
A Natural Experiment on LLM Data Contamination in
Code Generation

Manley Roberts1, Himanshu Thakur2∗, Christine Herlihy3, Colin White1, Samuel Dooley1

1Abacus.AI 2Carnegie Mellon University 3University of Maryland
{manley,colin,samuel}@abacus.ai; hthakur@andrew.cmu.edu; cherlihy@umd.edu

Abstract

Recent claims about the impressive abilities of large language models (LLMs) are
often supported by evaluating publicly available benchmarks. Since LLMs train
on wide swaths of the internet, this practice raises concerns of data contamination,
i.e., evaluating on examples that are intentionally or unintentionally included in
the training data. Data contamination remains notoriously challenging to measure
and mitigate, even with partial attempts like controlled experimentation of training
data, canary strings, or embedding similarities. In this work, we conduct the first
thorough longitudinal analysis of data contamination in LLMs by using the natural
experiment of training cutoffs in GPT models to look at benchmarks released over
time. Specifically, we consider two code/mathematical problem-solving datasets,
Codeforces and Project Euler, and find statistically significant trends among LLM
pass rate vs. GitHub popularity and release date that provide strong evidence
of contamination. By open-sourcing our dataset, raw results, and evaluation
framework, our work paves the way for rigorous analyses of data contamination in
modern models. We conclude with a discussion of best practices and future steps
for publicly releasing benchmark in the age of LLMs which train on webscale data.

1 Introduction

Progress in machine learning has historically been driven by the use of benchmark datasets [55] to
demonstrate and ultimately improve model performance. In recent years, as large language models
(LLMs) have risen to prominence, these benchmarks are used to claim impressive capabilities across
a wide range of tasks [7], such as open-ended text and code generation. However, it has become
increasingly clear that evaluating on these benchmarks jeopardizes our ability to accurately compare
and assess modern models since static, open-source benchmarks are generally published on the
internet, and most modern LLMs incorporate internet text in their training data.

There are two main phenomena to be concerned with. The first is contamination, which refers
to an LLM’s exposure, during training, to examples that are similar or identical to the examples
that the model will later be evaluated on. The second is memorization, which can be understood
as a property of a model that permits extraction of generated outputs that are exact or near-exact
replicas of examples seen during training. Both phenomena can pose security and privacy risks [12].
Additionally, as we discuss below, they can upwardly bias model performance estimates, obfuscating
our ability to compare models and attribute performance gains to true model improvements.

Despite these concerns, contamination and memorization remain deceptively challenging to defini-
tively measure and detect. While some researchers have used string-matching algorithms to compare
test to training datasets [54, 8], many popular LLMs’ full training dataset details are not publicly
available [49, 57]. Additionally, string-matching produces false negatives when slight variations exist

∗Work done while at Abacus.AI.

ICBINB Workshop, 37th Conference on Neural Information Processing Systems (NeurIPS 2023).

in data between train and test [49]. Even concerted efforts to prevent any model from training on a
benchmark can fail. For example, the canary strings present in all BIG-Bench files [3], which are
designed to be checked and excluded by model trainers, were not sufficient to keep BIG-bench out
of GPT-4’s training corpus [49], partly because the success of this strategy relies on the awareness
and compliance of model trainers in the absence of an enforcement mechanism. Recent works
that look for contamination or memorization focus on popular benchmarks. They use controlled
experimentation on models trained with certain subsets of chosen datasets, recognizing the value of
comparing performance on examples that are seen vs. not seen during training [41, 65].

In contrast, we take an experimental economics view and use a naturally occurring experiment—i.e.,
the training cut-off date—to assess contamination and memorization. We exploit the known training
cutoff dates of GPT-4 and GPT-3.5-Turbo [49, 50] and assumed cutoff date of Code Bison [18] to
naturally partition benchmark examples into subsets that have either probably been seen (pre-cutoff)
or have probably2 not been seen (post-cutoff). We focus our analysis on longitudinal benchmarks
consisting of problems released over a period of time which bridges the cutoff.

In particular, we analyze Codeforces and Project Euler, two longitudinal code generation/problem
solving websites. These websites have steadily released problems since 2010 and 2001, respectively.
Informal analyses have shown that there are large drops in success rates of GPT-4 when evaluated on
older versus more recent problems from Codeforces [21, 17].

We build upon these insights by conducting the first rigorous, large-scale, longitudinal analysis of
contamination and memorization in code generation and problem-solving benchmarks. To the best of
our knowledge, we are the first to exploit the longitudinal nature of the benchmarks we analyze, along
with the known training cutoff dates of the open and closed sourced models, to naturally identify
examples that the LLMs are likely/unlikely to have been exposed to during training, and use this
partition to compare LLM performance during the pre- and post-cutoff periods.

Our contributions In this work, we explore contamination and memorization through the lens of
time. Our core contributions include:

(i) The first large-scale, longitudinal analysis of contamination and memorization using a naturally
occurring experiment — a novel methodology in LLM contamination which is important in light
of closed-source models;

(ii) Empirical findings demonstrating that GPT-4 was likely exposed to Codeforces and Project Euler,
and GPT-3.5-Turbo and Code Bison were likely exposed to Codeforces, due to a statistically
significant positive association we observe between a problem’s presence on GitHub and each
LLM’s test case pass rate only for problems released before the GPT training cutoff;

(iii) Code required to construct our longitudinal datasets and perform analyses, which we open-source.3

2 Related Work

Evaluation of Code Generation Models Code generation models are generative models that try to
produce valid code given an input of some representation of the programmatic behavior, mathematical
function, and/or computational task that the user would like to obtain. Modern code generation
models include general models such as GPT family [49, 8], Llama 2 [57] or PaLM [16], as well as
a variety of task-specific code models: AlphaCode [37], CodeGen [47], CodeLLama [57], PaLM-
Coder [16], Starcoder [36]. Relevant code generation benchmarks include small sets of entirely
handwritten problems [15, 47] as well as larger collections curated from internet sources such as code
interview sites, competitive programming forums, or general open source code: [22, 2, 62, 24, 1], and
some that include both original and online-sourced problems [61, 37]. Code interview, practice, or
competition sites, offering problem descriptions and programmatic evaluation, are common choices
to assess modern LLM capabilities [46, 66, 21, 17]—and indeed some public benchmarks feature
these problems [22, 37].

2GPT-4 acknowledges training with some small amount of data beyond its cutoff [49], so post-cutoff examples
may still appear. GPT-3.5-Turbo, subject to similar reinforcement learning with human feedback (RLHF) as
GPT-4 [49], may have seen data beyond its cutoff as well.

3Our treatment of datasets and our evaluation framework are available at https://github.com/abacusai/
to-the-cutoff. We will release code and dataset contents to the extent possible while respecting the licensing
requirements of the dataset owners.

2

https://github.com/abacusai/to-the-cutoff
https://github.com/abacusai/to-the-cutoff

To assess the validity of solutions, many of these benchmarks include test cases. They use a ‘functional
correctness’ metric based on passing these cases as the primary way to measure code generation
performance; evaluating with complexity/understandability metrics [46] is less common. [32, 15]
employ the pass@k metric, describing the likelihood at least one among k sampled generations will
pass all test cases. The benefit of these metrics is the complete independence from either expensive
human feedback or inherently constraining similarity-to-ground-truth NLP metrics [52, 38] which
are often ineffective for code [59]. These metrics are in contrast to other popular LLM performance
metrics like perplexity [31, 28] or information retrieval based LLM metrics of accuracy [33, 51].

Memorization and Contamination in LLMs Many recent works have highlighted the security,
privacy, and generalizability risks of memorization and contamination during LLM training and
fine-tuning, while simultaneously proposing methods for detection and risk mitigation. [44, 5, 10, 41]
investigate the training dynamics of memorization/contamination, seeking scaling laws, early in-
dications, and understanding of when and how memorization occurs in training. [12] famously
extract hundreds of verbatim train examples from GPT-2. [26] propose inference-time tricks to
prevent regurgitation of examples, and [27, 30] give best practices to avoid benchmark contami-
nation. [12, 10, 34, 29, 41, 11] investigate the relationship between duplicated training data and
memorization/contamination (in particular, [11] uses artificially introduced “canary" artifacts to
track memorization). [48] proposes a distance-based metrics to assess memorization. Several works
[41, 65] evaluate the impact of memorization/contamination by estimating the difference in test-time
performance on examples seen vs. not seen during training; we will use a variation of this strategy.

3 Dataset Construction

Many open-source benchmarks [15] designed to evaluate code generation are released at a certain
point in time, evaluated on a number of models along with release, and then deployed repeatedly as
time goes on in order to evaluate new models’ performance on the benchmark. For a model with a
strict temporal training dataset cutoff, these benchmarks exist either firmly within or outside of the
training data, meaning that to evaluate the effect of the cutoff, we must compare between multiple
datasets (which, clearly, might have many differences beyond their release dates).

For this analysis, we concern ourselves with datasets with hand-written original problems that are
released at intervals over a long stretch of time. In particular, we require that a substantial number of
problems are produced before and after the GPT-4/GPT-3.5-Turbo cutoffs in September 2021, that
the bulk of problems are of a format and size sufficient for prompting to modern LLMs, and that there
exists an automated objective measure of correctness for evaluation. We focus on problems from
the competitive programming website Codeforces (problems from 2010 - 2023) [45] and from the
mathematical programming puzzle website Project Euler (problems from 2001-2023) [25], building
off analyses from [17, 21]. Additional information on the dataset construction for Codeforces and
Project Euler can be found in Appendix Section A.

4 Methodological Approach

The primary research questions we endeavor to explore through longitudinal analysis of pre- versus
post-cutoff LLM performance include: (1) Does there exist a statistically significant relationship
between a programming problem’s frequency of presence in open-source GitHub repositories and an
LLM’s ability to generate a functionally correct solution to that problem, and/or reproduce portions
of its metadata, such as the problem title or tags? (2) How or to what extent is this relationship
mediated by a problem’s reported difficulty? (3) Most critically—how or to what extent do (1) and
(2) change depending on whether a problem was released before versus after the LLM’s training date
cutoff? The specific models used are gpt-4-0314, gpt-3.5-turbo-0301, text-davinci-002,
code-bison@001, and codellama/CodeLlama-34b-Instruct-hf.

Independent Variables To begin, we define the following set of independent variables (IVs):

GitHub Presence is a proxy metric intended to capture the frequency with which a problem is publicly
available on GitHub (similar to public Google and Bing API search used by [13] as a proxy for online
presence of books). For simplicity, it searches only for mention of the problem’s name and ID. More
details on the computation of this metric can be found in Appendix Section B.

3

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15
10%

20%

30%

40%

50%

60%

log(Github Presence)

P
as

s
R

at
e

log(Difficulty) 7.04 7.44 7.85

Pass Rate Marginal Effects Plots for GPT−4 on Codeforces

Figure 1: Marginal Effects of Pass Rate Metric for GPT-4 on the Codeforces Dataset. Observe a
positive association between GitHub Presence before the cutoff but not after. Also, there is a
negative association between Difficulty and pass rate both before and after the cutoff.

Difficulty intuitively captures how challenging a problem is for humans to solve. Both Codeforces
and Project Euler report difficulty scores as part of problem metadata.

Problem released post-cutoff is a Boolean variable to indicate whether a given problem was released
(i.e., published by the dataset owners) before (0) or after (1) the training date cutoff for a given LLM.

Dependent Variables To evaluate LLM performance, we consider the following set of dependent
variables (DVs): Problem-level pass rate (pass rate), Title reproduction, and Tag reproduction. Pass
rate is the number of problems that the LLM gets correct. Title and Tag reproduction measure the
ability of the LLM to retrieve problem metadata given a title or ID. More information about these
metrics can be found in the Appendix Section B.

To answer the aforementioned research questions for each dataset and dependent variable, we conduct
regression analyses with problem-level performance as our unit of analysis, of the form:

DV ∼ (Difficulty + GitHub Presence) · postCutoff

Because the problem-level pass rate prediction task involves count data, we specifically formalize it
as a binomial regression, such that for a given problem, p with a corresponding number of {public +
private} test cases, np, we seek to predict the number of successes—i.e., the number of test cases, out
of np trials that the LLM’s generated code and/or numeric solution will pass. In title reproduction,
the outcome of interest is binary—i.e., the LLM either does or does not successfully reproduce the
problem’s title; as such, we model this task using logistic regression. For tag reproduction, while
a problem’s tags can be set-valued, we tokenize the string of tags and evaluate the recall of each
token independently; as such, this task is also modeled using logistic regression. A more detailed
description of our modeling choices, along with interpretation guidance for the regression tables and
marginal effects plots, can be found in Appendix D.3.

5 Results

We now report results from our experiments to investigate contamination in benchmarks over time.
We break this section into each independent and dependent variable, and analyze the results from
each model within each subsection. Generally, we see that the performance of each model changes
after the training cutoff. These changes particularly highlight that there is a positive association
between the presence of questions on GitHub and the performance of the model; however, after the
training cutoff, this association disappears.

4

5.1 Pass Rate

GitHub Presence On Codeforces, we report regression coefficients for all models in Figure 2, and
pass rate marginal effect plots in Figures 1 (GPT-4), 12 (GPT-3.5-Turbo), and 14 (Code Bison). On
the Project Euler benchmark, we report regression coefficients in Figure 3 and marginal effect plots
in Appendix Figures 28 and 30. Note that Project Euler is a much smaller benchmark with just 73
problems included after the GPT training cutoff date in September 2021, none of the LLMs we tested
got any of the questions correct after their cutoff, and Code Bison performed so poorly on Project
Euler (only 3 correct answers) that we omit it from analysis as no useful conclusions could be drawn.

We make several observations. First, we see that in many scenarios (all models on Codeforces &
GPT-4 on Project Euler) the effect of the GitHub Presence variable is significant before the training
cut-off. For GPT-4, we observe that for each increase in one unit of the log of GitHub Presence, we
see the odds ratio increase by 4.5% on Codeforces and 47.8% on Project Euler; for GPT-3.5-Turbo,
that value is moderated slightly to 2.5% on Codeforces and 27.7% on Project Euler; for Code Bison
we see the odds ratio increase by 3.1 on Codeforces%. However, for both datasets and all models, we
see no statistically significant association between GitHub Presence and model performance for those
problems which appeared online after the models’ training cutoffs (Sept. 2021 for GPT family, Feb.
2023 for Code Bison). Additionally, because the cutoff dates are a year and a half apart between the
GPT models and Code Bison, we believe that the emergent behavior of the change in the GitHub
presence metric is an artifact of contamination as opposed to a change in the questions themselves.

When the training cutoff marks a change in the relationship between GitHub Presence and pass
rate, we believe contamination likely occurred on pre-cutoff examples. This provides evidence of
significant contamination and/or memorization of pre-cutoff problems from Codeforces by GPT-3.5-
Turbo, GPT-4, and Code Bison (and memorization of Project Euler by GPT-4). For the most part,
the odds ratios are similar in terms of the direction and magnitude of their effects on the pass rate
odds for each LLM. Two points of distinction include: (1) GPT-4 performs better across the board,
as evidenced by higher odds of functional correctness for all difficulty levels in both the pre- and
post-cutoff periods as compared to GPT-3.5-Turbo. (2) For Codeforces, the odds ratio for GitHub
presence is equal to 1 and is not statistically significant during the post-cutoff period for GPT-4, but
is > 1 (i.e., associated with increased odds of Y) and statistically significant for α = 0.1 during the
same period for GPT-3.5-Turbo (see Table 1 and 2). While training details for GPT-family models
are generally secret, we propose as a possible explanation that GPT-3.5-Turbo may have had higher
train/finetune exposure to problems released after the cutoff date than GPT-44.

Difficulty When we examine results for GPT-4, GPT-3.5-Turbo, and Code Bison on Codeforces (see
Tables 1, 2, 3), we see that there exists a statistically significant, negative association between
Difficulty and pass rate for each LLM—in both the pre- and post-cutoff periods. However, while
each model’s post-cutoff Difficulty coefficient is < 1, indicating a decrease in the odds of pass rate,
for the GPT models these coefficients are statistically significantly larger than their corresponding
pre-cutoff values, suggesting a moderation in the still-negative relationship between Difficulty
and pass rate. The consistent negative relationship between Difficulty and pass rate before and after
the cutoff may show that LLM pass rate is not solely determined by likelihood of contamination, but
also by other factors intrinsic to the problem.

Other possible contributing factors include: (1) variation in the number of test cases by difficulty
level, and/or over time; (2) more limited, but non-zero amounts of contamination or memorization of
the post-cutoff problems; and (3) the presence of unobserved confounder(s) influencing change in
both problem difficulty and LLM pass rate over time. We test (1) by fitting a regression model to
examine whether Difficulty is able to predict the number of observed test cases after the cutoff,
but do not find Difficulty to have predictive power. Although hypothesis (2) is possible due to the
known GPT usage of a small amount of post-cutoff data[49], any effect on our results is likely slight.
We view the investigation of possible confounders as a promising direction for future work.

4As mentioned in Section 1, GPT-4 is known to have some post-cutoff events included in its training; since
GPT-3.5-Turbo uses a similar RLHF procedure [49], it’s possible it has been exposed as well—to a publicly
unknown extent.

5

Figure 2: Regression coefficients for Pass Rate of GPT4, GPT-3.5-Turbo, and Code Bison on the
Codeforces dataset. Observe that the odds ratios for both Difficulty and GitHub Presence are
statistically significantly moderated between the before and after cutoffs for both models. See Table 1
and 2 for regression coefficients.

Figure 3: Regression coefficients plots of Pass Rate for GPT-4 and GPT-3.5-Turbo on the Project
Euler Dataset. See Table 10 and 11 for regression coefficients. No problems pass after the cutoff.

6 Discussion

Utility of longitudinal analysis: We provide a novel methodology for examining data contamination
in LLMs, borrowed from experimental economics where we observe phenomena by exploiting
naturally occurring changes. Thus, we present a novel way to approximately validate claims made
about training date cutoffs for black box LLMs, and/or exposure (or lack thereof) to a given dataset
during training or fine-tuning, provided that the dataset in question contains instances on each side
of the model’s reported cutoff. This can be valuable in cases where specific training details are not
public, and/or when contamination is suspected as a cause of performance degradation. It is important
to acknowledge that limitations also exist—for example, we cannot rule out the presence of latent
confounder(s) influencing both exposure (i.e., to a given subset of problems) and LLM performance
on those problems.

Implications for LLM evaluation: Our findings in Section 5 illustrate the extent to which even
high-quality, manually constructed benchmarks can be expected to enjoy ever-shorter shelf lives in
the era of LLMs, as newer models with updated training cutoff dates will iteratively render existing
benchmarks stale. We urge the community to move away from static benchmarks released in a single
time step and toward continuous integration-style staggered release and evaluation cycles.

6

References
[1] Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer. Juice: A large scale distantly supervised

dataset for open domain context-based code generation. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5436–5446, 2019.

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program Synthesis
with Large Language Models, 2021.

[3] BIG bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities
of language models, 2023.

[4] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On
the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, page 610–623,
New York, NY, USA, 2021. Association for Computing Machinery.

[5] Stella Biderman, USVSN Sai Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin An-
thony, Shivanshu Purohit, and Edward Raff. Emergent and predictable memorization in large
language models, 2023.

[6] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference, 2015.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[9] Ethan Caballero, . OpenAI, and Ilya Sutskever. Description2Code Dataset, 8 2016.

[10] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and
Chiyuan Zhang. Quantifying memorization across neural language models, 2023.

[11] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security
Symposium (USENIX Security 19), pages 267–284, 2019.

[12] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-
ine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and Colin
Raffel. Extracting training data from large language models, 2021.

[13] Kent K. Chang, Mackenzie Cramer, Sandeep Soni, and David Bamman. Speak, memory: An
archaeology of books known to chatgpt/gpt-4, 2023.

[14] Matt Chaput. Whoosh. https://whoosh.readthedocs.io/en/latest/, 2012. [Online;
accessed 4-October-2023].

[15] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias

7

https://whoosh.readthedocs.io/en/latest/

Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating Large Language Models Trained on Code, 2021.

[16] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[17] Chris Cundy. Gpt-4 memorizes project euler numerical solutions. https://cundy.me/post/
gpt_4_memorizes_project_euler_numerical_solutions/, 2023. [Online; accessed 26-
September-2023].

[18] Google. feedbackavailable models in generative ai studio. https://cloud.google.com/
vertex-ai/docs/generative-ai/learn/models, 2023. [Online; accessed 28-September-
2023].

[19] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
Noah A. Smith. Annotation artifacts in natural language inference data. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 107–112, New
Orleans, Louisiana, June 2018. Association for Computational Linguistics.

[20] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array
programming with numpy. Nature, 585(7825):357–362, 2020.

[21] Horace He. Tweet: I suspect gpt-4’s performance is influenced by data contamination, at least
on codeforces. of the easiest problems on codeforces, it solved 10/10 pre-2021 problems and
0/10 recent problems. this strongly points to contamination. 1/4, March 2023.

[22] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge
competence with apps. arXiv preprint arXiv:2105.09938, 2021.

[23] Christine Herlihy and Rachel Rudinger. MedNLI is not immune: Natural language inference
artifacts in the clinical domain. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 1020–1027, Online, August 2021. Association for
Computational Linguistics.

[24] Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong Yan, Haotian Cui, Jeevana Priya Inala,
Colin Clement, Nan Duan, and Jianfeng Gao. Execution-based evaluation for data science code
generation models. arXiv preprint arXiv:2211.09374, 2022.

[25] Colin Hughes. Project euler. https://projecteuler.net, 2023. [Online; accessed 26-
September-2023].

[26] Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan Zhang, Matthew Jagielski, Katherine
Lee, Christopher A. Choquette-Choo, and Nicholas Carlini. Preventing verbatim memorization
in language models gives a false sense of privacy, 2023.

[27] Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav Goldberg. Stop uploading test data
in plain text: Practical strategies for mitigating data contamination by evaluation benchmarks.
arXiv preprint arXiv:2305.10160, 2023.

[28] Neel Jain, Khalid Saifullah, Yuxin Wen, John Kirchenbauer, Manli Shu, Aniruddha Saha, Micah
Goldblum, Jonas Geiping, and Tom Goldstein. Bring your own data! self-supervised evaluation
for large language models. arXiv preprint arXiv:2306.13651, 2023.

[29] Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy
risks in language models. ArXiv, abs/2202.06539, 2022.

8

https://cundy.me/post/gpt_4_memorizes_project_euler_numerical_solutions/
https://cundy.me/post/gpt_4_memorizes_project_euler_numerical_solutions/
https://cloud.google.com/vertex-ai/docs/generative-ai/learn/models
https://cloud.google.com/vertex-ai/docs/generative-ai/learn/models
https://projecteuler.net

[30] Anjan Karmakar, Julian Aron Prenner, Marco D’Ambros, and Romain Robbes. Codex hacks
hackerrank: Memorization issues and a framework for code synthesis evaluation, 2022.

[31] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein.
A watermark for large language models. arXiv preprint arXiv:2301.10226, 2023.

[32] Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and
Percy S Liang. Spoc: Search-based pseudocode to code. Proceedings of the Annual Conference
on Neural Information Processing Systems (NeurIPS), 32, 2019.

[33] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

[34] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris
Callison-Burch, and Nicholas Carlini. Deduplicating training data makes language mod-
els better. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8424–8445, Dublin, Ireland, May 2022. Association
for Computational Linguistics.

[35] Kiho Lee. Chatgpt_dan. https://github.com/0xk1h0/ChatGPT_DAN, 2023. [Online;
accessed 4-October-2023].

[36] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be
with you! arXiv preprint arXiv:2305.06161, 2023.

[37] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. arXiv preprint arXiv:2203.07814, 2022.

[38] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pages 74–81, 2004.

[39] Edward Loper and Steven Bird. Nltk: The natural language toolkit. arXiv preprint cs/0205028,
2002.

[40] luckytoilet. Projecteuler-solutions. https://github.com/luckytoilet/
projecteuler-solutions, 2023.

[41] Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. In Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 157–165, Dublin, Ireland, May 2022. Association for Computational
Linguistics.

[42] Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3428–3448, Florence, Italy, July 2019. Association
for Computational Linguistics.

[43] Wes McKinney et al. pandas: a foundational python library for data analysis and statistics.
Python for high performance and scientific computing, 14(9):1–9, 2011.

[44] Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David Evans, and Taylor Berg-
Kirkpatrick. An empirical analysis of memorization in fine-tuned autoregressive language
models. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 1816–1826, Abu Dhabi, United Arab Emirates, December 2022. Association
for Computational Linguistics.

9

https://github.com/0xk1h0/ChatGPT_DAN
https://github.com/luckytoilet/projecteuler-solutions
https://github.com/luckytoilet/projecteuler-solutions

[45] Mike Mirzayanov. Codeforces. https://codeforces.com/, 2023. [Online; accessed 26-
September-2023].

[46] Nhan Nguyen and Sarah Nadi. An empirical evaluation of github copilot’s code suggestions. In
Proceedings of the 19th International Conference on Mining Software Repositories, MSR ’22,
page 1–5, New York, NY, USA, 2022. Association for Computing Machinery.

[47] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In Proceedings of the International Conference on Learning Representations (ICLR),
2022.

[48] Harsha Nori, Nicholas King, Scott Mayer McKinney, Dean Carignan, and Eric Horvitz. Capa-
bilities of gpt-4 on medical challenge problems, 2023.

[49] OpenAI. Gpt-4 technical report. Technical Report, 2023.

[50] OpenAI. Openai platform documentation: Models. https://platform.openai.com/docs/
models, 2023. [Online; accessed 28-September-2023].

[51] Arka Pal, Deep Karkhanis, Manley Roberts, Samuel Dooley, Arvind Sundararajan, and Sid-
dartha Naidu. Giraffe: Adventures in expanding context lengths in llms. arXiv preprint
arXiv:2308.10882, 2023.

[52] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pages 311–318, 2002.

[53] Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme.
Hypothesis only baselines in natural language inference. In Proceedings of the Seventh Joint
Conference on Lexical and Computational Semantics, pages 180–191, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics.

[54] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[55] Inioluwa Deborah Raji, Emily Denton, Emily M Bender, Alex Hanna, and Amandalynne
Paullada. Ai and the everything in the whole wide world benchmark. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[56] Alexey Romanov and Chaitanya Shivade. Lessons from natural language inference in the clinical
domain. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 1586–1596, Brussels, Belgium, October-November 2018. Association for
Computational Linguistics.

[57] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950, 2023.

[58] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(05):8732–8740, Apr. 2020.

[59] Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien Nguyen. Does bleu score work for
code migration? In 2019 IEEE/ACM 27th International Conference on Program Comprehension
(ICPC), pages 165–176. IEEE, 2019.

[60] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus
for sentence understanding through inference, 2018.

[61] Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua
Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, et al. Natural language to code
generation in interactive data science notebooks. arXiv preprint arXiv:2212.09248, 2022.

10

https://codeforces.com/
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models

[62] Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu
Chen, and Jian-Guang Lou. Cert: Continual pre-training on sketches for library-oriented code
generation. arXiv preprint arXiv:2206.06888, 2022.

[63] Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Swag: A large-scale adversarial
dataset for grounded commonsense inference, 2018.

[64] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 4791–4800, Florence, Italy, July 2019. Association
for Computational Linguistics.

[65] Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr, and
Nicholas Carlini. Counterfactual memorization in neural language models. arXiv preprint
arXiv:2112.12938, 2021.

[66] Zizhuo Zhang, Lian Wen, Shaoyang Zhang, David Chen, and Yanfei Jiang. Evaluating gpt’s
programming capability through codewars’ katas, 2023.

11

A Additional Details on Dataset Construction

Codeforces Codeforces is a website that hosts competitive programming competitions. Problems
are released in small batches corresponding to a particular round, and competitors submit solutions
against test cases, competing to produce the highest overall score by giving fast solutions. After a
competition ends, each competitor’s solutions are available online on the Codeforces platform, as
well as the test cases that were evaluated on each problem (which take the form of an input file and
expected output).

For each problem, we collect metadata, problem text (processed to clear some HTML artifacts), and
input/expected output text for public and private test cases. We forgo the compute-intensive procedure
of generating additional test cases for problems which was used by [37] and omit test cases in which
either the given input or output on the Codeforces platform end with “...”, as this often indicates that
the text is too long and has been abridged.

[9, 22, 37] assembled, in their respective datasets, a portion of Codeforces problems and test cases
through 2018 and 2021, respectively. However, only [37] contained any problems after the GPT-
4/3.5-Turbo cutoff, and it had so few problems after the cutoff that we needed to collect Codeforces
problems ourselves in order to have enough post-cutoff problems. In fact, we do not use their version
of the problems at all, instead collecting a full set of problems from 2010-2023 ourselves, in order to
ensure that the data quality is consistent for all problems. We do replicate many design decisions from
[37], including separating the “public” test cases (those simpler test cases available in the problem
description, fed to the model, and given during the competition to all competitors) from the “private”
test cases (those test cases reserved in secret at the release of a competition but made public after
some time).

We collected every problem on the Codeforces site through Codeforces Contest 1840, also known as
round 843 (which took place June 6, 2023), and removed problems for a variety of reasons including:
no test cases are found; testing is interactive and requires communicating with the Codeforces server;
a problem has no English-language version; a problem is given as a PDF and not HTML text; or a
problem is a special contest such as a private contest, a Q# quantum programming competition, or an
April Fools’ competition.

Project Euler Project Euler is a website that hosts difficult math problems with a string answer
that is usually a single number (integral or real). The recommended way to solve these problems is to
write code that will generate the answer. The answer itself can be submitted on the site and compared
directly to the private solution (there are no official public solutions). There are no test cases except a
comparison with the true answer.

We collect Project Euler problems through a combination of their metadata API and direct scraping of
problem pages. We collect problems through 845 (released May 2023) and use open-source solutions
from [40]. These solutions were collected in September 2023, but there are a few recent problems
through 845 without a solution from this source; these we omit.

B Additional Related Work

Adversarial Filtering and Adaptive Benchmarks in NLP Test-time exploitation of knowledge
gained via contamination or memorization can be seen as special cases of a more general phenomenon
in which language models appear to exhibit sophisticated reasoning capabilities but are in fact
exploiting shallower heuristics, with potentially negative consequences for generalizability [4]. Prior
work has demonstrated that domain-agnostic and domain-specific crowd worker-constructed natural
language inference (NLI) datasets—i.e., SNLI [6], MultiNLI [60], MedNLI [56]—contain spurious
correlations between lexical and syntactic features of the inputs and the corresponding class labels,
such that hypothesis-only baselines (i.e., without premise) are able to outperform majority-class
baselines [53, 19, 42, 23]. Researchers have proposed a variety of detection and mitigation strategies,
including (1) adversarial filtering, in which an ensemble of classifiers are used to iteratively partition
a dataset into easy and hard subsets [63]; (2) introduction of stochasticity to the annotator prompting
process via randomly selected anchor words [58]; and (3) calls for the development of adversarially
adaptive rather than static benchmarks [64].

12

C Additional Methodology

GitHub Presence To compute GitHub Presence, we begin by collecting all public repositories that
contain mentions of the benchmark dataset of interest (i.e., Codeforces or Project Euler) as of our
collection date5. Then, for each problem of interest in a given dataset, we filter the dataset repositories
and retain the subset containing substring(s) that correspond to the problem’s title. We are then able
to approximately compute the number of times a problem p occurs as:

∑|dataset repos|
i=1 c(p, i) ∀p ∈

{dataset problems}, where c(p, i) is the number of matches within repo i’s concatenated text to any
one of a number of format variations of p’s ID or title. Counting multiple occurrences within the
same repo offers benefits such as a more granular analysis in the event of mega-repos that might
store multiple solutions to the same problem, and it is therefore in our eyes a closer proxy to the true
frequency of the problem in the training data.

Dependent Variables We consider the following set of dependent variables (DVs):

Problem-level pass rate (pass rate) We assume that in the general case, a given problem p can be
mapped to some number, np ≥ 1 of test cases (either public or private). For code generation tasks,
the question-level pass rate can then be computed as the fraction of test cases for which the code
generated by the LLM produces a functionally correct solution—i.e., 1

np

∑np

i=1 1(λ(LLM(p)) = yi),
where λ represents calling the LLM’s generated code and yi represents the ground-truth output for
problem p’s ith test case. The special case where we ask the LLM to generate (only) the solution
rather than code can be represented by omitting the λ call in the above expression. We use code
generation on Codeforces and solution-only generation on Project Euler.

Title reproduction In each of the datasets we consider, each problem has a title. To compute title
reproduction for a given problem p, we provide as input the dataset name and problem ID, ask the
LLM to generate the problem’s title given this input, and evaluate the similarity between the generated
string, ˆtitlep, and p’s ground-truth title by mapping the title into a bag of tokens and modeling the
retrieval of each token as a separate observation in logistic regression. We include this DV as a probe
for possible memorization.

Tag reproduction Among the datasets we consider, only Codeforces problems contain descriptive
tags. Each tag is an n-gram that describes the intended approach or content of a problem, as well
as metadata like the difficulty. For example, Problem 500A has tags “dfs and similar”, “graphs”,
“implementation”, and “*1000”. For a given problem, p, we provide the problem’s title and ID as
input to the LLM, and ask it to produce a set of candidate tags. We evaluate token-level recall with
respect to the tokenized version of the problem’s ground-truth tag(s). Much like title reproduction,
this DV is included as a memorization probe.

Pass@k We note that Pass@k [15] is an alternative outcome metric that is commonly reported within
the LLM evaluation literature, which explores the number of sampled generations that pass every
unit test of a problem. We can map our analyses onto Pass@1 since we generate one sample from
each LLM. However, we also look at the problem pass rate (defined above) since the number of unit
tests for Codeforces can be very large (sometimes over 500) and Pass Rate provides a more granular
view of model performance than Pass@1. In this paper, Pass@1 is defined as the number of problems
that pass all unit tests.

D Additional Empirical Results

We provide examples of the generations of the LLMs in Appendix D.10 for a qualitative inspection of
the results. We note that, while we did test the code generation performance of the open source models
text-davinci-002 and codellama/CodeLlama-34b-Instruct-hf, these models’ functional correctness
performance was too low to yield meaningful analysis. Thus, we omit these models from all analyses
in the main paper, but refer the reader to Appendix D.8.

5The collection dates for this submission are July 2023 (Codeforces) and September 2023 (Project Euler)

13

D.1 Title and Tag Reproduction

For title reproduction, we show regression tables in Appendix Tables 12-15 and Appendix Figures 32-
38. We conclude that across all models, there is no impact of GitHub Presence on the ability of the
LLMs to reproduce the title, both before and after the training cutoffs.

For tag reproduction, we find that there is a negative association between GitHub Presence and the
ability of the LLMs to reproduce the tag labels on Codeforces (there are no tags associated with
Project Euler). In Figure 42, Appendix Figure 40 and Appendix Tables 16 and 17, we can see that
across the board, there is a negative association between Difficulty and tag reproduction performance
before the cutoff but there is no association after the cutoff. As the regression results demonstrate, the
negative association moderates after the cutoff, dropping from a decrease of 56.9% to 17.4% in odds
ratios from before to after the cutoff for GPT-4 and from 50.3% to 26.1% for GPT-3.5-Turbo.

The way in which Codefoces problems are available online is one hypothesis as to why tags repro-
duction is inversely related to GitHub presence, whereas title reproduction is not. Tags are metadata
for Codeforces problems which are not present in the main problem description. As such, the tags
may be less likely to be copied and pasted throughout the internet. Thus, it is possible that those tags
themselves undergo some interesting distribution shift which could explain their inverse relationship
with presence on GitHub.

D.2 Analysis Ablations

Public vs Private Test Cases As discussed in Section 3, the Codeforces problems contain both
public and private test cases. Public cases are readily available on the problem’s page whereas the
private cases can only be found by opening an accepted submission on the Codeforces platform.
Above, we analyzed the pass rate of each problem on all collected test cases. Now, we break these out
by public and private test cases to investigate any different trends between the two sets. We consider
only the private test cases in Figures 22-24 and Tables 7-8, whereas only the public test cases in
Figures 16-18 and Tables 4-5.

We see first that the two main trends we observed above hold, indicating the robustness of the
conclusions: contamination is likely since GitHub Presence is positively correlated with pass rate
only before the cutoff, and Difficulty has a negative association with pass rate. However, we also
observe, unexpectedly, that the pass rate after the cutoff is higher for the private test cases than for the
public test cases. This observation contrasts the typical perspective on Codeforces which considers
the public test cases to be simpler toy cases used as examples while coding whereas the private cases
are more thorough checks for correct behavior. To explain the discrepancy, we hypothesize that this
behavior may be related to the private test cases after the cutoff being, on average, easier to answer
than public test cases after the cutoff. There is no per-case difficulty score available on Codeforces,
but we can consider a simple heuristic: shorter inputs are simpler to answer, and longer inputs are
harder. Why might this effect be most noticeable after the cutoff? To answer, we observe that while
the median test case input string lengths for our public and private pre-cutoff test cases are similar,
at 18 and 21 characters, respectively, the median input lengths after the cutoff diverge for public
and private test cases: 38 for public and 27 for private. Further investigation into the causes and
consequences of this shift is a promising direction for future work.

Covariate Shift We detail how we assess whether the performance degradation that we observe
for problems released after the training cutoff might be caused by covariate shifts in the questions
present in Codeforces and Project Euler. More precisely, we examine the distribution over tags
and/or difficulty level, and we look for statistically significant changes in their prevalence during the
post-cutoff period, relative to the pre-cutoff period. We visually inspect the distribution over tags (for
Codeforces) and over discretized difficulty scores (for both datasets) for problems released during the
pre- vs. post- periods, and do not find evidence of qualitative differences. We then conduct χ2 tests
using the pre-cutoff normalized counts as the reference distribution. We do not find any statistically
significant difference in any of the pre- versus post-distributions that we analyze. Plots and detailed
statistical results are available in Appendix D.9.

14

D.3 Regression Descriptions

As opposed to other forms of regression, logistic regression uses odds rather than probabilities, and
the main quantity explored is an odds ratio. For an event with probability p, the odds of that event is
defined as p/(1− p). Odds ratios explain the relationship between independent variables (predictors
or features) and the probability of the binary outcome. In logistic regression, we use odds ratios to
quantify the effect of a one-unit change in an independent variable on the odds of the binary outcome.
The odds ratio is defined as the ratio of the odds of a problem passing to the odds that the problem
doesn’t pass.

More formally, let Y be the binary outcome variable indicating failure/success of a question by
an LLM where Y ∈ {0, 1} and we assume P (Y = 1) = p. Let X1, . . . , Xn be a set of predictor
variables. Then the logistic regression of Y on X1, . . . , Xn estimates parameters β0, . . . , βn through
maximum likelihood via the equation:

logit(p) = ln(
p

1− p
) = β0 + β1X1 + · · ·+ βnXn.

When we fit the regression, we obtain estimates for the βis. These fitted β̂i can be interpreted as
coefficients to the regression equation and provide intuition for how the independent variables Xi

influence the independent variable. Specifically, a fitted value of β̂i tells us that, keeping all other
variables constant, a one unit change in the variable Xi yields a change of β̂i in the log odds ratio of
the independent variable. It is also common to exponentiate the fitted coefficients, in which case a
unit change in Xi while holding the other dependent variables constant yields a eβ̂i change in the
odds ratio of the independent variable.

These eβ̂i are odds ratios that take values between 0 and ∞. They provide insight into how a change
in the predictor variable Xi affects the odds of the event occurring. If eβ̂i = 1, it suggests that the
predictor variable has no effect on the odds of Y . If eβ̂i > 1, it suggests that an increase in Xi

is associated with increased odds of the event happening, specifically by providing a (1 − eβ̂i)%
increase in the odds of Y . If eβ̂i > 1, it suggests that an increase in Xi is associated with decreased
odds of the event happening, specifically by providing a (1− eβ̂i)% decrease in the odds of Y .

In our analyses, we are primarily interested in the independent variables GitHub Presence,
Difficulty, and an indicator variable indicating whether a problem was released before or af-
ter the training cutoff. Below, we report regression tables with estimated odds ratio coefficients as
well as marginal effects plots which visually depict the fitted regressions.

D.4 Pass Rate

In this section, we present the marginal effects on Pass Rate of GPT-4 and GPT-3.5-Turbo across the
Codeforces and Project Euler benchmarks.

D.4.1 All Codeforces Data

First, we present the marginal effects in Figures 10, 12, 14 and regression coefficients in Tables 1, 2,
3 with corresponding regression coefficient visualization in Figures 9, 11, 13.

D.4.2 Public Codeforces Data

Second, we evaluate only on the public test cases of Codeforces and produce the marginal effect
plots in Figures 16, 18, 20 and regression coefficients in Tables 4, 5, 6 with corresponding regression
coefficient visualization in Figures 15, 17, 19.

D.4.3 Private Codeforces Data

Finally, we consider only the private test cases and get the marginal effect plots shown in Figures
22, 24, 26 and regression coefficients in Tables 7, 8, 9 with corresponding regression coefficient
visualization in Figures 21, 23, 25.

15

D.5 Project Euler

Finally, we report pass rates on Project Euler in Figures 28 and 30. We also present the regression
coefficients in Tables 10 and 11 with corresponding regression coefficient visualization in Figures 27,
29.

D.6 Title Reproduction

Here, we present the marginal effects on the Title Reproduction metric for GPT-4 and GPT-3.5-Turbo
across the Codeforces and Project Euler benchmarks in Figures 34, 32, 36 and 38. We also present
the regression coefficients in Tables 12, 13, 14 and 15 with corresponding regression coefficient
visualization in Figures 31, 33, 35, and 37.

D.7 Tag Reproduction

Here, we present the marginal effects on the Tag Reproduction metric for GPT-4 and GPT-3.5-Turbo
across the Codeforces and Project Euler benchmarks in Figures 42 and 40. We also present the
regression coefficients in Tables 17 and 16 with corresponding regression coefficient visualization in
Figures 39, 41.

D.8 Experiments with Additional LLMs

The results in Sections 5 and D.4-D.7 exclusively use the models GPT-3.5 and GPT-4. In this
section, we discuss results on Davinci-002 and Code-Llama. Overall, our motivation to focus
on GPT-3.5 and GPT-4 is because they are the only models to achieve nontrivial pass rate. For
example, on Codeforces, GPT-3.5 achieved 27% and 13% pass rates before and after the cutoff,
and GPT-4 achieved 37% and 16% pass rates before and after the cutoff, but the pass rates for
text-davinci-002 with a comparable prompting strategy are both less than 1%. Similarly, a partial
analysis of codellama/CodeLlama-34b-Instruct-hf featuring 3400+ randomly chosen problems from
Codeforces (2800+ pre-cutoff, 500+ post-cutoff) yielded less than 1% pass rate both before and after
the cutoff. Due to the very small number of problems that succeeded even before the cutoff date,
we were unable to present non-trivial differences before and after the cutoff. On the other hand, we
still include all raw output data from our experiments with text-davinci-002 in our supplementary
material at https://anonymous.4open.science/r/to-the-cutoff-review-253A. We will
shortly make our Code-Llama data available as well.

D.9 Analysis of Possible Covariate Shifts

In this section, we conduct analyses to assess whether the drop-off in performance that we observe
for problem examples released after the GPT training cutoff might be attributable to (potentially
latent) covariate shifts. We specifically investigate whether the distribution over tags (only available
for Codeforces) and/or difficulty level (available for Codeforces and Project Euler) changed in a
statistically significant way during the post-cutoff period, relative to the pre-cutoff period. We
summarize our findings by dataset below:

D.9.1 Codeforces

Tags: In Codeforces, each problem is mapped by the problem creators to one or more descriptive
tags. These tags generally reflect algorithm(s), data structure(s), and/or problem-solving approaches
associated with the problem in question. We partition the Codeforces problems into pre- versus post
(reflecting whether a given problem was released before or after the GPT training cutoff) and compute
aggregate counts over tags, then normalize. We visualize the resulting frequencies in Figure 4 and
observe that the two distributions are qualitatively quite similar:

We also conduct a χ2 test to assess whether we are able to reject the null hypothesis, which states
that there is no significant difference between the normalized distribution of counts over labels in
the pre- versus post-cutoff examples (we use the pre-cutoff normalized counts as the reference or
expected distribution). We omit two tags with observed counts < 5; these are chinese remainder
theorem and schedules. The resulting χ2 test statistic is 0.006 (p=1.0); thus, we are not able to
reject the null hypothesis. These findings mitigate concerns that the drop-off in performance we

16

https://anonymous.4open.science/r/to-the-cutoff-review-253A

flo
ws

st
rin

gs
co

ns
tru

ct
iv

e
al

go
rit

hm
s

m
ee

t-i
n-

th
e-

m
id

dl
e

ge
om

et
ry

2-
sa

t
di

vi
de

 a
nd

 c
on

qu
er

ga
m

es
pr

ob
ab

ilit
ie

s
gr

ee
dy

sh
or

te
st

 p
at

hs
bi

na
ry

 se
ar

ch dp
in

te
ra

ct
iv

e
br

ut
e

fo
rc

e
tre

es
te

rn
ar

y
se

ar
ch

sc
he

du
le

s
ha

sh
in

g
bi

tm
as

ks
gr

ap
h

m
at

ch
in

gs fft
sp

ec
ia

l
so

rti
ng

s
tw

o
po

in
te

rs
da

ta
 st

ru
ct

ur
es

ex
pr

es
sio

n
pa

rs
in

g
ds

u
ch

in
es

e
re

m
ai

nd
er

 th
eo

re
m

m
at

h
gr

ap
hs

co
m

bi
na

to
ric

s
im

pl
em

en
ta

tio
n

df
s a

nd
 si

m
ila

r
nu

m
be

r t
he

or
y

st
rin

g
su

ffi
x

st
ru

ct
ur

es
m

at
ric

es

tags

0.00

0.02

0.04

0.06

0.08

0.10

pr
op

or
tio

n
of

 su
b-

gr
ou

p
pr

ob
le

m
s w

ith
 th

is
ta

g

CodeForces: distribution over tags for problems released pre- vs. post-GPT cutoff
pre
post

Figure 4: Codeforces: distribution over tags for problems released pre- vs. post-GPT cutoff

observe for Codeforces might be attributable to significant changes in the distribution over tags during
the post-cutoff period.

Difficulty: For the Codeforces problems we consider, difficulty takes values in the range [0,3500],
with higher values corresponding to increased difficulty. We visualize the distribution over raw
difficulty scores for problems in the pre-cutoff versus post-cutoff subsets in Figure 5:

pre post
problem cut-off group

0

500

1000

1500

2000

2500

3000

3500

Ra
w

di
ffi

cu
lty

 sc
or

e

CodeForces: distribution of difficulty scores
 for problems released pre- vs. post-GPT cutoff

Figure 5: Codeforces: distribution over raw difficulty scores for problems released pre- vs. post-GPT
cutoff

We then discretize the raw difficulty scores by mapping raw scores to discrete labels as follows:

17

λ(x) =

0 x ≤ Q1

1 Q1 < x ≤ Q2

2 Q2 < x ≤ Q3

3 x > Q3

(1)

where x represents a given problem’s raw difficulty score, and Q1, Q2, and Q3 correspond to the first,
second, and third quartiles, respectively. We visualize the pre-vs.post-cutoff problems’ distribution
over discretized difficulty scores in Figure 6:

0 1 2 3
diff_bucket

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
op

or
tio

n
of

 su
b-

gr
ou

p
pr

ob
le

m
s

 w
ith

 th
is

di
sc

re
tiz

ed
 d

iff
icu

lty
 sc

or
e

CodeForces: distribution over discretized difficulty scores
 for problems released pre- vs. post-GPT cutoff

pre
post

Figure 6: Codeforces: distribution over discretized difficulty scores for problems released pre- vs.
post-GPT cutoff

We also conduct a χ2 test to assess whether we are able to reject the null hypothesis, which states
that there is no significant difference between the normalized distribution of counts over discretized
difficulty scores in the pre- versus post-cutoff examples (we use the pre-cutoff normalized counts
as the reference or expected distribution). The resulting χ2 test statistic is 0.073 (p=0.995); thus,
we are not able to reject the null hypothesis. These findings mitigate concerns that the drop-off in
performance we observe for Codeforces might be attributable to significant changes in the distribution
over difficulty levels during the post-cutoff period.

D.9.2 Project Euler

Note that as mentioned above, Project Euler does not make their problem tags publicly available; as
such, we are not able to conduct tag analysis for this dataset, and we restrict our attention to difficulty.

Difficulty: For the Project Euler problems we consider, difficulty takes values in the range [5,100],
with higher values corresponding to increased difficulty. We visualize the distribution over raw
difficulty scores for problems in the pre-cutoff versus post-cutoff subsets in Figure 7:

Similarly to our Codeforces difficulty analysis, we discretize the raw difficulty scores using the
mapping in Equation 1. We visualize the pre-vs.post-cutoff problems’ distribution over discretized
difficulty scores in Figure 8:

We also conduct a χ2 test to assess whether we are able to reject the null hypothesis, which states
that there is no significant difference between the normalized distribution of counts over discretized
difficulty scores in the pre- versus post-cutoff examples (we use the pre-cutoff normalized counts
as the reference or expected distribution). The resulting χ2 test statistic is 0.027 (p=0.999); thus,
we are not able to reject the null hypothesis. These findings mitigate concerns that the drop-off
in performance we observe for Project Euler might be attributable to significant changes in the
distribution over difficulty levels during the post-cutoff period.

18

pre post
problem cut-off group

20

40

60

80

100

Ra
w

di
ffi

cu
lty

 sc
or

e

Project Euler: distribution of difficulty scores
 for problems released pre- vs. post-GPT cutoff

Figure 7: Project Euler: distribution over raw difficulty scores for problems released pre- vs. post-
GPT cutoff

0 1 2 3
diff_bucket

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
op

or
tio

n
of

 su
b-

gr
ou

p
pr

ob
le

m
s

 w
ith

 th
is

di
sc

re
tiz

ed
 d

iff
icu

lty
 sc

or
e

Project Euler: distribution over discretized difficulty scores
 for problems released pre- vs. post-GPT cutoff

pre
post

Figure 8: Project Euler: distribution over discretized difficulty scores for problems released pre- vs.
post-GPT cutoff

D.10 Randomly sampled GPT-generated output for Codeforces, by LLM

D.10.1 GPT-4

1. Problems released before GPT cutoff with functional correctness ∈ [0,0.0]
(a) Subgroup sample 1 of 2

19

title: scissors and tape | id: 1193_C | difficulty: 0 | func_correct: 0.0

url: https://codeforces.com/problemset/problem/1193/C

def polygon_area(points):
half_sum = 0
n = len(points)
for i in range(n):

j = (i + 1) % n
half_sum += (points[i][0] * points[j][1] − points[i][1] * points[j][0])

return abs(half_sum) / 2

def main():
s = list(map(int, input().split()))[1:]
t = list(map(int, input().split()))[1:]
s_points = [(s[2 * i], s[2 * i + 1]) for i in range(len(s) // 2)]
t_points = [(t[2 * i], t[2 * i + 1]) for i in range(len(t) // 2)]

s_area = polygon_area(s_points)
t_area = polygon_area(t_points)
t_area_to_s_area = t_area / s_area

Assuming s_area = t_area.
if abs(s_area − t_area) < 1e−6:

print(’scissors 0’, len(s_points))
for i in range(0, len(s), 2):

print("1", s[i], s[i + 1], "0 0")
print("tape", len(s_points), " ".join(map(str, range(1, len(s_points) + 1))))
print("1", "0 0", " ".join(map(str, t)))

else:
print("ERROR: The input polygons do not have the same area.")

if __name__ == "__main__":
main()

(b) Subgroup sample 2 of 2

title: string inside out | id: 530_B | difficulty: 1600 | func_correct: 0.0

url: https://codeforces.com/problemset/problem/530/B

def manipulate_string(s):
n = len(s) // 2
return s[n − 1::−1] + s[:n − 1:−1]

2. Problems released before GPT cutoff with functional correctness ∈ (0.0, 0.137]
(a) Subgroup sample 1 of 2

20

title: zebra tower | id: 159_E | difficulty: 1700 | func_correct: 0.125

url: https://codeforces.com/problemset/problem/159/E

def main():
n = int(input())
cubes = [tuple(map(int, input().split())) for _ in range(n)]

color_cubes = {}
for i, (color, size) in enumerate(cubes):

if color not in color_cubes:
color_cubes[color] = []

color_cubes[color].append((size, i))

for color in color_cubes:
color_cubes[color].sort(reverse=True)

color_sums = [(sum(x[0] for x in color_cubes[c]), c) for c in color_cubes]
color_sums.sort(reverse=True)

max_height = 0
best_tower = []
for i in range(len(color_sums)):

for j in range(i+1, len(color_sums)):
height1, color1 = color_sums[i]
height2, color2 = color_sums[j]
tower = []

while color_cubes[color1] and color_cubes[color2]:
size1, idx1 = color_cubes[color1].pop()
size2, idx2 = color_cubes[color2].pop()
tower.append(idx1)
tower.append(idx2)

If there is an extra cube of the first color, add it to the tower
if color_cubes[color1]:

size1, idx1 = color_cubes[color1].pop()
tower.append(idx1)

curr_height = sum(cubes[idx][1] for idx in tower)

if curr_height > max_height:
max_height = curr_height
best_tower = tower

print(max_height)
print(len(best_tower))
print(*[x+1 for x in best_tower])

if __name__ == "__main__":
main()

(b) Subgroup sample 2 of 2

21

title: dirty arkady’s kitchen | id: 827_F | difficulty: 3200 | func_correct:
0.053

url: https://codeforces.com/problemset/problem/827/F

def main():
n, m = map(int, input().split())
passages = [tuple(map(int, input().split())) for _ in range(m)]

def can_reach(destination, time):
visited = [False] * (n + 1)
stack = [(1, time)]

while stack:
place, t = stack.pop()
if place == destination:

return True
if visited[place]:

continue
visited[place] = True

for a, b, l, r in passages:
if t >= l and t < r:

next_place = a if b == place else (b if a == place else None)
if next_place is not None and not visited[next_place]:

stack.append((next_place, t + 1))

return False

start_time = 0
while not can_reach(n, start_time):

start_time += 1
if start_time > 10**9:

print(−1)
return

print(start_time)

main()

3. Problems released before GPT cutoff with functional correctness ∈ (0.137, 0.667]
(a) Subgroup sample 1 of 2

22

title: alarm clock | id: 898_D | difficulty: 1600 | func_correct: 0.316

url: https://codeforces.com/problemset/problem/898/D

def min_alarms_to_turn_off(n, m, k, alarms):
alarms.sort()
diffs = [alarms[i+1] − alarms[i] for i in range(len(alarms)−1)]
diffs.sort()
turn_off = 0
while len(diffs) >= k−1 and sum(diffs[:k−1]) + k−1 < m:

turn_off += 1
diffs.pop()

return turn_off

def main():
n, m, k = map(int, input().split())
alarms = list(map(int, input().split()))
print(min_alarms_to_turn_off(n, m, k, alarms))

main()

(b) Subgroup sample 2 of 2

title: row of models | id: 887_F | difficulty: 2500 | func_correct: 0.424

url: https://codeforces.com/problemset/problem/887/F

def main():
n, k = map(int, input().split())
heights = list(map(int, input().split()))

def test_swap(heights, k):
first_higher = −1
for i in range(len(heights) − 1):

if heights[i] > heights[i + 1]:
if first_higher == −1:

first_higher = i
elif i − first_higher < k − 1:

return False
return first_higher == −1 or first_higher >= k − 1

if test_swap(heights, k) or test_swap(heights[::−1], k):
print("YES")

else:
print("NO")

if __name__ == ’__main__’:
main()

4. Problems released before GPT cutoff with functional correctness ∈ (0.667, 1.0]
(a) Subgroup sample 1 of 2

23

title: alternating current | id: 343_B | difficulty: 1600 | func_correct: 1.0

url: https://codeforces.com/problemset/problem/343/B

def can_be_untangled(s):
stack = []
for c in s:

if stack and stack[−1] == c:
stack.pop()

else:
stack.append(c)

return "Yes" if not stack else "No"

input_sequence = input().strip()
print(can_be_untangled(input_sequence))

(b) Subgroup sample 2 of 2

title: date calculation | id: 130_J | difficulty: 1800 | func_correct: 1.0

url: https://codeforces.com/problemset/problem/130/J

def is_leap_year(year):
return year % 400 == 0 or (year % 4 == 0 and year % 100 != 0)

def find_date(year, day_num):
days_in_months = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
if is_leap_year(year):

days_in_months[1] = 29
month = 0
while day_num > days_in_months[month]:

day_num −= days_in_months[month]
month += 1

return day_num, month + 1

year = int(input())
day_num = int(input())
day, month = find_date(year, day_num)
print(day, month)

5. Problems released after GPT cutoff with functional correctness ∈ [0,0.0]
(a) Subgroup sample 1 of 2

24

title: changing brackets | id: 1593_G | difficulty: 2200 | func_correct: 0.0

url: https://codeforces.com/problemset/problem/1593/G

def min_cost(s, l, r):
cnt_open = cnt_bracket = 0
cost = 0
for i in range(l, r+1):

if s[i] == ’(’ or s[i] == ’[’:
cnt_open += 1

else:
cnt_open −= 1
if cnt_open < 0:

if s[i] == ’)’:
cnt_bracket += 1

cnt_open = 0
return cnt_bracket

t = int(input())
for _ in range(t):

s = input()
q = int(input())
for _ in range(q):

l, r = map(int, input().split())
print(min_cost(s, l−1, r−1))

(b) Subgroup sample 2 of 2

title: premutation | id: 1790_C | difficulty: 1000 | func_correct: 0.0

url: https://codeforces.com/problemset/problem/1790/C

def reconstruct_permutation(t, test_cases):
def restore_permutation(n, sequences):

occurrences = [0] * (n + 1)
for seq in sequences:

for num in seq:
occurrences[num] += 1

return [i for i, count in enumerate(occurrences) if count == n − 1]

results = []
for case in test_cases:

n, sequences = case
results.append(restore_permutation(n, sequences))

return results

t = 5
test_cases = [

(4, [[4, 2, 1], [4, 2, 3], [2, 1, 3], [4, 1, 3]]),
(3, [[3, 2], [3, 1], [1, 2]]),
(5, [[4, 2, 1, 3], [2, 1, 3, 5], [4, 2, 3, 5], [4, 1, 3, 5], [4, 2, 1, 5]]),
(3, [[1, 3], [2, 3], [1, 2]]),
(4, [[3, 1, 2], [1, 3, 4], [2, 1, 3], [1, 2, 4]])

]

result = reconstruct_permutation(t, test_cases)
for r in result:

print(*r)

6. Problems released after GPT cutoff with functional correctness ∈ (0.0, 0.137]
(a) Subgroup sample 1 of 2

25

title: arranging crystal balls | id: 1740_I | difficulty: 3500 | func_correct:
0.062

url: https://codeforces.com/problemset/problem/1740/I

def gcd(a, b):
while b:

a, b = b, a % b
return a

def minimum_operations(n, m, k, a):
gcd_ak = a[0] − a[k]
for i in range(k, n):

gcd_ak = gcd(gcd_ak, a[i] − a[i − k])
if gcd_ak % m != 0:

return −1
return sum(abs(a[i] − a[0]) // m for i in range(n)) // k

n, m, k = map(int, input().split())
a = list(map(int, input().split()))
print(minimum_operations(n, m, k, a))

(b) Subgroup sample 2 of 2

26

title: count voting | id: 1799_G | difficulty: 2600 | func_correct: 0.083

url: https://codeforces.com/problemset/problem/1799/G

def main():
MOD = 998244353
n = int(input())
desired_votes = list(map(int, input().split()))
team = list(map(int, input().split()))

team_votes = [0] * (n + 1)
for tv in team:

team_votes[tv] += 1

dp = [[0] * (n + 1) for _ in range(n + 1)]
dp[0][0] = 1
for i in range(1, n + 1):

for j in range(n + 1):
dp[i][j] = dp[i − 1][j]
if j − desired_votes[i − 1] >= 0:

dp[i][j] += dp[i − 1][j − desired_votes[i − 1]]
if dp[i][j] >= MOD:

dp[i][j] −= MOD

ans = 1
total_non_team_votes = 0
for i in range(1, n + 1):

count = team_votes[i]
if count == 0:

continue
tmp = dp[total_non_team_votes + count][count] * ans
if tmp >= MOD:

tmp %= MOD
ans = tmp
total_non_team_votes += count

print(ans)

main()

7. Problems released after GPT cutoff with functional correctness ∈ (0.137, 0.667]
(a) Subgroup sample 1 of 2

27

title: count binary strings | id: 1767_C | difficulty: 2100 | func_correct:
0.364

url: https://codeforces.com/problemset/problem/1767/C

def main():
MOD = 998244353

n = int(input())
a = [list(map(int, input().split())) for _ in range(n)]

dp = [[[0] * (n + 1) for _ in range(n + 1)] for _ in range(3)]

for i in range(n+1):
dp[0][i][i] = dp[1][i][i] = 1

for l in range(2, n+1):
for i in range(1, n − l + 2):

j = i + l − 1

if a[i − 1][j − i] != 2:
dp[0][i][j] += (dp[0][i + 1][j] + dp[1][i + 1][j]) % MOD
dp[0][i][j] %= MOD

if a[i − 1][j − i] != 1:
dp[1][i][j] += (dp[0][i + 1][j] + dp[1][i + 1][j]) % MOD
dp[1][i][j] %= MOD

for k in range(i, j):
if a[i − 1][k − i] != 1 and a[k + 1 − 1][j − (k + 1)] != 1:

dp[2][i][j] += dp[2][i][k] * dp[2][k + 1][j] % MOD
if a[i − 1][k − i] != 1 and a[k + 1 − 1][j − (k + 1)] != 2:

dp[2][i][j] += dp[2][i][k] * dp[1][k + 1][j] % MOD
if a[i − 1][k − i] != 2 and a[k + 1 − 1][j − (k + 1)] != 1:

dp[2][i][j] += dp[0][i][k] * dp[2][k + 1][j] % MOD
if a[i − 1][k − i] != 2 and a[k + 1 − 1][j − (k + 1)] != 2:

dp[2][i][j] += dp[0][i][k] * dp[1][k + 1][j] % MOD

dp[2][i][j] %= MOD

print(dp[2][1][n])

if __name__ == "__main__":
main()

(b) Subgroup sample 2 of 2

28

title: interesting sum | id: 1720_B | difficulty: 800 | func_correct: 0.5

url: https://codeforces.com/problemset/problem/1720/B

def maximum_beauty(t, test_cases):
results = []
for n, a in test_cases:

max_outside = max(a)
max_inside, min_inside = max(a[1:−1]), min(a[1:−1])
ans = max(max_outside − a[0] + max_inside − a[−1],

max_outside − a[−1] + max_inside − a[0])
results.append(ans)

return results

def main():
t = int(input().strip())
test_cases = []
for _ in range(t):

n = int(input().strip())
a = list(map(int, input().strip().split()))
test_cases.append((n, a))

output = maximum_beauty(t, test_cases)
for res in output:

print(res)

if __name__ == ’__main__’:
main()

8. Problems released after GPT cutoff with functional correctness ∈ (0.667, 1.0]
(a) Subgroup sample 1 of 2

title: the boss can count pairs | id: 1830_B | difficulty: 2000 | func_correct:
1.0

url: https://codeforces.com/problemset/problem/1830/B

def main():
t = int(input().strip())
for _ in range(t):

n = int(input().strip())
a = list(map(int, input().strip().split()))
b = list(map(int, input().strip().split()))

count = 0
for i in range(n):

for j in range(i + 1, n):
if a[i] * a[j] == b[i] + b[j]:

count += 1
print(count)

if __name__ == "__main__":
main()

(b) Subgroup sample 2 of 2

29

title: interesting sections | id: 1609_F | difficulty: 2800 | func_correct: 1.0

url: https://codeforces.com/problemset/problem/1609/F

def main():
n = int(input().strip())
a = list(map(int, input().strip().split()))

def bit_count(x):
return bin(x).count(’1’)

ans = 0
for l in range(n):

min_val = a[l]
max_val = a[l]
for r in range(l, n):

min_val = min(min_val, a[r])
max_val = max(max_val, a[r])
if bit_count(min_val) == bit_count(max_val):

ans += 1
print(ans)

if __name__ == ’__main__’:
main()

D.10.2 GPT-3.5-Turbo

1. Problems released before GPT cutoff with functional correctness ∈ [0,0.0]
(a) Subgroup sample 1 of 2

30

title: trash problem | id: 1418_D | difficulty: 2100 | func_correct: 0.0

url: https://codeforces.com/problemset/problem/1418/D

n, q = map(int, input().split())
a = sorted(map(int, input().split()))
p = {a[i]:i for i in range(n)}
s = [x−y for x,y in zip(a[1:], a)]
s1 = [x−y for x,y in zip(a[2:], a)]
ans1 = ans2 = sum(s)
for _ in range(q):

t, x = map(int, input().split())
x −= 1
if t == 1:

a.append(x)
a.sort()
i = p[x] = a.index(x)
if i > 0: ans1 += max(0, a[i]−a[i−1]−1)
if i < n−1: ans1 += max(0, a[i+1]−a[i]−1)
if i > 1: ans1 −= max(0, a[i]−a[i−2]−1) − s1[i−2]
if i < n−2: ans1 −= max(0, a[i+2]−a[i+1]−1) − s[i−1]
n += 1
s1, s = s, [x−y for x,y in zip(a[1:], a)]

else:
i = p[x]
if i > 0: ans1 −= max(0, a[i]−a[i−1]−1)
if i < n−1: ans1 −= max(0, a[i+1]−a[i]−1)
if i > 1: ans1 += max(0, a[i]−a[i−2]−1) − s1[i−2]
if i < n−2: ans1 += max(0, a[i+2]−a[i+1]−1) − s[i−1]
a.remove(x)
n −= 1
del p[x]
s1, s = s, [x−y for x,y in zip(a[1:], a)]

print(ans1)
print(ans2)

(b) Subgroup sample 2 of 2

31

title: boboniu and string | id: 1394_C | difficulty: 2600 | func_correct: 0.0

url: https://codeforces.com/problemset/problem/1394/C

from collections import Counter

def can_reach(target, source):
"""Check if target can be obtained from source by removing ’B’,’N’ and ’BN’/’

↪→ NB’."""
n = len(target)
m = len(source)
i = j = 0
while i < n and j < m:

if target[i] == source[j]:
i += 1
j += 1

elif target[i] == ’B’ and source[j] == ’N’:
j += 1

elif target[i] == ’N’ and source[j] == ’B’:
j += 1

elif target[i:i+2] == ’BN’ and (j+1 < m and source[j:j+2] == ’BN’):
j += 2
i += 2

elif target[i:i+2] == ’NB’ and (j+1 < m and source[j:j+2] == ’NB’):
j += 2
i += 2

else:
return False

return i == n

n = int(input())
strings = []
for i in range(n):

strings.append(input().strip())

freq = Counter(’’.join(strings))
t = ’’
if freq[’B’] >= freq[’N’]:

t += ’B’ * freq[’B’]
else:

t += ’N’ * freq[’N’]

def binary_search():
"""Use binary search to find the minimum value of max_dist."""
l, r = 1, 2 * 10 ** 6
while l < r:

mid = (l + r) // 2
can_make = False
for char in [’B’, ’N’, ’BN’, ’NB’]:

for start in range(len(t)):
new_t = t[:start] + char + t[start:]
if all(can_reach(new_t, s) for s in strings):

can_make = True
break

if can_make:
break

if can_make:
r = mid

else:
l = mid + 1

return l
Note from authors: cutting this submission early for display convenience (it’s too

↪→ long to show all of it).

32

2. Problems released before GPT cutoff with functional correctness ∈ (0.0, 0.051]
(a) Subgroup sample 1 of 2

title: up the strip | id: 1558_B | difficulty: 1900 | func_correct: 0.03

url: https://codeforces.com/problemset/problem/1558/B

n, m = map(int, input().split())
dp = [0] * (n+1)
dp[n] = 1
for i in range(n−1, 0, −1):

dp[i] = (dp[i+1] + dp[i*2]) % m
print(dp[1])

(b) Subgroup sample 2 of 2

title: yellow cards | id: 1215_A | difficulty: 1000 | func_correct: 0.023

url: https://codeforces.com/problemset/problem/1215/A

a1 = int(input())
a2 = int(input())
k1 = int(input())
k2 = int(input())
n = int(input())

min_players_out = max(0, n − (a1*(k1−1) + a2*(k2−1)))
max_players_out = min(n, min(a1,k1)*a1 + min(a2,k2)*a2 − n)

print(min_players_out, max_players_out)

3. Problems released before GPT cutoff with functional correctness ∈ (0.051, 0.4]
(a) Subgroup sample 1 of 2

title: exchange of books | id: 683_H | difficulty: 1900 | func_correct: 0.1

url: https://codeforces.com/problemset/problem/683/H

n, k = map(int, input().split())
friends = list(map(int, input().split()))
start = list(range(1, n+1)) # starting arrangement of books

create a dict to map current position to the next position after one day
next_pos = {i+1: friend for i, friend in enumerate(friends)}

simulate book exchange for k days
for i in range(k):

end = [0] * n # initialize empty list to hold end arrangement of books
for j in range(n):

end[next_pos[j+1]−1] = start[j] # exchange books
start = end # update starting arrangement to end arrangement
next_pos = {j+1: next_pos[next_pos[j+1]] for j in range(n)} # update dict

print final arrangement of books
print(*start)

(b) Subgroup sample 2 of 2

33

title: alarm clock | id: 898_D | difficulty: 1600 | func_correct: 0.368

url: https://codeforces.com/problemset/problem/898/D

n, m, k = map(int, input().split())
alarms = sorted(map(int, input().split()))
interval = [0] * (10**6 + 1)
for i in range(1, n − k + 2):

start = alarms[i−1]
end = alarms[i+k−2] if i+k−1 <= n else 10**6
interval[start:end+1] = [j+1 for j in interval[start:end+1]]

print(sum([1 for x in interval if x >= m]))

4. Problems released before GPT cutoff with functional correctness ∈ (0.4, 1.0]
(a) Subgroup sample 1 of 2

title: chemistry in berland | id: 846_E | difficulty: 2300 | func_correct:
0.875

url: https://codeforces.com/problemset/problem/846/E

n = int(input())
b = list(map(int, input().split()))
a = list(map(int, input().split()))
adj = [[] for _ in range(n)]
for i in range(1, n):

x, k = map(int, input().split())
adj[i].append((x−1, k))
adj[x−1].append((i, k))

visited = [False] * n
def dfs(u):

visited[u] = True
for v, k in adj[u]:

if not visited[v]:
a[v] −= k * a[u]
b[v] −= k * b[u]
if a[v] > b[v] or a[v] % gcd(a[u], b[u]) != 0:

return False
if not dfs(v):

return False
return True

def gcd(a, b):
while b:

a, b = b, a % b
return a

for i in range(n):
if not visited[i] and a[i] != 0:

if dfs(i):
continue

else:
print("NO")
break

else:
print("YES")

(b) Subgroup sample 2 of 2

34

title: optimal subsequences (easy version) | id: 1227_D1 | difficulty: 1600 |
func_correct: 0.5
url: https://codeforces.com/problemset/problem/1227/D1

n = int(input())
a = list(map(int, input().split()))
m = int(input())

Indices of maximum elements in all prefixes of a
max_indices = [0] * n
cur_max_idx = 0
for i in range(n):

if a[i] > a[cur_max_idx]:
cur_max_idx = i

max_indices[i] = cur_max_idx

for _ in range(m):
k, pos = map(int, input().split())
subseq = []
i = max_indices[k − 1] # start with the maximum element in the k−length prefix
while len(subseq) < k:

if a[i] != 0:
subseq.append(a[i])

i += 1
if i >= n: # end of a is reached

break
subseq.sort(reverse=True) # lexicographically minimal subsequence with

↪→ maximum sum
print(subseq[pos − 1])

5. Problems released after GPT cutoff with functional correctness ∈ [0,0.0]
(a) Subgroup sample 1 of 2

35

title: anti-fibonacci permutation | id: 1644_B | difficulty: 800 |
func_correct: 0.0
url: https://codeforces.com/problemset/problem/1644/B

function to generate a permutation
def generate_permutation(n):

return list(range(1,n+1))

function to check if a permutation is anti−fibonacci
def is_anti_fibonacci(p):

for i in range(2,len(p)):
if p[i−2]+p[i−1] == p[i]:

continue
else:

return False
return True

t = int(input())
for _ in range(t):

n = int(input())
create a list of all possible permutations
all_permutations = [generate_permutation(n)]
iterate over all permutations and check if they are anti−fibonacci
for i in range(2, n):

for j in range(i):
new_permutations = []
for p in all_permutations:

new_p = p.copy()
new_p[i], new_p[j] = new_p[j], new_p[i]
if is_anti_fibonacci(new_p):

new_permutations.append(new_p)
all_permutations += new_permutations

print the first n anti−fibonacci permutations
for p in all_permutations[:n]:

print(*p)

(b) Subgroup sample 2 of 2

36

title: cypher | id: 1703_C | difficulty: 800 | func_correct: 0.0

url: https://codeforces.com/problemset/problem/1703/C

def original_sequence(n, final, moves):
initialize original sequence to all zeroes
orig = [0]*n

apply moves in reverse order to determine original sequence
for i in range(n−1, −1, −1):

if moves[i][0] == ’D’:
shift = int(moves[i][1:])

else:
shift = −int(moves[i][1:])

adjust for wheel rollover
if final[i] + shift < 0:

shift += 10
elif final[i] + shift > 9:

shift −= 10

orig[i] = (final[i] + shift) % 10

return orig

t = int(input())
for _ in range(t):

n = int(input())
final = [int(x) for x in input().split()]
moves = [input().strip() for _ in range(n)]

orig = original_sequence(n, final, moves)
print(*orig)

6. Problems released after GPT cutoff with functional correctness ∈ (0.0, 0.051]
(a) Subgroup sample 1 of 2

title: torus path | id: 1765_K | difficulty: 1500 | func_correct: 0.04

url: https://codeforces.com/problemset/problem/1765/K

n = int(input())
grid = []
for i in range(n):

grid.append(list(map(int, input().split())))
dp = [[0]*n for i in range(n)]
dp[0][0] = grid[0][0]
for i in range(1,n):

dp[i][0] = dp[i−1][0] + grid[i][0]
for j in range(1,n):

dp[0][j] = dp[0][j−1] + grid[0][j]
for i in range(1,n):

for j in range(1,n):
dp[i][j] = max(dp[i−1][j], dp[i][j−1]) + grid[i][j]

print(dp[−1][−1])

(b) Subgroup sample 2 of 2

37

title: olympic team building | id: 1779_H | difficulty: 3500 | func_correct:
0.023

url: https://codeforces.com/problemset/problem/1779/H

n = int(input())
strengths = list(map(int, input().split()))

winners = [True] * n # Assume all players are initially winners

while n > 1:
new_winners = [False] * n
for i in range(0, n, 2):

total_strength = strengths[i] + strengths[i+1]
if total_strength == max(total_strength, 0): # If both strengths are positive or

↪→ only one is negative
new_winners[i] = True

else:
new_winners[i+1] = True

winners = [winners[i] and new_winners[i] for i in range(n)] # Update winners
↪→ list

n //= 2 # Half the number of players
strengths = [strengths[2*i] + strengths[2*i+1] for i in range(n)] # Sum strengths

↪→ for remaining players

for i in range(len(winners)):
if winners[i]:

print("1", end="")
else:

print("0", end="")

7. Problems released after GPT cutoff with functional correctness ∈ (0.051, 0.4]
(a) Subgroup sample 1 of 2

38

title: magician and pigs (hard version) | id: 1774_F2 | difficulty: 2700 |
func_correct: 0.375
url: https://codeforces.com/problemset/problem/1774/F2

n = int(input())

create an empty list to store the pigs’ health points
pigs = []

iterate through n operations
for i in range(n):

op = input().split()
if op[0] == ’1’:

create a new pig with x health points
pigs.append(int(op[1]))

elif op[0] == ’2’:
reduce all pigs’ health points by x
for j in range(len(pigs)):

pigs[j] −= int(op[1])
else:

repeat all previous operations (including repeats)
for j in range(i):

prev_op = input().split()
if prev_op[0] == ’1’:

create a new pig with x health points
pigs.append(int(prev_op[1]))

elif prev_op[0] == ’2’:
reduce all pigs’ health points by x
for k in range(len(pigs)):

pigs[k] −= int(prev_op[1])

remove dead pigs from the list
pigs = [p for p in pigs if p > 0]

print the number of living pigs modulo 998244353
print(len(pigs) % 998244353)

(b) Subgroup sample 2 of 2

39

title: physical examination | id: 1571_I | difficulty: 3200 | func_correct:
0.333

url: https://codeforces.com/problemset/problem/1571/I

for _ in range(int(input())):
n = int(input())
L = list(map(int, input().split()))
R = list(map(int, input().split()))
x = max(0, max(L) − min(R))
p = [0] * n
for i in range(n):

p[i] = i
p.sort(key=lambda i: L[i])
current_time = x
for i in range(n):

if L[p[i]] > current_time + i or R[p[i]] < current_time + i:
print(−1)
break

print(current_time + i, end=’ ’)
else:

print()
print(*[p[i]+1 for i in range(n)])

8. Problems released after GPT cutoff with functional correctness ∈ (0.4, 1.0]
(a) Subgroup sample 1 of 2

title: replace the numbers | id: 1620_E | difficulty: 1900 | func_correct:
1.0

url: https://codeforces.com/problemset/problem/1620/E

q = int(input())
arr = []
for i in range(q):

query = input().split()
if query[0] == ’1’:

arr.append(int(query[1]))
else:

x = int(query[1])
y = int(query[2])
for j in range(len(arr)):

if arr[j] == x:
arr[j] = y

print(*arr)

(b) Subgroup sample 2 of 2

40

title: garland | id: 1809_A | difficulty: 800 | func_correct: 0.467

url: https://codeforces.com/problemset/problem/1809/A

def min_operations(s):
colors = set(s)
if len(colors) < 4:

return −1
on = set()
count = 0
for i in range(4):

if s[i] not in on:
on.add(s[i])
count += 1

return count

t = int(input())
for i in range(t):

s = input()
print(min_operations(s))

41

Table 1: Regression table for Pass Rate of GPT-4 on the Codeforces dataset. See Figure 9 for plot of
regression coefficients.

Dependent variable:
Pass Rate

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.084 0.204
(0.082, 0.087) (0.183, 0.228)

p = 0.000∗ p = 0.000∗

GitHub_Presence 1.044 1.000
(1.038, 1.050) (0.986, 1.014)

p = 0.000∗ p = 0.988

Constant 37,810,359.000 36,517.320
(29,642,418.000, 48,261,514.000) (15,107.710, 88,780.010)

p = 0.000∗ p = 0.000∗

Observations 6,693 1,378
Log Likelihood −61,571.750 −3,358.241
Akaike Inf. Crit. 123,149.500 6,722.482

Note: ∗p<0.05

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT4 Functional
Correctness −− Codeforces

Figure 9: Regression coefficients plots of Pass Rate for GPT-4 on the Project Codeforces Dataset.
See Table 1 for regression coefficients.

42

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15
10%

20%

30%

40%

50%

60%

log(Github Presence)

P
as

s
R

at
e

log(Difficulty) 7.04 7.44 7.85

Pass Rate Marginal Effects Plots for GPT−4 on Codeforces

Figure 10: Marginal Effects of Pass Rate for GPT-4 on the Codeforces Dataset

Table 2: Regression table for Pass Rate of GPT-3.5-Turbo on the Codeforces dataset. See Figure 11
for plot of regression coefficients.

Dependent variable:
Pass Rate

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.115 0.228
(0.112, 0.119) (0.202, 0.257)

p = 0.000∗ p = 0.000∗

GitHub_Presence 1.023 1.014
(1.017, 1.030) (0.998, 1.030)

p = 0.000∗ p = 0.081

Constant 2,859,990.000 9,989.318
(2,244,055.000, 3,646,978.000) (3,842.640, 26,109.620)

p = 0.000∗ p = 0.000∗

Observations 6,692 1,378
Log Likelihood −52,913.820 −2,611.597
Akaike Inf. Crit. 105,833.600 5,229.195

Note: ∗p<0.05

43

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT 3.5 Turbo
Functional Correctness −− Codeforces

Figure 11: Regression coefficients plots of Pass Rate for GPT-3.5-Turbo on the Project Codeforces
Dataset. See Table 2 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

10%

20%

30%

40%

50%

log(Github Presence)

P
as

s
R

at
e

log(Difficulty) 7.04 7.44 7.85

Pass Rate Marginal Effects Plots for GPT−3.5−Turbo on Codeforces

Figure 12: Marginal Effects of Pass Rate for GPT-3.5-Turbo on the Codeforces Dataset

44

Table 3: Code Bison Functional Correctness – Codeforces

Dependent variable:
Pass Rate

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.221 0.344
(0.214, 0.228) (0.240, 0.492)

p = 0.000∗ p = 0.000∗

Github_Presence 1.033 1.023
(1.027, 1.040) (0.978, 1.071)

p = 0.000∗ p = 0.316

Constant 12,033.200 229.971
(9,387.552, 15,428.990) (14.438, 3,694.907)

p = 0.000∗ p = 0.0002∗

Observations 7,807 217
Log Likelihood −38,944.730 −228.904
Akaike Inf. Crit. 77,895.470 463.807

Note: ∗p<0.05; ∗∗p<[0.**]; ∗∗∗p<[0.***]

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for Code Bison Functional
Correctness −− Codeforces

Figure 13: Regression coefficients plots of Pass Rate for Code Bison on the Project Codeforces
Dataset. See Table 3 for regression coefficients.

45

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

10%

20%

30%

log(GitHub Presence)

P
as

s
R

at
e log(Difficulty)

7.03
7.44
7.85

Pass Rate Marginal Effects Plots for Code Bison on Codeforces

Figure 14: Marginal Effects of Pass Rate for Code Bison on the Codeforces Dataset

Table 4: Regression table for Pass Rate of GPT-4 on the Codeforces dataset (public test cases only).
See Figure 15 for plot of regression coefficients.

Dependent variable:
Pass Rate (Public)

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.122 0.834
(0.110, 0.135) (0.624, 1.116)

p = 0.000∗ p = 0.221

GitHub_Presence 1.043 0.998
(1.024, 1.063) (0.964, 1.033)
p = 0.00001∗ p = 0.895

Constant 2,468,839.000 0.647
(1,118,457.000, 5,484,288.000) (0.064, 6.445)

p = 0.000∗ p = 0.712

Observations 6,693 1,378
Log Likelihood −7,352.622 −712.065
Akaike Inf. Crit. 14,711.250 1,430.131

Note: ∗p<0.05

46

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT4 Functional
Correctness −− Codeforces (Public)

Figure 15: Regression coefficients plots of Pass Rate for GPT-4 on the Project Codeforces Dataset
(evaluated on public test cases only). See Table 4 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

20%

40%

60%

log(GitHub Presence)

P
as

s
R

at
e log(Difficulty)

7.04
7.44
7.85

Pass Rate Marginal Effects Plots for GPT−4 on Codeforces (Public)

Figure 16: Marginal Effects of Pass Rate for GPT-4 on the Codeforces Dataset (evaluated on public
test cases only)

47

Table 5: Regression table for Pass Rate of GPT-3.5-Turbo on the Codeforces dataset (public test cases
only). See Figure 17 for plot of regression coefficients.

Dependent variable:
Pass Rate (Public)

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.157 1.046
(0.141, 0.173) (0.744, 1.478)

p = 0.000∗ p = 0.798

GitHub_Presence 1.027 0.998
(1.006, 1.047) (0.960, 1.038)

p = 0.011∗ p = 0.919

Constant 269,429.200 0.080
(119,822.600, 608,823.800) (0.005, 1.190)

p = 0.000∗ p = 0.069

Observations 6,693 1,378
Log Likelihood −6,461.524 −562.326
Akaike Inf. Crit. 12,929.050 1,130.652

Note: ∗p<0.05

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. * ***

Regression Coefficients for GPT 3.5 Turbo
Functional Correctness −− Codeforces (Public)

Figure 17: Regression coefficients plots of Pass Rate for GPT-3.5-Turbo on the Project Codeforces
Dataset (evaluated on public test cases only). See Table 5 for regression coefficients.

48

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

10%

20%

30%

40%

50%

log(GitHub Presence)

P
as

s
R

at
e log(Difficulty)

7.04
7.44
7.85

Pass Rate Marginal Effects Plots for GPT−3.5−Turbo on Codeforces (Public)

Figure 18: Marginal Effects of Pass Rate for GPT-3.5-Turbo on the Codeforces Dataset (evaluated on
public test cases only)

Table 6: Code Bison Functional Correctness – Codeforces (Public)

Dependent variable:
Pass Rate

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.309 0.606
(0.278, 0.343) (0.137, 2.627)

p = 0.000∗ p = 0.498

Github_Presence 1.049 0.886
(1.029, 1.069) (0.741, 1.034)
p = 0.00001∗ p = 0.147

Constant 742.217 3.558
(322.484, 1,710.418) (0.00003, 400,997.100)

p = 0.000∗ p = 0.827

Observations 7,807 217
Log Likelihood −5,463.652 −40.781
Akaike Inf. Crit. 10,933.300 87.561

Note: ∗p<0.05; ∗∗p<[0.**]; ∗∗∗p<[0.***]

49

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for Code Bison Functional
Correctness −− Codeforces (Public)

Figure 19: Regression coefficients plots of Pass Rate for Code Bison on the Project Codeforces
Dataset (evaluated on public test cases only). See Table 6 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

0%

10%

20%

30%

log(GitHub Presence)

P
as

s
R

at
e log(Difficulty)

7.03
7.44
7.85

Pass Rate Marginal Effects Plots for Code Bison on Codeforces (Public)

Figure 20: Marginal Effects of Pass Rate for Code Bison on the Codeforces Dataset (evaluated on
public test cases only)

50

Table 7: Regression table for Pass Rate of GPT-4 on the Codeforces dataset (private test cases only).
See Figure 21 for plot of regression coefficients.

Dependent variable:
Pass Rate (Private)

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.081 0.147
(0.079, 0.084) (0.129, 0.166)

p = 0.000∗ p = 0.000∗

GitHub_Presence 1.044 0.997
(1.037, 1.050) (0.982, 1.012)

p = 0.000∗ p = 0.684

Constant 49,784,537.000 489,263.300
(38,544,981.000, 64,349,935.000) (181,481.600, 1,331,364.000)

p = 0.000∗ p = 0.000∗

Observations 6,155 811
Log Likelihood −56,988.530 −2,805.794
Akaike Inf. Crit. 113,983.100 5,617.588

Note: ∗p<0.05

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT4 Functional
Correctness −− Codeforces (Private)

Figure 21: Regression coefficients plots of Pass Rate for GPT-4 on the Project Codeforces Dataset
(evaluated on private test cases only). See Table 7 for regression coefficients.

51

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

10%

20%

30%

40%

50%

60%

log(GitHub Presence)

P
as

s
R

at
e log(Difficulty)

7.06
7.46
7.86

Pass Rate Marginal Effects Plots for GPT−4 on Codeforces (Private)

Figure 22: Marginal Effects of Pass Rate for GPT-4 on the Codeforces Dataset (evaluated on private
test cases only)

Table 8: Regression table for Pass Rate of GPT-3.5-Turbo on the Codeforces dataset (private test
cases only). See Figure 21 for plot of regression coefficients.

Dependent variable:
Pass Rate (Private)

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.112 0.168
(0.109, 0.116) (0.147, 0.192)

p = 0.000∗ p = 0.000∗

GitHub_Presence 1.023 1.014
(1.017, 1.030) (0.996, 1.031)

p = 0.000∗ p = 0.128

Constant 3,541,250.000 107,436.200
(2,746,064.000, 4,569,487.000) (37,418.200, 311,168.500)

p = 0.000∗ p = 0.000∗

Observations 6,154 811
Log Likelihood −49,348.890 −2,208.268
Akaike Inf. Crit. 98,703.780 4,422.537

Note: ∗p<0.05

52

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT 3.5 Turbo
Functional Correctness −− Codeforces (Private)

Figure 23: Regression coefficients plots of Pass Rate for GPT-3.5-Turbo on the Project Codeforces
Dataset (evaluated on public test cases only). See Table 8 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

10%

20%

30%

40%

50%

log(GitHub Presence)

P
as

s
R

at
e log(Difficulty)

7.06
7.46
7.86

Pass Rate Marginal Effects Plots for GPT−3.5−Turbo on Codeforces (Private)

Figure 24: Marginal Effects of Pass Rate for GPT-3.5-Turbo on the Codeforces Dataset (evaluated on
private test cases only)

53

Table 9: Code Bison Functional Correctness – Codeforces (Private)

Dependent variable:
Pass Rate

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.215 0.305
(0.208, 0.222) (0.210, 0.442)

p = 0.000∗ p = 0.000∗

Github_Presence 1.031 1.040
(1.025, 1.038) (0.992, 1.091)

p = 0.000∗ p = 0.111

Constant 15,512.470 574.153
(11,955.840, 20,133.940) (32.974, 10,079.970)

p = 0.000∗ p = 0.00002∗

Observations 6,791 132
Log Likelihood −36,805.650 −211.771
Akaike Inf. Crit. 73,617.300 429.541

Note: ∗p<0.05; ∗∗p<[0.**]; ∗∗∗p<[0.***]

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for Code Bison Functional
Correctness −− Codeforces (Private)

Figure 25: Regression coefficients plots of Pass Rate for Code Bison on the Project Codeforces
Dataset (evaluated on public test cases only). See Table 9 for regression coefficients.

54

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

10%

20%

30%

log(GitHub Presence)

P
as

s
R

at
e log(Difficulty)

7.05
7.46
7.86

Pass Rate Marginal Effects Plots for Code Bison on Codeforces (Private)

Figure 26: Marginal Effects of Pass Rate for Code Bison on the Codeforces Dataset (evaluated on
private test cases only)

Table 10: Regression table for Pass Rate of GPT4 on the Project Euler dataset. See Figure 27 for plot
of regression coefficients.

Dependent variable:
Pass Rate

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.145 1.000
(0.104, 0.196) (0.000, Inf.000)

p = 0.000∗ p = 1.000

GitHub_Presence 1.476 1.000
(1.127, 1.947) (0.000, Inf.000)

p = 0.005∗ p = 1.000

Constant 0.323 0.000
(0.007, 15.405) (0.000, Inf.000)

p = 0.567 p = 1.000

Observations 765 72
Log Likelihood −170.511 −0.000
Akaike Inf. Crit. 347.023 6.000

Note: ∗p<0.05; ∗∗p<[0.**]; ∗∗∗p<[0.***]

55

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ** ***

Regression Coefficients for GPT4 Functional
Correctness −− Project Euler

Figure 27: Regression coefficients plots of Pass Rate for GPT-4 on the Project Euler Dataset. See
Table 10 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

12 14 16 12 14 16

0%

25%

50%

75%

100%

GitHub Presence

P
as

s
R

at
e Difficulty

2.83
3.62
4.41

Pass Rate Marginal Effects Plots for GPT−4 on Project Euler

Figure 28: Marginal Effects of Pass Rate for GPT-4 on the Project Euler Dataset

56

Table 11: Regression table for Pass Rate of GPT-3.5-Turbo on the Project Euler dataset. See Figure 29
for plot of regression coefficients.

Dependent variable:
Pass Rate

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.166 1.000
(0.117, 0.228) (0.000, Inf.000)

p = 0.000∗ p = 1.000

GitHub_Presence 1.274 1.000
(0.954, 1.714) (0.000, Inf.000)

p = 0.100 p = 1.000

Constant 0.839 0.000
(0.012, 56.905) (0.000, Inf.000)

p = 0.936 p = 1.000

Observations 765 72
Log Likelihood −140.542 −0.000
Akaike Inf. Crit. 287.084 6.000

Note: ∗p<0.05; ∗∗p<[0.**]; ∗∗∗p<[0.***]

GitHub Presence

Difficulty

0.05 0.1 0.5 1 5
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT 3.5 Turbo
Functional Correctness −− Project Euler

Figure 29: Regression coefficients plots of Pass Rate for GPT-3.5-Turbo on the Project Euler Dataset.
See Table 11 for regression coefficients.

57

Problems Released Before Cutoff Problems Released After Cutoff

12 14 16 12 14 16

0%

25%

50%

75%

100%

GitHub Presence

P
as

s
R

at
e Difficulty

2.83
3.62
4.41

Pass Rate Marginal Effects Plots for GPT−3.5−Turbo on Project Euler

Figure 30: Marginal Effects of Pass Rate for GPT-3.5-Turbo on the Project Euler Dataset

Table 12: Regression table for Title Reproduction of GPT-4 on the Codeforces dataset. See Figure 31
for plot of regression coefficients.

Dependent variable:
Title Reproduction

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.897 0.898
(0.826, 0.974) (0.756, 1.067)

p = 0.010∗ p = 0.222

GitHub_Presence 1.010 1.005
(0.994, 1.026) (0.982, 1.028)

p = 0.210 p = 0.684

Constant 0.817 0.750
(0.418, 1.598) (0.191, 2.956)

p = 0.556 p = 0.682

Observations 18,446 3,954
Log Likelihood −11,074.250 −2,265.482
Akaike Inf. Crit. 22,154.490 4,536.963

Note: ∗p<0.05

58

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

p−level n.s. **

Dependent Variables Pre Cutoff Post Cutoff

Regression Coefficients for GPT4 Title
Reproduction −− Codeforces

Figure 31: Regression coefficients plots of Title Reproduction Metric for GPT-4 on the Project
Codeforces Dataset. See Table 12 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15
21%

24%

27%

30%

log(GitHub Presence)

T
itl

e
R

ep
ro

du
ct

io
n

log(Difficulty)
7.05
7.45
7.86

Title Reproduction Marginal Effects Plots for GPT−4 on Codeforces

Figure 32: Marginal Effects of Title Reproduction Metric for GPT-4 on the Codeforces Dataset

59

Table 13: Regression table for Title Reproduction of GPT-3.5-Turbo on the Codeforces dataset. See
Figure 33 for plot of regression coefficients.

Dependent variable:
Title Reproduction

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.839 0.709
(0.719, 0.979) (0.510, 0.984)

p = 0.026∗ p = 0.041∗

GitHub_Presence 1.010 0.973
(0.981, 1.041) (0.931, 1.016)

p = 0.506 p = 0.216

Constant 0.220 0.954
(0.063, 0.764) (0.071, 13.105)

p = 0.018∗ p = 0.972

Observations 18,446 3,954
Log Likelihood −4,293.516 −869.667
Akaike Inf. Crit. 8,593.032 1,745.333

Note: ∗p<0.05

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. *

Regression Coefficients for GPT 3.5 Turbo Title
Reproduction −− Codeforces

Figure 33: Regression coefficients plots of Title Reproduction Metric for GPT-3.5-Turbo on the
Project Codeforces Dataset. See Table 13 for regression coefficients.

60

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

4%

6%

8%

10%

log(GitHub Presence)

T
itl

e
R

ep
ro

du
ct

io
n

log(Difficulty)
7.05
7.45
7.86

Title Reproduction Marginal Effects Plots for GPT−3.5−Turbo on Codeforces

Figure 34: Marginal Effects of Title Reproduction Metric for GPT-3.5-Turbo on the Codeforces
Dataset

Table 14: Regression table for Title Reproduction of GPT4 on the Project Euler dataset. ee Figure 35
for plot of regression coefficients.

Dependent variable:
Title Reproduction

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.780 0.946
(0.699, 0.870) (0.631, 1.438)
p = 0.00001∗ p = 0.793

GitHub_Presence 1.014 0.998
(0.962, 1.073) (0.741, 1.344)

p = 0.608 p = 0.991

Constant 0.848 0.508
(0.349, 1.980) (0.008, 29.457)

p = 0.709 p = 0.745

Observations 2,556 190
Log Likelihood −1,536.829 −114.284
Akaike Inf. Crit. 3,079.658 234.568

Note: ∗p<0.05; ∗∗p<[0.**]; ∗∗∗p<[0.***]

61

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT4 Title
Reproduction −− Project Euler

Figure 35: Regression coefficients plots of Title Reproduction Metric for GPT-4 on the Project Euler
Dataset. See Table 13 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

0%

25%

50%

75%

100%

log(GitHub Presence)

T
itl

e
R

ep
ro

du
ct

io
n

log(Difficulty)
2.91
3.67
4.42

Title Reproduction Marginal Effects Plots for GPT−4 on Project Euler

Figure 36: Marginal Effects of Title Reproduction Metric for GPT-4 on the Project Euler Dataset

62

Table 15: Regression table for Title Reproduction of GPT-3.5-Turbo on the Project Euler dataset. ee
Figure 37 for plot of regression coefficients.

Dependent variable:
Title Reproduction

Before Cutoff After Cutoff
(1) (2)

Difficulty 1.178 0.643
(0.934, 1.517) (0.136, 4.339)

p = 0.184 p = 0.589

GitHub_Presence 0.981 1.283
(0.898, 1.094) (0.339, 6.026)

p = 0.696 p = 0.715

Constant 0.044 0.002
(0.007, 0.198) (0.000, 51,280.610)
p = 0.0002∗ p = 0.505

Observations 2,556 190
Log Likelihood −564.246 −10.900
Akaike Inf. Crit. 1,134.492 27.801

Note: ∗p<0.05; ∗∗p<[0.**]; ∗∗∗p<[0.***]

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s.

Regression Coefficients for GPT 3.5 Turbo Title
Reproduction −− Project Euler

Figure 37: Regression coefficients plots of Title Reproduction Metric for GPT-3.5-Turbo on the
Project Euler Dataset. See Table 13 for regression coefficients.

63

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

0%

25%

50%

75%

100%

log(GitHub Presence)

T
itl

e
R

ep
ro

du
ct

io
n

log(Difficulty)
2.91
3.67
4.42

Title Reproduction Marginal Effects Plots for GPT−3.5−Turbo on Project Euler

Figure 38: Marginal Effects of Title Reproduction Metric for GPT-3.5-Turbo on the Project Euler
Dataset

Table 16: Regression table for Tag Reproduction of GPT-4 on the Codeforces dataset. See Figure 39
for plot of regression coefficients.

Dependent variable:
Tags Reproduction

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.431 0.826
(0.400, 0.465) (0.707, 0.966)

p = 0.000∗ p = 0.017∗

GitHub_Presence 0.991 0.999
(0.977, 1.005) (0.981, 1.017)

p = 0.195 p = 0.888

Constant 310.696 1.026
(168.396, 573.834) (0.299, 3.508)

p = 0.000∗ p = 0.968

Observations 24,474 6,425
Log Likelihood −15,399.190 −3,172.626
Akaike Inf. Crit. 30,804.370 6,351.252

Note: ∗p<0.05

64

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. * ***

Regression Coefficients for GPT4 Tags Reproduction
 −− Codeforces

Figure 39: Regression coefficients plots of Tag Reproduction Metric for GPT-4 on the Project
Codeforces Dataset. See Table 16 for regression coefficients.

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

20%

30%

40%

log(GitHub Presence)

Ta
gs

 R
ep

ro
du

ct
io

n

log(Difficulty)
7.14
7.52
7.89

Tags Reproduction Marginal Effects Plots for GPT−4 on Codeforces

Figure 40: Marginal Effects of Tag Reproduction Metric for GPT-4 on the Codeforces Dataset

65

Table 17: Regression table for Tag Reproduction of GPT-3.5-Turbo on the Codeforces dataset. See
Figure 41 for plot of regression coefficients.

Dependent variable:
Tags Reproduction

Before Cutoff After Cutoff
(1) (2)

Difficulty 0.497 0.739
(0.452, 0.547) (0.619, 0.883)

p = 0.000∗ p = 0.001∗

GitHub_Presence 0.959 1.001
(0.942, 0.976) (0.980, 1.022)
p = 0.00001∗ p = 0.955

Constant 56.613 1.540
(26.265, 121.894) (0.380, 6.228)

p = 0.000∗ p = 0.545

Observations 24,474 6,425
Log Likelihood −10,635.220 −2,587.031
Akaike Inf. Crit. 21,276.450 5,180.061

Note: ∗p<0.05

GitHub Presence

Difficulty

0.1 0.2 0.5 1 2
Odds Ratios

Dependent Variables Pre Cutoff Post Cutoff

p−level n.s. ***

Regression Coefficients for GPT 3.5 Turbo Tags
Reproduction −− Codeforces

Figure 41: Regression coefficients plots of Tag Reproduction Metric for GPT-3.5-Turbo on the Project
Codeforces Dataset. See Table 17 for regression coefficients.

66

Problems Released Before Cutoff Problems Released After Cutoff

0 5 10 15 0 5 10 15

10%

15%

20%

25%

30%

log(GitHub Presence)

Ta
gs

 R
ep

ro
du

ct
io

n

log(Difficulty)
7.14
7.52
7.89

Tags Reproduction Marginal Effects Plots for GPT−3.5−Turbo on Codeforces

Figure 42: Marginal Effects of tag Reproduction Metric for GPT-3.5-Turbo on the Codeforces Dataset

67

	Introduction
	Related Work
	Dataset Construction
	Methodological Approach
	Results
	Pass Rate

	Discussion
	Additional Details on Dataset Construction
	Additional Related Work
	Additional Methodology
	Additional Empirical Results
	Title and Tag Reproduction
	Analysis Ablations
	Regression Descriptions
	Pass Rate
	All Codeforces Data
	Public Codeforces Data
	Private Codeforces Data

	Project Euler
	Title Reproduction
	Tag Reproduction
	Experiments with Additional LLMs
	Analysis of Possible Covariate Shifts
	Codeforces
	Project Euler

	Randomly sampled GPT-generated output for Codeforces, by LLM
	GPT-4
	GPT-3.5-Turbo

