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Abstract

The rapid proliferation of domain-specialized machine learning models presents a
challenge: while individual models excel in specific domains, their performance
varies significantly across diverse applications. This makes selecting the optimal
model for new tasks, especially with limited or no domain-specific data, a difficult
problem. We address this challenge by formulating it as a multiple-source domain
adaptation (MSA) problem. We introduce a novel, scalable algorithm that effec-
tively routes each input to the best-suited model from a pool of available models.
Our approach provides a key performance guarantee: for any new domain that lies
within the convex hull of the source domains, the accuracy achieved by the best
source model is maintained. This guarantee is formally established through a theo-
retical bound on the regret for new domains, expressed as a convex combination of
the best regrets in the source domains, plus a concentration term that diminishes as
the amount of source data increases.

1 Introduction

Fine-tuning is a key step in adapting large language models (LLMs) to specialized tasks or domains
after their general pre-training. In this process, an LLM trained on vast datasets is further trained
on smaller, task-specific datasets. As organizations and researchers fine-tune LLMs for tasks like
summarization, translation, or customer service, the result is a growing collection of models, each
optimized for different tasks but based on the same underlying architecture.

Routing algorithms are crucial for efficiently managing this diversity of specialized models, by
determining which model best fits a given input. Recently, various routing algorithms have been
proposed (Chen et al., 2023; Wang et al., 2023; Hu et al., 2024; Madaan et al., 2023; Yue et al.,
2023; Lee et al., 2023; Shnitzer et al., 2023; Narayanan Hari and Thomson, 2023; Lu et al., 2023),
including some with strong theoretical guarantees (Mao et al., 2023, 2024a,b). While these routing
solutions can be effective for inputs drawn from each specific task distributions, they provide no
guarantees for inputs drawn from a mixture of tasks. Building a fine-tuned model for every possible
task combination is impractical, so how can routing be designed to handle such mixed-task inputs?

To address this problem, this paper frames model routing as a multiple-source domain adaptation
(MSA) problem (Mansour et al., 2008) and derives a principled solution for enhancing robustness
and adaptability across diverse and dynamic task distributions. Our approach grounded in strong
MSA theory (Mansour et al., 2008, 2012; Hoffman et al., 2021; Cortes et al., 2021b) ensures that
our routing model system performs as well as the best individual expert model across any task
mixture. Furthermore, our solution is easily implemented and compatible with existing router training
approaches. It enhances existing router training by strategically adjusting task domain weights.
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Section 3 introduces our novel algorithm, which is supported by strong theoretical results (Section 4)
and validated through extensive experimentation (Section 5). Related work in routing and multiple-
source adaptation is reviewed in Appendix A. We begin by outlining our problem formulation.

2 Problem Formulation

We first introduce the model routing problem and then cast it as an MSA problem.

2.1 Model Routing

We consider a finite set of generative models, denoted by Π, where each model π∶X → ∆(Y)
maps inputs X to probability distributions over outputs Y . For example, if Π consists of generative
language models, X would represent prompts and Y their corresponding generations. Additionally,
we assume there are k benchmark tasks, D1, . . . ,Dk, where each Di is a distribution over inputs.
Typically, access to Di is limited to a finite dataset. We will denote by D̂i the empirical distribution
consisting of ni i.i.d. samples drawn from Di. Let r⋆∶X ×Y → [0,1] represent a scoring function
that evaluates the quality of a generation y ∈ Y for a given input x ∈ X . For example, r⋆ could
indicate the probability that human evaluators prefer y over the output of a reference model. Although
r⋆ may be unknown, we assume access to a scoring oracleR that provides unbiased estimates of r⋆
for any input-output pair (x, y). For simplicity, we assume that the scoring function r⋆ is uniform
across all benchmark tasks, though this assumption can be relaxed. The value of a model π ∈ Π on an
input x or distribution over inputs D is defined as follows:

v(π,x) = E
y∼π(x)

[r⋆(x, y)] v(π,D) = E
x∼D

[v(π,x)].

Goal of predictive model routing. Given access to Π,R, and the datasets D̂1, . . . , D̂k, our goal is to
select a high-quality probabilistic routing function f ∶X →∆(Π) from a family F of such functions.
Each routing function maps an input x ∈ X to a probability distribution over the models in Π. For
any input x, a model π ∈ Π is selected by sampling from the distribution f(x).

For any π∶X →∆(Y) and (x, y) ∈ X ×Y , let π(y∣x) denote the probability of y under the distribution
π(x). Given a routing function f ∈ F , we define the induced distribution πf(⋅∣x) over outputs Y as:

∀(x, y) ∈ X ×Y, πf(y∣x) = ∑
π∈Π

f(π∣x)π(y∣x).

The objective is for f to route inputs x, drawn from an unknown test domain D ∈ ∆(X ), to models in
Π that yield high scores according to the oracleR. Specifically, we aim to find an f that maximizes
the expected score v(πf ,D), without prior knowledge of D. The performance of a routing function
f is evaluated by the regret of its induced policy πf on the test domain D, defined as:

reg(πf ,D) ∶= max
π∈Π

v(π,D) − v(πf ,D), (1)

that is the gap between the performance of the best model in Π and that of the model selected by f .

Why is the test domain unknown? The test distribution D, representing the real-world data an
application will encounter, is typically unknown during development. This is particularly true for new
applications, where we lack sufficient data to accurately assess how the model will be used. Even for
existing applications, the distribution D can change as user behavior evolves in response to model
updates. For example, if a model demonstrates unexpected proficiency in a specific task, users might
shift their usage patterns accordingly.

2.2 Predictive Model Routing as Multiple-Source Domain Adaptation.

Multiple-source domain adaptation (MSA) is a closely related problem that has been extensively
studied, particularly in classification and regression problems (Mansour et al., 2008, 2012; Hoffman
et al., 2021; Cortes et al., 2021b). In MSA, the task involves multiple source domains, D1, . . . ,Dk,
each associated with a near-optimal model h1, . . . , hk (Mansour et al., 2008). The target domain, Dλ,
is defined as a λ-mixture of the source domains, Dλ = 1

k ∑
k
i=1 λiDi, where λ ∈ ∆([k]) represents

unknown mixture weights. The objective is to devise a combination rule for the models hi such that
the resulting model performs well on any target domain Dλ.
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We can formulate the predictive model routing problem as a multiple-source domain adaptation task
by first selecting an appropriate model, πi, for each dataset, which we refer to as the expert model
for domain Di. In many applications, natural choices for πi arise, such as when a model π has
been fine-tuned to perform well on a specific domain Di. More generally, we can define πi as the
model in the set Π that achieves the highest value estimate for Di. Next, we augment the empirical
distributions D̂1, . . . , D̂k with score samples from each expert model. For each input x in the support
of D̂i, we compute scores r1, . . . , rk by generating responses yj ∼ πj(⋅∣x) from each expert πj and
querying the reward oracle, which returns scores rj ∼R(x, yj). These scores, rj , serve as unbiased
estimates of the value v(πj , x). We denote the augmented version of D̂i as D̄i.

With the score-augmented distributions (D̄i)i∈[k] in hand, the objective is to find a routing function
(or combination rule) f ∶X → ∆([k]) that maps inputs to a distribution over expert models. This
routing function induces a mixed generation policy πf(y∣x) = ∑ki=1 f(i∣x)πi(y∣x), which is evaluated
based on its performance across any target domain Dλ. The quality of the routing function f is
measured by its regret relative to the full policy set Π, as defined in (1). For the remainder of the
paper, we adopt this domain adaptation perspective on predictive model routing, assuming that we
are provided with a score-augmented empirical distribution D̄i for each domain Di and that the goal
is to learn an effective routing function to the expert models.

3 Proposed Algorithm

To ensure robustness in model routing across test domains, we draw on two key areas of research:
multiple-source domain adaptation (Mansour et al., 2008; Cortes et al., 2021b) and minimax-regret
optimization (Alaiz-Rodrıguez et al., 2007; Rigter et al., 2021; Mohri et al., 2019; Agarwal and
Zhang, 2022). Our approach is particularly aligned with the approaches of Cortes et al. (2021b) and
Mohri et al. (2019); Agarwal and Zhang (2022). Specifically, we adopt the mixture over test domains
and the associated theoretical guarantees from (Cortes et al., 2021b), while the objective formulation
and optimization strategy are inspired by (Mohri et al., 2019; Agarwal and Zhang, 2022).

To design our algorithm, we begin by considering the idealized infinite-data setting and then introduce
finite-sample approximations. Rather than minimizing regret under a fixed distribution, as defined in
(1), we adopt a more robust objective inspired by the minimax regret optimization literature (Alaiz-
Rodrıguez et al., 2007; Rigter et al., 2021; Mohri et al., 2019; Agarwal et al., 2017). Specifically, we
aim to minimize the worst-case regret over all possible test domains:

min
f∈F

max
λ∈∆([k])

max
π′∈Π

v(π′,Dλ) − v(πf ,Dλ). (2)

However, solving this optimization problem during training is challenging due to the maximization
over π′ ∈ Π. To address this challenge, we propose and explore two practical variants that avoid
optimization over π′. Each variant minimizes regret relative to a specific policy, denoted as π⋆A or π⋆B .

Option A: Pointwise Comparator. In this first variant, we aim to compete against a policy π⋆A that,
for each input context x, achieves the performance of the best expert model. Formally, v(π⋆A, x) =
maxi∈[k] v(πi, x) for all x. This leads to the following objective:

min
f∈F

max
λ∈∆([k])

LA(f, δ) ∶= min
f∈F

max
λ∈∆([k])

v(π⋆A,Dλ) − v(πf ,Dλ). (3)

In the finite-sample setting, this min-max objective becomes:

min
f∈F

max
λ∈∆([k])

L̂A(f, δ) ∶= min
f∈F

max
λ∈∆([k])

E
i∼λ

(x,r1,...,rk)∼D̄i

[max
j∈[k]

rj −
k

∑
l=1

f(l∣x) rl]. (4)

where the maximum is taken over expert scores for each sample. While being easy to implement, this
approach introduces additional bias when there is high variance in the expert scores for a given input.

Option B: Domain Comparator. To limit bias in the finite-sample objective, we leverage the
structure of the model routing problem by using π⋆B as the comparator in the regret calculation. This
policy, π⋆B ∶X × [k] → ∆(Y), takes both the input x and the domain label i, following the expert
model πi for samples from domain Di; that is, π⋆B(x, i) = πi(x). As we will demonstrate later, this
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fixed comparator provides strong regret guarantees without requiring an additional inner optimization
over policies. This leads to the following optimization objective:

min
f∈F

max
λ∈∆([k])

LB(f, δ) ∶= min
f∈F

max
λ∈∆([k])

v(π⋆B ,Qλ) − v(πf ,Dλ) (5)

with the finite-sample counterpart:

min
f∈F

max
λ∈∆([k])

L̂B(f, δ) ∶= min
f∈F

max
λ∈∆([k])

E
i∼λ

(x,r1,...,rk)∼D̄i

[ri −
k

∑
l=1

f(l∣x) rl]. (6)

Note that π⋆A and π⋆B coincide when domain experts are perfect, producing the best score for each
individual x from their respective domain. However, in practice, even even πi that are well-tuned for
their domain Di typically do not achieve this, which distinguishes π⋆A from π⋆B in general.

Algorithm. We follow the standard approach and tackle the saddle-point problems in Equation 4 or 6
as a two-player game, which can be solved by dueling two no-regret learners (see Mohri et al. (2019)
for a general Mirror descent solution). Our algorithm is shown in Algorithm 1. The max-player can
be solved efficiently with Hedge (Littlestone and Warmuth, 1994). For the min-player, we do not
prescribe the exact update for ft as we do not wish to prescribe a specific function class F . Instead,
we follow prior work (e.g. Cheng et al., 2022) and rely on an online learning oracle with we refer
to as OLO. We assume that this oracle is a no-regret learner, which we formalize in Definition 1 in
Appendix B. For finite context spaces, OLO can be instantiated as one Hedge instance per context
with regret bound O (

√
kT ∣X ∣ lnk). In general, there is a large family of online-learning algorithms

available with appropriate guarantees (Cesa-Bianchi and Lugosi, 2006).

Practical Implementation. Algorithm 1 can be seamlessly integrated into existing model training
frameworks. For instance, in the case of language model routing, the class F can be a moderate-sized
language model architecture, where the initial policy f1 is a pre-trained model with its final layer
replaced by a randomly initialized linear layer. At each round t ∈ [T ], a batch of samples is drawn
from the augmented datasets, with equal proportions from each. The Hedge update of domain weights
λt can be efficiently computed in closed form with minimal computational cost.

The update of ft is handled using standard gradient-based optimizers on the objectives in (4) or (6),
augmented with a KL-regularization, similar to RLHF training objectives (Christiano et al., 2017),
such as regularization toward a uniform domain distribution or a given domain prior. Alternatively,
the model can be optimized with a logistic proxy loss, similar to standard supervised fine-tuning
objectives, which we explore further in Appendix B.3. Finally, Algorithm 1 returns an averaged model
f̄ , where f̄(i∣x) = 1

T ∑
T
t=1 ft(i∣x) for all x ∈ X and i ∈ [k]. While exact output averaging might not

always be feasible, we can adopt a "model souping" approach by averaging the parameters θt of the
models ft across iterations. The final model is then represented by θ̄ = 1

T ∑
T
t=1 θt, a technique that

has proven effective in practice (Wortsman et al., 2022; Ramé et al., 2024).

4 Theoretical Guarantees

We derive performance guarantees for πf̄ returned by Algorithm 1 under both options and for different
online learning oracles used for ft updates in the appendix. We here present the following corollary
for Option B as we find it most informative for the types of theoretical guarantees which we derive in
the appendix.
Corollary 1. Let F be a convex set. Then, with probability at least 1−O(δ) the regret of the function
f̄ returned by Algorithm 1 with Option B satisfies for all λ ∈ ∆(k) the following inequality:

reg(πf̄ ,Dλ) ≤ reg(π⋆B ,Dλ) +O
⎛
⎜⎜
⎝

¿
ÁÁÁÀ

k

∑
i=1

λ2
i log( ∣F ∣

δ
)

ni
+max

i

λi log( ∣F ∣
δ
)

ni

⎞
⎟⎟
⎠
+O( 1√

T
),

provided that F contains fλ,D̂ for every λ ∈ ∆k, where fλ,D̂ is defined as fλ(i∣x) = λiD̂i(x)
∑kj=1 λjD̂j(x)

.

Recall that reg(π⋆B ,Dλ) is the regret of the policy, π⋆B , which assigns any x(i) ∼ Di to its domain
expert, πi. Choosing λ as the i-th corner of the simplex, that is λi = 1, λj≠i = 0, we see that
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Algorithm 1: Domain adaptation for model routing algorithm

1 Input: Score-augmented distributions D̄i for i ∈ [k] of size ni. Each sample is of the form
(x, r1, . . . , rk) where x is the context and rj is a reward estimate for expert policy πj ;

2 Output: Routing policy f ∶X →∆k;
3 Initialize λ1 = [ 1

k
, . . . , 1

k
]⊺ and f1 in F arbitrarily;

4 for t = 1,2, . . . , T do
5 Sample (x(i)t , r

(i)
t,1 , . . . , r

(i)
t,k) ∼ D̄i for each i ∈ [k];

6 Determine benchmark scores with option A c
(i)
t = maxj∈k r

(i)
t,j or option B c

(i)
t = r(i)t,i ;

7 Max-player: Hedge
8 Update λt+1 ∝ λt exp(−γ`t) with losses `t ∶ `t,i = c(i)t −∑kj=1 r

(i)
t,j ft(j∣x

(i)
t ).

9 Min-player: no-regret online learning update
10 Update ft+1 with contexts x(i)t and losses `(i)t ∶ `(i)t,j = λt,i (c

(i)
t − r(i)t,j ) ;

11 return f̄ = 1
T ∑

T
t=1 ft

reg(π⋆B ,Dλ) is just the regret of the i-th domain expert on Di and so we can bound reg(π⋆B ,Dλ)
by the worst case regret of the domain experts on their respective domains. The term containing λ
comes from relating the empirical game played only on ni samples from each Di to the population
game over Di. This term indicates that, in the worst case, we have to pay for the domain from which
we observe the least amount of data. Finally, the term O(1/

√
T ) comes from the regret of the OLO

and concentration of other terms in the T -round empirical game solved by Algorithm 1. Overall,
Corollary 1 shows that the regret of πf̄ is not much worse compared to the regret of the domain
experts, up to concentration and terms related to solving the empirical game.

5 Empirical Evaluation

To demonstrate the effectiveness of Algorithm 1 in generating robust routing functions, we compare
it against non-robust baselines on the MixInstruct benchmark by Jiang et al. (2023). This benchmark
consists of 5 individual datasets. Each dataset corresponds to a domain D̂i and contains samples
with prompts and various metrics for the generations of 11 open-source LLMs. For our analysis, we
focus exclusively on the BLEU score and select the model with the highest average BLEU score per
domain from the training split to serve as the domain expert πi. The routing function f is initialized
using a pre-trained Gemma 2B model (Team et al., 2024), with the final layer replaced by a fully
connected, randomly initialized layer.

Several prior studies have explored optimal strategies for learning a routing function tailored to
specific data distributions (Jiang et al., 2023; Hu et al., 2024)—among others. We view our algorithm
as a framework that can enhance these approaches through the OLO oracle. Thus, our experiments
aim not to compare different learning methodologies but to assess the impact of robust routing by
adjusting the domain weights during training. Specifically, we compare Algorithm 1 with and without
updates to λt (i.e., γ = 0 vs. γ ≠ 0), while keeping all other parameters constant.

regret vs best expert regret vs domain expert
Loss for f Option Baseline Alg 1 Baseline Alg 1

linear A 4.60 4.28 1.65 0.49
linear B 4.60 7.09 1.64 1.08
log A 2.70 2.37 -0.06 -0.39
log B 7.90 7.84 0.58 0.23

Table 1: Overview of regret in the worst-case test domain comparing the routing function produced
by Algorithm 1 against a routing function produced by training with uniform and fixed domain
weights. Results are averages across 5 seeds. Algorithm 1 consistently reduces the regret against the
competitor targeted by the selected option.
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6 Conclusion

We presented a novel approach for combining multiple domain expert algorithms using online
learning oracles, achieving regret bounds that are tied to the performance of these oracles. Our
method leverages theoretical guarantees, ensuring robustness in a variety of settings. Additionally,
we validated the effectiveness of our approach through experiments on the MixInstruct dataset, where
the results highlight the practical benefits of our model routing strategy.
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A Related Work

The multiple-source adaptation (MSA) problem was theoretically studied by Mansour et al. (2008,
2012). Later, Hoffman et al. (2021) introduced an efficient algorithm based on domain density
estimation. This approach was subsequently improved by Cortes et al. (2021b), who replaced density
estimation with a domain classifier. However, despite this simplification, their method still requires
solving a difference of convex (DC) programming problem, which may not be well-suited for modern
LLM inference scenarios.

More recently, various types of routing problems in LLMs have been investigated. Post-hoc routing
(Chen et al., 2023; Wang et al., 2023; Hu et al., 2024; Madaan et al., 2023; Yue et al., 2023; Lee et al.,
2023) involves processing inputs with multiple expert LLMs and selecting the best output based
on a scoring rule. A specific form of post-hoc routing, known as cascading routing, was studied
by Chen et al. (2023); Wang et al. (2023); Yue et al. (2023); Hu et al. (2024), where inputs are
processed sequentially by experts until a sufficiently high-quality response is obtained. Theoretical
investigations of cascading ideas in classification have been conducted by DeSalvo et al. (2015).

Predictive routing (Shnitzer et al., 2023; Narayanan Hari and Thomson, 2023; Lu et al., 2023) offers
an alternative, where an input is directed to a single expert LLM, which alone processes it. Mixture
of Experts (MoEs) (Shazeer et al., 2017; Zhou et al., 2022) can also be seen as a form of predictive
routing, where only a subset of an LLM’s parameters is activated for processing each token. Mao
et al. (2023, 2024a,b) have introduced deferral algorithms, which can be used in particular for routing
applications, together with an extensive theoretical guarantees. Recent efforts by Hu et al. (2024)
and Jiang et al. (2023) have proposed benchmarks for evaluating mixtures of LLMs. For a more
comprehensive review of this literature, we refer readers to Hu et al. (2024). Our work focuses
exclusively on the predictive routing setting.

B Theoretical Analysis

We first provide a definition that formalizes the notion of online-learning we assume for the updates
of f :

Definition 1 (Online learning oracle). An algorithm OLO is referred to as an online learning oracle
for a class F ⊆ X → ∆k if it satisfies the following condition. Given an arbitrary, potentially
adversarial sequence of context-loss pairs (x1, `1, . . . , xT , `T ), OLO observes each context xt
sequentially and maintains a sequence of policies ft+1 ∈ F , updating the policy after observing each
loss sample `t. The regret of OLO is given by:

RegF(T ) = max
f∈F

T

∑
t=1

⟨f(xt) − ft(xt), `t⟩ = o(T ),

and is sublinear with probability at least 1 − δ.

We note that in Algorithm 1 the losses required by Definition 1, `t, for each round t ∈ [T ] are the
sum over the per-domain losses, that is `t = ∑ki=1 `

(i)
t = ∑ki=1 λt,i(c

(i)
t − r(i)t,j ).

Using an OLO we show the following regret guarantee for Algorithm 1.

Theorem 1. Let F be a convex set. Then, with probability at least 1−O(δ), the regret of the function
f̄ returned by Algorithm 1 with Option A satisfies for all λ ∈ ∆(k) the following inequality:

reg(πf̄ ,Dλ) ≤ reg(π⋆A,Dλ)+V̂ ⋆
A+

RegF(T )
T

+O
⎛
⎝

√
log k +Cδ

T

⎞
⎠
+O

⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
iCδ

ni
+max

i

λiCδ
ni

⎞
⎟
⎠
,

where V̂ ⋆
A = maxλ∈∆k

inff∈F L̂(f, λ) is the optimal value of the objective in Equation 4, RegF(T ) =
o(T ) is the regret of the OLO oracle, Cδ = log( ∣F ∣

δ
), and π⋆A is the competitor policy for option A.

The same guarantee holds for Option B with π⋆A is replaced by π⋆B and V̂ ⋆
A by V̂ ⋆

B .

The performance guarantee for both options is the same up to the first two terms. By construction,
π⋆A is a stronger competitor than π⋆B , since the inequality v(π⋆B , x) ≤ maxi∈[k] v(πi, x) = v(π⋆A, x)
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holds for all x ∈ X . Option A may therefore seem preferable as the first term in the guarantee is
always more favorable than for B. However, we expect that in most cases V̂ ⋆

B ≤ V̂ ⋆
A since V ⋆

B is small
under much weaker conditions than V̂ ⋆

A .

We prove Theorem 1 by deriving two separate guarantees for the different options in Algorithm 1 in
Theorem 2 for Option B and in Theorem 3 for Option A. Recall the definitions of the objectives used
by our algorithms as

LA(f, λ) = E
i∼λ

E
x∼Di

E
j∼f(x)

[max
m

v(πm, x) − v(πj , x)] (7)

L̂A(f, λ) = E
i∼λ

E
(x,r1,...,rk)∼D̂i

E
j∼f(x)

[max
m

rm − rj] (8)

LB(f, λ) = E
i∼λ

E
x∼Di

E
j∼f(x)

[v(πi, x) − v(πj , x)] (9)

L̂B(f, λ) = E
i∼λ

E
(x,r1,...,rk)∼D̂i

E
j∼f(x)

[ri − rj]. (10)

In the following, we refer by L jointly to LA or LB and L̂ to L̂A or L̂B respectively.

Lemma 1. The objectives LA,LB , L̂A, L̂B are bilinear in f and λ. If F ⊆ X →∆k is convex, then

inf
f∈F

max
λ∈∆k

LA(f, λ) = max
λ∈∆k

inf
f∈F
LA(f, λ). (11)

and analogously for LB , L̂A and L̂B .

Proof. We see directly from (7) that all objectives are linear in both arguments. The second part
follows from Sion’s minimax theorem, since both ∆k and F are convex and ∆k is compact.

The following lemma shows that the costs and rewards concentrate around their expectations.

Lemma 2. The following hold

P
⎛
⎝

sup
λ∈∆(k)

T

∑
t=1

k

∑
i=1

λi(c(i)t −E[c(i)t ] −
k

∑
j=1

ft(j∣x(i)t )(r(i)t,j −E[r(i)t,j ])) ≥ 2
√
T log(k/δ)

⎞
⎠
≤ δ

P
⎛
⎝

sup
f∈F

T

∑
t=1

k

∑
i=1

λt,i(c(i)t −E[c(i)t ] −
k

∑
j=1

f(j∣x(i)t )(r(i)t,j −E[r(i)t,j ])) ≥ 2
√
T log(∣F ∣/δ)

⎞
⎠
≤ δ.

Proof. We start by showing the first inequality. First note that for every i ∈ [k], {c(i)t − E[c(i)t ] −
∑kj=1 ft(j∣x

(i)
t )(r(i)t,j −E[r(i)t,j ])}t∈[T ] is a martingale difference sequence with respect to the filtration

created by the online oracle. Azuma-Hoeffding’s inequality and a union bound implies that

P
⎛
⎝

sup
i∈[k]

T

∑
t=1

(c(i)t −E[c(i)t ] −
k

∑
j=1

ft(j∣x(i)t )(r(i)t,j −E[r(i)t,j ])) ≥ 2
√
T log(k/δ)

⎞
⎠
≤ δ.

Next, we have

sup
λ∈∆(k)

k

∑
i=1

λi
T

∑
t=1

(c(i)t −E[c(i)t ] −
k

∑
j=1

ft(j∣x(i)t )(r(i)t,j −E[r(i)t,j ]))

= sup
i∈[k]

T

∑
t=1

(E[c(i)t ] − c(i)t −
k

∑
j=1

ft(j∣x(i)t )(E[r(i)t,j ] − r
(i)
t,j )),

since∑ki=1 λi∑Tt=1 (c(i)t −E[c(i)t ]−∑kj=1 ft(j∣x
(i)
t )(r(i)t,j −E[r(i)t,j ])) is linear in λ and the supremum

will be achieved at one of the corners of the probability simplex.

The second inequality holds in a similar way by using Azuma-Hoeffding’s inequality and a union
bound over F .
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We note that the notation log(∣F ∣) is overloaded to mean the metric entropy for function classes
which have infinite cardinality. For the rest of the paper we consider log(∣F ∣) to be the metric entropy
with respect to the following distance d(f, f ′) = supx∈X ∥f(x) − f ′(x)∥1.

Lemma 3. Let f̄ = 1
T ∑

T
t=1 ft, λ̄ = 1

T ∑
T
t=1 λt be the average iterates of Algorithm 1. Then

max
λ∈∆k,f∈F

[L̂(f̄ , λ) − L̂(f, λ̄)] ≤ RegF(T )
T

+O
⎛
⎝

√
log(k∣F ∣/δ)

T

⎞
⎠

(12)

with high probability at least 1 −O(δ), where RegF(T ) is the regret of the online learning oracle
from Definition 1.

Proof. We begin by noting that

L̂(f̄ , λ) = Ei∼λ,x(i)∼D̄i [
k

∑
i=1

λi(c(i) − ⟨f̄ , r(i)⟩] = 1

T

T

∑
t=1

k

∑
i=1

λi(E[c(i)t ] −
k

∑
j=1

ft(j∣x(i)t )E[r(i)t,j ])

L̂(f, λ̄) = Ei∼λ,x(i)∼D̄i [
k

∑
i=1

λ̄i(c(i) − ⟨f, r(i)⟩] = 1

T

T

∑
t=1

k

∑
i=1

λt,i(E[c(i)t ] −
k

∑
j=1

f(j∣x(i)t )E[r(i)t,j ])

Further, using Lemma 2 we have that w.p. 1 − δ for all f ∈ F and all λ ∈ ∆(k)

L̂(f̄ , λ) − L̂(f, λ̄)

= 1

T

T

∑
t=1

k

∑
i=1

λi(E[c(i)t ] −
k

∑
j=1

ft(j∣x(i)t )E[r(i)t,j ]) −
1

T

T

∑
t=1

k

∑
i=1

λt,i(E[c(i)t ] −
k

∑
j=1

f(j∣x(i)t )E[r(i)t,j ])

≤ 1

T

T

∑
t=1

k

∑
i=1

λi(c(i)t −
k

∑
j=1

ft(j∣x(i)t )r(i)t,j ) −
1

T

T

∑
t=1

k

∑
i=1

λt,i(c(i)t −
k

∑
j=1

f(j∣x(i)t )r(i)t,j ) +O
⎛
⎝

√
log(k∣F ∣/δ)

T

⎞
⎠

= 1

T

T

∑
t=1

⟨λ − λt, `′t⟩ +
1

T

T

∑
t=1

k

∑
i=1

⟨`(i)t , ft(x(i)t ) − f(x(i)t )⟩ +O
⎛
⎝

√
log(k∣F ∣/δ)

T

⎞
⎠

≤ RegΛ(T )
T

+ RegF(T )
T

+O
⎛
⎝

√
log(k∣F ∣/δ)

T

⎞
⎠
.

Since RegΛ(T ) = O (
√
T log(k∣F ∣/δ)) with probability at least 1 −O(δ) the result follows.

Lemma 4. Let V ⋆ = inff∈F maxλ∈∆k
L(f, λ) be the optimal value of the saddle-point. Then

Algorithm 1 converges to that value with high probability at least 1 −O(δ), that is,

max
λ∈∆k

L̂(f̄ , λ) ≤ V̂ ⋆ + RegF(T )
T

+O
⎛
⎝

√
log(k∣F ∣/δ)

T

⎞
⎠
.

This statement is true for either option A and option B.

Proof. By Lemma 1, the following chain of inequalities holds

inf
f∈F
L̂(f, λ̄) ≤ max

λ∈∆k

inf
f∈F
L̂(f, λ) = V̂ ⋆ = inf

f∈F
max
λ∈∆k

L̂(f, λ) ≤ max
λ∈∆k

L̂(f̄ , λ).

Rearranging terms yields

L̂(f̄ , λ) ≤ V̂ ⋆ + max
λ∈∆k

L̂(f̄ , λ) − inf
f∈F
L̂(f, λ̄)

≤ V̂ ⋆ + RegF(T )
T

+O
⎛
⎝

√
log(k∣F ∣/δ)

T

⎞
⎠
. (Lemma 3)
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B.1 Analysis for Option B

Lemma 5 (Concentration for option B). For a fixed λ and f ∈ F , we have with probability at least
1 −O(δ)

∣LB(f, λ) − L̂B(f, λ)∣ ≤ O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(1/δ)

ni
+max

i

λi log(1/δ)
ni

⎞
⎟
⎠

and

∣LB(f, λ) − L̂B(f, λ)∣ ≤ O
⎛
⎝
k

∑
i=1

λi

√
log(1/δ)

ni

⎞
⎠

Proof. Consider a fixed λ, f and i ∈ [k]. Order D̄i arbitrarily and denote (xt, rt,1, . . . , rt,k) the
t-th datapoint in D̄i. Then Yi,t = Ej∼f(xt)[rt,i − rt,j] are i.i.d. random variables with mean
EYi,t = v(πi,Di) − v(πf ,Di). Since scores are bounded, Yi,t centered to its mean is sub-Gaussian
and we can bound with probability at least 1 − δ

LB(f, λ) − L̂B(f, λ) =
k

∑
i=1

λi
ni

ni

∑
t=1

[EYi,t − Yi,t]

≤ O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

ni

∑
t=1

λ2
i

n2
i

log(1/δ) +max
i

λi log(1/δ)
ni

⎞
⎟
⎠

= O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(1/δ)

ni
+max

i

λi log(1/δ)
ni

⎞
⎟
⎠

Lemma 6 (Value of the game for option B). Let V ⋆
B = inff∈F maxλ∈∆k

LB(f, λ) be the optimal
value of the saddle-point. Assume that the function class F contains fλ for every λ ∈ ∆k, where fλ,D
is defined as fλ(i∣x) = λiDi(x)

∑kj=1 λjDj(x)
. Then the value of the game is non-positive, i.e., V ⋆

B ≤ 0.

Proof. Let λ ∈ ∆k be arbitrary and consider f(i∣x) = λiDi(x)
∑kj=1 λjDj(x)

. We then have

LB(f, λ) = v(πdom,Qλ) − v(πf ,Dλ)

=
k

∑
i=1

λi ∑
x∈X

Di(x)⟨πdom(x, i), r⋆(x)⟩ − ∑
x∈X

Dλ(x)⟨πf(x), r⋆(x)⟩

=
k

∑
i=1

λi ∑
x∈X

Di(x)⟨πdom(x, i), r⋆(x)⟩ − ∑
x∈X

k

∑
i=1

λiDi(x)⟨πi(x), r⋆(x)⟩

(definition of f )

=
k

∑
i=1

λi ∑
x∈X

Di(x)⟨πdom(x, i) − πi(x), r⋆(x)⟩

= 0 (πdom(x, i) = πi(x))

Theorem 2 (Regret bound for Option B). Assume that the function class F is convex. Then the
solution f̄ returned by Algorithm 1 with Option B satisfies with probability at least 1 −O(δ) for any
fixed λ

reg(πf̄ ,Dλ) ≤
k

∑
i=1

λi reg(πi,Di) + V̂ ⋆
B + RegF(T )

T
+O

⎛
⎝

√
log(k∣F ∣/δ)

T

⎞
⎠

(13)
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+O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λi
ni

log
∣F ∣
δ
+max

i

λi
ni

log
∣F ∣
δ

⎞
⎟
⎠

(14)

Further, if the function class F contains fλ,D̂ for every λ ∈ ∆k, where fλ,D̂ is defined as fλ(i∣x) =
λiD̂i(x)

∑kj=1 λjD̂j(x)
, then V̂ ⋆

B ≤ 0. If this only holds on a population level, i.e., F ≤ {fλ,D ∶ λ ∈ ∆k}, then

we can still bound V̂ ⋆
B = O (

√
k log(1/δ)
mini ni

).

Proof. We can decompose the regret of f̄ on Dλ as

reg(πf̄ ,Dλ) = max
π∈Π

v(π,Dλ) − v(π⋆,Qλ) + v(π⋆,Qλ) − v(πf̄ ,Dλ)

= max
π∈Π

v(π,Dλ) − v(π⋆,Qλ) +LB(f̄ , λ)

≤ max
π∈Π

v(π,Dλ) − v(π⋆,Qλ) + L̂B(f̄ , λ) +O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λi
ni

log
∣F ∣
δ
+max

i

λi
ni

log
∣F ∣
δ

⎞
⎟
⎠

(Lemma 5)

where the last inequality follows from a union bound over f ∈ F and holds with probability at least
1 −O(δ). The first two terms can be upper-bounded by the regret of each expert policy πi on its own
dataset, weighted by λ, i.e.,

max
π∈Π

v(π,Dλ) − v(π⋆,Qλ) = max
π∈Π

k

∑
i=1

λi (v(π,Di) − v(πi,Di)) ≤
k

∑
i=1

λi reg(πi,Di).

We now bound L̂B(f̄ , λ) further by Lemma 4 with probability at least 1 −O(δ) as

L̂B(f̄ , λ) ≤ V̂ ⋆
B + RegF(T )

T
+O

⎛
⎝

√
log(k∣F ∣/δ)

T

⎞
⎠
.

Plugging both bounds in the previous decomposition yields the desired bound. For the bound on V̄ ⋆
B ,

we apply Lemma 6 on D̂ directly or on D and apply Lemma 5 with a union bound over ∆k.

B.2 Analysis for Option A

Lemma 7 (Concentration for option A). For a fixed λ and f ∈ F , we have with probability at least
1 − δ

LA(f, λ) − L̂A(f, λ) ≤O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(1/δ)

ni
+max

i

λi log(1/δ)
ni

⎞
⎟
⎠

L̂A(f, λ) −LA(f, λ) ≤O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(1/δ)

ni
+max

i

λi log(1/δ)
ni

⎞
⎟
⎠
+ ∣

k

∑
i=1

λi biasA(i)∣

where

biasA(i) =
1

ni

ni

∑
t=1

⎡⎢⎢⎢⎢⎣
max
m

v(πm, x(i)t ) − E
r1,...,rm∣x=x(i)t

[max
m

rm]
⎤⎥⎥⎥⎥⎦
.

Proof. Consider and ordering of the samples in each augmented dataset and denote by
(x(i)t , r

(i)
t,1 , . . . , r

(i)
t,m) the t-th sample in D̄i. Further define

biasA(i) =
1

ni

ni

∑
t=1

⎡⎢⎢⎢⎢⎣
max
m

v(πm, x(i)t ) − E
r1,...,rm∣x=x(i)t

[max
m

rm]
⎤⎥⎥⎥⎥⎦
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and

Yi,t = E
r1,...,rm∣x=x(i)t

[max
m

rm] −max
m

r
(i)
t,m − v(πf , x(i)t ) +

k

∑
m=1

r
(i)
t,mf(m∣x(i)t )

Then we can decompose the difference in losses as

LA(f, λ) − L̂A(f, λ) =
k

∑
i=1

λi biasA(i) +
k

∑
i=1

λi
ni

ni

∑
t=1

Yi,t.

Since Yi,t are all independent from each other, we can bound the second term using concentration
arguments as

k

∑
i=1

λi
ni

ni

∑
t=1

Yi,t ≤ O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(1/δ)

ni
+max

i

λi log(1/δ)
ni

⎞
⎟
⎠

with probability at least 1 − O(δ). Note that we can bound the negative, −∑nit=1 Yi,t analogously.
Further, by Jensen’s inequality, biasA(i) ≤ 0 for all i. Combining these bounds yields the desired
statement.

Theorem 3 (Regret bound for Option A). Assume that the function class F is convex. Then the
solution f̄ returned by Algorithm 1 with Option A satisfies with probability at least 1 −O(δ)

reg(πf̄ ,Dλ) ≤ reg(πpt,Dλ) + V̂ ⋆
A + RegF(T )

T
+O

⎛
⎝

√
log(k∣F ∣/δ)

T

⎞
⎠

(15)

+O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(∣F ∣/δ)

ni
+max

i

λi log(∣F ∣/δ)
ni

⎞
⎟
⎠

(16)

Further, if there exists an f ∈ F which perfectly predicts the maximum score per sample,
i.e., ∑ki=1 E(x,r1,...,rk)∼D̄i[maxm rm] = ∑ki=1 E(x,r1,...,rk)∼D̄i Ej∼f(x) rj , then V̂ ⋆

A ≤ 0. If this
only holds on a population level and for expected scores, i.e., ∑ki=1 Ex∼Di maxm v(πm, x) =
∑ki=1 Ex∼Di v(πf , x), then we can still bound V̂ ⋆

A ≤ maxi ∣biasA(i)∣ +O ( log(∣F ∣/δ)√
mini ni

).

Proof. We can decompose the regret of f̄ on Dλ as

reg(πf̄ ,Dλ) = max
π∈Π

v(π,Dλ) − E
x∼Dλ

[max
m

v(πm, x)] + E
x∼Dλ

[max
m

v(πm, x)] − v(πf̄ ,Dλ)

= max
π∈Π

v(π,Dλ) − E
x∼Dλ

[max
m

v(πm, x)] +LA(f̄ , λ)

≤ max
π∈Π

v(π,Dλ) − E
x∼Dλ

[max
m

v(πm, x)] + L̂A(f̄ , λ)

+O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(∣F ∣/δ)

ni
+max

i

λi log(∣F ∣/δ)
ni

⎞
⎟
⎠

(Lemma 7)

To obtain a bound on L̂A(f̄ , λ), we apply the game-theoretic arguments from Lemma 4

L̂A(f̄ , λ) ≤ V̂ ⋆
A + RegF(T )

T
+O

⎛
⎝

√
log(k∣F ∣/δ)

T

⎞
⎠

and it only remains to control the optimal value of the game V̂ ⋆
A .

V̂ ⋆
A = max

λ∈∆k

inf
f∈F

E
(x,r1,...,rk)∼D̄λ

E
j∼f(x)

[max
m

rm − rj]

≤ V ⋆
A + max

λ∈∆k

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣
k

∑
i=1

λi biasA(i)∣ +O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(∣F ∣/δ)

ni
+max

i

λi log(∣F ∣/δ)
ni

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤ V ⋆
A +max

i
∣biasA(i)∣ +O ( log(∣F ∣/δ)√

mini ni
)
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B.3 Alternate Oracles

In this section we consider replacing the linear losses, `(i)t , from Algorithm 1 with a log-loss. Such
a choice is natural whenever we consider F to be some family of Transformer networks for which
modern ML packages use optimizers tailored to the cross-entropy loss. The losses constructed by
Algorithm 1 are log-losses and so we need a different version of the Online Learning Oracle which
we defined below.
Definition 2 (Online learning logistic oracle). An algorithm OLLO is called a online learning oracle
for a class F ⊆ X → ∆k if the following holds. Let (x1, `1, . . . , xT , `T ) be an arbitrary, possibly
adversarial sequence of contexts and loss pairs. OLLO observes xt sequentially and maintains a
sequence of policies ft which it updates by observing the loss vector `t. The total regret of OLLO

RegOLLO
F (T ) = max

f∈F

T

∑
t=1

⟨log f(xt) − log ft(xt), `t⟩ = o(T ).

is sublinear with high probability, at least 1 − δ.

The problem of Online Logistic Regression has been extensively studied in the online learning
literature (Kakade and Ng, 2004; Xiao, 2009; McMahan and Streeter, 2012; Hazan et al., 2014; Foster
et al., 2018; Shamir, 2020). Using OLLO we can instantiate a new version of Algorithm 1 with the
following losses for the min-player `(i)

′
t = −λt,iey(i)t where y(i)t ∈ {j ∈ [k]∶ r(i)t,j = c

(i)
t }. Option A

and Option B then correspond to the following two choices of y(i)t

y
(i)
t =

⎧⎪⎪⎨⎪⎪⎩

argmaxj∈[k] r
(i)
t,j Option A

r
(i)
t,i Option B.

Next, we prove the counterpart to Lemma 4 for the classifier setting.
Lemma 8. For any λ ∈ ∆(k) it holds that

T

∑
t=1

k

∑
i=1

λi(c(i)t −
k

∑
j=1

ft(j∣x(i)t )r(i)t,j )

≤min
f∈F

T

∑
t=1

k

∑
i=1

−λt,i log(f(y(i)t,i ∣x
(i)
t )) +RegOLLO

F (T ) +O(
√
kT log(k∣F ∣/δ)),

with probability 1 −O(δ).

Proof. The definition of OLLO together with the standard analysis for the regret of the max-player
imply the following holds with probability 1 −O(δ)

T

∑
t=1

k

∑
i=1

−λt,i( log(ft(y(i)t ∣x(i)t )) − log(f(y(i)t ∣x(i)t ))) ≤ Regclassifier
F (T )

T

∑
t=1

k

∑
i=1

λi(c(i)t −
k

∑
j=1

ft(j∣xi,t)r(i)t,j )

−
T

∑
t=1

k

∑
i=1

λt,i(c(i)t −
k

∑
j=1

ft(j∣xi,t)r(i)t,j ) ≤ O(
√
kT log(k∣F ∣/δ))

And so for any fixed λ ∈ ∆(k) we have

T

∑
t=1

k

∑
i=1

λi(c(i)t −
k

∑
j=1

ft(j∣x(i)t )r(i)t,j )

≤
T

∑
t=1

k

∑
i=1

λt,i(c(i)t −
k

∑
j=1

ft(j∣x(i)t )r(i)t,j ) +O(
√
kT log(k∣F ∣/δ))

≤
T

∑
t=1

k

∑
i=1

λt,ir
(i)
t,y
(i)
t

(1 − ft(y(i)t ∣x(i)t )) +O(
√
kT log(k∣F ∣/δ))
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≤
T

∑
t=1

k

∑
i=1

−λt,ir(i)
t,y
(i)
t

log(ft(y(i)t ∣x(i)t )) +O(
√
kT log(k∣F ∣/δ)).

for any i, where the last inequality uses 1 − x ≤ − log(x), x ∈ [0,1]. The min-player regret guarantee
together with the fact that r(i)

t,y
(i)
t

∈ [0,1] imply

T

∑
t=1

k

∑
i=1

λi(c(i)t −
k

∑
j=1

ft(j∣x(i)t )r(i)t,j )

≤min
f∈F

T

∑
t=1

k

∑
i=1

−λt,i log(f(y(i)t,i ∣x
(i)
t )) +RegOLLO

F (T ) +O(
√
kT log(k∣F ∣/δ)).

We need the following assumption to guarantee boundedness of the log-loss for the concentration
argument.
Assumption 1. ∀f ∈ F and for any (y, x) ∈ Y ×X it holds that f(y∣x) ≥ 1

T
.

Lemma 9. Under Assumption 1 it holds that

P(
T

∑
t=1

k

∑
i=1

−λt,i (log(f(y(i)t ∣x(i)t )) −E[log(f(y(i)t ∣x(i)t ))]) ≥
√

2 log(T ) log(∣F ∣/δ)) < δ.

Proof. Directly follows from Azuma-Hoeffding and the boundedness of the log-loss under the
assumption.

In Appendix D we present a concentration bound for unbounded losses with bounded second moment
which can be applied instead of Lemma 9. Combining the two lemmas gives us the following result.
Theorem 4. Under Assumption 1 with probability 1 − δ it holds that for any λ ∈ ∆(k) and f ∈ F

Ei∼λ,x∼Di[c(i) − ⟨f̄ , r(i)⟩] ≤ Ei∼λ̄,x(i)∼D̄i[− log(f(y(i)∣x(i)))]

+ RegOLLO
F (T )
T

+O
⎛
⎝

√
log(∣F ∣/δ)

T
+
√

log(k/δ)
T

⎞
⎠

+O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(k∣F ∣T /δ)

ni
+max

i

λi log(k∣F ∣T /δ)
ni

⎞
⎟
⎠

Proof. We begin by arguing that

Ei∼λ,x∼D̄i[c
(i) − ⟨f̄ , r(i)⟩] ≤ Ei∼λ̄,x(i)∼D̄i[− log(f(y(i)∣x(i)))]

+ RegOLLO
F (T )
T

+O
⎛
⎝

√
log(∣F ∣/δ)

T
+
√

log(k/δ)
T

⎞
⎠

This holds as follows. We combine the regret bound from Lemma 8 together with the concentration
of Lemma 2 and Lemma 9.

Finally, we convert the LHS of the above lemma to a concentration over the population
Ei∼λ,x∼Di[c(i) − ⟨f̄ , r(i)⟩] as follows. First note that for any fixed f ∈ F :

Ei∼λ,x∼Di[c(i) − ⟨f, r(i)⟩] =
k

∑
i=1

λi
ni

ni

∑
j=1

c
(i)
j − ⟨f, r(i)j ⟩.

We can then argue as in Lemma 2 that for all λ ∈ ∆(k) uniformly it holds that

k

∑
i=1

λi
ni

ni

∑
j=1

E[c(i)j − ⟨f, r(i)j ⟩] −
k

∑
i=1

λi
ni

ni

∑
j=1

c
(i)
j − ⟨f, r(i)j ⟩ ≤ O

⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(k/δ)

ni
+max

i

λi log(k/δ)
ni

⎞
⎟
⎠
,
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w.p. 1 −O(δ), where we use Bernstein’s inequality instead of Hoeffding’s inequality. An additional
union bound over F now implies

P
⎛
⎝

sup
λ∈∆(k),f∈F

k

∑
i=1

λi
ni

ni

∑
j=1

E[c(i)j − ⟨f, r(i)j ⟩] −
k

∑
i=1

λi
ni

ni

∑
j=1

c
(i)
j − ⟨f, r(i)j ⟩

≥ Ω
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(k∣F ∣/δ)

ni
+max

i

λi log(k∣F ∣/δ)
ni

⎞
⎟
⎠
⎞
⎠
≤ δ.

Finally, we note that f̄ ∈ F by convexity of F . and thus we need an extra union bound over T . This
completes the proof of the theorem.

We can now show counterparts to Theorem 3 and Theorem 2.
Corollary 2. For any convex F for which Assumption 1 holds we have that for all λ ∈ ∆(k) with
probability 1 − δ

reg(πf̄ ,Dλ) ≤ min
f∈F

Ei∼λ̄,x(i)∼D̄i[− log(f(y(i)∣x(i)))]

+ RegOLLO
F (T )
T

+O
⎛
⎝

√
log(∣F ∣/δ)

T
+
√

log(k/δ)
T

⎞
⎠

+O
⎛
⎜
⎝

¿
ÁÁÀ k

∑
i=1

λ2
i log(k∣F ∣T /δ)

ni
+max

i

λi log(k∣F ∣T /δ)
ni

⎞
⎟
⎠
,

where for Option A we have y(i) = argmaxy∈[k] r
⋆(y, x(i)) and for Option B we have y(i) = i.

Proof. The definition of regret for Option A implies that

reg(πf̄ ,Dλ) = v(π⋆A,Dλ) − v(f,Dλ) = Ei∼λ,x∼Di[max
j∈[k]

v(πj , x(i)) − v(f̄ , x(i))]

≤ Ei∼λ,x∼Di[argmax
y∈[k]

r⋆(y, x(i)) − ⟨f̄ , r⋆(⋅, x(i))⟩]

= Ei∼λ,x∼Di[c(i) − ⟨f̄ , r(i)⟩].
The bound now follows from Theorem 4. For Option B we have a similar derivation with

reg(πf̄ ,Dλ) = v(π⋆A,Dλ) − v(πf̄ ,Dλ) = Ei∼λ,x∼Di[v(πi, x(i)) − v(πf̄ , x(i))]

= Ei∼λ,x∼Di,j∼πi(x(i)) [r
⋆(j, x(i)) −

k

∑
l=1

k

∑
s=1

f̄(s∣x(i))πs(l∣x(i))r⋆(l, x(i))]

= Ei∼λ,x∼Di,j∼πi(x(i))[c
(i) − ⟨f̄ , r(i)⟩].

The bound again follows from Theorem 4.
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Figure 1: Comparison of Algorithm 1 with Option B (right) against non-robust version (left).

C Experimental results

In Figure 1, we present the results for Algorithm 1 under Option A. The online game runs for 1000
iterations, with each iteration mini-batched using a size of 256. The first row of the figure illustrates
the regret of our algorithm compared to a competitor that always selects the best expert for each
domain. The regret for domain Di is defined as the difference between the reward of πi(x(i)) and
the reward obtained by our domain classifier, which integrates all πi for i ∈ [k]. Notably, the domain
adaptation approach (on the right) consistently outperforms or maintains performance equivalent to
the best domain expert model across all five domains.

In the second row, we show the regret against the pointwise best policy for each input x, represented
as the regret relative to maxj∈k r

(i)
t,j . Again, our method surpasses the simple domain classifier. Lastly,

the third row displays the domain weights returned by the two approaches: while the domain classifier
does not update the domain weights, the max-player in Algorithm 1 significantly increases the weight
of domain D4.

D Unbounded loss bound

The following generalization bound follows directly Theorem 3 of (Cortes et al., 2021a). It holds for
any unbounded loss function with bounded second-moment. In particular, it can be applied to the log
loss when the second-moment is bounded.

Theorem 5. Fix ε ∈ (0,1). Then, for any hypothesis set H such that Ex∼D[`2(h,x)] < +∞ for all
h ∈H, the following holds with probably at least 1 − δ over the draw of a sample of size m from D:

E
x∼D

[`(h,x)] − E
x∼S

[`(h,x)] ≤ γ
√

E
x∼D

[`2(h,x)]∆m

m
+ ε,

where ∆m = logE[N∞(`(H), ε
2
, x2m

1 )] + log 1
δ

, γ = Γ0(
√

∆m

m
) = O(logm), and Γ0(µ) = 1

2
+

√
1 + 1

2
log 1

µ
for any µ > 0. N∞(`(H), ε

2
, x2m

1 ) represents the `∞-covering number of the `-losses
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Figure 2: Comparison of Algorithm 1 with Option A (right) against non-robust version (left).

associated with the hypotheses in H based on a sample of size 2m, denote by x2m
1 , with a precision

of ε
2

.

In particular, we can choose ε = 1
m

in the bound. The result generalizes to the case where only a
higher-order moment of the loss (higher than 2) is bounded.
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