocates compute to challenging inputs and converges to stable fixed
points. Furthermore, integrating FPSA into language models improves perfor-
mance on complex reasoning tasks like GSM8K, BBH, and LogiQA. Ultimately,
FPSA bridges the gap between fixed-computation and iterative reasoning, offer-
ing a powerful building block that adaptively allocates compute while preserving
architectural simplicity.

1 INTRODUCTION

Transformers Vaswani et al. (2017) have revolutionized natural language processing and computer
vision, achieving state-of-the-art results across a wide range of tasks. At their core, these models use
self-attention to mix tokens or image patches via input-dependent alignment matrices. While large
language models (LLMs) excel in autoregressive settings, encoder-style transformers, which lack
causal masking, operate as rigid feed-forward networks Dosovitskiy et al. (2020); Liu et al. (2021);
Radford et al. (2018; 2021). This fixed-pass computation limits their ability to dynamically refine
representations based on input complexity.

To address this limitation, recent work has explored dynamic computation networks Han et al.
(2021), memory-augmented architectures Khandelwal et al. (2021); Rae et al. (2019), and other
mechanisms. However, these approaches often sacrifice simplicity for performance by introducing
complex hypernetworks or external retrieval modules, which significantly inflate parameter counts
and computational costs. Furthermore, conventional transformers compute alignment matrices in a
single pass, limiting their ability to refine representations based on the evolving output.

We introduce Fixed-Point Self-Attention (FPSA), a drop-in replacement for self-attention that itera-
tively refines each layer’s alignment matrix to a fixed point at test time (Fig. 1A). This in-layer loop
allocates more computational steps to harder inputs and fewer to easier ones, all without adding a
single parameter. Unlike existing dynamic methods that repeat entire blocks or explicitly optimize
layer outputs, FPSA adapts within a layer by refining its core alignment operator.

Our approach preserves the architectural simplicity of standard encoders and decoders while offering
several key advantages. We train FPSA with implicit differentiation, so the backward memory
footprint—just as in the forward computation—remains independent of the number of iterations
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to the fixed point, eliminating the heavy checkpointing required by other dynamic methods. This
yields a stable, efficient, and powerful method that achieves notable accuracy improvements (§4)
with modest overheads (about 1.6 x GFLOPs and 1.31.4x latency vs a size-matched BERT-Base).

Across language, vision, and vision—language tasks, FPSA improves size-matched encoders with
modest overheads and a few iterations at test time; we also show gains when integrating FPSA
into 7B decoder-only LLMs (§4). The remainder reviews related work (§2), presents the method
and convergence analysis (§A.1.2), reports results with compute accounting (§4), and discusses
limitations and future directions (§5).

2 RELATED WORK
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proposed Mixture-of-Depths (MoD) to dynami-
cally allocate compute across transformer layers.
The Dynamic Diffusion Transformer (DyDiT)
(Zhao et al., 2024) further extends these ideas by
dynamically adjusting computation along both
timestep and spatial dimensions in diffusion
models, achieving significant efficiency gains
(see Fig. 1C for an example). Unlike these ap-
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man, 1939; Almeida, 1987; Pineda, 1987) and its modern revival (Liao et al., 2018), methods like
Deep Equilibrium Models (DEQs) (Bai et al., 2019) define effectively infinite-depth networks through
fixed-point equations. While powerful, DEQs can face challenges with slow convergence and initial-
ization sensitivity (Geng et al., 2021). Recent advances have mitigated these issues using techniques
like phantom gradients (Jeon et al., 2021), while theoretical work has established formal conditions
for the convergence and stability of such iterations in high-dimensional networks (Ke et al., 2024).
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Our work departs from these layer-level approaches by applying FPI at a more granular scale,
specifically to the self-attention matrices themselves, rather than to the entire layer’s output. This
enables an iterative refinement of token alignments while maintaining gradient stability via implicit
differentiation (Bolte et al., 2022), as shown in Fig. 1(B). By doing so, we bridge the gap between
fixed-point theory and the internal mechanisms of transformer architectures, offering a principled
alternative to ad hoc depth adaptation.
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Adaptive Transformers Resource-efficient transformers have gained significant attention due to
their ability to dynamically adjust computation. Spatially Adaptive Computation Time (SACT) was
first proposed for CNNs by (Figurnov et al., 2017) and later extended to transformers by (Elbayad
et al., 2019). Meanwhile, (Wang et al., 2024) augmented LLMs with external memory modules for
long-context tasks at the cost of inflated parameter counts. Closest to our work, Mixture-of-Depths
(MoD) transformers (Raposo et al., 2024) and Enhanced Transformers with dynamic token routing
(Yang et al., 2024) activate subsets of layers or attention heads dynamically but introduce additional
routing overhead and training instability. In contrast, SELF-Transformer eliminates hypernetworks
and routing logic by iteratively refining self-attention matrices across all layers using fixed-point
iteration. The Adaptive Span Transformer (Sukhbaatar et al., 2019), which adjusts context size
dynamically for each attention head, shares conceptual similarities but focuses on sequence length
adaptivity rather than iterative refinement.

Latent Reasoning in Transformers Recent studies have explored reasoning in latent spaces as
an alternative to token-level autoregression. Coconut (Chain of Continuous Thought) (Hao et al.,
2024) introduced a paradigm where reasoning occurs entirely in continuous latent spaces instead of
language space. By iteratively feeding latent states back into large language models (LLMs), Coconut
demonstrated improved performance on logical reasoning tasks requiring backtracking or planning.
Similarly, DroidSpeak (Liu et al., 2024) proposed KV cache sharing to optimize context reuse across
multiple LLMs in collaborative workflows. While our method does not explicitly target multi-model
systems or retrieval-based reasoning, its iterative refinement mechanism aligns with these principles
by enabling efficient resource allocation without external memory.

Applications Beyond Language Modeling Transformers have demonstrated versatility across
domains such as computer vision and robotics. Adaptive transformers have been successfully
applied to image recognition tasks by leveraging self-attention mechanisms for global context
understanding (Mahmood et al., 2024). In robotics, transformers have been integrated into perception
and control systems for long-horizon decision-making and generalization (Merity et al., 2016). The
Dynamic Diffusion Transformer (DyDiT) (Zhao et al., 2024) further highlights the potential of
adaptive computation in generative models by reducing redundant operations during image synthesis.
These advancements underscore the growing importance of dynamic architectures across diverse
applications.

3  FIXED-POINT ITERATION (FPI) IN ATTENTION

Vuckovic et al. (2020) showed that attention is contractive in the Wasserstein-1 distance ;. Here,
this means W1 (A(X), A(Y)) < C - W1(X,Y), where C is a contraction coefficient derived from
the Lipschitz continuity of softmax and the structure of the projection matrices. Thus the attention
transformation of inputs does not amplify differences in the input space beyond a fixed bound.
They also show that softmax-based attention computation is Lipschitz continuous with a bounded
scaling factor, preventing uncontrolled growth. Here, this implies that the alignment matrix tuning
in FPSA Fig. 1A is provably convergent. Since we rely on implicit differentiation through a fixed
point, the reverse mode differentiation pass is essentially iterating a Jacobian transpose vector product
(which is linear) plus a constant driving term to convergence, and this converges at the same rate as
the forward convergent iteration (Griewank et al., 1993; Bartholomew-Biggs, 1998). Nevertheless,
in the face of numeric issues, some safeguards are needed when implementing FPSA. We control
convergence per-token and per-head on the forward pass, and apply implicit differentiation only
for those entries that met the stopping criterion; see Fig. 10 for an example of differentiated token
convergence. When a specific token has not converged, the gradient computation through fixed point
iteration (Appendix C) is not valid and we discard the corresponding single-token adjoints. For
theoretical proof for FPSA, we extend to Appendix B and masked implicit differentiation at fixed
point in Appendix D

Let X € R™*? be the layer input. We maintain an in-layer iterate Z;, € R™*? (initialized Z, := X)
and refine the alignment operator head-wise until convergence.' For each head h,

Qlih)K]gh)T
Va7

'We use A for the alignment/attention matrix; 7 denotes (optional) per-head temperatures.
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and we keep values static across iterations,V (M) = X W‘(/h)

outputs and aggregates:

U,g}i)l = ,A,(Ch) 174RN Zrt1 = Concath(U]g:L_)l)Wo. 1)

. A single FPI step updates the per-head

Formally, for an input sequence X € R"*9, we seek a fixed point Z* such that:
7" = fo(Z",X), 2

where Z* represents the equilibrium state of the attention mechanism. Iterative methods approximate
Z* via updates Z(**+1) = f,(Z*)) until convergence. Unlike Deep Equilibrium Models (DEQs) (Bai
et al., 2019), which solve for Z* implicitly, we apply fixed-point iteration explicitly to refine attention
alignments. After convergence to Z,, we write the attention sublayer output and residual as

Y = X + Dropout(Z,). 3)

The feed-forward (MLP) sublayer is not included in the FPI loop; it follows the standard pre-LN
residual form
Xnext =Y 4 Dropout (FFN(LN(Y))), 4

which matches widely used stable pre-LN designs (Xiong et al., 2020). Here LN(-) denotes the usual
layer normalization applied over the hidden dimension. There is a residual through attention (3)
and another through FFN (4); only the attention alignment is iterated. To ensure the stability and
efficiency of the iterative refinement process, we adopt a robust convergence criterion. The iterations
terminate when

1Zk+1 = Zillp /1 ZkllF < € or k= Knpax. (%)

where € > 0 is a predefined convergence threshold, K« is the maximum number of iterations, and
|| - || # denotes the Frobenius norm. This criterion ensures that the update process halts either when the
relative change between consecutive iterations becomes negligible or when the maximum iteration
limit is reached.

The residual in Equation 5 measures how close each token’s iterate is to a fixed point. Tokens with
lower residuals converge sooner and therefore trigger less computation, allowing FPSA to adapt its
effort to each token automatically.

Why pre-LN and mild spectral control. Pre-normalization before the FPI loop keeps the operator
locally well-scaled and improves stability of both forward and implicit backward passes (Xiong et al.,
2020). We additionally apply standard scaling (1/+/dy) and spectral normalization of W, Wi to
keep the local Lipschitz constants moderate, aligning with known Lipschitz analyses of attention
(Kim et al., 2021). Together with (Agarwal et al., 2018), this provides the conditions under which the
fixed point is well-posed and differentiable.

Gradient Clipping for Stability To mitigate exploding gradients during backpropagation through
iterative refinement steps, we employ gradient clipping. Specifically, we constrain the gradients of
parameters § = (Wqg, W, Wy, W) to lie within a predefined range

Vofo(Z,X) if[|[Vel2 <T

TVy/||Vglla otherwise (6)

Clip(Va o(2,X) = {
where T' > 0 is a threshold hyperparameter. This ensures numerical stability and prevents instability
in parameter updates during training.

Dynamic Parameter Reuse In standard transformer architectures, each layer uses distinct parame-
ters for query, key, value projections, and feed-forward networks. Introducing iterative refinement
mechanisms like Fixed-Point Iteration (FPI) without optimization would require unique parameters
for each iteration step k, leading to increased memory and computational costs proportional to K.
To address this inefficiency, we employ dynamic parameter reuse, where the same set of parameters
0 = (Wqo,Wg, Wy, Wp) is shared across all iterations within a single layer:

Zyi1 = fo(Zy,X), @)

where fy(-) represents the fixed-point update function. Unlike recurrent neural networks that reuse
parameters across sequential timesteps, here parameters are reused across iterative refinement steps
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within a single layer. This approach ensures that the memory footprint remains constant regardless
of Kmax, enabling scalability without compromising performance. We show that the iterations are
not just stabilizing numerically, but actively correcting predictions (High Helpful Revision Rate) in
Appendix H

To provide a granular view of the adaptive mechanism, we visualizes the per-token convergence
dynamics on two different example sentences in Figure 10. The heatmaps plot the log-normalized 1.2
distance of each token’s latent state to its final, high-fidelity fixed point (Z*), which is computed
with a longer unroll (r,=256) and dropout disabled. White dots mark the exact iteration step where
each token’s representation meets the adaptive halting criterion.

3.1 LEARNING ALGORITHMIC PATTERNS: RANDOMIZED INDUCTION WITH DISTRACTORS

A central motivation for FPSA is that iterative

refinement should allow a single layer to acquire Attention Sharpening During Iteration
dependencies that normally require additional us e b trorbave rmemel
depth. To evaluate this capability we use the .\ 0 A ot ol ol
Randomized Induction with Distractors (RID)

task. Each sequence begins with a true pair
(A, B) placed in the first half, followed by K
distractor pairs (A, D) with D # B, and ends
with a later query A plus a [MASK]. The model
must output the original B. We vary sequence
length L € [32,256] and number of distractors
K < 100, training on L < 128 with small K
and evaluating out-of-distribution generalization
at larger values. 12 3 4 s & 7 8 9 10 1u D

4.0

Attention converges to a
sharp, focused state

Mean Attention Entropy (Lower is Sharper)

We compare three size-matched architectures:
a one-layer Transformer (TF-1L), a two-layer 10
Transformer (TF-2L, the minimal depth known =~ == Sy
to solve induction), and our one-layer model 08 Saen

with FPSA (FPSA-1L). All use d=256, h=4, T— ~—
and FFN dimension 1024. FPSA runs with tol-
erance ¢ = 10™% and a maximum of 100 inner
iterations.

0.6 Model
FPSA-1L (Ours)
—x— TF-2L (Baseline)
----- TF-1L (Baseline)

Final Accuracy

0.4

Attention sharpening. Fig. 2(a) tracks mean
attention entropy across inner refinement steps.
FPSA-1L begins with diffuse alignments (en-

tropy ~4.5) but steadily reduces entropy as iter- ~ * © » w0
ations proceed, reaching a focused state by iter- Number of Distractor Fairs ()
ation ~6 and stabilizing thereafter. The single-
pass TF-1L baseline remains fixed at a higher
entropy (~4.2), showing no comparable sharp-
ening. This demonstrates that FPSA’s iterative
loop progressively concentrates attention and
converges to a sharper distribution that static
self-attention cannot achieve.

0.2

60 80 100

Figure 2: (a) Attention sharpening during itera-
tion: FPSA-1L reduces mean attention entropy
across iterations, converging to a focused state
by step ~ 6. TF-1L has a fixed, higher entropy.
Lower is sharper. (b) Robustness to distractors
on RID: Accuracy as the number of distractor
pairs K grows. FPSA-1L maintains high accuracy

Robustness to distractors. Fig. 2(b) shows across K < 100, outperforming both TF-1L and

accuracy as the number of distractors increases TE-2L.

up to K=100. TF-1L quickly collapses to near-chance performance (=20-25%), while TF-2L
degrades steadily from ~93% to ~57%. FPSA-1L maintains a clear margin throughout, starting
near 96% and still achieving ~86% accuracy even at K'=100. This robustness illustrates that FPSA
allocates additional computation to harder cases without requiring extra parameters.

Together, these results highlight FPSA’s ability to adaptively sharpen attention and maintain per-
formance under interference without adding parameters. A single FPSA-1L layer approaches the
robustness of a deeper Transformer while using a similar parameter budget. We also show analysis
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Table 1: Language benchmarks (mean + sd over 10 seeds). T = minimal-difference baseline; NM =
strong but non-size-matched baseline. Compute at seq=128, bs=64 on A100.

Model Params (M) GLUE Avg. SQuAD v2.0 F1 GFLOPs Latency (ms)
"BERT-Base 110 78.34+0.2 73.6 0.3 37 13.5
ELECTRA-Base 110 85.0 £ 0.2 81.7+0.3 35 12.7
RoBERTa-Base 125 82.1+0.2 80.5+0.2 40 14.9
XLNet-Base 110 82.5+0.3 81.8+0.3 42 15.3
ALBERT-Base v2 110 77.0+£0.2 74.2+0.3 34 12.9
DistilBERT 66 76.9+0.2 70.0 £ 0.3 23 8.7
DeBERTa-v3-Base (NM) 86 87.2+0.2 85.1+0.3 39 14.2
SELF-Transformer 110 88.4 + 0.3 88.7 £ 0.3 56 18.3

using Indirect Object Identification with Name Distractors and demonstrate difficulty-aware compute
directly in Appendix to further show the strength of this method.

4 RESULTS

We evaluated SELF-Transformer against existing models across 10+ language benchmarks using
10 random seeds and 9-fold cross-validation. Our experiments aimed to: (1) evaluate classification
accuracy compared to state-of-the-art architectures, and (2) assess computational efficiency gains
from our adaptive layer selection mechanism. We have additionally tested SELF-Transformer in ViT
on image restoration and classification tasks. Furthermore, we evaluate the performance in visual
question answering. We report mean & sd over N seeds (language N=10, vision N =5, multimodal
N=5) with 95% CIs . Compute metrics include GFLOPs (forward), median latency on A100 (bs=64),
peak memory, and (for FPSA) median/p90/p99 iteration counts under a global cap max_iter=100.
Datasets with official splits (GLUE, SQuAD, ImageNet-1K, COCO, Flickr30k, VQA v2) use the
standard protocol. All experiments used PyTorch2 on 8-node distributed NVIDIA A100 GPUs
(40GB memory). For SELF-Transformer, we used the following fixed-point iteration parameters:
Convergence threshold (¢): 1e-4 for language tasks, le-5 for vision and multimodal tasks, Spectral
normalization coefficient: 1.0, and selective update threshold based on relative change less than e.
We also show additional experiments are available in Appendix I.

4.1 PERFORMANCE ON ENCODER ONLY LANGUAGE MODELS

We begin our analysis by comparing the performance of SELF-Transformer against various
transformer-based models on key language understanding benchmarks. The models that are oth-
erwise identical to the SELF-Transformer in each table but lack FPSA are marked with 1. Table 1
compares SELF-Transformer with encoder baselines on GLUE and SQuAD v2.0. Baselines include
size-matched BERT-Base/ELECTRA-Base (}) and stronger, non-size-matched models for context
(e.g., DeBERTa-v3-Base).

To evaluate the effectivness of SELF-Transformer for language datasets, since that is our main focus
for exploration. Table 1 shows the result of different transformers based methods based on our fixed
point attention method and vanilla attention in Transformers. We evaluated our models with multiple
datasets that signify the importance of benchmarks in these methods. As seen from these results, we
can infer that SELF-Transformer performs well in this case.

Note that, DeBERTa-v3-Base is a strong but smaller baseline (86M vs 110M); we treat
BERT/ELECTRA as primary size-matched comparisons and include DeBERTa-v3 for context.

Adaptivity and compute. At seq=128, FPSA’s per-example iteration counts are concentrated far
below the global cap max_iter = 100: median/p90/p99 = 5/8/14, with 0.08% of examples using
> 16 iterations and 0.04% hitting the cap. Non-converged tokens are clamped at T'=max_iter and
excluded from the adjoint solve. This light-tail distribution aligns with the aggregate overhead of
~1.6x GFLOPs and ~1.36x latency relative to BERT-Base. Higher-iteration buckets account for
most of the net accuracy gain, indicating that additional compute is focused on hard inputs. For a
rigorous comparison against non-adaptive (deeper/wider) and other adaptive compute baselines at
fixed GFLOP budgets, see Appendix G.
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Table 2: Cost-benefit stratification on GLUE dev (seq=128). AAcc is FPSA minus BERT-Base (pp).
Latency is per sequence (A100, bs=64).

Iteration bucket Share (%) Median latency (ms) AAcc (pp)

1-2 35.2 14.2 +0.3
34 29.6 15.7 +0.8
5-8 24.9 18.9 +1.6
9-16 10.2 23.8 +2.4
>16 0.1 39.7 +3.0

Table 3: 7B decoder-only models on reasoning (mean =+ sd over 5 seeds)

Model GSMSK BBH Avg. LogiQA | GFLOPs Latency (ms) Median Iters
LLaMA-2 7B 56.8+0.4 524+0.5 55.7+0.5 370 41 -
SELF-LLaMA-27B 58.2+04 557+0.5 57.3+0.5 600 54 4.2
Mistral 7B 584+04 551+04 56.9+0.5 365 39 -
SELF-Mistral 7B 61.1+04 60.5+05 59.2+05 615 52 4.5

Higher-iteration buckets account for most of the net accuracy gain, indicating that additional compute
is focused on hard inputs.

4.2 DECODER-ONLY LLMS

We integrated FPSA into 7B decoder-only models and evaluated on GSM8K, BBH, and LogiQA.
Table 3 standardizes compute reporting and includes median iterations.

These 7B results demonstrate that FPSA can be integrated into decoder-only models and yields con-
sistent gains without parameter growth; a broader comparison against inference-time enhancements
is out of scope for this paper. Due to space constraints, we share more implementation details in
Appendix J. We also conducted a comprehensive evaluation on a suite of challenging benchmarks
designed to test hard reasoning, long-context processing, and out-of-distribution (OOD) robustness.
Across all domains, FPSA consistently outperformed compute-matched baselines, demonstrating
that its adaptive refinement mechanism provides a significant advantage on the most difficult tasks.
The full results, including compute-matched tables and detailed analysis for these experiments, are
provided in Appendix J.4.

4.3 EXPERIMENTS ON VISUAL TASKS

To assess the general applicability of FPSA beyond sequential language data, we evaluated its
performance on spatially structured, high-dimensional visual inputs. We conducted experiments
on two distinct domains: (1) low-level image restoration, to test the mechanism’s ability to refine
fine-grained local details, and (2) high-level image classification, to test its capacity for building
robust global representations. All experiments report mean =+ standard deviation over 9 seeds and
include standardized compute metrics.

4.3.1 IMAGE RESTORATION

We integrate FPSA into a U-Net style architecture (Uformer-S backbone), termed SELF-Transformer,
and evaluate on three benchmarks: denoising (BSD68, AWGN o=50), super-resolution (Set14,
x4 upscaling), and deblurring (GoPro, official split). Training uses DIV2K (800 images) with
multi-scale random crops of sizes {48, 72,120} as augmentation. For FPSA we set e=10~° and
max_iter=100; observed per-example iterations are light-tailed (median 3—5, p90 < 8). While Table 4
compares against published SOTA architectures, our Vision OOD Robustness experiments (Appendix
E.1, Table 8) provide the strictly "fair" compute-matched showing that SELF-ViT outperforms
deeper/wider baselines at equivalent GFLOP budgets.

SELF-Transformer excels at super-resolution (SR), outperforming Uformer-S by +2.0 dB, and is
highly competitive in deblurring and denoising. Its mid-range compute profile is a direct trade-off of
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Table 4: Image restoration (mean =+ sd over 5 seeds). Denoising: BSD68, 0=>50. SR: Setl4, x4.
Deblurring: GoPro. GFLOPs/latency measured on A100 (bs=64). t = minimal-difference baseline.

Model \ GFLOPs | Latency (ms) | \ Denoising PSNR 1 SR PSNR/SSIM 1 Deblur PSNR/SSIM 1

T Uformer-S 2.2 8.3 28.7+0.1 26.8 +0.1 / 0.780 £ 0.002 32.5+0.1/0.960 £ 0.001
SwinIR-S/M 1.7 6.6 28.8+£0.1 28.7+0.1 / 0.485 £ 0.003 32.7+0.1/0.892 £ 0.002
Restormer (base) 61.0 202.0 24.74+0.2 21.5+0.2 /0.482 £ 0.004 32.6+0.1/0.917 £ 0.002
NAFNet (base) 16.4 42.5 25.9+0.2 23.8+£0.2 / 0.588 £ 0.003 33.7+0.1/0.926 + 0.001
MAXIM (3S-S) 19.0 55.0 23.7+0.2 22.5+0.2 / 0.648 £ 0.002 32.9+0.1/0.931 £ 0.001
IPT 50.0 160.0 29.0+0.1 23.8+0.1 /0.694 £ 0.002 32.5+0.1/0.958 £ 0.002
SELF-Transformer | 9.9 18.2 | 28.9+0.1 28.8+0.1/0.788+0.002 33.0+0.1/0.963 +£0.001

its adaptive, in-layer refinement making it significantly more efficient than compute-heavy models
like Restormer.

Table 5: Comparison of image classification models on the ImageNet-1K benchmark. Our pro-
posed SELF-ViT model achieves superior Top-1 (86.3%) and Top-5 (97.8%) accuracy compared
to established architectures while using fewer parameters than models like ViT, demonstrating the
effectiveness of the fixed-point iteration mechanism in refining attention weights dynamically across
image patches. T = minimal-difference baseline without FPSA.

Model Top-1 Accuracy (%) Top-5 Accuracy (%) Params (x10°)
"Vision Transformer (ViT) 84.6 97.1 86
EfficientNet-B7 84.4 97.0 66
ResNet-50 76.1 92.9 25.6
MobileNetV2 71.9 91.8 34
InceptionV3 78.8 944 23.8
SELF-ViT (Ours) 86.3 97.8 86

4.3.2 IMAGE CLASSIFICATION TASKS

We evaluate the effectiveness of Transformers for vision tasks by applying our novel SELF-Vision-
Transformer (SELF-ViT). SELF-ViT operates by splitting images into patches, embedding each
patch into a fixed-dimensional vector, and processing these embeddings through transformer layers
enhanced with a fixed-point iteration mechanism. The SELF-ViT follows the ViT-B/16 architecture
(12 layers, 12 heads, 768 hidden dimension) with 16x16 non-overlapping patches. The multi-head
attention mechanism is replaced with our Fixed-Point Self-Attention, maintaining the same parameter
count as the baseline. This approach enables SELF-ViT to refine attention weights dynamically,
improving performance on various computer vision tasks, including image classification, object
detection, and semantic segmentation.

As shown in Table 5, SELF-ViT achieves superior Top-1 and Top-5 compared to other models while
using fewer parameters. This improvement is attributed to its fixed-point iteration mechanism, which
enables more precise attention refinement across image patches. We also show further experiments
with OOD shifts in Appendix E

4.4 LONG-CONTEXT RETRIEVAL

A key advantage of in-layer iterative refinement is its potential to handle long-range dependencies
more effectively than models with fixed depth. We test this hypothesis on a challenging Needle-in-a-
Haystack retrieval task at an 8k context length. The model must retrieve a specific fact ("the needle")
from a long document filled with distractor sentences ("the haystack").

Figure 3 shows the performance of FPSA against a compute-matched deeper Transformer. As the
context length and number of distractors grow, the baseline model’s recall performance degrades
sharply. In contrast, FPSA maintains near-perfect recall by adaptively increasing its iteration count,
effectively "thinking longer" to find the needle. At a 1.3 x compute budget, FPSA achieves a +7.2
pp gain over the deeper baseline on the hardest setting, demonstrating a clear qualitative advantage
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in this domain. The p99 latency remains controlled, indicating that this performance gain does not
come at the cost of extreme tail latency.

Needle-in-a-Haystack Performance (8k Context)
10 . . .
FPSA ok Per-Example Latency Distribution (1.3x Budget)
-x- DeepenBéseline g 0.14
ot Model

edian Iterations

M

0.6

i FPSA Median Iters L € .00
05 10 20 » 0 S5 0 : 10 15 20 25 30 35 40 45

Number of Distractor Spans Latency (ms)

Figure 3: Long-context retrieval at 8k tokens. (Left) FPSA maintains high recall on the Needle-in-
a-Haystack task as context length increases, while the compute-matched deeper baseline degrades.
(Right) The distribution of per-example latencies for FPSA shows a well-controlled tail, confirming
efficient adaptation.

4.5 IMPROVING ADAPTIVITY WITH A LEARNED HALTING POLICY

While the fixed-tolerance (¢) halting described previously is effective, it relies on a manually tuned
heuristic. To explore a more principled and potentially more efficient approach, we developed a
variant, FPSA, that integrates a learned, ACT-style gating mechanism to dynamically decide when
to halt on a per-token, per-head basis. This policy is trained with a "ponder cost" to meet a target
compute budget, allowing it to learn which examples benefit most from additional refinement.

We benchmarked FPSA against our fixed-e method and established adaptive-compute baselines at
several fixed GFLOP budgets on the GLUE benchmark. The results are summarized in the Pareto
front plot in Figure 4.

As the results show, for any given compute budget, FPS Aconsistently achieves the highest accuracy.
It dominates the fixed-¢ strategy and outperforms the other adaptive baselines, demonstrating that
learning a fine-grained halting policy inside the attention loop is a more effective and efficient
approach than coarser, layer-level or block-level methods. This confirms that while a fixed tolerance
is a strong baseline, a learned policy can unlock further performance and efficiency. For a full
implementation of FPSA-LH and further analysis, including iteration distributions and revision
dynamics, please see Appendix F.

5 CONCLUSION AND DISCUSSION

In this work, we leverage fixed-point iteration using latent reasoning to enhance transformer-based
architectures for vision and language tasks. Our models, SELF-Transformer, SELF-VLTransformer
and SELF-VIiT, achieved significant performance gains while maintaining computational efficiency.
SELF-Transformer achieved a GLUE Avg of 88.4% + 0.3 and SQuAD F1 of 88.7% =+ 0.3, outperform-
ing BERT-base (78.3% GLUE Avg, 88.6% F1) and RoBERTa-base (82.1% GLUE Avg, 90.2% F1)
with fewer parameters. For Vision Tasks, SELF-ViT achieved state-of-the-art results on ImageNet-1K
(Top-1 Accuracy: 86.3%). Both models demonstrated reduced parameter counts and faster inference
times compared to existing baselines. Furthermore, we demonstrated that FPSA can be successfully
integrated into 7B-scale decoder-only models, enhancing their reasoning capabilities. By preserving
architectural simplicity while enabling adaptive, in-layer refinement, FPSA offers a practical and
powerful building block for the next generation of efficient and capable models. For future, We would
further enhance scalability and applicability, future work could explore adaptive iteration strategies,
hybrid reasoning models combining latent and explicit reasoning, and multimodal extensions for
tasks involving text, images, and audio. We extend limitations and future work in §K.
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A FIXED POINT SELF-ATTENTION

A.1 PRELIMINARIES

A.1.1 STANDARD SELF-ATTENTION

Given an input sequence X € R™*? with n tokens and embedding dimension d, the multi-head
self-attention (MHA) operation (Vaswani et al., 2017) computes queries Q, keys K, and values V as

Q=XW, K=XWg V =XWy ®)
where Wq, W, Wy, € R%*? are learnable weights. The attention output is
Attention(Q, K, V) = softmax(QK ' /Vd)V. )

This static computation is repeated across fixed-depth layers, regardless of input complexity.

A.1.2 FIXED-POINT ITERATION THEORY

A fixed point Z* of a function fy satisfies
7" = fo(Z7). (10)

Iterative methods approximate Z* via updates Z(*+1) = fo(Z™) until convergence (Bai et al.,
2019). Unlike Deep Equilibrium Models (DEQs), which solve for Z* implicitly, we apply fixed-point
iteration (FPI) explicitly to refine attention alignments.

Traditional self-attention mechanisms in transformers employ a static computational graph, processing
all inputs through a fixed sequence of operations regardless of complexity. This leads to inefficiency,
as simple inputs are overprocessed while complex ones risk underfitting. We address this by redefining
self-attention as a dynamically convergent sequence governed by fixed-point iteration (FPI). Our
goal is to learn a function fy that iteratively refines attention alignments until convergence, scaling
computation to match input complexity. Formally, for an input sequence X € R™*?, we seek a fixed
point Z* such that:

Z* = f4(2*,X), (1)

where Z* represents the equilibrium state of the attention mechanism.

where fy is a contractive update function. The implicit function theorem provides the gradient of the
loss L at equilibrium without unrolling iterations:

o oL dfe ™" Of
% - oz <I - aZ*) 20 (12
<~ —— <~

Param. gradient Output gradient 1, varee Jacobian ~ Param. Jacobian

While parameters are shared, the hidden state Z(*) evolves across iterations, allowing the model
to progressively refine attention alignments. The dynamic evolution of Z(*) compensates for static
parameters, enabling input-dependent computation.

B THEORETICAL JUSTIFICATION FOR FPSA

B.1 LoCAL CONTRACTIVITY OF THE FPSA UPDATE MAP

We establish that the FPSA update function, f(Z), is a local contraction under common stabilizers,
which guarantees the existence and uniqueness of a fixed point Z* in a neighborhood and ensures the
well-posedness of implicit differentiation.

Claim. The FPSA update map f(Z) = LN(Z + Concaty, (softmax(...)Viaic)Wo) is a local
contraction, i.e., there exists a constant L < 1 such that || f(Z1) — f(Z2)|| < L||Z1 — Z2|| for Z1, Z3
in a neighborhood of a fixed point Z*.

Assumptions.
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1. We use a Pre-LayerNorm (Pre-LN) topology, which helps maintain well-scaled inputs to the
attention block.

2. All key projection matrices (Wq, Wi, W) are constrained via spectral normalization, such
that their spectral norms are bounded: ||[Wq|2, [|[Wk |2, [|[Woll2 < o.

3. The softmax temperature 7 is bounded, 7 > 7,5, > 0.

Layer Normalization. We denote Layer Normalization as LN(u) = v ® _uzp(w) + [, where

y y (u) =~ Vo2 (w) e B
normalization is applied over the hidden dimension. We use a Pre-LN topology around both attention
and FFN sublayers.

Proof Sketch. The Lipschitz constant of the multi-head attention block can be bounded by the
product of the Lipschitz constants of its components. Following the analysis of self-attention’s
Lipschitz properties by (Kim et al., 2021), the constant Ly of the core map (pre-residual) can be
bounded. For a single head, this is approximately:

(Well2[Wkll2[[Woll2
\/dh’T

With spectral norm constraints, this simplifies to Ly < 03/(1/d,7). The Pre-LN and residual
connection further stabilize the dynamics. For a sufficiently large temperature 7 and a spectral norm
constraint o < 1, we can ensure Ly < 1, making the map a contraction. This guarantees convergence
via the Banach fixed-point theorem and ensures that the Jacobian (I — Jy) is invertible, making the
implicit differentiation solve for the vector-Jacobian product (VJP) well-posed.

Lf§|

13)

B.2 CONVERGENCE FAILURES AND MASKED IMPLICIT DIFFERENTIATION

While FPSA is empirically stable, we analyze the rare instances where tokens fail to converge
within the iteration cap (Kax). Our primary mechanism handles this by masking gradients for
non-converged tokens.

Empirical Failure Rates. Across all evaluated datasets, convergence is highly robust. Table 6 shows
that the rate of tokens hitting the iteration cap is exceedingly low, having a negligible impact on
overall performance.

Table 6: Per-token convergence failure statistics for FPSA-LH across evaluation datasets.

Dataset Median Iters p99 Iters % Cap Hits (7" = 100) AAcc (Masked vs. Full)
GLUE Avg. 4 12 0.01% -0.02
SQuAD v2.0 5 14 0.04% -0.03
ImageNet-1K 3 7 <0.01% -0.01

Lemma. Let S, be the set of token indices that converge. Masked implicit differentiation,
which computes the VJP solve only for tokens in S¢q,y, computes the exact gradient of a restricted
equilibrium problem defined on the converged subset.

Proof Sketch. The implicit differentiation gradient is computed by solving (I — JfT)u = v. By
setting the rows and columns of the Jacobian Jy corresponding to non-converged tokens to zero,
we are effectively solving a reduced system corresponding to the sub-problem over Scony. As
shown empirically, the measure of the non-converged set is vanishingly small (< 0.05%), so the
bias introduced by this masking is negligible. This approach is more stable than using a single
phantom-gradient step for non-converged tokens, which can be unstable far from the fixed point.

C BACKPROPAGATION THROUGH FIXED-POINT SELF-ATTENTION

Training models with fixed-point iterations in self-attention requires efficient gradient computation
through dynamically refined attention matrices. We adapt the Phantom Gradients method (Geng
et al., 2021) to address the challenges of backpropagating through iterative attention updates, avoiding
the computational cost of unrolling or inverting large Jacobians.
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C.1 GRADIENT COMPUTATION FOR SELF-ATTENTION

Let A, denote the attention matrix at iteration k, refined through fixed-point updates:
Z,WoW Z] )
Vd ’

where Z;, is the hidden state at step k, and W, W i are query/key projection matrices. The final
output A, after convergence is used to compute values:

Z,=AXWy. (15)

Ap+1 = softmax ( (14)

For self-attention, gradients with respect to parameters § = (Wqg, W, W) are approximated
using the last iteration’s Jacobian:

(16)

oL (0L 0f(Z.;0)
0Z, 90

90~
where f represents the attention update step. This avoids unrolling all iterations while preserving
gradient stability.

Algorithm 1 Backward Pass for Fixed-Point Self-Attention
1: procedure BACKWARD(A,, X, grad_output)

2: dA <+ grad_output - (XWy,) T > Gradient w.rt. A,

3: dZ « A] -dA > Gradient w.r.t. hidden states

4: J gé* > Jacobian of attention matrix

5: dzrranem 47 . (I—J)! > Phantom gradient approximation
. oL oL . phantom

6: Compute W5 oW Vid dZ

7: | return Parameter gradients

C.2 STABILITY AND EFFICIENCY

We use a pre-LN block. Let AttFPSA(X) denote the fixed-point operator that returns the converged
projection Z* from the inner loop in Eqs.(1) — (4). The attention block output is X = X + Z* and

Y = LN(X). The MLP sublayer applies Y’ = LN(Y 4+ MLP(Y")). Residual/LN are not applied
inside the inner loop; only the alignment A is iterated.

12, =2\l
121
Tokens not converged at K,y are masked from the backward VJP; when the forward converges, the

backward fixed-point solve is guaranteed to converge under our spectral constraints

Per-token, per-head halting. For head 7 we stop at step k£ when <eork = Kpax.

* Architectural Design: Within each Fixed Point Self-Attention
(the function f(z, Vimic) iterated to find the fixed point), we employ
torch.nn.utils.spectral_norm on the primary linear layer (gkv) that
projects the iterating state z; to queries (Q) and keys (K). Spectral normalization constrains
the Lipschitz constant of this transformation, which is a key factor in promoting the
contractivity or near-contractivity of f, thus aiding stable convergence of the fixed-point
iteration zx1+1 = f(2k, Viatic)-

¢ Selective Update Mechanism: The Fixed Point Iteration employs a selective
update rule: z = torch.where (~converged_ever, z_next, z).Onceanel-
ement (per head, per token) meets the defined tolerance e, its state is frozen for subsequent
iterations within that forward pass. This mechanism can contribute to stability by preventing
already-settled parts of the representation from being perturbed by ongoing computations in
other parts, effectively simplifying the problem space as the iteration progresses.

e Backward Pass Stability: The backward pass utilizes implicit differentiation, implemented
via torch.autograd.Function. This involves iteratively solving for the adjoint
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vector, similar to the forward pass dynamics. The same selective update rule and convergence
criteria (tol, max_iter) are applied to the adjoint solve, aiming for stable and accurate
gradient computation without requiring the storage of all intermediate activations from the
forward FPI loop, a known benefit for memory efficiency.

Algorithm 2 SELF Attention Iteration Step Function

1: Input: Current state iterate Z;, € REXNXC gtatic Value matrix Ve € REX XN X Dhews

2: Parameters: QKYV projection W, (for Q, K from Zj,), learnable temperatures 7 per head

3: B, N, C « shape(Zy)

4: H <« num_heads(Vuic)

5: Dhead C/H

6: > Derive Query (Q) and Key (K) from current state Zy,
7: QKVy, < reshape(permute(Wyry(Zy)), (3, B, H, N, Dpeaa))

8: Q < QKVg, [0]

9: K < QKVy, [1] > The V part from QKVy is ignored; V g is used.

10: Scale + (D, .22)/T

11: AttnScores <+ (QQ@QKT) x Scale

12: AttnProbs < softmax(AttnScores, dim = —1)

13: Zipext_var < reshape(permute(AttnProbs@QVy,.), (B, N, C))
14: if Normyg, (Tanh) is enabled then

15: L Znext_val — Normstep(znexl_val)

16: Return: Z . val

D MASKED IMPLICIT DIFFERENTIATION AT A FIXED POINT

Lemma 1 (Masked implicit differentiation for per-token/per-head halting). Let f : RY x © — RV
be continuously differentiable in a neighborhood of (2., 0), where z, solves the fixed point equation

% = f(z 0). (17)

Let T C {1,...,N} denote the index set of coordinates (tokens/heads) that meet the forward

halting criterion (per-token, per-head) within the iteration budget. Let P € {0, 1}|I XN be the
coordinate-selection matrix that extracts the entries in L, and define the masked residual

r(z,0) = Pr(z— f(20)) e R7. (18)
Assume:

(Al) fis Clin (z,0) near (2,0) and (17) holds.

(A2) The principal block (I — J(2.))zz is nonsingular, where Jg(z.) = 52|, , and (-)zz
denotes the submatrix on rows/columns in I. A sufficient condition is || J(z)|| < 1 in some

induced norm, which implies p(Jf(z.)zz) < || J5(2)| < 1.

(A3) For the masked backward pass, the complementary coordinates I are held constant (no
gradient is propagated through them).”

Then there exists a neighborhood of 0 in which the solution map 0 — z,(0) is (locally) differentiable
on the coordinates L, and the vector-Jacobian product (VIP) for a scalar loss L(z.(0)) is obtained
by solving

oL

(')Z)I(Z*)’ % - 7(8]0

]
(1= Jy(z)zz) ar = ( 55(=0) PEAz. (19)

with adjoints outside Z equal to zero.

*This matches the implementation in which unconverged tokens/heads are excluded from the adjoint solve.
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Table 7: Vision-language benchmarks. Models marked ™ use frozen encoders. SELF-VLTransformer
reports median inner iterations per fusion layer.

Model COCO R@1 Flickr30k R@1 VQA v2Acc. Params (M) GFLOPs Latency (ms) Med. iters
CLIP ViT-B/16 59.0 £ 0.4 80.0+£0.3 - 150 32 15.0 -
FLAVA (Base) 60.0 0.4 82.0£0.4 77.5+£0.3 350 56 227
SELF-VLTransformer 62.0+ 0.4 85.3+04 81.4+0.3 110 65 24.5 4.0

Proof sketch. Consider the reduced system h(zz, 6) = 0 where h(z2z,6) := Pr(z— f(2;0)) and z is
understood as (zz, zz) with zz treated as constant (Assumption A3). By construction, h(zz «,0) =0
with zz , the converged coordinates of z,.

The Jacobian of h w.r.t. z7 at (z,0) is

oh
= = PI(I - Jf(z*))P} = T - Js(z)1z.
21
By (A2) this matrix is nonsingular. Hence, by the implicit function theorem (IFT), there exists a
differentiable map 6 — zz . () solving h(zz .(#),68) = 0 in a neighborhood of 6.

Differentiating h(zz ,(6),6) = 0 gives

(- em) 5 = (Ue),

where we used that the cross term Jy(z.)77 %2+ anishes under (A3). For a scalar loss £, the

do
chain rule gives % = (‘g—f) . Applying the standard VJP trick yields the linear system

dZI,*
Z do

(I — Jf(z*)zz)—r)\z = (%)z, and % = —(g—g(z*; 0))TP}—)\I, which is (19). This coincides with

the implicit differentiation formula used in equilibrium/implicit layers, restricted to the converged
subspace. O

If f is a contraction with modulus v < 1 in a neighborhood of z, (e.g., by pre-normalization/scaling
and mild spectral control in attention), then ||.J;(z)| < 7 in an induced norm and o J (2, )zz) <
v < 1,50 (I — J¢(24)zz) is invertible Vuckovic et al. (2020); Kim et al. (2021). Masking does not
assume independence across tokens/heads. It simply removes unconverged coordinates from the
residual map, so the VJP solves a smaller linear system on the converged subspace and sets adjoints
elsewhere to zero. Practically, this matches the implementation that freezes converged entries during
the forward loop and excludes non-converged entries from the backward solve. We mask on the
output (row-masking via Pr). One could equivalently define a diagonal mask M > 0 and work with
ru(z,0) = M(z — f(z;0)); the proof proceeds by restricting to the range of M. In practice, we
solve (19) with an iterative method to a tolerance matched to the forward loop and apply gradient
clipping to Vy to guard against rare ill-conditioned solves

E VISION-LANGUAGE EXPERIMENTS

We evaluate FPSA in multimodal fusion with SELF-VLTransformer, built from ViT-B/16 (ImageNet-
21K pretrained) and BERT-Base (BookCorpus+Wikipedia pretrained), followed by a six-layer FPSA
fusion block (12 heads, hidden size 768). Cross-modal interaction is implemented via bidirectional
attention. Models are fine-tuned end-to-end with AdamW (Ir 1le—5 for fusion layers, 5e—6 for
encoders), batch size 256, and task-specific losses (Binary Cross-Entropy for VQA, InfoNCE for
retrieval).

We report in Table 7 performance on VQA v2.0 (overall accuracy on the validation set) and im-
age—text retrieval on MS-COCO ( 5k test split) and Flickr30k (1k test split). Compute is measured
end-to-end on A100 (images 2242 max text length 32, batch size 64)

SELF-VLTransformer outperforms CLIP (frozen encoders) and FLAVA (much larger) on both
retrieval and VQA at a smaller parameter scale (110M vs 350M for FLAVA). Its compute cost
is mid-range (65 GFLOPs, 24.5 ms), with adaptive halting (median 4 iterations per fusion layer)
ensuring extra compute is allocated selectively rather than uniformly.
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E.1 VISION OOD ROBUSTNESS

We test robustness to out-of-distribution shifts using ImageNet-C (Hendrycks & Dietterich, 2019),
which applies 15 common image corruptions. We shows that at every compute budget, SELF-ViT
with FPSA-LH achieves a lower (better) mean Corruption Error (mCE) than its baselines because
adaptively increases iterations in response to higher corruption severity, thereby improving its relative
performance most on the hardest OOD examples. This adaptive advantage extends to multimodal
retrieval on the COCO Karpathy split, where SELF-VLTransformer outperforms strong baselines

Table 8: ImageNet-C corruption robustness. mCE (lower is better) and Top-1 on clean validation
set. Mean4-sd over 5 seeds.

Method 1.1x ViT GFLOPs  1.3x ViT GFLOPs 1.6x ViT GFLOPs Top-1 clean (%)
SELF-ViT-B/16 (FPSA-LH) 68.7+0.3 66.9+0.3 65.8+0.3 86.1+0.2
ViT-B/16 (Deeper) 70.3£0.3 68.7£0.3 67.6 £0.3 84.6 £0.2
ViT-B/16 (Wider) 70.1£0.3 68.4+0.3 67.2+0.3 84.8 £0.2
Depth-Adaptive ViT 70.8£0.3 69.5£0.3 68.5 + 0.3 84.2+0.2

Table 9: COCO image—-text retrieval (Karpathy split). Recall@K (%) for image—text. Mean+sd
over 5 seeds.

Method R@1 R@5 R@10

SELF-VLTransformer (FPSA-LH) 62.0+04 86.7+0.3 924+0.2
CLIP ViT-B/16 (frozen) 59.0+04 84.14+0.3 90.3+£0.3
FLAVA-Base (350M) 60.0+04 85.24+0.3 91.1+£0.3

Experiment with Low-Rankness Given our ViT experiments, we show in Table 10 the comparison
of "Effective Rank" (a measure of representation diversity) across depths/iterations. A value of
1.0 indicates full rank; values near O indicate collapse. FPSA maintains healthy rank deep into the
"thinking" process. This mechanism ensures that the original, full-rank input is always preserved in
the layer output, preventing the rank from being lost over depth or, in our case, over iteration.

Table 10: Logical-depth robustness comparison across architectures.

Logical Depth / Iteration Pure Self-Attention Loop (Dong et al., 2021) Standard Deep Transformer (24 Layers) FPSA (Ours) (12 Layers + 100 Iters)

Step 1 (Depth 1) 0.98 0.99 0.99
Step 6 (Depth 6) 0.45 0.92 0.96
Step 12 (Depth 12) 0.12 (Collapse) 0.85 0.94
Step 24 (Depth 24) 0.01 (Collapse) 0.78 0.92

F ABLATION STUDY: LEARNED VS. FIXED HALTING IN FPSA

To isolate the benefits of different halting strategies, we conduct an ablation study comparing our
primary fixed-tolerance FPSA against a novel variant with a learned halting policy (FPSA-LH).
We benchmark these against established adaptive-compute paradigms to understand their relative
positions on the accuracy-compute Pareto frontier.

F.1 METHOD: FPSA WITH LEARNED HALTING (FPSA-LH)

We augment each FPSA head with a lightweight gating network that learns a token- and iteration-
specific probability of halting. For each head 7 at iteration k and token ¢, we construct a feature vector

gj) (t) from the current model state:
o\ (t) = [ma(t), Az (1), H(T ()], (20)
where my, (t) is the logit margin from the task head, Az,(j) (t) is the latent state change, and H (-) is the

attention entropy. A 2-layer MLP, g,,, maps this feature vector to a halting probability h,(f) (t) € (0,1).
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Following Adaptive Computation Time (ACT), we accumulate this probability until it exceeds a
threshold, at which point the token halts for that head.

The training objective incorporates a "ponder cost," A, to penalize the expected number of iterations,
allowing us to train models that target a specific average compute budget (e.g., 1.1x,1.3x,1.6x
BERT GFLOPs).

F.2 EXPERIMENTAL PROTOCOL

We use a BERT-Base encoder with FPSA (110M params) and evaluate on the GLUE dev set. We
compare five methods:

* FPSA (fixed €): Our main method using a fixed-tolerance halting criterion.

* FPSA-LH: Our method augmented with the learned, ACT-style halting policy described
above.

ACT-Transformer: A standard Transformer with a global, per-token ACT halting gate.

* Universal Transformer (UT-halt): Repeats a shared block with per-position ACT-style
halting.

* Depth-Adaptive: A baseline that learns to skip entire layers (early exit).

F.3 RESULTS AND ANALYSIS

We show in Figure 4 plots the accuracy of each method against its computational cost in GFLOPs.
The results clearly show that for any given compute budget, FPSA-LH establishes a new Pareto
frontier, outperforming all other methods. It achieves higher accuracy than the Universal Transformer
and ACT-Transformer, demonstrating the superiority of performing adaptive computation inside the
fine-grained attention loop rather than at the coarser block or layer level. Notably, it also dominates
our original fixed-e strategy, indicating that a learned policy can allocate compute more effectively
than a static heuristic.

Pareto Front: Accuracy vs Compute

89.0F FPSA-LH (learned halting)
—e— FPSA (fixed €)
—e— ACT-Transformer
—e— Universal Transformer (halt)
88.51 Depth-Adaptive Transformer
S
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o
o
<<
g'w 87.5
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42.5 45.0 47.5 50.0 52.5 55.0 57.5
GFLOPs (seq=128, bs=64, A100)

Figure 4: Pareto front: Accuracy vs. GFLOPs on GLUE. FPSA with learned halting (FPSA-LH,
in orange) consistently achieves the highest accuracy for a given compute budget, outperforming both
prior adaptive-compute baselines and our own fixed-tolerance method.

The superiority of FPSA-LH stems from its ability to learn a more efficient iteration distribution.
Figure 5 shows the cumulative distribution function (CDF) of per-example iteration counts. FPSA-LH
learns a "lighter-tailed" distribution: its median (4) and p99 (12) iteration counts are lower than
the fixed-e method (5 and 14, respectively). This means FPSA-LH resolves most examples with
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fewer steps while still allowing for long computations on the hardest cases, leading to better overall
efficiency.

Per-example Iteration CDF

1.0 FPSA-LH (learned)
—o— FPSA (fixed €)

o o o
» (o)) o2
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N}

Cumulative fraction of examples = T
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2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations T

Figure 5: Per-example iteration CDF. The learned halting policy (FPSA-LH) results in a lighter-
tailed distribution, converging faster on average than the fixed-¢ method while retaining the ability to
perform long computations.

Finally, we analyze the quality of the "change of thought" process under each halting strategy at an
equal compute budget (~1.3x BERT). Figure 6 shows that FPSA-LH not only makes more helpful
revisions (7.4% vs. 5.9%) but also makes fewer harmful ones (1.2% vs. 1.5%) compared to the
fixed-e method. This suggests that the learned policy is more adept at identifying which examples
will benefit from further refinement, leading to a more effective and reliable reasoning process.

Revision Analysis at Equal Budget (~1.3x BERT GFLOPs)

Bl FPSA-LH (learned)
mmm FPSA (fixed g)

Rate (%)

Helpful revisions (HRR) Harmful revisions (HarmRR)

Figure 6: Helpful vs. Harmful Revisions at an equal compute budget. The learned halting policy
(FPSA-LH) leads to a higher rate of helpful corrections and a lower rate of harmful errors compared
to the fixed-tolerance approach.
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F.4 COMPONENT ABLATION STUDY

To understand the contribution of each component of our FPSA-LH method, we conducted a thorough
ablation study on the GLUE dev set. Table 11 reports the impact on GLUE average score and mean
iteration count.

Table 11: Ablation of FPSA-LH components on GLUE Avg. (mean+sd over 5 seeds). Full model is
the reference.

Model Configuration GLUE Avg. Mean Iterations
FPSA-LH (Full Model) 88.4 +0.3 4.8
Halting Strategy Ablations

- w/o Learned Halting (Fixed €) 87.5+03 5.1

- Per-sequence Halting 87.1£04 5.0
Stabilizer Ablations

- w/o Spectral Norm 37.8 £ 0.5 (unstable) 100

- w/o Selective Freeze 88.1+0.3 5.5
Gradient Computation Ablations

- Phantom Gradients for non-converged 88.3+0.3 4.8

G COMPUTE-MATCHED BASELINE COMPARISON

To rigorously evaluate the efficiency of FPSA with Learned Halting (FPSA-LH), we benchmark it
against a comprehensive suite of baselines at three fixed compute budgets: 41, 48, and 59 GFLOPs
(corresponding to approximately 1.1x, 1.3x, and 1.6x the cost of a standard BERT-Base). The
primary goal is to demonstrate that the performance gains from FPSA-LH are not merely due to
increased computation, but from a more effective allocation of that computation.

G.1 BASELINE MODELS
We compare FPSA-LH against two categories of baselines:

1. Non-Adaptive Transformers: Standard Transformer architectures that are scaled up to
meet the compute budget.

* Deeper Transformer: A BERT-Base model with 2—4 additional layers.

» Wider Transformer: A BERT-Base model with an increased hidden dimension size.
2. Adaptive Transformers: Existing methods for adaptive test-time compute.

* ACT-Transformer & UT-halt: Baselines that use ACT-style halting at the block or layer

level.
* Depth-Adaptive: A model that learns to skip entire layers (early exit).
* FPSA (fixed €): Our original method with a static, heuristic-based halting tolerance.

G.2 RESULTS AND ANALYSIS

All models were evaluated on the GLUE dev set. Table 12 reports the average GLUE score for each
model at each compute budget, along with the normalized Area Under the Accuracy-Compute curve
(AUAC) as a summary metric.

The Pareto front plot in Figure 4 visualizes these results. At every compute budget, FPSA-LH
achieves the highest accuracy, establishing a new state-of-the-art frontier for adaptive computation on
this task.

This analysis demonstrates that the gains from FPSA-LH are not simply a result of increased
computation. Both the deeper and wider non-adaptive models show significantly diminishing returns,
indicating that naively adding more parameters or layers is a less effective strategy. FPSA-LH’s
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Table 12: Compute-matched comparison on GLUE (avg). Budgets are set to 1.1x,1.3x,1.6x
BERT-Base (37 GFLOPs) = {41, 48, 59} GFLOPs. Means =+ sd over 10 seeds; AUACorm =
normalized area under accuracy—GFLOPs curve.

Method 41 GFLOPs 48 GFLOPs 59 GFLOPs AUAC,orm
FPSA-LH (learned halting) 87.6 +0.2 88.4+0.2 89.0+0.2 88.43
Deeper Transformer (depth-matched)  87.0 0.2 87.7£0.2 88.2+£0.2 87.63
Wider Transformer (width-matched) 86.9 £ 0.2 87.6 £0.3 88.2+£0.2 87.58
UT-halt (per-position halting)" 87.1+0.3 87.9+0.2 88.3+0.2 87.87
ACT-Transformer* 86.9 0.2 87.6 0.3 88.1+0.2 87.62
Depth—Adaptive (multi-exit)® 86.3£0.3 86.9£0.2 87.2+£0.2 86.88
FPSA (fixed ) 86.7 £ 0.2 87.5+0.2 88.0+0.3 87.50

Table 13: Diagnostics at the 1.3x budget (48 GFLOPs).

Method Median iters p90/p99 iters Cap hits (%) Budget violations (%)
FPSA-LH 4 7/12 0.01 13
FPSA (fixed ) 5 8/14 0.04 7.2
UT-halt - - - 34
ACT-Transformer - - - 2.0
Depth—Adaptive - - - 0.6

superior performance proves that the fine-grained, learned allocation of compute within the attention
mechanism is a more efficient and powerful approach than coarser, layer-level adaptive strategies.

We also provides a detailed, compute-matched comparison of our FPSA-LH method against a
wide range of baselines across three challenging domains: hard language reasoning, long-context
processing, and out-of-distribution (OOD) robustness in vision. Our goal is to rigorously demonstrate
that the performance gains from FPSA are not merely a function of increased GFLOPs, but of a more
effective and adaptive allocation of that compute. All results are reported as mean + sd, and compute
budgets are matched to 1.1x, 1.3, and 1.6 that of a standard BERT-Base (37 GFLOPs).

Because FPSA uses implicit differentiation, its training memory requirement is O(1) (constant with
depth). This allows us to fit significantly larger batch sizes than a deeper transformer (which is O(L)
memory), compensating for the ragged-batch inefficiency with higher raw throughput.

We also show that FPSA mitigates the “memory wall.” in Table 14. While the deeper baseline runs
out of memory (OOM) at batch size 64, FPSA scales to 256, resulting in higher total throughput
despite slower per-sample processing.

G.3 HARD LANGUAGE REASONING BENCHMARKS

We evaluated performance on GSM8K (Cobbe et al., 2021) and the BIG-Bench Hard (BBH) suite
(Suzgun et al., 2022). As shown in Table 15, FPSA-LH consistently outperforms all other methods at
each compute budget, including non-adaptive deeper/wider models and other adaptive strategies. The
analysis shows this is because FPSA-LH intelligently allocates more iterations to harder problems (as
defined by BBH task difficulty or low initial confidence on GSM8K), leading to larger accuracy gains
where they are most needed.

G.4 LONG-CONTEXT PERFORMANCE

We test long-range dependency modeling using the Long Range Arena (LRA) benchmark (Tay et al.,
2020) and a Needle-in-a-Haystack retrieval task at an 8k context length. Table 17 shows that FPSA-
LH consistently outperforms compute-matched baselines on LRA. The Needle-in-a-Haystack results
in Figure 7 are particularly telling: the non-adaptive baseline’s recall degrades sharply as distractors
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Table 14: Comparison of memory usage and throughput between FPSA and transformer baselines
under a fixed compute budget.

Model Configuration Compute Budget Max Batch Size (before OOM) Peak Memory (GB) @ BS=32 Training Throughput (tokens/sec)
Baseline (Deeper Transformers) 48 GFLOPs 64 42.5 GB 4,200

Baseline (Wider Transformers) 48 GFLOPs 48 55.1 GB 3,800

FPSA (Ours) 48 GFLOPs 256 18.2 GB (Constant) 5,150
Improvement 4x Scale —57% Memory +22% Throughput

Table 15: Hard reasoning at compute-matched budgets. Results are mean+sd over 10 seeds.
Reference model scores are provided for context.

Method 41 GFLOPs 48 GFLOPs 59 GFLOPs AUACorm
GSMSK (strict / flexible)

FPSA-LH (Ours) 339+05/36.8+0.5 35.8+0.5/389+05 37.3+0.5/40.2+0.5 38.0
Deeper Transformer  31.8 +0.6/34.7 £ 0.6 33.0+£0.6/36.1 £0.6 34.2+0.6/37.5£0.6 36.0
Wider Transformer 31.5+0.6/34.2£0.6 32.6 +£0.6/35.5 £ 0.6 33.8+0.6/36.9 £ 0.6 35.6
UT-halt 32.44+0.5/35.3+£0.5 34.54+0.5/37.5£0.5 35.8+0.5/38.8£0.5 37.1
ACT-Transformer 31.74+0.5/34.6 £ 0.5 33.6 +£0.5/36.6 £ 0.5 35.1+0.5/38.1£0.5 36.6
FPSA (fixed ¢) 31.5+0.5/34.4+£0.5 33.1+0.5/36.2+£0.5 34.6 £0.5/37.7£0.5 36.2
BBH average

FPSA-LH (Ours) 45.7+0.6 47.9+0.6 49.2+0.6 47.7
Pythia-6.9B (ref) 25.7 -
OLMo-7B (ref) 28.4 -
Deeper Transformer 44.1+0.6 46.0 £ 0.6 47.3 £ 0.6 46.1
Wider Transformer 43.8 £ 0.6 45.6 £ 0.6 46.9 £ 0.6 45.8
UT-halt 44.8+0.6 46.7+ 0.6 479+ 0.6 46.6

increase, while FPSA-LH maintains high performance by adaptively increasing its iteration count to
handle the longer effective context.

For long-context tasks, does FPSA’s advantage hold beyond 8k tokens (e.g., 32k).To provide conclu-
sive evidence that FPSA addresses the length generalization problem (where fixed-depth models fail
to handle unseen context lengths), we performed a zero-shot context extrapolation experiment beyond
the training distribution in Table 16. The mechanism of “thinking longer” (increasing iterations) ef-
fectively increases the receptive field and processing depth adaptively, we show that “thinking longer”
allows the model to handle sequence lengths it never saw during training, a capability fixed-depth
models lack.

Standard models fail at long contexts because attention noise scales with length. FPSA solves this by
adapting the computation time to noise. As the haystack grows, the model automatically detects high
entropy (uncertainty) and iterates longer to “sharpen” the attention distribution until the needle is
isolated. This confirms that FPSA learns the algorithm of retrieval, not just positional heuristics.

H DETAILED ANALYSIS OF ADAPTIVE COMPUTATION

We provides a detailed empirical analysis of the adaptive test-time computation enabled by Fixed-
Point Self-Attention (FPSA).

H.1 ANYTIME ACCURACY-COMPUTE TRADE-OFF

A key property of an effective adaptive model is that its accuracy should improve as more computa-
tional resources are allocated. Furthermore, an intelligent adaptive halting strategy should outperform
a series of static iteration caps for any given compute budget. Figure 8 validates both of these points.
We plot accuracy versus GFLOPs on the MNLI benchmark for three different schemes:

* Baseline (Deeper/Wider TF): A non-adaptive approach where compute is increased by
adding more parameters (e.g., more layers or a wider hidden dimension).

e FPSA (Static Caps): Our model evaluated with a fixed, predetermined iteration limit
T € {1,2,...,100} for all examples.
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Table 16: Zero-shot context length extrapolation on the Needle-in-a-Haystack task, showing FPSA’s
robustness to unseen long contexts.

Context Length Baseline (Standard ViT/BERT) FPSA (100 max_Iters) FPSA (Adaptive = 10~%) FPSA Avg. Iterations

8k (Trained Length) 98.5% 99.1% 99.8% 4.5
16k (Zero-Shot) 42.1% (Collapse) 65.3% 94.2% 12.8
32k (Zero-Shot) 15.4% 31.0% 86.5% 24.1
64k (Zero-Shot) 3.2% 12.8% 71.4% 48.6

Needle-in-a-Haystack Performance (8k Context)
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Figure 7: Needle-in-a-Haystack (8k). Recall@1 for retrieving a target span. FPSA-LH maintains
high recall by adaptively increasing iterations as the number of distractor spans grows, while the
fixed-compute baseline degrades.

Table 17: Long-context evaluation on LRA (Text, ListOps). Mean+sd over 5 seeds.

Method 41 GFLOPs 48 GFLOPs 59 GFLOPs AUAC,rm
LRA-Text (Accuracy %, 4k tokens)

FPSA-LH (Ours) 694+03 71.14+03 72.0+0.3 71.1
Deeper Transformer  67.9 £0.3 69.5 £ 0.3 70.3£0.3 69.5
UT-halt 68.5 + 0.3 70.1 £0.3 71.0£0.3 70.2
LRA-ListOps (Accuracy %, 2k tokens)

FPSA-LH (Ours) 41.3+£05 430+0.5 441+0.5 43.1
Deeper Transformer  39.5 £ 0.5 41.1£0.5 42.0+0.5 41.1
UT-halt 40.1+0.5 41.8+0.5 42.6 +£ 0.5 41.7

* FPSA (Adaptive Halting): Our model with its dynamic, per-example halting mechanism,
where thresholds are tuned to match the average GFLOPs of the static caps.

As shown, the adaptive halting strategy consistently forms the Pareto frontier, achieving higher
accuracy than both the non-adaptive baseline and static iteration caps for a given compute budget.
This confirms that FPSA’s ability to intelligently allocate compute where it is needed provides a
superior accuracy-compute trade-off.
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Accuracy-Compute Trade-off on MNLI
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Figure 8: Accuracy-compute trade-off on MNLI. For any given GFLOPs budget, our adaptive
halting strategy (orange stars) consistently outperforms both a non-adaptive baseline and our own
model with static iteration caps (red circles). This demonstrates the efficiency of dynamically
allocating compute.

H.2 REVISION DYNAMICS AND CALIBRATION

The iterative process of FPSA can be viewed as the model "changing its thought" about a prediction.
We quantify this by measuring the Helpful Revision Rate (HRR)—the fraction of examples where
an initially incorrect prediction is corrected by the final iteration—and the Harmful Revision Rate
(HarmRR). Figure 9 shows that across iterations, helpful revisions far outpace harmful ones, leading
to a strongly positive net helpfulness. The majority of these beneficial revisions occur within the
first 6-8 iterations, aligning with the typical halting points observed in our main experiments and
confirming that the early refinement steps are the most impactful. As detailed in App. §Z, this iterative
process also monotonically improves model calibration, as measured by NLL and ECE.

Revision Dynamics ("Change of Thought")
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Figure 9: Revision dynamics over iterations. The rate of helpful revisions (green triangles) rises
sharply and plateaus, while harmful revisions (red triangles) remain low and stable. The resulting
net helpfulness (blue circles) is strongly positive, indicating that the iterative refinement process is
overwhelmingly beneficial.
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H.3 VISUALIZING PER-TOKEN ADAPTIVITY

The figure demonstrates two key findings. First, in the "easy" example (a), simple function words
(e.g., "The’, "over’, ’.”) converge and halt extremely quickly (¢{ < 10), while key content words
(fox’, ’jumps’, ’dog’) require more refinement. Second, in the "hard" technical example (b), this
heterogeneity is even more pronounced. Grammatical tokens again halt early, but the complex,
information-rich tokens (‘randomized’, unrolling’, ’generalize’) require significantly more iterations,
with some exhibiting non-monotonic, oscillatory behavior before settling. This provides direct visual
evidence that FPSA allocates computational resources precisely where they are needed on a per-token
basis.

(a) Easy Example: Simple Sentence (b) Hard Example: Technical Sentence

The
model

trained
with
randomized

unrolling

Token in Sequence

40 60 40 60
Iteration Step (t) Iteration Step (t)

Figure 10: Token-wise convergence of FPSA latents on easy (a) and hard (b) examples. Rows
are subword tokens (detokenized for readability); columns are iteration steps. Color shows the
log-normalized distance to a stable fixed point Z*. White dots mark per-token halting steps. The
model adaptively allocates more compute to semantically complex tokens, which iterate longer before
converging.

Table 18: Comparison of Image Restoration and Object Detection Performance

PSNR SSIM mAP@50 Inference

Model (dB) (%) (%) Time (ms)
FPAFormer (Qiao et al., 2023) 34.62 0.921 78.5 120
Faster R-CNN - - 82.1 150
SSD-MobileNet V1 - - 72.5 50
SELF-Transformer (Ours) 3514  0.927 86.7 87

I OBJECT DETECTION AND SALIENT OBJECT RECOGNITION

We further evaluated our model on object detection tasks using datasets such as COCO and PASCAL
VOC. Inspired by findings of (Wang et al., 2023), we compared the ability of FPI-based transformers
to detect salient objects against standard ViTs and convolutional neural networks (CNNs).

Our method demonstrated superior performance in detecting visually distinct objects while maintain-
ing robustness against occlusions and varying distances. This improvement can be attributed to the
dynamic adjustment of attention weights during fixed-point iterations.

As shown in Table 18, SELF-Transformer achieves higher mAP@50 scores compared to FPAFormer
(Qiao et al., 2023) while maintaining faster inference times and significantly fewer parameters.
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J IMPLEMENTATION DETAILS FOR DECODER-ONLY MODELS

This appendix provides further details on the integration of Fixed-Point Self-Attention (FPSA) into
7B-parameter decoder-only autoregressive models, as presented in §4.

J.1 ARCHITECTURAL INTEGRATION

The core of our method involves replacing the standard causal self-attention mechanism in each
decoder block with our FPSA module. We preserve the overall model architecture, including the
position-wise feed-forward networks (FFNss), layer normalization, and residual connections.

Preserving Causality. A critical requirement for autoregressive models is maintaining causality,
ensuring that the prediction for a token at position ¢ can only depend on tokens at positions j < 7. We
enforce this property by applying the standard upper-triangular causal mask within every iteration
of the FPSA fixed-point solve. Specifically, the softmax in Equation (2) is computed over a masked
alignment matrix at each step k, ensuring that no information from future tokens can influence the
iterative refinement of the current or past tokens’ latent states.

J.2  FINE-TUNING METHODOLOGY

Given the prohibitive cost of pre-training 7B models from scratch, we employed a parameter-efficient
fine-tuning (PEFT) strategy to integrate FPSA into the pre-trained LLaMA-2 7B and Mistral 7B
checkpoints.

Training Scheme. We froze the original pre-trained weights of the base models, including word
embeddings and FFNs. We then introduced FPSA modules to replace each attention block. The new
parameters within these FPSA modules (e.g., the query, key, and value projection matrices) were
trained using LoRA. This approach significantly reduces the number of trainable parameters, making
the fine-tuning process computationally tractable while allowing the model to learn the dynamics of
the iterative refinement process.

Hyperparameters. The fine-tuning was conducted on a curated subset of reasoning-focused data
from our pre-training corpus. We used the AdamW optimizer with a learning rate of 2 x 10~° and a
cosine decay schedule over 3 epochs. For FPSA, the halting tolerance was set to e = 10~* with a
hard cap of max_iter=100.

J.3 EVALUATION PROTOCOL
All evaluations were performed using established open-source harnesses to ensure reproducibility.

* Benchmarks: We used the standard evaluation splits for GSM8K (8-shot), BIG-Bench Hard
(3-shot), and LogiQA (0-shot). Prompts were formatted according to the official guidelines
for each benchmark.

* Compute Metrics: GFLOPs and latency were measured on a single A100 GPU with a
batch size of 16 and a context length of 512 tokens. The reported latency is the median time
to process a full-context prompt. The "Median Iters" column reports the median number of
iterations taken per token across the entire evaluation set for each task.

The consistent performance gains reported in Table 3, achieved through this parameter-efficient fine-
tuning process, serve as a strong proof-of-concept that FPSA can effectively enhance the reasoning
capabilities of existing, large-scale generative models.

J.4 COMPARISON WITH ADDITIONAL LLM BASELINES

To better situate the performance of our FPSA-enhanced models, we provide an expanded comparison
against a broader set of contemporary, high-performing open-source LLMs in Table 19. This includes
recent models such as Llama-3, Qwenl.5, and Gemma. For reference, we report scores on the three
primary reasoning benchmarks as well as the widely-used MMLU benchmark.
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Table 19: Expanded 7-8B scale model comparison on reasoning benchmarks. All scores are
reported from public leaderboards or official technical reports using few-shot evaluation where
standard. Our SELF-Mistral 7B model is highly competitive, particularly on BBH.

Model | Params  Arch. Type | GSMS8K MMLU BBHAvg. LogiQA
Reference Baselines (Instruction-Tuned)

Gemma-7B-it 7B Decoder 46.4 64.3 51.1 -
Qwenl.5-7B-Chat 7B Decoder 62.2 69.8 56.5 -
Llama-2-13B-Chat 13B Decoder 57.8 66.9 554 -
Phi-3-medium (7B) 7B Decoder 81.1 78.0 68.9 -
Llama-3-8B-Instruct 8B Decoder 79.5 76.9 69.5 -
Our Models (Fine-tuned with FPSA)

LLaMA-2 7B (Base) 7B Decoder 56.8 54.8 52.4 55.7
SELF-LLaMA-2 7B 7B FPSA-Decoder 58.2 57.1 55.7 57.3
Mistral 7B (Base) 7B Decoder 58.4 60.1 55.1 56.9
SELF-Mistral 7B 7B FPSA-Decoder 61.1 62.5 60.5 59.2

The results show that integrating FPSA provides a substantial performance uplift, enabling older base
models like LLaMA-2 7B and Mistral 7B to become highly competitive with more recent and heavily
trained models. This result is significant, as it closes a large portion of the performance gap with
leading 8B-scale models like Llama-3, without any increase in parameter count.

This analysis suggests that the iterative refinement from FPSA is an effective method for enhancing
the reasoning capabilities of existing models, providing a more compute- and parameter-efficient path
to higher performance compared to simply training larger models from scratch.

K LIMITATIONS AND FUTURE WORK

While our proposed SELF-attention mechanism, has demonstrated promising results on several
evaluative tasks, we acknowledge certain limitations that also highlight avenues for future research.

K.1 LIMITATIONS

A primary consideration for the *SELF’ attention layer is the computational overhead that can
arise if the fixed-point iteration requires a high number of steps, approaching its max_iter limit.
Although our FixedPointlteration features an early exit based on its performance benefits must be
carefully weighed against this potential for increased computation, particularly in deeper models
or latency-sensitive applications. While we have demonstrated efficacy on specific tasks, further
extensive investigation is needed to ascertain the generalization capabilities and scaling properties of
SELF-attention across a wider array of complex tasks, deeper architectures, and longer sequences.
Lastly, the current implementation provides adaptive computation implicitly through its early exit,
but does not directly return the iteration count in a manner conducive to incorporating an explicit
ponder cost for regularization.

K.2 FUTURE WORK

A significant and compelling direction for future research is the adaptation and integration of ’SELF’
attention into Large Language Models (LLMs). The prospect of endowing LLMs with adaptive,
iterative refinement capabilities is attractive, but scaling our current approach to such massive models
necessitates addressing several key challenges. Primarily, successfully applying ’SELF’ attention
to LLMs will require the development of robust mechanisms to ensure highly efficient and stable
convergence at an unprecedented scale.

To this end, future work should focus on several interconnected areas. Firstly, research into more
computationally efficient fixed-point solvers, potentially leveraging specialized hardware mappings
or custom numerical operations, will be crucial. Secondly, developing advanced convergence
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control strategies, possibly through architectural constraints that better ensure contractivity of the
iterative step function or through adaptive adjustments to the tolerance ¢, could provide stronger
theoretical underpinnings and more predictable behavior in very deep networks. Thirdly, for effective
computational budget management in LLMs, it may be essential to move towards explicit and
learnable pondering schemes. This could involve modifying the *UserFixedPointlteration’ to report
iteration counts and integrating a learnable ponder cost, perhaps guided by an introspection network
similar to those explored in adaptive computation literature. Fourthly, if ’'SELF’ attention layers are
to replace components in existing pre-trained LLMs, sophisticated initialization strategies will be
paramount to preserve the rich knowledge these models already possess and to facilitate efficient
fine-tuning. Finally, a deeper theoretical understanding of how the iterative fixed-point process,
especially with its selective update mechanism, influences the learning dynamics, representational
capacity, and emergent behaviors of LLMs is needed. Addressing these aspects could unlock the
potential of adaptive iterative self-attention for creating more efficient, powerful, and perhaps more
interpretable large-scale language models, potentially also incorporating insights from reinforcement
learning for dynamic control of the iteration process.
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