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ABSTRACT

Understanding and modeling protein-ligand interactions is fundamental to modern
drug discovery and design. Virtually every method employed in drug discovery —
from experimental bioassays to computational techniques such as QSAR, docking,
and activity prediction — relies on accurate models of these interactions. Recent
advances in deep learning have greatly enhanced our ability to model protein-
ligand interactions, as evidenced by innovations including graph neural networks
for activity prediction, diffusion-based docking methods, geometric deep learning
for binding pocket detection, contrastive learning for affinity prediction and virtual
screening, and most recently foundational models for molecular structure predic-
tion of biological complexes. In this work, we propose VN-EGNNrank, a novel
ligand-conditioned binding site prediction method that combines a geometric ar-
chitecture for protein encoding, a specialized ligand encoder, and a contrastive ob-
jective function to effectively align binding pocket and ligand representations in a
shared latent space. Our experiments show that incorporating ligand information
significantly enhances binding pocket ranking compared to ligand-agnostic mod-
els, and VN-EGNNrank achieves performance comparable to — or even exceeding
— that of the much larger blind docking model DiffDock, while maintaining high
computational efficiency suitable for large-scale virtual screening.

1 INTRODUCTION

The key component of drug discovery is the interaction between a protein and a potential lig-
and. Most drugs are small molecules that bind to a disease-associated protein target to activate,
inhibit, or modify its function (Kinch et al., 2024). Understanding these protein-ligand interac-
tions (PLIs) enables meaningful engagement with biological systems and the purposeful design of
therapeutic agents (Gohlke et al., 2000; Du et al., 2016). For decades, computational methods,
collectively known as computer-aided drug design (CADD) have been used to predict and analyze
protein-ligand interactions. In particular, structure-based drug design (SBDD) relies on the avail-
ability of three-dimensional (3D) structural data for the target protein’s binding site to model lig-
and binding and guide the rational optimization of potential therapeutics. Typically, this structural
information is obtained through experimental determination of protein-ligand complexes (Mutha-
rasappan et al., 2020), a challenging and time-consuming process that has historically restricted the
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Figure 1: Overview of VN-EGNNrank. A protein encoder provides representations of potential
binding sites. A ligand encoder gives the representation of the ligand. A high similarity of those
representations indicates the correct binding site.

application of SBDD to only a subset of known proteins. Experimental structures are systematically
archived in the Protein Data Bank (PDB) (Berman et al., 2000), which contains ~230k entries',
providing a valuable resource for SBDD research. Recently, the challenge of obtaining 3D protein
structures has been largely addressed by AlphaFold (Jumper et al., 2021), which provides accurate
predictions for most protein sequences. However, AlphaFold does not offer information about lig-
and binding sites, leaving binding site prediction as a crucial step in the SBDD pipeline (Zhao et al.,
2020) before molecules can be screened with methods such as docking (Kuntz et al., 1982; Fan et al.,
2019), molecular dynamics (De Vivo et al., 2016), and free energy perturbation (Beveridge & Di-
Capua, 1989; Cournia et al., 2021) to evaluate their binding potential and understand protein-ligand
interactions.

Recent advances have improved binding pocket prediction, yet pinpointing therapeutically rel-
evant sites remains challenging. Over the years, numerous computational methods have been de-
veloped to predict protein binding pockets, relying on four complementary approaches—geometric,
evolutionary, energetic, and, more recently, machine learning and deep learning techniques (Macari
et al., 2019; Xia et al., 2024). Notably, the recently introduced VN-EGNN - an SE(3)- and E(3)-
Equivariant Graph Neural Network with Virtual Nodes — has demonstrated state-of-the-art perfor-
mance on several binding site prediction benchmarks (Sestak et al., 2024). Many of these methods
are ligand-agnostic, meaning they predict binding pockets based solely on protein features. How-
ever, proteins often possess multiple binding sites with distinct pharmacophoric profiles. Histori-
cally, drug discovery has focused on orthosteric binders, i.e. ligands binding to the same location
as natural substrates, and most experimental crystal structures in the PDB represent these sites. As
a result, machine learning—based pocket predictors trained on these datasets tend to be biased to-
ward identifying orthosteric sites. In contrast, the growing interest in allosteric regulation and the
development of allosteric or secondary binders as novel therapeutics has highlighted that allosteric
pockets are generally more diverse and less conserved, making them more challenging to detect with
ligand-agnostic approaches (Chatzigoulas & Cournia, 2021). Although many current methods can
identify multiple binding pockets per protein, additional steps are often necessary to pinpoint the
specific pocket relevant for a given therapeutic application.

Recent Al innovations enable holistic prediction of protein-ligand complexes. In recent years,
advancements in Al have led to the development of blind docking methods—such as EquiBind
(Stérk et al., 2022), DiffDock (Corso et al., 2023) and FABind (Pei et al., 2023)—which predict
both the binding site and the ligand orientation without prior knowledge of the pocket’s location.
In effect, these methods serve as ligand-conditioned binding pocket predictors because they lever-
age both ligand-specific information and protein features. Moreover, recent foundation models for
molecular structure prediction of biological complexes from string representations — such as Al-
phaFold3 (Abramson et al., 2024), Boltz-1 (Wohlwend et al., 2024), and Chai-1 (Discovery et al.,
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2024) — have emerged, enabling the simultaneous prediction of the protein structure, the bind-
ing pocket and the binding pose. Although these models demonstrate state-of-the-art accuracy in
predicting biological complexes when the binding site is unknown, they require substantial compu-
tational resources to screen compound libraries.

Contrastive learning has emerged as an efficient paradigm that drives state-of-the-art virtual
screening in drug discovery. Another major innovation in Al in recent years has been contrastive
learning — a paradigm exemplified by models such as CLIP (Radford et al., 2021). In drug discovery,
contrastive learning has been successfully applied to virtual screening, where protein and ligand
representations are jointly mapped into a shared latent space (Singh et al., 2023; Gao et al., 2024a;b;
Han et al., 2024; Wang et al., 2024; McNutt et al., 2024) to predict PLIs. These approaches have
demonstrated state-of-the-art performance compared to traditional docking-based methods. One
advantage is that they are typically parameter efficient; since the protein and ligand encoders are
often pre-trained and then frozen, the number of trainable parameters is greatly reduced, leading
to shorter training times and fast inference. Although Gao et al. (2024a) utilized their contrastively
pretrained pocket encoder for pocket druggability prediction and pocket matching, to our knowledge
contrastive learning has not yet been applied to binding pocket prediction.

Our contribution. In this work, we propose VN-EGNNrank, a novel method for ligand-conditioned
binding pocket prediction. Our approach leverages a geometric learning-based architecture to gen-
erate expressive representations of protein binding sites, employs a dedicated ligand encoder to
capture chemical features, and utilizes a contrastive objective function to effectively align protein
and ligand representations for accurate binding pocket prediction. Our experiments demonstrate
that incorporating ligand information significantly enhances binding pocket ranking compared to
ligand-agnostic models, and despite its lightweight design, VN-EGNNrank achieves performance
comparable to—or even exceeding—that of the much larger DiffDock model.

2 VN-EGNNRANK: LIGAND-CONDITIONED BINDING POCKET PREDICTION

2.1 PRELIMINARIES.

Problem setting. Given a protein P and a ligand m, our objective is to predict the center of the
binding site where this specific ligand binds. Unlike docking approaches, we do not aim to predict
the exact ligand conformation within the binding site. However, what differentiates our approach
from traditional binding site prediction methods is that our predictions are ligand-specific, making
them dependent on the particular ligand under consideration.

Data. The training data of VN-EGNNrank consists of protein-ligand complexes from the PDB.
For each ligand, the corresponding binding site is defined as all protein residues within 4A of any
ligand atom and represented by the geometric center of these residues.

Since we are using a geometric binding site encoder, we represent the protein as a nearest-neighbor
graph. In this graph, nodes represent amino acid residues, and each node is connected to its 10
nearest neighbors. Nodes are assigned 3D coordinates corresponding to the positions of the residues’
alpha carbons, and feature vectors are initialized with embeddings from ESM-2 (Lin et al., 2023).

Small molecule ligands are initially represented as concatenated vectors of Morgan fingerprints
(Morgan, 1965) and chemical descriptors generated using RDKit (Landrum & contributors, 2006).

2.2 THE VN-EGNNRANK MODEL

Approach. In short, our method uses a binding site encoder based on VN-EGNN (Sestak et al.,
2024) to predict multiple potential protein binding site locations x1, . ..,xx € R? along with cor-
responding feature representations pi,...,px € R? In contrast to pure binding site detection
approaches (Krivak & Hoksza, 2018; Sestak et al., 2024), we also employ a molecule encoder that
computes a representation m € R? of the ligand in the same latent space. From the set of suggested
pockets, the one with the representation most similar to m is selected as the predicted binding site.
An illustration of this approach is shown in Figure 1.
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Binding site prediction using VN-EGNN. The first step of our approach involves predicting
binding site candidates, from which the most likely site is subsequently selected based on ligand
information. To achieve this, we use VN-EGNN (Sestak et al., 2024), a state-of-the-art method for
binding site prediction. In this approach, the protein is represented as a graph as defined above, with
the addition of a small set of ”virtual” nodes. These virtual nodes are connected to all protein nodes,
allowing the network to capture global structural information.

VN-EGNN employs a heterogeneous message-passing scheme that integrates information from
both protein and virtual nodes. The model is trained with a combination of three objective func-
tions to directly predict binding pocket centers, represented by the updated virtual node positions
X1,...,%u € R3, where M is the number of virtual nodes. In addition, the model also generates
feature representations p1, . . ., pps € R”™ for each pocket, which we make use of in the downstream
ligand-conditioned ranking of binding sites. Formally, we use VN-EGNN as the protein encoder,
providing the initial binding pocket representations for a given protein P:

(P1,-..,Pus X1, ..., %1) = VNEGNN(P).

For more details, see Sestak et al. (2024).

Pocket representations. The feature vectors p1, ..., pas of the virtual nodes in VN-EGNN serve
as the foundation of our binding pocket representations. Since multiple virtual nodes may converge
to the same binding pocket, we use the Mean Shift Algorithm (Comaniciu & Meer, 2002) to cluster
them based on their location in space. For each cluster, we compute the average of both the coordi-
nates and feature vectors and apply an additional linear layer to map the feature representations to
the contrastive space dimension d. As a result, we obtain K binding pocket candidates, each char-
acterized by coordinates x1, ..., xx € R? and associated pocket representations py, . .., px € R?,
with K representing the number of detected virtual node clusters.

Ligand representations. The ligand representation of an input molecule m is computed using a
3-layer fully connected network, which generates a feature vector m € R?. This simple archi-
tecture allows for the simultaneous encoding of many ligands, enabling efficient screening of large
compound libraries.

Contrastive learning objective. To effectively align a ligand representation 1m with the represen-
tation of its corresponding binding site p;, we employ the InfoNCE contrastive loss (van den Oord
etal.):

exp (s(m,p;)/7)
Sy exp (s(m, pr) /1)

Lintonce (M, {p1,...,px}) = —log D

where 7 is a trainable hyperparameter, and s(.,.) is a similarity function, such as cosine similarity.
This objective aims to maximize the similarity between matching molecule-pocket pairs while mini-
mizing it for non-matching pairs. Specifically, we consider ligand 1m and binding site representation
p; a matching pair if the corresponding pocket position x; is the closest to the ground-truth pocket
of m. All other pockets of the given protein are treated as non-matching. Alternative options for
contrastive loss functions include the CLOOB loss (Fiirst et al., 2022; Sanchez-Fernandez et al.,
2023) and the SigLIP loss (Zhai et al., 2023; Seidl et al., 2023).

3 EXPERIMENTS AND RESULTS

3.1 TRAINING AND HYPERPARAMETERS

Training data. We train our model on a more restrictive version of the same dataset used by our
main baseline method, DiffDock, which uses a temporal split of PDBBind (Wang et al., 2005) as
introduced by Stirk et al. (2022). Beyond ensuring no overlap of ligands between training and test
sets, we also exclude any receptors present in the test set from the training set. After filtering, the
training and validation sets in total comprise approximately 13,000 protein-ligand complexes from
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before 2019, while the test split—in the following referred to as the PDBBind test set—includes
around 200 PDB entries from 2019.

For data pre-processing, we filter out ions, molecules smaller than four heavy atoms, peptides longer
than five residues, and common solvents to focus on biologically relevant small molecules. During
training, we include only protein subunits within 4A of each ligand, whereas for testing, the entire
protein is used as input across all compared models.

Training procedure. For training VN-EGNNrank, we initialize the pocket encoder with a VN-
EGNN model that has been pre-trained on the pocket prediction task, as described in Sestak et al.
(2024). During the training of VN-EGNNrank, we optimize not only the InfoNCE loss but also
the VN-EGNN-specific loss functions, with equal weighting for all loss terms. The model was
trained with an initial learning rate of le-4, which was reduced by a factor of 10 upon reaching
a plateau, using a learning rate scheduler. Pre-training VN-EGNN took 12 hours, while training
VN-EGNNrank required 21 hours on a single A100 GPU.

Hyperparameters. The default hyperparameters of VN-EGNN were maintained for the binding
site encoder, including 8 virtual nodes, 5 VN-EGNN layers, and a node feature dimension n of
100. The ligand encoder and the projection layer of the pocket representations both used SELU
activation (Klambauer et al., 2017) and 10% dropout at the input. The ligand encoder consisted of
3 linear layers with a hidden dimension of 512 and 50% dropout for non-input layers. The output
dimension of both the ligand and pocket encoders, corresponding to the contrastive latent space
dimension d, was set to 256.

3.2 EVALUATION

Evaluation data. We evaluated our models on subsets of three well-established datasets:
HOLOA4K and Coach420 originally detailed by Krivik & Hoksza (2018), and a temporal split test
set of PDBBind (Stirk et al., 2022). The final evaluation datasets are considerably smaller than
the original published datasets for several reasons: (1) we removed any overlap with the PDBBind
training and validation sets, (2) we retained only those PDB structures that successfully passed our
pre-processing pipeline, and (3) we included only protein-ligand pairs for which every method pro-
duced results.

Additionally, we evaluated our models on a new dataset of protein-ligand complexes derived from
the Allosteric Site Database (ASD) (Liu et al. (2020); 06/2023 release). Starting from 3,102 entries
of allosteric complexes with associated PDB IDs, we first removed entries whose PDB IDs appeared
in our training data. We then excluded complexes where the biomolecule was not a protein or where
the allosteric modulator was not a small molecule. Further filtering removed entries with irregular
or missing UniProt IDs and those for which a SMILES representation for the modulator could not
be retrieved, resulting in 1,802 protein—allosteric ligand pairs with PDB IDs. Finally, we augmented
this dataset by retrieving all additional small molecules for each PDB (after filtering out common
artifacts such as solvents and crystallization agents), yielding a total of 2,942 protein-ligand pairs
across 1,720 PDB structures.

Table | summarizes each evaluation dataset’s number of PDB structures and protein-ligand pairs.

Total Single Ligand ~ Multiple Ligands

#PDBs #Pairs #PDBs #Pairs #PDBs  #Pairs
HOLO4K 1218 1460 996 996 222 464
PDBBind test 208 252 178 178 30 74
COACH420 125 155 97 97 28 58
ASD 650 862 459 459 191 403

Table 1: Statistics of Evaluation Datasets.

Compared methods. We compare our approach with two ligand-agnostic binding pocket predic-
tors—the well-established P2Rank (Krivak & Hoksza, 2018) and the state-of-the-art VN-EGNN
(Sestak et al., 2024), upon which our model is built—and with the state-of-the-art blind docking
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| P2Rank VN-EGNN DiffDock VN-EGNNrank
All 0.43 (0.41,0.46) 0.46 (0.43,0.48) 0.60 (0.57,0.62) 0.51 (0.48,0.54)
HOLO4K Slngle ngand 0.53 (0.49,0.56) 0.52 (0.49,0.56) 0.63 (0.60,0.66) 0.58 (0.55,0.61)
Multi ngand 0.23 (0.19,0.27) 0.31 (0.27,0.36) 0.51 (0.47,0.56) 0.35 (0.31,0.40)
All 0.26 (0.19,0.32) 0.39 (0.32,0.46) 0.43 (0.35,0.50) 0.45 (0.37,0.53)
COACH420 Smgle ngand 0.35 (0.26,0.44) 0.46 (0.37,0.56) 0.52 (0.41,0.61) 0.52 (0.42,0.62)
Multi ngand 0.10 (0.03,0.17) 0.26 (0.16,0.38) 0.28 (0.17,0.40) 0.33 (0.22,0.45)
All 0.59 (0.53,0.65) 0.42 (0.36,0.48) 0.46 (0.40,0.53) 0.46 (0.40,0.53)
PDBBind test Slngle ngand 0.76 (0.69,0.82) 0.51 (0.43,0.58) 0.57 (0.50,0.65) 0.52 (0.44,0.60)
Multi ngand 0.19 (0.11,0.28) 0.20 (0.12,0.28) 0.22 (0.12,0.31) 0.34 (0.23,0.45)
All 0.29 (0.26,0.32) 0.38 (0.35,0.42) 0.42 (0.39,0.45) 0.46 (0.42,0.49)
ASD Smgle ngand 0.33 (0.29,0.38) 0.40 (0.36,0.45) 0.42 (0.37,0.46) 0.47 (0.42,0.51)
Multi ngand 0.24 (0.20,0.29) 0.36 (0.32,0.41) 0.43 (0.38,0.48) 0.44 (0.39,0.49)

Table 2: Performance of binding site identification measured by the top-1 DCC success rate at a 4A
threshold. Values in parentheses indicate 95% confidence intervals obtained via bootstrapping with
10,000 iterations. In each row, the best-performing method is highlighted in bold and the second-
best in italics.

method DiffDock (Corso et al., 2023), which performs implicit ligand-informed binding pocket de-
tection. DiffDock, VN-EGNN, and our proposed VN-EGNNrank were all trained on a temporal split
of PDBBind from Stirk et al. (2022), ensuring no overlap with our evaluation datasets. However,
DiffDock was trained on a less restrictive version of this split (yielding a training set of ~16k com-
plexes) that filters out only complexes containing ligands from the test set, whereas VN-EGNN and
VN-EGNNrank were trained on a more rigorously curated subset that also excludes complexes with
receptors present in the test set (yielding a training set of ~14k complexes). In contrast, P2Rank was
trained on a different dataset (CHEN11), which does not overlap with our evaluation sets in terms
of PDB IDs.

Metrics. We evaluated model performance using the DCC criterion—the distance from the pre-
dicted pocket center to the ground-truth pocket center—with a 4A threshold, considering only the
top-ranked pocket (Top-1 DCC @ 4A) from each method. For every model and dataset, we compute
success rates for all protein-ligand pairs and separately for PDB structures containing a single ligand
and those with multiple ligands. All success rate values are reported with 95% confidence intervals
obtained through bootstrapping.

3.3 RESULTS

The main results comparing model performances on the different dataset are reported in Table 2.

Incorporating ligand information improved pocket identification. Across all datasets and sub-
sets, VN-EGNNrank consistently outperforms VN-EGNN when considering the top-ranked pocket,
demonstrating that re-ranking binding pockets using the similarity in the joint pocket-ligand latent
space enhances prediction accuracy. Moreover, aside from the exceptionally high performance of
P2Rank on single-ligand protein targets in PDBBind — which is reflected in overall results given that
approximately 70% of protein-ligand pairs come from single-ligand proteins — the ligand-informed
approaches (VN-EGNNrank and DiffDock) systematically outperform the ligand-agnostic methods
(P2Rank and VN-EGNN). We suspect that the relatively higher performance of P2Rank on the PDB-
Bind test, compared to the three other models, is due to a difference in the training data: VN-EGNN,
DiffDock, and VN-EGNNrank were trained on a PDBBind training set created with a temporal split
that enforces dissimilarity to the test set by filtering out complexes with ligands present in the test
data, whereas P2Rank was trained on a separate dataset that, although it doesn’t contain complexes
after 2019, does not enforce a similar dissimilarity constraint relative to the PDBBind test set.

VN-EGNNrank on par with much larger DiffDock. Our lightweight VN-EGNNrank (approxi-
mately 3M parameters) has comparable performance with the much larger DiffDock model (around
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25M parameters) on three of the four evaluated datasets (Coach420, PDBBind, and ASD). How-
ever, DiffDock outperforms VN-EGNN-based methods on the HOLO4K dataset. We suspect that
this discrepancy arises from differences in training data and processing: DiffDock was trained on
full PDB structures using a slightly larger and less restrictive training set, while VN-EGNN and VN-
EGNNrank were trained using only the chains within 4A of the ligand of interest. Since HOLO4K
contains many symmetric units of large complexes, this leads to a greater domain shift for the VN-
EGNN-based methods compared to DiffDock.

Efficient runtime performance. Our experiments demonstrate that VN-EGNNrank dramatically
reduces inference time compared to DiffDock. According to Corso et al. (2023), DiffDock requires
approximately 10 seconds per prediction for 10 generated binding poses on an A100 GPU, with
runtime scaling linearly with the number of ligands tested. In contrast, the ligand encoder in VN-
EGNNrank incurs virtually no additional runtime overhead (see Figure 2, also computed on an A100
GPU), making VN-EGNNrank exceptionally well-suited for efficient screening of large molecular
libraries.

DiffDock
—»— VN-EGNNrank

Runtime (s)
=
o
w

101 o 3 x

10° 10! 107 103 104
Number of Ligands

Figure 2: Scaling of runtime with the number of ligands per protein for VN-EGNNrank and Diff-
Dock. DiffDock runtimes are extrapolated from the values reported in Corso et al. (2023).

Pocket prediction models are biased toward orthosteric binding sites. In three well-established
datasets, HOLO4K, the PDBBind test set, and Coach420, we observe a significant drop in perfor-
mance when moving from single-ligand to multi-ligand complexes for all models. We hypothesize
that single-ligand cases in these datasets are predominantly orthosteric binders, which are well rep-
resented in the training data (e.g., the temporal split of PDBBind), resulting in higher performance.
In contrast, multi-ligand complexes, by definition, include a greater proportion of allosteric binders,
for which the models perform markedly worse. Conversely, in the ASD dataset — where single-
ligand complexes are specifically allosteric — the overall performance is lower, and no comparable
drop is observed when transitioning to multi-ligand complexes, which likely contain some orthos-
teric binders. These findings reinforce the conclusion that current pocket prediction models are
inherently tuned to and biased towards orthosteric sites.

4 DISCUSSION

Conclusion. In summary, our results demonstrate that incorporating ligand information through
VN-EGNNrank improves binding pocket identification compared to ligand-agnostic approaches,
achieving performance comparable to — or even surpassing — that of DiffDock, a much larger model.
Despite its lightweight architecture, VN-EGNNrank consistently delivers robust performance across
diverse datasets, highlighting the promise of ligand-conditioned methods.

Limitations. Nevertheless, our work has several limitations. First, our approach remains a work in
progress, and further comparisons other methods such as with state-of-the-art foundational models
for biomolecular structure prediction are warranted. Second, our current evaluation only considers a
single binding pocket per ligand, even though some ligands can bind to multiple sites simultaneously.
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Third, our approach focuses solely on identifying binding pockets in a ligand-informed manner,
without predicting the ligand conformation within the pocket.

Outlooks. Our ongoing work aims to extend the framework to handle multiple binding pockets per
ligand, thereby enhancing its utility for virtual screening. Additionally, we plan to improve model
training by developing more balanced training and evaluation sets that include both orthosteric and
allosteric binders.

MEANINGFULNESS STATEMENT

Proteins and small molecules are two crucial types of molecules encountered in Life Sciences, there-
fore we consider accurate representations of proteins, their binding pockets, and ligands highly
meaningful. Our work, VN-EGNNrank, enhances this by using geometric learning to represent bind-
ing pockets and a ligand encoder to capture ligand-specific features. Through contrastive learning,
we align protein and ligand representations in a shared space to enable ligand-conditioned binding
pocket predictions, offering a more comprehensive view of protein-ligand interactions and support-
ing more efficient drug discovery.
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