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Abstract

Accurate video forecasting enables autonomous vehicles to anticipate hazards,
robotics and surveillance systems to predict human intent, and environmental mod-
els to issue timely warnings for extreme weather events. However, existing methods
remain limited: transformers rely on global attention with quadratic complexity,
making them impractical for high-resolution, long-horizon video prediction, while
convolutional and recurrent networks suffer from short-range receptive fields and
vanishing gradients, losing key information over extended sequences. To over-
come these challenges, we introduce VideoTitans, the first architecture to adapt
the gradient-driven Titans memory—originally designed for language modelling
to video prediction. VideoTitans integrates three core ideas: (i) a sliding-window
attention core that scales linearly with sequence length and spatial resolution, (ii)
an episodic memory that dynamically retains only informative tokens based on
a gradient-based surprise signal, and (iii) a small set of persistent tokens encod-
ing task-specific priors that stabilize training and enhance generalization. Exten-
sive experiments on Moving-MNIST, Human3.6M, TrafficBJ and WeatherBench
benchmarks show that VideoTitans consistently reduces computation (FLOPs) and
achieves competitive visual fidelity compared to state-of-the-art recurrent, convolu-
tional, and efficient-transformer methods. Comprehensive ablations confirm that
each proposed component contributes significantly.

1 Introduction

Accurate video forecasting enables proactive decision-making in critical real-world systems such
as autonomous driving [22, 24, 73], city-scale surveillance [15, 40, 41], robotics [29, 25, 52],
and weather forecasting [18, 42, 43]. Predicting future video frames demands a delicate balance:
the model must precisely capture rapid, subtle changes between frames [6], yet retain memory of
important events and scene dynamics over extended time horizons. Traditional approaches rely heavily
on convolutional [28, 61, 54, 69] or recurrent architectures [66, 71], which handle local dynamics
effectively but face challenges due to limited receptive fields [7, 47] and vanishing gradients [64, 33],
severely restricting their performance on long sequences.
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Recent transformer-based architectures address these limitations by employing global self-attention [1,
32, 9, 21] to capture long-range dependencies. However, this comes at the prohibitive cost of quadratic
computational complexity [76, 3], making them infeasible for realistic, high-resolution, long-sequence
applications. Attempts to circumvent this computational bottleneck—such as hierarchical window
attention [38], low-rank approximation [34], or external memory [12]—introduce rigid architectural
constraints and task-specific heuristics, limiting their generalizability and flexibility across diverse
forecasting scenarios.

An alternative approach emerges from recent advances in natural-language processing. Titans [2], a
gradient-driven episodic memory module, selectively commits information to memory only when
its loss gradient signals substantial “surprise”—a mechanism motivated by the way humans tend to
remember unexpected or novel events [35]. This memory mechanism naturally aligns with video
prediction tasks, where redundant frame sequences dominate, punctuated by critical rare events such
as sudden object movements or abrupt camera motions. However, adapting Titans directly to video
forecasting is non-trivial: handling high-resolution frames substantially inflates memory complexity,
standard transformer attention remains a computational bottleneck, and visual forecasting benefits
significantly from learned, static priors which episodic memory alone cannot provide.

In this paper, we introduce VideoTitans, the first architecture to successfully adapt the Titans gradient-
driven memory to the dense video forecasting domain. VideoTitans uniquely integrates three core
components into a unified, computationally efficient framework: (i) a lightweight sliding-window
attention core whose complexity grows linearly with sequence length and spatial resolution, (ii) a
gradient-based episodic memory that selectively encodes surprising patch tokens, and (iii) a small
set of persistent tokens that inject input-agnostic, reusable priors into the prediction pipeline. The
interplay of these modules is seamlessly coordinated by a single gating mechanism, ensuring the
predictor remains end-to-end differentiable without reliance on manually tuned heuristics.

We conduct extensive evaluations across diverse and challenging benchmarks—Moving-MNIST [53],
Human3.6M [26], TrafficBJ [74], and WeatherBench [45]—demonstrating that VideoTitans consis-
tently reduces computational load while delivering superior visual fidelity in long-range forecasts
compared to state-of-the-art recurrent, convolutional, and efficient-transformer methods. Our com-
prehensive ablation studies further verify that each proposed component is critical to achieving this
performance. To facilitate further research and ensure full reproducibility, we will publicly release
our source code, trained checkpoints, and demonstration videos.

Contributions

• We demonstrate that gradient-driven Titans memory can be applied to long, high-resolution
video sequences without incurring quadratic computational growth, providing the first
cross-domain evidence of its effectiveness beyond language.

• We present a unified memory–attention architecture that balances efficiency and temporal
coverage by combining sliding-window attention, episodic memory and persistent priors
behind a single gating mechanism.

• Extensive experiments on Moving-MNIST, Human3.6M, TrafficBJ and WeatherBench show
consistent reductions in computation and improvements in long-range visual fidelity over
state-of-the-art recurrent, convolutional, and efficient-transformer baselines, while ablation
studies confirm that every component of VideoTitans is indispensable.

2 Related Works

2.1 Memory in RNNs and Transformers

Recurrent neural networks (RNNs) [70, 36, 55] and their variants, such as Long Short-Term Memory
(LSTM) [23, 48, 77] and Gated Recurrent Units (GRU) [10, 11, 13], have been widely used for
modeling sequential dependencies in video prediction [37, 39, 16, 71]. These architectures utilize
internal memory to retain past information, enabling them to capture long-range dependencies [56, 31].
However, they suffer from vanishing gradients and sequential processing constraints, limiting their
scalability to long video sequences [44]. While various enhancements have been proposed to improve
memory retention, RNN-based approaches remain computationally inefficient for high-dimensional
spatio-temporal modeling [27, 5].
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Figure 1: Performance and efficiency comparisons among video prediction models. Compared to
other video prediction models on benchmark datasets, VideoTitans achieves lower FLOPs(G) while
delivering superior or comparable performance.

Transformer-based architectures have gained prominence for their ability to model long-term depen-
dencies through self-attention mechanisms, enabling parallelized sequence processing [62, 60, 20].
However, standard attention scales quadratically with sequence length, making it impractical for long
video sequences. To address the issue, memory-augmented transformers incorporate external memory
to store and retrieve key representations, reducing computational overhead while preserving global
contextual information [72, 4, 30]. Despite these improvements, challenges remain in retrieval effi-
ciency and adaptability to dynamic dependencies [59, 63]. Our work builds upon these advancements
by introducing a neural long-term memory module that selectively retains critical past information,
improving both efficiency and predictive robustness for video forecasting.

2.2 Video Prediction

Video prediction involves forecasting future frames based on past observed frames by modeling
intricate spatio-temporal dependencies. ConvLSTM [51] introduced convolutional recurrent units to
jointly capture spatial and temporal contexts but struggled with long-term stability. PredRNN [64]
and its variants [65, 68] significantly improved temporal modeling by incorporating additional spatio-
temporal memory units but came with considerable computational overhead. E3D-LSTM [66] further
enhanced performance by integrating 3D convolutions, yet remained computationally demanding.
PhyDNet [19] leveraged physical constraints to better represent motion dynamics but was limited in
modeling highly complex scenarios.

SimVP [17] significantly simplified the prediction model by employing spatial-temporal separable
architectures, balancing performance with computational efficiency. Building upon this, SimVP-
meta [58] extended SimVP by integrating recurrent, convolutional, and transformer-based architec-
tures into a unified meta-model framework, greatly advancing the field of video prediction. Following
this work, the autoregressive-based [50] model has further enriched the literature with promising
directions.

Inspired by these developments, our paper introduces, for the first time, a novel Titans-based [2]
architecture—VideoTitans—specifically designed to enhance both long-term and short-term memory
capabilities, thereby addressing critical challenges in video prediction tasks.

3 Preliminaries

Memory and Sequence Modeling. Sequential modeling tasks, such as video prediction, typically
involve handling long-term temporal dependencies. Recurrent neural networks (RNNs) encode
these dependencies into a compressed hidden state but often lose essential information over longer
sequences. On the other hand, Transformers explicitly model dependencies using attention, but this
comes with quadratic complexity, limiting their applicability to very long sequences such as videos.

Neural Memory and Adaptive Forgetting. Recent architectures introduce explicit neural memory
modules that dynamically store historical context beyond the immediate attention window. These
modules update memory state Mt through recursive formulations such as:

Mt = f(Mt−1,xt), (1)
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Figure 2: Overview of the VideoTitans framework, which integrates neural long-term memory, sliding
window attention, and persistent memory to enhance video prediction. The model dynamically adapts
to both short-term and long-term dependencies through a gradient-based surprise mechanism. The
final prediction is obtained by combining short-term attention and memory states via a gating
mechanism.

where f represents the memory update function that selectively encodes relevant information while
employing adaptive forgetting mechanisms to discard redundant details. Such adaptive mechanisms
are crucial to managing long-term dependencies without memory overflow.

Titans Framework. Titans proposes a neural memory module specifically designed to dynamically
learn, memorize, and retrieve crucial information. Titans define a gradient-based surprise mechanism
to determine the importance of events:

Mt = Mt−1 + St, St = ηtSt−1 − θt∇ℓ(Mt−1;xt), (2)

where St captures both historical (past) and immediate (momentary) surprise. This allows Titans
to dynamically adapt and selectively encode important events, balancing short-term attention and
long-term memorization effectively.

Inspired by this approach, we introduce VideoTitans, adapting the Titans memory framework to
video forecasting tasks, allowing efficient modeling of both local and global temporal dependencies
inherent in video data.

4 Methodology

4.1 Problem Definition.

Given an input video sequence X ∈ RB×T×C×H×W consisting of T observed frames, the goal
of video forecasting is to accurately predict subsequent future video frames Y ∈ RB×T̂×C×H×W .
Here, B represents the batch size, T denotes the number of observed frames, T̂ is the number of
future frames to predict, C corresponds to the number of channels, and H,W indicate the spatial
dimensions (height and width) of each frame. Formally, the task can be defined as learning a function:

Ŷ = F(X; θ), (3)

where the model F , parameterized by θ, aims to learn complex spatio-temporal dependencies from
past video frames and leverage them to generate precise, high-fidelity predictions for future frames.
The challenge is that video data inherently contains both short-term dynamics (local correlations
between consecutive frames) and long-term dependencies (slowly evolving or periodic patterns
across multiple frames), making the accurate modeling of both short-term and long-term temporal
relationships critical for reliable predictions.

4.2 VideoTitans

Input Embedding and Positional Encoding. The input video sequence (B, T,C,H,W ) is re-
shaped into (B×T,C,H,W ). Each frame is embedded into spatial patches with positional encoding
(PE):

(B × T,C,H,W ) → (B × T, embed_dim, H/16,W/16).

We then permute the embeddings into a form suitable for temporal modeling: (B ×
T, embed_dim, H/16,W/16) → (B,H/16×W/16, T × embed_dim).
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MovingMNIST TrafficBJ Human3.6
Method MSE (↓) MAE (↓) SSIM (↑) FLOPs (G) MSE (↓) MAE (↓) SSIM (↑) FLOPs (G) MSE (↓) MAE (↓) SSIM (↑) FLOPs (G)
ConvLSTM [51] 29.7990 90.6396 0.9288 56.8 0.3358 15.3175 0.9836 20.74 125.5210 1566.7080 0.9813 347.0
E3D-LSTM [66] 38.5383 83.6387 0.9267 298.9 0.3427 14.9824 0.9842 98.19 143.3489 1442.4492 0.9803 542.0
MIM [67] 22.5508 69.9673 0.9488 179.2 0.3130 14.9387 0.9824 64.10 111.8432 1463.4142 0.9830 1051.0
PhyDNet [19] 28.1955 78.6397 0.9374 15.3 0.3622 15.5315 0.9828 5.60 125.7428 1614.7234 0.9804 19.1
PredRNN [64] 23.9667 72.8222 0.9460 116.0 0.3194 15.3077 0.9838 42.40 113.1855 1458.3422 0.9831 704.0
PredRNNv2 [68] 24.1136 73.7252 0.9450 116.6 0.3834 15.5528 0.9826 42.63 114.8799 1484.8729 0.9827 708.0
MAU [8] 26.8564 78.2186 0.9396 17.8 0.3268 15.2582 0.9834 6.02 127.3176 1577.0112 0.9812 105.0
TAU [57] 24.6029 71.9298 0.9454 16.0 0.3108 14.9341 0.9849 2.49 113.3487 1390.6997 0.9839 182.0
SimVP-IncepU [17] 32.1478 89.0498 0.9268 19.4 0.3282 15.4554 0.9835 3.61 115.8376 1511.4755 0.9822 197.0
SimVP-gSTA [58] 26.6926 77.1883 0.9402 16.5 0.3247 15.0290 0.9844 2.62 108.0713 1444.5731 0.9833 74.6
SimVP-Swin [58] 29.6991 84.0507 0.9331 16.4 0.3127 15.0689 0.9847 2.56 133.2034 1599.7281 0.9799 188.0
SimVP-Uniformer [58] 30.3827 85.8719 0.9308 16.5 0.3268 15.1653 0.9844 2.71 116.3079 1497.6663 0.9824 211.0
SimVP-ViT [58] 35.1473 95.8649 0.9140 16.9 0.3171 15.1532 0.9841 2.80 136.3321 1603.5026 0.9796 239.0
SimVP-Poolformer [58] 31.7882 88.4830 0.9271 14.1 0.3273 15.3947 0.9840 2.06 118.4458 1484.1716 0.9827 156.0
VideoTitans 21.3265 65.2124 0.9463 13.33 0.3099 14.8220 0.9898 1.90 109.4821 1401.3456 0.9871 128.52

Table 1: A performance comparison of VideoTitans with other approaches is conducted on three stan-
dard benchmark datasets for future frame prediction. VideoTitans consistently achieves competitive
results across Moving MNIST, TrafficBJ, and Human 3.6, which differ in characteristics.

Neural Long-term Memory Module. We introduce an adaptive neural long-term memory module
based on a gradient-based surprise mechanism. The memory state update rule at time t is:

Mt = (1− αt)Mt−1 + St, (4)

where the surprise score St is computed by:

St = ηtSt−1 − θt∇ℓ(Mt−1;xt). (5)

Here, parameters αt, ηt, and θt control adaptive forgetting, surprise decay, and momentary surprise
integration, respectively, enabling the selective memorization of crucial historical information.

Sliding Window Attention. To precisely model short-term temporal dependencies, sliding window
attention is applied to embedded input sequences:

YS = SlidingWindowAttention(Xemb), (6)

where Xemb denotes the reshaped spatial embeddings.

Persistent Memory. To encode task-specific and context-independent information, we incorporate
persistent memory parameters P. These parameters are concatenated to the embedded input as
follows:

Xnew = [p1,p2, . . . ,pNp
]∥∥Xemb. (7)

Decoding and Frame Reconstruction. The final prediction is obtained by decoding the combined
representations of short-term attention and neural long-term memory through a gating mechanism:

Ŷ = Decoder (σ(YS ⊗Mt)) . (8)

The decoded output Ŷ is reshaped back to the original video dimensions (B, T̂ , C,H,W ).

5 Experiments

Dataset Ntrain Ntest (C,H,W ) T T ′

Moving MNIST [53] 10,000 10,000 (1, 64, 64) 10 10
TrafficBJ [74] 20,461 500 (2, 32, 32) 4 4
Human3.6 [26] 73,404 8,582 (3, 128, 128) 4 4
Weatherbench [45] 2,167 706 (1/2, 32, 64) 12 12

Table 2: Summary of datasets used. Ntrain/Ntest
are sample counts. (C,H,W ): input shape. T /T ′:
input/predicted frames.

In this section, we present extensive evaluations
of our proposed VideoTitans architecture on
widely adopted benchmarks for future frame pre-
diction. Additionally, we analyze the effective-
ness of each component of VideoTitans through
comprehensive ablation studies.

Datasets We evaluate VideoTitans on four
widely-used datasets for future frame prediction,
summarized in Table 2: Moving MNIST (MMNIST) [53], TrafficBJ [74], Human 3.6 [26], and
WeatherBench [45]. Moving MNIST consists of synthetically generated video sequences depicting
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two digits moving randomly within a constrained grid, making it ideal for evaluating models on
simple nonlinear temporal dynamics. TrafficBJ contains real-world traffic flow data collected in
Beijing, capturing complex urban spatio-temporal dynamics. Human 3.6M comprises high-resolution
motion capture data of human activities, challenging the model to accurately capture subtle and
intricate human motions. WeatherBench includes global meteorological variables such as temperature
(t2m), wind fields (uv10), and total cloud cover (tcc), testing the model’s capacity to handle complex
global-scale spatio-temporal interactions.

Evaluation Metric We use widely adopted metrics to assess prediction quality and evaluate four
different datasets. Specifically, MMNIST, TrafficBJ, and Human3.6 are evaluated using the Mean
Square Error (MSE), Mean Absolute Error (MAE), and Structural Similarity Index Measure (SSIM).
The weatherbench is evaluated with MSE, MAE, and Root Mean Square Error (RMSE).

Implementation Details Following [58], we optimize VideoTitans using the Adam optimizer and
train with the Mean Squared Error (MSE) loss. We set the batch size to 8 for all experiments. The
learning rate is adaptively adjusted using the ReduceLROnPlateau scheduler with patience of 10
epochs. Initial learning rates are selected from the set {10−2, 5 × 10−3, 10−3, 5 × 10−4, 10−4},
and the best-performing value is used for each dataset. The total number of training epochs varies
depending on the dataset complexity and size. All experiments are implemented using PyTorch and
conducted on 8 NVIDIA A100 GPUs. More details can be found in the supplementary material and
the code.

5.1 Quantitative results

Moving MNIST The Moving MNIST dataset is characterized by simple yet highly nonlinear dy-
namics involving continuous movements and interactions of digit shapes. Our VideoTitans effectively
captures these nonlinear temporal dynamics, demonstrating state-of-the-art performance in long-term
forecasting by adaptively preventing error accumulation. This indicates the robustness of our model
in handling synthetic nonlinear trajectories. Detailed quantitative results are provided in the left
column of Table 1.

TrafficBJ The TrafficBJ dataset contains real-world urban traffic sequences exhibiting complex
spatio-temporal patterns and periodic fluctuations. VideoTitans successfully captures both short-term
local variations and long-term global trends, achieving superior forecasting accuracy compared to
transformer-based and recurrent models. This highlights the applicability of VideoTitans to dynamic
urban traffic scenarios. Comprehensive performance comparisons are provided in the middle column
of Table 1.

Human 3.6M The Human 3.6M dataset includes sequences of articulated human motions captured
under controlled conditions, demanding precise modeling of intricate spatio-temporal interactions.
VideoTitans demonstrates robust performance by effectively modeling subtle short-term movements
while maintaining long-term coherence in human motion sequences. These results underscore its
strength in detailed human motion prediction. Full comparisons are available in the right column of
Table 1. We further include results on the Caltech-Pedestrian [14] in the Supplementary Material.

(a) GT (b) PredRNNv2 (c) ViT (d) VideoTitans

Figure 3: Qualitative comparison of predicted fu-
ture frames on the Human3.6 dataset. Our model
makes more accurate predictions, particularly no-
ticeable in the person’s arm.

WeatherBench The WeatherBench dataset in-
volves forecasting long-range meteorological
variables such as temperature (t2m), wind fields
(uv10), and total cloud cover (tcc), character-
ized by complex spatio-temporal dependencies
and nonlinear interactions on a global scale.
VideoTitans demonstrates robust performance
on these variables, as detailed in Table 3, achiev-
ing competitive performance compared to pre-
vious methods with lower FLOPs. This per-
formance suggests that VideoTitans effectively
captures large-scale dependencies inherent in meteorological data, making the model potentially
suitable for weather forecasting tasks. Nonetheless, since VideoTitans does not explicitly model
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t2m uv10 tcc
Method MSE (↓) MAE (↓) RMSE (↓) FLOPs (G) MSE (↓) MAE (↓) RMSE (↓) FLOPs (G) MSE (↓) MAE (↓) RMSE (↓) FLOPs (G)
ConvLSTM 1.9866 0.8558 1.4095 136 2.4170 1.0180 1.5547 136 0.0722 0.1746 0.2688 136
E3D-LSTM 1.5921 0.8059 1.2618 169 2.4111 1.0341 1.5528 171 0.0573 0.1529 0.2394 169
MIM 2.3940 0.9837 1.5473 109 3.3708 1.2363 1.8360 109 0.0798 0.1836 0.2825 109
PhyDNet 290.9133 8.8492 17.0496 36.8 16.7869 2.9188 4.0972 36.8 0.0997 0.2261 0.3157 36.8
PredRNN 1.7250 0.7987 1.3134 278 2.6378 1.0804 1.6241 279 0.0789 0.1803 0.2810 278
PredRNN++ 1.4575 0.7676 1.2073 413 2.5476 1.0548 1.5961 414 0.0797 0.1954 0.2824 413
PredRNNv2 1.7826 0.8074 1.3351 279 2.8591 1.1303 1.6909 280 0.0828 0.1874 0.2878 279
MAU 1.2413 0.6977 1.1141 39.6 2.1530 0.9594 1.4673 39.6 0.0707 0.1715 0.2660 39.6
TAU 1.3611 0.7056 1.1667 6.70 1.7051 0.8509 1.3058 6.70 0.0661 0.1653 0.2570 6.70
SimVP-IncepU 1.7897 0.8015 1.3378 8.03 1.9993 0.9510 1.4140 8.04 0.0754 0.1760 0.2747 8.03
SimVP-gSTA 1.1523 0.6524 1.0735 7.01 1.7272 0.8812 1.3142 7.02 0.0469 0.1474 0.2166 7.01
SimVP-Swin 1.2235 0.6665 1.1061 6.88 1.5709 0.8168 1.2533 6.89 0.0589 0.1567 0.2426 6.88
SimVP-Uniformer 1.1948 0.6697 1.0930 7.45 1.4781 0.8059 1.2158 7.46 0.0561 0.1553 0.2368 7.45
SimVP-ViT 1.2954 0.6873 1.1382 7.99 1.6893 0.8512 1.2997 8.0 0.0615 0.1596 0.2480 7.99
SimVP-Poolformer 1.2525 0.6711 1.1191 5.61 1.6678 0.8427 1.2914 5.62 0.0562 0.1530 0.2371 5.61
VideoTitans 1.1852 0.6636 1.1158 4.92 1.4056 0.7984 1.1850 4.92 0.0554 0.1522 0.2353 4.92

Table 3: Performance comparison of VideoTitans and state-of-the-art methods on the WeatherBench
dataset for predicting temperature (t2m), wind velocity (uv10), and total cloud cover (tcc). VideoTi-
tans demonstrates competitive predictive accuracy across all variables, effectively capturing complex
global spatio-temporal patterns inherent in weather forecasting tasks.
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Figure 4: Qualitative comparison of predicted total cloud cover (tcc) frames on the WeatherBench
dataset. Predictions from VideoTitans are compared against PredRNNv2 (recurrent-based) and ViT
(transformer-based). Red boxes highlight regions where VideoTitans better preserves cloud patterns
compared to other methods, indicating its capability to effectively model global spatio-temporal
interactions in meteorological data.

the continuous fine-grained dynamics common in atmospheric processes, additional architectural
improvements could further enhance its predictive capabilities for subtle climate interactions.

5.2 Qualitative results

Human3.6 Figure 3 presents qualitative comparisons between VideoTitans and baseline methods
on the Human 3.6 dataset. The superiority of VideoTitans is clearly evident, as it generates sharper
and more accurate predictions for subtle and articulated human movements compared to recurrent
(PredRNNv2) and transformer-based (ViT) methods. This highlights VideoTitans’ capability to
effectively capture detailed motion dynamics and maintain prediction quality.

WeatherBench We evaluate VideoTitans on the WeatherBench dataset using the standard protocol
from OpenSTL, predicting weather variables at 1-hour intervals up to 12 hours into the future. The
qualitative results in Figure 4 visualize the predicted total cloud cover (tcc) at the reduced resolution
following the OpenSTL standard experimental setup. Since our primary objective is general video
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(a) Depth vs. MSE & FLOPs (b) Memory Layers vs. MSE (c) Persistent Memory vs. MSE
𝑃𝑃

Figure 5: Ablation analysis of VideoTitans on the Moving MNIST dataset. (a) illustrates how model
memory depth affects both FLOPs and MSE, showing that moderate depth offers the best trade-off
between efficiency and accuracy. (b) presents the effect of the number of neural memory layers,
where performance peaks at two layers, while deeper configurations encounter training instability. (c)
shows the impact of persistent memory parameters P, indicating that selecting the optimal value is
key to achieving the best performance.

prediction, we opt for this protocol; however, future work will extend our evaluation to the higher-
resolution WeatherBench2 [46] dataset at its full spatial resolution (0.25-degree). This will allow
us to better examine VideoTitans’ capability in capturing finer-grained meteorological dynamics.
Additional qualitative results across datasets are provided in the Supplementary Material.

5.3 Ablation Study

Hyperparameter Value
Neural Memory Depth 2
Neural Demory Dim 512

Head 4
Momentum Order 1

Max Gradient Norm 1.0
Persistent Mem Tokens 4

Chunk Size 256
Segment Len 256

Long-term Mem Tokens 16

Table 4: Detailed hyperparameter configura-
tion used for VideoTitans training.

Effect of Memory Depth We analyze the effect
of varying the depth (number of attention blocks) of
the VideoTitans on the Moving MNIST dataset in
figure 5 (a). Increasing the depth initially improves
prediction accuracy, reaching the lowest MSE at a
depth of 6. However, beyond this depth, we observe
diminishing returns, as the MSE slightly increases
at depth 8, suggesting a trade-off between compu-
tational complexity and prediction accuracy. These
results indicate that a depth of 6 achieves the opti-
mal balance between model complexity (measured in
FLOPs) and forecasting performance.

Design of Neural memory We investigate the ef-
fect of neural memory depth on the prediction performance of VideoTitans by varying the number of
layers within the memory module from 1 to 4 in figure 5 (b). The model achieves the best perfor-
mance (MSE: 21.3265) with a memory depth of 2. Despite extensive experimentation—including
careful tuning of hyperparameters, gradient norm clipping, learning rate adjustments, and various
initialization strategies—deeper memory modules (3 and 4 layers) consistently faced severe training
instabilities and failed to converge. This highlights a critical trade-off between memory depth and
training stability, indicating that very deep neural memory structures may require extensive and
precise hyperparameter tuning or architectural modifications to ensure convergence and maintain
stability.

Influence of Persistent Memory Parameter (P) Figure 5 (c) examines how varying the Persistent
Memory Parameter (P) influences the prediction performance. The optimal performance (MSE:
21.3265) is achieved at P = 3. Smaller values (P = 0 or 1) and larger values (P = 5 or 10) degrade
performance, suggesting that a moderate value of P balances model complexity and memory capacity
for the best forecasting outcomes.

Effect of Persistent Memory Table 5 evaluates the impact of including Persistent Memory in
VideoTitans on the Moving MNIST dataset. The presence of Persistent Memory significantly reduces
MSE from 23.5125 to 21.3265, indicating that Persistent Memory effectively helps the model retain
critical temporal context, leading to improved prediction accuracy.
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Persistent Memory MSE
With 21.3

Without 23.5

Table 5: Persistent Memory ab-
lation on Moving MNIST.

Attention Type MSE
Sliding Window 21.3
Global Attention 24.4

No Attention 30.7

Table 6: Attention mechanism
ablation on Moving MNIST.

Method MSE
Memory as a Context 66.5201

Memory as a Gate 21.3265
Memory as a Layer 24.4822

Table 7:Comparison of VideoTi-
tans performance with different
memory integration strategies.

Impact of Attention Mechanism Table 6 compares the effect of different attention strate-
gies—Sliding Window Attention, Global Attention, and no attention. Sliding Window Attention
achieves the lowest MSE (21.3265), demonstrating its superior capability to effectively focus on local
temporal dynamics compared to Global Attention (MSE: 24.4822) or removing attention entirely
(MSE: 30.79).

Memory Integration Strategies Table 7 compares the performance of VideoTitans on MMNIST
using three different memory integration strategies of Titans [2]: Memory as a Context (MAC),
Memory as a Gate (MAG), and Memory as a Layer (MAL). MAG achieves significantly better
performance (lowest MSE), clearly outperforming both MAC and MAL. This demonstrates that
incorporating memory using a gating mechanism is particularly effective at capturing and selectively
integrating critical historical information, leading to superior video prediction results.

6 Limitation and Future Work

In this work, we extensively evaluate VideoTitans on the video prediction task. Although our proposed
model demonstrates strong generalization across multiple diverse datasets, further studies should
investigate the effectiveness of our method in broader vision tasks such as action recognition, video
segmentation, and anomaly detection.

While diffusion-based models have recently shown strong performance in video generation, our
focus is on video prediction—forecasting future frames based on observed inputs, rather than
generating from noise or prompts. Diffusion models involve iterative denoising processes with
significant computational cost, prioritizing high-quality synthesis. In contrast, video prediction
demands temporal consistency and real-time efficiency. Therefore, we compare against models
specifically designed for future frame prediction. Still, leveraging the high fidelity of diffusion models
alongside the real-time efficiency of predictive models offers a promising direction for long-range
video forecasting.

Finally, we observe that despite the compelling strengths of the Titans concept, the choice of
hyperparameters significantly impacts performance stability. Particularly, the neural memory module
depth and gradient constraints are crucial; exceeding two layers frequently causes numerical instability
during training. One important contribution of this work is the identification and documentation
of these critical hyperparameters (Table 4), enabling stable and reproducible implementations of
VideoTitans in future research.

7 Conclusion

In this work, we propose VideoTitans, a neural architecture designed for spatio-temporal video
prediction, effectively capturing both local motion dynamics and long-term dependencies. By in-
tegrating three key components—Short-Term Memory with attention-based processing for recent
frames, Long-Term Memory for selectively encoding and retrieving historical contexts, and Persistent
Memory for task-specific knowledge—VideoTitans efficiently models complex video sequences
while maintaining computational scalability. Extensive experimental evaluations demonstrate that
VideoTitans consistently outperforms CNN-based, Transformer-based, and recurrent models, achiev-
ing superior predictive accuracy while significantly improving efficiency for long-term forecasting.
These results underscore the effectiveness of VideoTitans as a robust and scalable solution for video-
based predictive modeling, paving the way for advancements in real-world applications such as
autonomous systems, surveillance, and robotics.
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A Additional Dataset

A.1 Caltech-Pedestrian Dataset

The Caltech-Pedestrian [14] dataset presents challenging real-world urban scenarios involving diverse
pedestrian movements, occlusions, and complex dynamics. It is evaluated using metrics such as
Mean Square Error (MSE), Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio
(PSNR), and Learned Perceptual Image Patch Similarity (LPIPS)[75], testing the robustness and ac-
curacy of predictive models. As shown in Table8, VideoTitans demonstrates competitive performance
across these metrics, effectively capturing intricate pedestrian trajectories and spatial relationships.
This highlights its practical applicability in dynamic environments, combining predictive accuracy
with computational efficiency.

Method MSE (↓) SSIM (↑) PSNR (↑) LPIPS (↓) FLOPs(G) (↓)

ConvLSTM 139.6588 0.9345 27.4644 0.0857 595.0
E3D-LSTM 199.1374 0.9047 25.4612 0.1261 1004.0
MIM 123.9034 0.9410 28.1148 0.0642 1858.0
PhyDNet 310.6844 0.8615 23.2723 0.3218 40.4
PredRNN 129.3306 0.9375 27.8074 0.0745 1216.0
PredRNNv2 143.4366 0.9334 27.1864 0.0895 1223.0
MAU 177.4630 0.9174 26.1504 0.0969 172.0
TAU 128.9193 0.9458 27.8465 0.0551 80.0
SimVP-IncepU 160.2191 0.9338 26.8093 0.0675 60.6
SimVP-gSTA 127.7992 0.9456 27.9191 0.0577 96.3
SimVP-Swin 155.2470 0.9300 27.2542 0.0811 95.2
SimVP-Uniformer 135.9496 0.9393 27.6607 0.0687 104.0
SimVP-ViT 146.3816 0.9380 27.4267 0.0666 155.0
SimVP-Poolformer 153.3675 0.9334 27.3807 0.0700 79.8
VideoTitans 130.4290 0.9448 28.8861 0.0512 9.9

Table 8: Performance comparison on Caltech Pedestrian dataset.

A.2 KTH Dataset

The KTH [49] dataset is characterized by structured human actions and stable motion patterns which
test a model’s ability to capture temporal dynamics and spatial coherence in controlled settings. As
shown in Table 9 VideoTitans achieves state-of-the-art performance across all evaluation metrics
including MSE, Mean Absolute Error (MAE), PSNR, and SSIM. It combines high predictive accuracy
with low computational complexity which confirms its practical effectiveness and shows its strength
in modeling regular motion sequences with precision and efficiency.

Method MSE (↓) MAE (↓) PSNR (↑) SSIM (↑) FLOPs(G) (↓)

ConvLSTM 47.65 445.5 26.99 0.8977 1368.0
E3D-LSTM 136.40 892.7 21.78 0.8153 217.0
MIM 40.73 380.8 27.78 0.9025 1099.0
PhyDNet 91.12 765.6 23.41 0.8322 93.6
PredRNN 41.07 380.6 27.95 0.9097 2800.0
PredRNNv2 39.57 368.8 28.01 0.9099 2815.0
MAU 51.02 471.2 26.73 0.8945 399.0
TAU 45.32 421.7 27.10 0.9086 73.8
SimVP-IncepU 41.11 397.1 27.46 0.9065 62.8
SimVP-gSTA 45.02 417.8 27.04 0.9049 76.8
SimVP-Swin 45.72 405.7 27.01 0.9039 75.9
SimVP-Uniformer 44.71 404.6 27.16 0.9058 78.3
SimVP-ViT 56.57 459.3 26.19 0.8947 112.0
SimVP-Poolformer 45.55 400.9 27.22 0.9065 63.6
VideoTitans 34.27 320.8 29.31 0.9197 50.9

Table 9: Performance comparison on KTH dataset.
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B Qualitative Results
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Figure 6: Qualitative comparison of predicted
frames on the Moving MNIST dataset.

Figure 6 shows qualitative comparisons be-
tween VideoTitans, recurrent (PredRNNv2), and
transformer-based (ViT) methods on the Moving
MNIST dataset. Due to the dataset’s relatively
simple dynamics, all models perform similarly
well, making it challenging to visually distin-
guish significant differences among predictions.
Empirically, we observe that differences primar-
ily lie in convergence speed rather than final per-
formance, as extending training epochs tends to
improve accuracy for all models. Nevertheless,
VideoTitans consistently provides slightly more
stable and accurate results. We also present qual-
itative results for t2m and uv10 variables from
the WeatherBench dataset. Further qualitative
results of VideoTitans are also available as GIF
animations for better visualization.
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Figure 7: A qualitative comparison of predicted 2m temperature (t2m) frames on the WeatherBench
dataset, comparing VideoTitans’ predictions with those of other video prediction models.
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Figure 8: A qualitative comparison of predicted wind field (uv10) frames on the WeatherBench
dataset, where VideoTitans’ predictions are compared with those of other video prediction models.
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C Implementation Details

C.1 Model Architecture

The architecture of VideoTitans consists of three main components: an encoder for spatial feature
extraction, a Titans-based temporal modeling module, and a decoder for frame reconstruction.

Encoder. The encoder captures spatial and low-level visual features from input frames. Given an
input tensor of shape (B, T,C,H,W ), each frame is independently processed by convolution-based
patch embedding. Specifically, we employ a convolutional layer with kernel size 16× 16 and stride
16, converting the input as:

(B × T,C,H,W ) → (B × T, embed_dim, H/16,W/16).

Afterward, spatial positional encodings are added to preserve positional information. The tensor is
then reshaped for temporal processing:

(B × T, embed_dim, H/16,W/16) → (B,H/16×W/16, T × embed_dim).

Titans-based Temporal Modeling. The temporal modeling is based on the Titans architecture,
utilizing neural long-term memory that adaptively updates weights via a gradient-based surprise
metric, efficiently capturing essential temporal patterns. Key hyperparameters, such as memory depth,
memory dimension, persistent memory tokens, and maximum gradient norm, are critical for stable
training. In particular, setting the maximum gradient norm to 1.0 prevents training instabilities such
as gradient explosions.

The Titans module processes embeddings in segments, employing sliding window attention to model
both local and global temporal dependencies. Persistent memory tokens encode context-independent
knowledge to enhance generalization across datasets.

Decoder. The decoder reconstructs predicted frames from the temporal features. Mirroring the
encoder structure, it utilizes transpose convolutional layers (kernel size 16× 16, stride 16) to restore
spatial dimensions:

(B,H/16×W/16, T × embed_dim) → (B × T,C,H,W ).

The decoded frames are reshaped to the original dimensions (B, T,C,H,W ) for comparison with
ground-truth.

C.2 Training Procedure

We implement VideoTitans in PyTorch, using the Adam optimizer and Mean Squared Error (MSE)
loss function. Key training parameters are summarized below:

• Optimizer: Adam optimizer (β1 = 0.9, β2 = 0.999).
• Learning Rate Scheduler: ReduceLROnPlateau (patience=10 epochs), initial learning rate

chosen from {10−2, 5× 10−3, 10−3, 5× 10−4, 10−4}.
• Batch Size: 8 for all experiments.
• Training Epochs: MMNIST (200 epochs), Caltech Pedestrian (100 epochs), Human3.6,

TrafficBJ, WeatherBench (50 epochs each).

Additionally, we apply the Exponential Moving Average (EMA) with a decay of 0.995 during training
to enhance model stability and generalization.

C.3 Hyperparameter Sensitivity

A key contribution of our study includes identifying sensitive hyperparameters essential for VideoTi-
tans’ stable training. Notably, removing gradient norm constraints (e.g., setting max gradient norm)
caused training instabilities, and overly deep neural memory layers (depth > 2) frequently result in
numerical instability. Careful hyperparameter tuning is thus essential for robust training and optimal
performance.
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C.4 Memory Integration Strategies

There are three types of memory integration strategies in Titans: Memory as a Gate (MAG), Memory
as a Context (MAC), and Memory as a Layer (MAL). MAG uses a gating mechanism to dynamically
combine short-term attention and long-term memory, allowing the model to integrate previous knowl-
edge adaptively. MAC retrieves past information from memory and appends it to the input sequence
before processing it with attention, enabling selective use of historical data. MAL incorporates mem-
ory as an independent processing layer before the attention, similar to traditional hybrid recurrent
models. Among these approaches, MAG achieves the best performance by effectively balancing
short-term precision with long-term recall, leading to its selection as the baseline model for our work.
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