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ABSTRACT

Domain generalization (DG) has attracted increasing attention recently, as it seeks
to improve the generalization ability of visual recognition models to unseen target
domains. DG leverages multiple source domains for model training, while single
domain generalization (SDG) further restricts such setting by exploiting only a
single source domain. Nevertheless, both DG and SDG assume that the source
domains are fully labeled, which might not be practical in many real world scenarios.
In this paper, we present a new problem, i.e., semi-supervised single domain
generalization (SS-SDG), which aims to train a model with a partially labeled
single source domain to generalize to multiple unseen testing domains. We propose
an effective framework to address this problem. In particular, we design a label-free
adversarial data augmentation strategy to diversify the source domain, and propose
a novel multi-pair FixMatch loss to generalize classifiers to unseen testing domains.
Extensive experiments on OfficeHome, PACS and DomainNet20 datasets show
that our method surpasses the latest SDG and semi-supervised methods. Moreover,
on PACS and DomainNet20, our method approaches the fully supervised ERM
upper bound within 5% gap, but only uses less than 8% of the labels.

1 INTRODUCTION

Deep neural networks (DNNs) lead large success in the past decade in many fields, e.g., object
detection and classifications. Many of the applications rely on the assumption that training and testing
distributions are identical or close. However, in real scenarios, data acquiring always encounters the
environment variance, i.e., the lighting changes from dawn to night, or the camera moves from one
place to another. The environment variance inevitably brings in the domain shift for the captured
training and testing data (Recht et al., 2019; Hendrycks & Dietterich, 2019). Closing this domain
discrepancy has become one of the recent popular topics in the community.

Domain adaptation (DA) (Wang & Deng, 2018) and domain generalization (DG) (Zhou et al., 2021a;
Wang et al., 2021a) are the major techniques to tackle this problem. DA methods jointly exploit the
source and target domain data for model training, in which the methods attempt to align the feature
space between the source and target domains. While DG methods solve a more challenging task,
utilizing multiple labeled source domain data to learn towards a generalized model, to predict the
target domain data which is unavailable in the training process. Compared to DA, DG relaxes the
assumption on target domains and usually enjoys better model generalization ability. The differences
between DA and DG are illustrated in Figure 1.

Though promising, DG still faces two major limitations. First, DG methods require multiple source
domains for model training. In practice, it would be expensive or even infeasible to collect multiple
source domains’ data. To address this problem, single domain generalization (SDG) (Qiao et al.,
2020) has been proposed recently. Different from DG, SDG aims to train a model with a single source
domain data and generalize to multiple unseen target domains. Second, DG methods require that the
source domains should be fully labeled, which is usually expensive and labor intense. Very recently,
semi-supervised domain generalization (SS-DG) (Zhou et al., 2021b) is proposed to address this issue,
which assumes only a small portion of the samples are labeled in source domains. Clearly, SDG and

1



Under review as a conference paper at ICLR 2023

SS-DG
Training

Testing

SS-DA
Training

Testing

SS-SDG
Training

Testing

DG
Training

Testing

DA
Training

Testing

SDG
Training

Testing

Target Domain Source Domain Labeled Samples Unlabeled Samples

Figure 1: Problem setting differences among domain adaptation (DA), domain generalization (DG),
single domain generalization (SDG), semi-supervised domain adaptation (SS-DA), semi-supervised
domain generalization (SS-DG), and our newly introduced setting semi-supervised single domain
generalization (SS-SDG) task. Different colors indicate different domains.

Table 1: Component-wise comparison of the proposed Semi-Supervised Single Domain Gener-
alization (SS-SDG) to Domain Adaptation (DA), Domain Generalization (DG), Single Domain
Generalization (SDG), Semi-supervised Domain Adaptation (SS-DA), Semi-supervised Domain
Generalization (SS-DG). Ds and Dt denote the source domain and target domain, respectively.

Problem Setting DA DG SDG SS-DA SS-DG SS-SDG (ours)

Number of Ds > 1? × ✓ × × ✓ ×
Ds is full annotated? ✓ ✓ ✓ ✓ × ×

Access of Dt in training process? ✓ × × ✓ × ×

SS-DG separately tackle each of the two limitations. However, we desire a unified framework that
can boost DG from both of the two perspectives.

Consequently, we propose a more practical yet unsolved problem, i.e., semi-supervised single domain
generalization (SS-SDG). In this problem, we assume that only one source domain is available for
model training, and it consists of a few labeled and abundant unlabeled samples. The relationships
between SS-SDG and other related problems are illustrated in Figure 1. We also summarize the
component-wise differences between the proposed SS-SDG and other settings in Table 1. While SDG
is the most relevant setting to ours, most of existing SDG methods (Zhao et al., 2020; Qiao et al.,
2020; Fan et al., 2021) are based on adversarial data augmentation (Volpi et al., 2018) and require the
label information to generate new samples to enrich the diversity of source domain. As the result,
these SDG methods would fail in our proposed SS-SDG setting which cannot provide sufficient and
accurate label information for data augmentation. Our empirical results validate that existing SDG
methods perform unsatisfying in our SS-SDG task.

To address the new challenging problem, we propose a novel label-free adversarial data augmentation
framework to enrich the source domain diversity without label information, as well to leverage such
generated data in a multi-pair FixMatch way to regularize for better training. Figure 2 illustrates the
overall flowchart of our method. Inspired by self-supervised learning (SSL) (Yang et al., 2021), we
design a label-free adversarial data augmentation strategy, which is an interactive feature extractor
pre-train and adversarial sample generation approach without label information, to enhance the
diversity of source domain data. Given source domain and the newly generated samples, we organize
them into multiple training pairs and propose a novel multi-pair FixMatch (MPFM) loss to regularize
the classifier training for better generalization ability to unseen testing domains.

Our contributions are thus summarized as:

• We introduce a new challenging domain generalization task, namely the semi-supervised
single domain generalization (SS-SDG), addressing the scenario of training on a partially
labeled single source domain while generalizing to multiple unseen target domains.

• We propose an efficient framework, introducing a novel label-free adversarial data aug-
mentation strategy to enrich diversity of the single source domain diversity without label
information, and a multi-pair FixMatch regularization to better utilize the diversified data
towards a more generalized classifier for unseen target domains.

• We conduct extensive SS-SDG experiments on OfficeHome, PACS and DomainNet20, and
achieve superior performance over the state-of-the-arts, e.g., approaching supervised ERM
upper bound within 5% accuracy gap by only using less than 8% labels.
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2 RELATED WORK

In this section, we briefly introduce and discuss three closely related research topics to our work.

Domain Generalization (DG) aims at learning a generalized model with multiple source domains to
adapt to an unseen target domain. Early DG methods (Ganin et al., 2016; Li et al., 2018b; Piratla
et al., 2020) aim to learn a domain-invariant feature space by aligning distributions across all source
domains. Following-up DG methods (Shankar et al., 2018; Zhou et al., 2020; Xu et al., 2021; Huang
et al., 2021) explore how to generate extra synthetic data based on the source domain data, and
use the joint data to recover the unseen target domain distribution. Recently, meta-learning based
methods (Li et al., 2018a; Dou et al., 2019; Du et al., 2020) leverage the multiple source domains in a
meta-train and meta-test manner and update the gradient in a more sophisticated way.

Single Domain Generalization (SDG) is a more challenging setting compared to domain gener-
alization, which only uses one source domain to learn a model and generalize to multiple unseen
target domains. A mainstream of recent SDG methods (Volpi et al., 2018; Zhao et al., 2020; Qiao
et al., 2020; Li et al., 2021; Fan et al., 2021; Wang et al., 2021b) leverages data augmentation in
diversifying the single source domain distribution for better generalization ability. Different from
SDG, we propose a more practical yet challenging setting, i.e., the semi-supervised single domain
generalization (SS-SDG), where labeled samples in the source domain are limited. Since the previous
SDG methods’ data augmentation highly relies on label information, when shifting to our SS-SDG
setting, their methods’ effectiveness can be degraded due to insufficient label information.

Semi-Supervised Learning (SSL) is a fundamental research topic in computer vision and machine
learning, which seeks to learn a model with few labeled and a large amount of unlabeled data. SSL
methods can be generally divided into three categories: (1) The pseudo-labeling (Lee et al., 2013)
based methods (Berthelot et al., 2020; Xie et al., 2020b), utilize the intermediate model to predict
the pseudo ground truth label and iteratively update the model with the pseudo labeled data. (2) The
consistency constraint (Oliver et al., 2018) based methods (Tarvainen & Valpola, 2017; Miyato et al.,
2019; Zhang & Qi, 2020), leverage the consistency across the same data with multiple augmentations
to regularize the embedding learning. (3) The comprehensive methods (Sohn et al., 2020; Xie
et al., 2020a; Zhang et al., 2021) combine both the pseudo-labeling and data augmentation for more
performance boost. The canonical SSL setting would be impractical, as it assumes the training
distribution and testing distribution are similar. To relax the assumption, a new semi-supervised
domain generalization (SS-DG) (Zhou et al., 2021b) is proposed, i.e., StyleMatch (Zhou et al., 2021b),
which tackles SS-DG by inducing style augmentation (Huang & Belongie, 2017) to extend source
domain distribution in the FixMatch (Sohn et al., 2020) framework, and alleviates overfitting problem
with stochastic classifier. Our proposed semi-supervised single domain generalization (SS-SDG), is a
step further, with one source domain and a few labeled data to generalize to multiple target domains,
in which the SS-DG methods, e.g., StyleMatch, are sub-optimal as source domain labeled data is
extremely limited.

3 OUR APPROACH

In this section, we start by introducing the SS-SDG problem with formal notations in Sec. 3.1. Then,
we introduce the model pre-train (Figure 2 “Stage 1-1”) in Sec. 3.2 including the contrastive learning
loss design and the model parameter update. Further, we illustrate the new label-free adversarial data
augmentation (Figure 2 “Stage 1-2”) in Sec. 3.3. Finally, we explain our novel multi-pair FixMatch
loss (Figure 2 “Stage 2”) in Sec. 3.4 and propose the overall training objective.

3.1 PRELIMINARIES

In semi-supervised single domain generalization (SS-SDG), a source domain is denoted as

Ds = {Dls,Dus }, where Dls = {(xl,is , yis)}
ml

s
i=1 is the portion of limited labeled samples and

Dus = {(xu,is )}m
u
s

i=1 indicates abundant unlabeled samples. The multiple target domains are de-

fined as Dt = {D1
t , ...,Dnt } where Dit = {(xit,k)}

mi
t

i=1 indicates the i-th unseen target domain data.
The source and target domains are sampled from different distributions but share the same label space.
Our goal is to learn a model {G,C}, that can perform well on unseen multiple target domains Dt by
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Figure 2: The proposed framework for SS-SDG. Our framework consists of two stages. At stage 1,
we jointly train a feature extractor G in a self-supervised manner by excavating samples intrinsic
supervision with contrastive learning (Stage 1-1), and generate new samples to enrich the diversity
of source domain in an adversarial way (Stage 1-2) without label information. At stage 2, We
propose a novel multi-pair FixMatch (MPFM) loss to better utilize the rich pair information for better
generalization on unseen target domains.

utilizing partially labeled single source domain Ds. In particular, we aim to learn a feature extractor
G : x→ g that maps the input sample x into an embedding space, and train a classifier, C : g → p
that conducts classification by optimizing:

min
1

n

n∑
i=1

Ex∈Di
t
L(C(G(x)), y) (1)

where L is a general classification loss term. Notice that y is known only at the testing phase for the
target domains. G and C are learned only with the source domain data. We hereby introduce the
learning process.

3.2 SELF-SUPERVISION WITH CONTRASTIVE LEARNING

Previous SDG methods (Volpi et al., 2018; Zhao et al., 2020) may encounter degraded performance
in the SS-SDG setting as the source domain data is with insufficient labels. Targeting on the lacking
label venue, recent contrastive learning (He et al., 2020; Chen et al., 2020; Grill et al., 2020; Zbontar
et al., 2021; Zhu et al., 2021) methods have shown promising results on unsupervised feature learning.
They train the feature extractor by pulling the features from same sample under different augmented
views close, and pushing the features from different samples apart.

Following the spirit, we propose to adopt contrastive learning framework to pre-train the feature
extractor G with all source samples. As shown in Figure 2 “Stage 1-1: Pretrain”, the contrastive
framework consists of two feature extractors G∗ and G, two MLP projection heads F∗ and F,
and a memory bank M used to store recent k samples’ features by adopting the First-In-First-Out
strategy to dynamically update it. Notice that F and F∗ are the MLP projection heads only for the
pre-train stage. They are different from our final classifier C. We apply strong augmentation (i.e.,
RandAugment (Cubuk et al., 2020)) on source sample x twice, to obtain two strongly augmented
inputs. Then by feeding these two inputs into G and G∗, respectively, we compute the similarity
between the augmented sample feature fst and all features stored in memory bank and adopt the
InfoNCE (Oord et al., 2018) loss to optimize the framework:

LCL = − log
exp (fst · fs

∗

t /τ)∑k
i=0 exp (f

s
t · fs

∗
t−i/τ)

, (2)

where fst represents the features of the t-th iteration inputs, and τ is a temperature hyper-parameter that
controls the concentration level of the distribution (Hinton et al., 2015). To improve the consistency
of features in memory bank, we employ the exponential moving average (EMA) strategy (Cai et al.,
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2021) to update parameters (θ∗) and normalization factors (µ∗ and σ∗) in G∗ and F∗ from G and F:

θ∗ ← αθ∗ + (1− α)θ,
µ∗ ← αµ∗ + (1− α)µ,
σ∗ ← ασ∗ + (1− α)σ,

(3)

where α is a momentum coefficient close to 1, e.g., 0.999. The parameters θ in G and F are learned
by standard SGD optimizer. There is no back-propagation through the G∗ and F∗. The G∗ and F∗

can be viewed as the smooth temporal ensemble of G and F along the training iterations.

3.3 LABEL-FREE ADVERSARIAL DATA AUGMENTATION

While the self-supervised pre-train provides a good initialization, the problem of generalization to
unseen target domains still exits. As we face the challenge of only using a single source domain
to train G and C, the thumb obstacle is the source data diversity. A highly concentrated source
distribution can easily cause model overfitting. Many existing single domain generalization (SDG)
methods (Volpi et al., 2018; Zhao et al., 2020; Qiao et al., 2020; Fan et al., 2021; Wang et al., 2021b)
adopt the adversarial data augmentation fashion (Goodfellow et al., 2015) to complement the diversity
of source domain. They formulate the SDG problem into a worst-case scenario (Sinha et al., 2018):

min
ψ

sup
Dt

{E[Lce(ψ;Dt) : d(Dt,Ds) ≤ ρ]} , (4)

where d represents a distance metric to evaluate the distribution similarity between source and target
domains. ρ indicates the largest domain discrepancy between Ds and Dt in embedding space. ψ
denotes model parameters optimized by cross-entropy loss Lce with label information. The worst-
case scenario (Equation 4) can be reformulated into a Lagrangian optimization problem with a fixed
penalty parameter β:

min
ψ

sup
Dg

{E[Lce(ψ;Dg)]− βdW (Dg,Ds)} , (5)

where Dg indicates the generated domain from Ds and dW denotes the Wasserstein metric (Volpi
et al., 2018) applied to preserve the semantics of the generated samples. The overall loss function is
formulated as:

LSDG(ψ;Ds) = Lce(ψ;Ds)− βdW (Dg,Ds), (6)
The new domain Dg is generated from Ds by maximizing LSDG with label information under a
small number of iterations: xj+1 ← xj + η∇xj

LSDG(ψ;xj).
Clearly, existing adversarial data augmentation based methods in SDG highly rely on label information
used by Lce, whereas the limited labeled source data from SS-SDG setting impede the above
SDG methods to generate plentiful new samples to diversify the source data distribution. By
seamlessly combining the self-supervised signal introduced in Equation 2 and the worst-case scenario
in Equation 5, we formulate our label-free adversarial data augmentation as:

LG(θ;Ds) = LCL(θ;Ds)− βdW (Dg,Ds). (7)

Following the same updating rule, as shown in Figure 2 “Stage 1-2”, we input each source sample
into G∗ and G, respectively. We compute the similarity between the one passes G and all features
stored in memory bank (a different memory bank from the pre-train stage). With a small number of
iterations to maximize Equation 7 by:

xj+1 ← xj + η∇xjLG(θ;xj) (8)

In this way, we generate a new domain Dg to diversify source domain Ds without label information.
The data augmentation phase is alternated with the pre-train phase along the training epochs.

3.4 MULTI-PAIR FIXMATCH REGULARIZATION

With the augmented Dg and original Ds, there are rich information amongst the source domain
data now. For instance, we can pair the strongly augmented data with the original data, or strongly
augmented data with the weakly augmented data. Further, we can pair the generated data with
original data as well as the strongly/weakly augmented data. Such multi-pair information clearly
brings us a better chance to regularize the feature representation learning than the traditional original-
to-augmented pairs. As FixMatch (Sohn et al., 2020) applies similar strong/weak augmentations
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Algorithm 1 Our proposed Algorithm.

Require: Ds, Dg , Dwg , Dsg , initialized G, F, C.
Ensure: Learned G and classifier C

1: for t = 1 to TP do ▷ TP #iterations
2: Apply Eqn. 2 for Pre-train (Sec. 3.2)
3: if Mod(t,Q)=0 then ▷ Q iteration interval Upd
4: Apply Eqn. 8 for Data Augmentation (Sec. 3.3)
5: end if
6: end for
7: for t = 1 to TJ do ▷ TJ #iterations
8: Group xsg, x

w
g , x, xl

9: Apply S-Aug on xsg, x
w
g , x and W-Aug on x, xl

10: Apply overall loss Eqn. 11 to train G,C
11: end for

as in our framework, and demonstrates state-of-the-art self-supervised training performance, we
consider to formulate our multi-pair constraint into a consistent format, termed Multi-Pair FixMatch
regularization.

Specifically, for strongly augmented data Dss = Augs(Ds) and weakly augmented data Dws =
Augw(Ds), we generate pseudo-labels ŷw = argmax (pw) for weakly augmented sample xw ∈ Dws ,
where pw = C(G(xw)) is the output of classifier C. FixMatch penalizes by assigning the pseudo-
label ŷw as the true label for strongly augmented sample xs ∈ Dss with cross-entropy loss:

LFM (x) = −I(max(pw) ≥ ρ) log ps(ŷw), (9)

where ps = C(G(xs)) and ρ is the threshold to decide whether LFM (x) is applied on sample x.

Further, with augmented Dss and Dws , we adopt our proposed label-free adversarial data augmentation
(Figure 2 “Stage 1-2: Data Augmentation”) to generate Dwg and Dsg, respectively. This process is
carried out at the same time as generating Dg . As shown in Figure 2 “Stage 2: Multi-Pair FixMatch”,
we further apply strong augmentation on top of generated Dwg ,Dsg to derive Dwsg ,Dssg as the input
pairs for MPFM loss:

LMPFM (x) = −I(max(pw) ≥ ρ)(log pssg (ŷw) + log pwsg (ŷw))/2, (10)

where pssg = C(G(xssg )), xssg ∈ Dssg and pwsg = C(G(xwsg )), xwsg ∈ Dwsg . The objective for
updating our model (G,C) in stage1-2 is:

LS2 = Lce + λLFM + γLMPFM , (11)

where λ,γ are balancing hyper-parameters and empirically set as 1 and 0.5, respectively. LCE
is cross-entropy loss over labeled source domain data. Our method procedure is summarized in
Algorithm 1.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our method as the following: Firstly, we introduce
the Experimental settings. Next, we compare our method to other methods mainly from single
domain generalization and semi-supervised learning. Then, we provide an extensive ablative study
investigating each of our proposed modules. Last, we present the latent feature space visualization.

4.1 EXPERIMENTAL SETTINGS

Datasets: We leverage three commonly used datasets from domain adaptation and generalization
research field. (1) PACS (Li et al., 2017) is a recent challenging domain adaptation/generalization
benchmark which shows larger domain discrepancy. It consists of seven object categories from four
domains, namely art paintings, cartoon, sketch, and photo. For this dataset, we evaluate on two SS-
SDG settings: 15 labeled samples per class (total 105 labels) and 25 labeled samples per class (total
175 labels). (2) OfficeHome (Venkateswara et al., 2017) contains four domains (art, clipart, product,
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Table 2: mAP(%) on PACS. Named in column is source domain for training. Rest domains are the
testing unseen domains. (A: Art painting, C: Cartoon, P: Photo, S: Sketch)

Method labels: 105 (15 per class) labels: 175 (25 per class)
A C P S Avg. A C P S Avg.

ERM (sup.) 70.9 76.5 43.3 53.1 60.7 70.9 76.5 43.3 53.1 60.7
ERM 49.45 50.84 30.36 25.25 38.96 52.51 54.05 30.76 23.61 40.23

ENT-MIN 54.15 55.61 38.08 24.95 43.20 56.10 59.65 36.99 26.92 44.91
FixMatch 57.67 69.13 45.46 42.17 53.61 63.70 68.27 45.79 42.86 55.16

ADA 47.87 50.71 30.31 30.46 40.08 51.71 53.42 30.33 26.74 40.55
MEADA 48.79 52.81 34.23 30.42 41.56 51.97 54.54 32.27 28.19 41.74

Ours 60.26 69.91 47.30 46.70 56.04 65.58 70.11 48.19 47.95 57.96

and real world) with 65 classes. This is one of the canonical domain adaptation/generalization
benchmarks. We design two SS-SDG settings on this dataset: 10 labeled samples per class (total
650 labels) and 15 labeled samples per class (total 975 labels). (3) DomainNet20 is a subset of
DomainNet (Peng et al., 2019). We self-construct the setting as picking 4 domains (clipart, painting,
real, and sketch) and 20 classes out of the entire dataset. We adopt two SS-SDG settings: 15 labeled
samples per class (total 300 labels) and 25 labeled samples per class (total 500 labels).

Baselines: We compare with two main streams of the state-of-the-art methods: (1) Single do-
main generalization methods, namely Adversarial Data Augmentation (ADA) (Volpi et al., 2018)
and Maximum-Entropy Adversarial Data Augmentation (MEADA) (Zhao et al., 2020). (2) Semi-
supervised learning methods, namely Entropy Minimization (ENT-MIN) (Yves Grandvalet, 2004)
and FixMatch (Sohn et al., 2020). Besides, we consider another baseline general Empirical Risk
Minimization (ERM) (Koltchinskii, 2011).

Evaluation Metrics: For each of the benchmarks, amongst all the domains defined, we iteratively
take one domain as the source domain and test on all the rest domains. The mean average precision
(mAP) is reported by averaging over 3 random splits of all the classes’ average precision.

Implementation Details: At stage1 in Sec. 3.2 and 3.3, We adopt an ImageNet-pretrained ResNet18
as the feature extractor G and a 2-layer MLP head (hidden layer 512-d, with ReLU) as projection
head F. We set memory bank size to 1600 and batch size to 32 in whole training process. At the
model pre-train stage in Sec. 3.2, we use SGD optimizer with learning rate 0.0005, weight decay
0.0005 and momentum 0.9, and train for 1500 iterations. At data augmentation stage in Sec. 3.3, we
adopt SGD optimizer with learning rate 50.0 and 15 iterations to maximize Equation 7. The data
augmentation is involved only once at the 200-th iteration during model pre-train. At “Stage 2” in
Sec. 3.4, we adopt SGD with learning rate 0.001, weight decay 0.0005, momentum 0.9, batch size 32
and train for 8500 iterations.

4.2 PERFORMANCE EVALUATION

PACS: Quantitative comparison is shown in Table 2. We group the methods on top three rows
compared to ours on the last row. On the first row, notice that ERM (supervised) uses all the dataset
labels for supervised learning hence serves as the upper bound, where it is neither in the 15 label
per class setting nor in the 25 per class setting. We equip ERM with our semi-supervised domain
generalization setting for the fair comparison. On the second row, there are two semi-supervised
learning methods. One is canonical, the entropy minimization method, the other is recent top method
FixMatch. On the third row, we present two cutting-edge domain generalization methods: Adversarial
Data Augmentation (ADA) and Maximum-Entropy Adversarial Data Augmentation (MEADA). On
15 instance per class setting, we observe that our method consistently outperforms all the compared
methods with significant margin. For example, we get 2.43% better than FixMatch and 14.48%
better than MEADA in terms of ”Avg”. By checking the 25 labels per class setting, we see 2.4%
and 15.92% performance gains on “Painting” compared with FixMatch and MEADA, respectively.
Further, surprisingly our “Avg.” number is approaching the upper bound ERM (supervised) which
utilizes all the label information from the dataset within less than 4% gap, whereas our method only
utilizes less than 5% (15 per class) or 8% (25 per class) of all the labels.
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Table 3: mAP(%) on OfficeHome. Named in column is source domain for training. Rest domains are
testing unseen domains. (A: Art, C: Clipart, P: Product, R: Real world)

Method labels: 650 (10 per class) labels: 975 (15 per class)
A C P R Avg. A C P R Avg.

ERM (sup.) 51.27 49.18 44.12 56.86 50.36 51.27 49.18 44.12 56.86 50.36
ERM 41.09 35.57 36.09 44.15 39.23 44.94 38.99 37.84 47.85 42.40

ENT-MIN 40.74 37.10 38.69 46.98 40.88 45.43 40.93 39.96 51.09 44.35
FixMatch 40.52 36.53 39.19 47.73 40.99 44.70 41.72 40.21 52.04 44.67

ADA 40.75 35.63 35.83 43.76 38.99 44.67 38.97 37.16 47.43 42.05
MEADA 40.74 35.80 35.86 44.15 39.14 44.97 39.41 37.14 47.71 42.31

Ours 43.55 40.65 40.54 49.13 43.47 47.67 43.39 42.49 53.46 46.75

Table 4: mAP(%) on DomainNet20. Named in column is source domain for training. Rest domains
are the testing unseen domains. (C: Clipart, P: Painting, R: Real, S: Sketch)

Method labels: 300 (15 per class) labels: 500 (25 per class)
C P R S Avg. C P R S Avg.

ERM (sup.) 59.57 64.74 55.57 55.82 58.93 59.57 64.74 55.57 55.82 58.93
ERM 44.87 52.27 39.38 42.34 44.72 48.81 54.21 44.56 47.47 48.76

ENT-MIN 45.22 53.78 46.84 42.36 47.05 50.93 53.14 49.59 49.73 50.83
FixMatch 51.45 55.27 50.17 49.56 51.61 54.23 57.42 50.35 53.26 53.72

ADA 45.28 52.11 39.69 43.10 45.05 48.93 53.68 44.82 48.74 49.04
MEADA 46.48 52.55 40.93 43.37 45.83 49.74 53.50 45.08 49.50 49.46

Ours 53.31 57.52 52.61 52.91 54.09 56.21 59.35 53.38 56.18 56.28

OfficeHome: Evaluation on OfficeHome is shown in Table 3. Similarly as PACS, we organize the
experiment in the same layout, where the same three groups of the compared methods are listed
on the top three rows with EMR (supervised) as the upper bound. In this evaluation, again we find
that our method consistently and significantly outperforms all the compared methods on both of the
two settings in Table 3. On 10 instance per class setting, we observe that our method consistently
outperforms all the compared methods with significant margin, i.e., 2.8% better than second best
on “Art” as source domain and 3.55% better than second best on “Clipart”. The same trend is
observed on 15 instances per class setting on the right column. Besides, as more instances per class is
used in training, we see that the performance on the right column is generally higher than the left
column setting as expected. Another interesting point is while our performance to upper bound gap
is less than 7%, our setting only uses less than 18% labels of OfficeHome (10 instances per class)
and 26.71% (15 instances per class). Furthermore, we still find that our label-free adversarial data
augmentation based framework consistently and significantly outperforms ADA and MEADA with
more than 10.0% advantage under different settings.

DomainNet20: The original DomainNet (Peng et al., 2019) is relatively a large scale domain
adaptation benchmark with 6 domains and overall 345 categories. Since our setting is semi-supervised,
where we only utilize a few labeled data, e.g., we constrain only 15 or 25 samples per class presenting
their labels. In this way, for those categories that are with less than 15 images, we discard them
from the training data. Meanwhile, to provide a similar-scale evaluation to other benchmarks such as
OfficeHome and PACS, we randomly pick 4 out of 6 domains and 20 out of the 345 categories to
form our training and testing data for demonstration. In Table 4, our method’s performance across the
300-label and 500-label settings show clear advantage over the other methods. Compared to the most
competitive opponent FixMatch, our method surpasses by 2.47% on 300-label “Avg.” and 2.56%
on 500-label “Avg.”. Compared to the representative SDG methods, i.e., MEADA, we see 8.26%
performance gain on 300-label “Avg.” and 6.82% performance gain 500-label “Avg.”. In this dataset,
we observe that the ERM baseline performs at the same level as those single domain generalization
methods, partially suggesting that this dataset is more challenging as label information other than
domain discrepancy becomes more critical, where the self-supervised methods can benefit more.
Notice that our method “Avg” presents very close performance to the upper bound ERM (supervised)
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Table 5: Ablation study on PACS with 15 per class setting. Named in column is source domain. Rest
domains are the testing unseen domains. (A: Art painting, C: Cartoon, P: Photo, S: Sketch)

PACS Lce LFM LCL LMPFM A C P S Avg.

BL ✓ 49.45 50.84 30.36 25.25 38.96
BL+S1 ✓ ✓ 50.60 52.40 32.75 27.78 40.88

FM ✓ ✓ 57.67 69.13 45.46 42.17 53.61
FM+S1 ✓ ✓ ✓ 59.39 69.61 45.67 43.02 54.42

Ours ✓ ✓ ✓ ✓ 60.26 69.91 47.30 46.70 56.04

with less than 5% accuracy gap, but using only 7.7% (15 per class) or 12.96% (25 per class) of
the overall labels, which further indicates the effectiveness of our self-supervised adversarial data
augmentation design.

4.3 ABLATION STUDY

We ablate our proposed core components in Table 5. We clearly decompose the loss terms and
abbreviate the simple baseline (ERM) as “BL” and the strong baseline FixMatch as “FM”. LCL refers
to our pre-training stage 1-1 and data augmentation stage 1-2. LMPFM refers to that, in stage 1-2, we
further conduct LFADA on weakly and strongly augmented data to generate data for the multi-pair
loss. Compared to the naive ERM “BL”, the strong baseline “FM” achieves much better performance.
Our intention was not to show the progressive improvement on accuracy from “BL” to “FM” and
then to “Ours”. Indeed, we aim to demonstrate that proposed LMPFM and LCL can orthogonally
improve the performance of baselines, e.g., comparing “BL” to “BL+S1”, and “FM” to “FM+S1”,
where a clear boost of 1.8% and 0.8% is observed, respectively. Furthermore, by comparing “Ours”
to “FM+S1” and “FM’, we achieve another 1.6% and 2.4% accuracy gain. Each of the incremental
combination demonstrates the effectiveness of the components, such as the label-free adversarial
data augmentation and the Multi-Pair FixMatch, suggesting the LFADA is advantageous to handle
semi-supervised single domain generalization (SS-SDG) problems.

4.4 VISUALIZATION

Figure 3: The t-SNE visualiza-
tion of feature with ERM (up) and
ours (down). Same color indi-
cates the same category. Circle in-
dicates source domain. Star indi-
cates unseen target domains. Best
viewed in color and zoomed in.

We visualize feature space extracted by models trained with our
method and the baseline method, i.e., ERM, on PACS dataset where
Sketch is the target domain. As shown in Figure 3, It appears
that our model yields clear better separation of different categories.
Meanwhile, we observe that for different shapes in the same color,
with our method, the data points tend to cluster closer, while other
methods leave those same classes but different domain data points
separated. The closer clustering indicates better alignment of source
domain to target domains. Our method presents clear lower domain
gap than ERM, demonstrating that our method indeed continuously
generalizes towards the unseen target domains.

5 CONCLUSION

In this work, we propose to solve a new problem under a realistic
setting, namely the semi-supervised single domain generalization,
where number of domains for generalization is single and with only
very limited label information of training data. We leverage expertise
from self-supervised learning and propose a multi-pair FixMatch
loss to mitigate the lack of label issue. Further, we newly introduce a label-free adversarial data
augmentation to enrich the source domain distribution under insufficient label information scenario.
Our augmentation is significantly different from traditional adversarial ones that heavily rely on label
information. Extensive study across three challenging domain generalization benchmarks demon-
strates our method’s advantage, not only surpassing state-of-the-art methods, but also approaching
the fully supervised upper bounds.
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A APPENDIX

This appendix provides details of datasets and additional experimental results. Section A.1 shows
details about datasets used in our experiments. Section A.2 demonstrates the performance of our
method with different hyper-parameter settings. Section A.3 visualizes the samples generated by our
approach.

A.1 DATASETS

Table 6 shows the overall descriptions of benckmark datasets, i.e., OfficeHome (Venkateswara et al.,
2017), PACS (Li et al., 2017), and DomainNet20. Here, DomainNet20 is a subset of DomainNet (Peng
et al., 2019) created by ourselves, which contains 4 domains (Clipart, Painting, Real, and Sketch)
with 20 categories (0-baseball bat, 1-binoculars, 2-bracelet, 3-diving board, 4-goatee, 5-hamburger,
6-hurricane, 7-knee, 8-parachute, 9-pickup truck, 10-pillow, 11-pizza, 12-sandwich, 13-saw, 14-
scorpion, 15-speedboat, 16-square, 17-swing set, 18-tent, 19-trumpet). As explained in the main
submission Sec. 4.2 “DomainNet20”, the reason why we create a subset of original DomainNet is
that, we find that many categories are with limited samples. When we consider the settings of 15 or
20 samples per class, not all the categories defined in DomainNet are valid. Moreover, to indicate
the same behavior trend of our trained models, we choose to trim the dataset to at the same scale of
the other two datasets, OfficeHome and PACS. In this way, we randomly select 4 domains and 20
categories to form DomainNet20.

Table 6: Statistics of the three benchmark datasets.

Datasets Subsets Classes Samples

OfficeHome

Art

65

2427
Clipart 4365
Product 4439

Real World 4357

PACS

Art Painting

7

2048
Cartoon 2344
Photo 1670
Sketch 3929

DomainNet20

Clipart

20

2971
Painting 2585

Real 9673
Sketch 4768

A.2 ADDITIONAL RESULTS OF OUR APPROACH

The overall loss function of our approach in “Stage 2” is:

LS2 = Lce + λLFM + γLMPFM , (12)

where λ and γ are hyper-parameters. In the following, we evaluate the performance of our approach
with different hyperparameter settings.

A.2.1 INFLUENCE OF λ AND γ IN EQ.(1)

We discuss the sensitivity of hyper-parameters λ and γ in Eq.(1) by evaluating them on PACS dataset
where Sketch is selected as source domain. The results are shown in Fig. 4 and 5.

The value of hyper-parameter λ is selected from {0.1, 0.2, 0.4, 0.8, 1.0, 1.2, 1.5, 1.8, 2.0} and the
value of hyper-parameter γ is fixed to 0.5. We observe that our method is relatively stable in the
range [0.1, 2.0] and gets better performance in the range [0.25, 0.75].

The value of hyper-parameter γ is selected from {0.1, 0.2, 0.4, 0.5, 0.8, 1.0, 1.2, 1.5, 1.8, 2.0} and
the value of λ is fixed to 1.0. We find that the classification accuracy is relatively stable in the range
[0.75, 1.5]. When γ is out of the range [0.75, 1.5], the performance is slightly degraded.

13



Under review as a conference paper at ICLR 2023

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
20

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

 (%
)

Ours(acc)
FixMatch(acc)

Figure 4: Accuracy versus different values of λ on PACS dataset by selecting Sketch as source
domain, respectively.
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Figure 5: Accuracy versus different values of γ on PACS dataset by selecting Sketch as source
domain, respectively.

A.2.2 NUMBER OF AUGMENTATIONS IN “STAGE 1”

We study the effect of the hyper-parameter: the number of augmentations in “Stage 1”, on PACS
dataset where Sketch is adopted as source domain. We plot the accuracy curve under different
augmentation times. As shown in Fig. 6, we find that the accuracy reaches the best value when
augmenting twice and the accuracy is slowly getting worse with further increased the number of
augmentation.

A.2.3 WHEN TO DO AUGMENTATION IN “STAGE 1”

We explore the influence of when to augment in “Stage 1” on PACS dataset where Sketch is used
as source domain. The experimental results are reported in Fig. 7. Here, the maximum iteration in
“Stage 1” is set to 1500. It can be observed that the performance of our method is improving with
augmentation being executed later in “Stage 1”. Because a more well pre-trained model in “Stage 1”
benefits more on our data augmentation process. After 800 iterations, the choice of different iterations
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Figure 6: Accuracy versus different number of augmentations in “Stage 1” on PACS dataset by using
Sketch as source domain.
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Figure 7: Accuracy versus when to augment in “Stage 1” on PACS dataset by choosing Sketch as
source domain.

for data augmentation is very close, demonstrating that the pre-trained model in “Stage 1” after 800
iterations is already converged and thus does not change much.

A.2.4 NUMBER OF ITERATION FOR “STAGE 1”

We investigate into on which iteration the pre-trained model halts and is then utilized in our label-free
adversarial data augmentation training. Fig. 8, we observe that there are two peaks, one is at iteration
3000, the other is at iteration 6000. In general, our method is relatively insensitive to the pre-trained
model, i.e., it is very stable to use the pre-trained model from different training iterations.

A.3 VISUALIZATION

We see in Fig. 9 besides the overlap of generated and original data, there is a clear portion of non-
overlapped generated data (green dots on right). We also visualize that in fact the original and the
generated samples are distant (color connected), which sufficiently guarantees the data diversity
enrichment.
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Figure 8: Accuracy versus different total iterations in “Stage 1” on PACS dataset by selecting Sketch
as source domain.

Source Generated

Figure 9: Visualization of features of source and generated samples (”Giraffe” category in Cartoon
domain of PACS).
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