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Abstract

Accurately predicting the long-term behavior of chaotic systems is crucial for
various applications such as climate modeling. However, achieving such predictions
typically requires iterative computations over a dense spatiotemporal grid to account
for the unstable nature of chaotic systems, which is expensive and impractical in
many real-world situations. An alternative approach to such a fully-resolved
simulation (FRS) is using a coarse grid and then correcting its errors through a
closure model, which approximates the overall information from fine scales not
captured in the coarse-grid simulation. Recently, ML approaches have been used
for closure modeling, but they typically require a large number of expensive FRS
training samples. In this work, we prove an even more fundamental limitation, i.e.,
the standard approach to learning closure models suffers from a large approximation
error no matter how expressive the model is, and it stems from the non-uniqueness
of the mapping. We also prove that other existing methods leveraging history
information and randomness can neither resolve this limitation. We propose an
alternative end-to-end learning approach using a physics-informed neural operator
(PINO) that overcomes this limitation by not using a closure model or a coarse-grid
solver. We first train the PINO model on data from a coarse-grid solver and then
fine-tune it with (a small amount of) FRS and physics-based losses on a fine grid.
The discretization-free nature of neural operators means that they do not suffer
from the restriction of a coarse grid that closure models face, and they can provably
approximate the long-term statistics of chaotic systems. In our experiments, our
PINO model achieves a 120x speedup compared to FRS with a relative error ∼ 5%.
In contrast, the closure model coupled with a coarse-grid solver is 58x slower than
PINO while having a higher error ∼ 205% when trained on the same FRS dataset.

1 Introduction
Predicting long-term behavior is an important task in many physical systems, e.g., climate modeling,
aircraft design, and plasma evolution in nuclear fusion [1, 2, 3, 4, 5]. This can be framed as estimating
statistics of a system in its dynamical equilibrium through numerical simulations. One major challenge
is that many physical systems are chaotic and thus have extreme sensitivity to perturbations [6, 7, 8, 9].
To account for the unstable nature of chaotic systems, high-fidelity simulations have to be carried
out on extremely fine spatiotemporal grids to make discretization errors sufficiently small so that
the overall error along the trajectory does not grow rapidly. This makes fully-resolved simulations
(FRS), e.g. direct numerical simulations (DNS) in turbulence, prohibitively expensive in terms of
both computation time and memory [10, 11].
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Figure 1: Left: Many points (e.g., u1 and u2) of the ground-truth attractor Ω (i.e., equilibrium state,
blue) map to the same filtered (e.g., downsampled) value u (gray), making it impossible for the
closure model to identify the correct dynamics (F(Au1) and F(Au2)) in the filtered space F(H).
By minimizing the loss function, the model learns to predict an average of these multiple choices
(green arrow), which leads the simulation to wrongly diverge from the filtered attractor. Right:
Total variation distance from ground-truth invariant measure versus computation cost. ‘FRS’(blue
line): gold-standard fully-resolved simulations. ‘CGS’: coarse-grid simulation without closure model.
‘Smag.’: Smagorinsky model.‘Single’: learning-based single-state model. Our method is the fastest
and closest to ground truth (‘FRS’) among all coarse-grid methods (‘CGS’, ‘Smag.’, ‘Single’).

Given the computation cost of FRS in chaotic dynamics and the fact that the ultimate goal is to
evaluate the long-term statistics instead of tracking any individual trajectory, many works have been
exploring ways to give a good estimate of such statistics with simulations only conducted on coarse
spatial grids, e.g., large-eddy simulation (LES) [12, 13] for turbulent flows. To correct the errors
introduced by coarse-grid solvers, a popular approach is to use a closure model, an additional term in
the original dynamics, in conjunction with the solver [14, 15, 16]. This approach is also known as
coarse-grained modeling [17] or renormalization groups in some disciplines [18].

The traditional framework for designing closure models is based on physical intuition, which requires
substantial domain expertise or derived by mathematical simplification under strong modeling
assumptions. Hence, such approaches are typically inaccurate for real-world systems [19, 20, 21].
This past decade has also witnessed extensive development of machine-learning methods for closure
modeling [22, 23, 24, 25, 26]. However, these learning-based closure models [27, 28, 29, 30] often
rely on a large amount of high-fidelity training data generated from expensive FRS, which may even
be impossible to generate for many problems of interest.

Our Approach: In this work, we provide a new theoretical understanding of estimating long-term
statistics of a chaotic system. We formally prove in Theorem 2.1 that for generic problems, previous
learning methods based on closure models are fundamentally ill-posed since they are constrained
to be on the same coarse grid as the solver, and they cannot accurately approximate the underlying
chaotic system. Specifically, we prove that the mapping that closure models attempt to learn in a
reduced space (coarse grid) is non-unique, i.e., there are multiple potential outputs for a given input
(fig. 1, left). Hence, the standard approach to learning closure models under such non-uniqueness
results in the average of possible outputs, and that cannot accurately approximate the long-term
statistics of a chaotic system, no matter how expressive the closure model is. We also prove that other
attempts leveraging history information or randomness can neither resolve this limitation.

We further propose an alternative end-to-end ML framework to mitigate this non-unique issue of
the previous scheme, i.e. an additional closure model in coarse-grid simulations. We remove the
constraint that the learned model is on a coarse grid and instead employ a grid-free approach to
learning. It is based on neural operators [31, 32], which learn mappings between function spaces. In
a neural operator, inputs of different resolutions are viewed as different discretizations of the same
function on a continuous domain, thus ensuring consistency between coarse and fine grids. The neural
operator, targeting the solution operator directly, is first pre-trained with data from cheap coarse-grid
solvers and a small amount of FRS data, then trained by minimizing physics-based loss defined on
a fine grid. The physics-based losses on a fine grid reduce the FRS data requirement and improve
generalization, in line with what has been seen in prior works on physics-informed learning [33].

We prove in Theorem A.1 that a neural operator that approximates the underlying ground-truth
solution operator can provide sufficiently accurate estimates of the long-term statistics of a chaotic
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system, and there is no catastrophic build-up of errors over long rollouts. We test the performance of
our approach in several instances from fluid dynamics. Our method achieves a 120x speedup with
a relative error ∼ 5% compared to FRS. In contrast, the closure model coupled with a coarse-grid
solver is 58x slower than ours while having a much higher error ∼ 205%. More details about the
speed-accuracy performance of different approaches are shown in figure 1. The closure model has a
significantly higher error under our setup compared to prior works [30, 29, 34] because we assume
that only a few FRS samples are available for training, both for PINO and the closure model. In
fact, we show that to mitigate the non-unique issue of closure models mentioned above, previous
methods have to resort to the closeness between the limit distribution in the original dynamics and the
empirical measure of training data. An illustrative comparison between our method and representative
existing methods can be found in Table 2. Our contributions are summarized in Appendix A.4

2 Background and Existing Methods
Problem Background Consider an evolution partial differential equation (PDE) that governs a
(nonlinear) dynamical system in the function space,{

∂tu(x, t) = Au(x, t)
u(x, 0) = u0(x), u0 ∈ H, (1)

where u0 is the initial value and H is a function space containing functions of interests. We denote
by S(t) the corresponding semi-group. We refer to {S(t)u0}t≥0 as trajectory from u0. In many
physics systems, there exists a global attractor defined as a subset of H towards which all trajectories
converge over time [35, 36]. The invariant measure µ∗, supported on the attractor, is the time average
over any trajectory, independent of initial value as long as the system is ergodic. Intuitively, µ∗

captures the system’s long-term behavior when it reaches a dynamical equilibrium. The long-term
statistics are expectations of functionals on the invariant measure. See Appendix A.2 for more details.

Coarse-grid Simulation and Closure Modeling Many works have been exploring ways to give
good estimations of statistics with simulations only conducted on coarse grids. We will refer to this
approach as coarse-grid simulation (CGS). CGS could be viewed as evolving a filtered function u
defined as u = Fu, where F is a linear filtering operator. For instance, F is a spatial convolution
for cases like down-sampling in the finite difference method and Fourier-mode truncation in the
spectral method. Theoretically, the evolution of u is governed by ∂tu = FAu = Au + (FA −
AF)u. However, the commutator (FA−AF)u is intractable if restricted to coarse grids since u is
underresolved. To account for the effect of small scales not captured by coarse grids, in many CGS
methods an adjusting term clos(u; θ) (θ denotes the model parameters), known as closure model, is
added to the equation as a tractable surrogate model of (FA−AF)u. The CGS trajectory is{

∂tv(x, t) = Av(x, t) + clos(v; θ), x ∈ D′

v(x, 0) = u0(x), u0 ∈ F(H),
(2)

and the statistics are estimated as the time average of the corresponding functionals with v(·, t) input.

Learning-based closure model: In recent years, there has been a growing interest in leveraging
machine learning tools to design closure models (see [24] for survey). The most popular approach is
to learn a single-state closure model clos(v; θ) with various ansatz and neural network architecture,
trained by minimizing an a priori loss function aiming at fitting the commutator [24],

Jap(θ;D) =
1

|D|
∑
i∈D

∥clos(ui; θ)− (FA−AF)ui∥2, (3)

where the training data ui come from snapshots of FRS trajectories, i.e., S(t)u0 for particular t.
This methodology is problematic when considering the input and output. Due to the dimension
reduction of filter F , multiple FRS snapshots ui ∈ H map to the same state in the reduced space
F(H). However, the filtered vector field Au differs across these ui. The closure model must assign a
unique direction in F(H) for each state u. Minimizing the training loss (3) often results in predicting
an averaged vector field, which does not make much sense. See Fig. (1). Unlike inverse problems or
linear regression, predictions here must follow the manifold defined by physical trajectories.

There are also other variants that leverages history information [34, 37] (a closure model whose
input is {u(·, t− s)}0<s≤t0 at the moment t, where t0 is a model parameter) or propose to employ a
stochastic closure model [38, 39]. However, we have the following results.
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Theorem 2.1. (i) In general, the mapping of closure models u→ (FA−AF)u is not well-defined.
Consequently, the approximation error has a lower bound independent of the model complexity.
(ii) For any u and finite τ , there exist infinite u′ ∈ H such that FS(t)u′ = FS(t)u for all t ∈ [0, τ).
(iii) One cannot obtain the best approximation of µ∗ among distributions supported in the reduced
space if there is randomness in the evolution of dynamics.

The proof is in Appendix D. From the second claim, even with history-aware models, under-
determinacy remains in chaotic systems because the reduced-space history does not fully determine
future states. For the third claim, parameters associated with randomness in stochastic models will
tend to zero after ideal training, making randomness unnecessary.

Given the results above, it might seem surprising since these methods still achieve competitive
performance. We show that their empirical result depends heavily on having abundant FRS training
data (see Appendix A.5 for details). If enough FRS data were available, we could compute the
statistics directly, negating the need for a closure model or coarse-grid simulations.

3 Methodology: Physics-Informed Operator Learning

From previous sections, we see that restricting the learning object in the filtered space and explicitly
learning the closure model would always suffer from the non-uniqueness of this target. In light of
that, we propose to extend the learning task into function space H and directly deal with the solution
operator S(t) of PDE governing the dynamics, which is a well-defined mapping. We adopt Fourier
Neural Operator (FNO) [31] to learn the mapping u→ {S(t)u}t∈[0,h], where h is a model parameter.

To overcome the lack of FRS training data in realistic situations, we adopt physics-informed
methodologies[40] to remove the reliance on data. To be specific, the operator model Gθ is trained by
minimizing the physics-informed loss function

Jpde(θ;D) =
1

|D|
∑
i∈D

∥(∂t −A)Gθu0i(x)∥L2(Ω×[0,h]), (4)

where the initial values u0i in the loss function could be any fine-grid functions and do not have to
come from FRS trajectories. Ω is the spatial domain of these functions. In practice, the optimization
of physics-informed loss is hard [41, 42]. To face these challenges, we pre-train the model via
supervised learning with a data loss function to achieve a good initialization of the model parameters
for Jpde optimization. A detailed introduction of neural operator is in Appendix A.6, the formalized
algorithm and its implementation details can be found in Appendix G. A theoretical guarantee for
estimating statistics is presented in Appendix A.7.

Experiment Results To verify our method, we compare it with gold-standard fully-resolved simula-
tions, coarse-grid simulations with numerical closure models [14] and ML-based single-state closure
models which are trained with same amoutn of FRS data as our model, namely 110 snapshots from a
single trajectory. We test on 1D Kuramoto–Sivashinsky equation and 2D Navier-Stokes equation. We
check various statistics including energy spectrum, auto-correlation, variance, velocity and vorticity
density, kinetic energy and dissipation rate. See Table 1. More details about the experiment setup, the
statistics considered, and full results for all equations and statistics are in Appendices F to H.

Table 1: Experiment Results for Navier-Stokes Equation. Left: Errors on different statistics, i.e.,
average total variation (‘Avg. TV’), energy spectrum (‘Energy’), TV error for vorticity distribution
(‘Vorticity’), and velocity variance (‘Variance’). Percentages refer to average relative errors. Other
numbers refer to TV distances (ranging [0, 1]) between ground truth and prediction. Right: Compari-
son of the inference time (seconds) of one trajectory for t ∈ [0, 100]. Best results are marked bold.

Method Avg. TV Energy Vorticity Variance

CGS (No closure) 0.4914 178.4651% 0.1512 253.4234%
Smagorinsky [14] 0.2423 52.9511% 0.0483 20.1740%
Single-state [30] 0.5137 205.3709% 0.1648 298.2027%

Our Method 0.0726 5.3276% 0.0091 2.8666%

FRS 39.70
CGS (No closure) 4.50
Smagorinsky 4.81
Single-state 18.57

Ours 0.32
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Appendix

In this appendix, we will first provide the supplementary contents of the main text (A), followed by
detailed proofs of our theoretical results (B-E), and then present implementation details and more
experiment results (F-H). The structure of the appendix is as follows.

• Appendix B provides a list of notations, along with an introduction of important background
conceptions, preliminary results, and basic assumptions in this paper.

• Appendix C first formally introduces functional Liouville flow, and then presents a detailed
version of Appendix A.5.

• Appendix D provides the proof of the three claims in Theorem 2.1.
• Appendix E provides the proof of Theorem A.1.
• Appendix F contains information about the dataset in the experiments and a visualization of

the Navier-Stokes dataset.
• Appendix G provides the implementation details for our method and baseline methods.
• Appendix H first formally introduces the statistics we consider, followed by the full experi-

ment results (table and plots) and ablation studies.

A Supplementary Material

A.1 Comparison Between Different Methods

Table 2: Comparison between different approaches for predicting long-term statistics of Navier-
Stokes equations. The Reynolds number Re is large in most applications. The top two are classical
approaches, and the rest are machine learning approaches. Training data is counted in the number
of snapshots and trajectories. The complexity takes into account both spatial grids and temporal
grids. Our approach is even cheaper than coarse-grid simulations because ours can evolve with O(1)
time step instead of small time-grids following the CFL condition, as is the case for other methods
utilizing a coarse solver. δt is the time-grid size for latent SDE in [38].

Method Optimal High-res. training data Complexity
statistics FRS Snapshots

∣∣ Trajs.

Fully-resolved Simulation, e.g., DNS [43, 44] ✓ - Re3.52

Coarse-grid Simulation, e.g., LES [43, 44] ✗ - Re2.48

Single-state model [30] ✗ 24000
∣∣ 8 Re2.48

History-aware model[37] ✗ 250000
∣∣ 50 Re2.48

Latent Neural SDE[38] ✗ 179200
∣∣ 28 1

δtRe
1.86

Online Learning [45] ✗ - Re3.52

Physics-Informed Operator Learning (Ours) ✓ 110
∣∣ 1 Re1.86

A.2 Detailed Background

We formally introduce the problem setting of evaluating long-term statistics as well as existing
numerical and machine learning methods. We will show the potential shortcomings of previous
learning methods and state some of our theoretical results. See Appendix B for more backgrounds.

A.3 Problem Background

Consider an evolution partial differential equation (PDE) that governs a (nonlinear) dynamical system
in the function space, {

∂tu(x, t) = Au(x, t)
u(x, 0) = u0(x), u0 ∈ H, (5)

where u0 is the initial value and H is a function space containing functions of interests, e.g., fluid
field, temperature distribution, etc; see Appendix B.4 for further assumptions. This equation naturally
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induces a semigroup {S(t)}t≥0 defined as the mapping from the initial state to the state at time t,
S(t) : u0 → u(·, t). We refer to the set {S(t)u0}t≥0 as trajectory from u0.

Attractor, invariant measure, long-term statistics: The (global) attractor of the dynamics is
defined as the maximal invariant set of {S(t)}t towards which all trajectories converge over time.
For many relevant systems, the existence of a compact attractor is either rigorously proved[35, 36] or
demonstrated by extensive experiments[46, 47, 48]. The invariant measure is the time average of any
trajectory, independent of initial value as long as the system is ergodic,

µ∗ := lim
T→∞

1

T

∫ T

t=0

δS(t)udt, u ∈ H, a.e. (6)

where δ is the Dirac measure. µ∗ is a measure of functions and is supported on the attractor. Intu-
itively, the invariant measure captures the system’s long-term behavior when it reaches a dynamical
equilibrium. The long-term statistics are expectations of functionals on the invariant measure. The
most straightforward approach to estimate statistics is to run an accurate simulation of trajectory
and compute following the definition. In practice, we first fix a sufficiently large T and then choose
spatiotemporal grid size accordingly so that the overall error of the simulation within [0, T ] remains
small. We will refer to this approach as high-fidelity simulations or FRS.

Chaotic systems, characterized by positive Lyapunov exponents [49], are known for their extreme
sensitivity to perturbations and catastrophic accumulation of small errors over time. To account for
the unstable nature of chaotic systems, high-fidelity simulations have to be carried out on very dense
spatiotemporal grids to make discretization errors small enough so that the overall error along the
trajectory does not grow rapidly. This makes the FRS approach prohibitively expensive.

A.4 Our Contributions

Our contributions in this work are summarized as follows.

• We propose a novel framework based on functional Liouville flow, to theoretically analyze the
problem of estimating long-term statistics of chaotic systems with coarse-grid simulations.

• We formally prove that restricting the learning object in the reduced space, as existing closure
models do, suffers from the non-uniqueness of the learning target.

• We leverage physics-informed neural operator as an alternative approach that combines learning on
data from both coarse and fine-grid solvers, and physics-based losses. We provide both theoretical
and empirical evidence of its superiority.

A.5 Perspective through Liouville Flow in Function Space

We have demonstrated that existing learning methods target a non-unique mapping, resulting in an
average of all possible outputs, which can be undesirable. Despite this, these methods still manage to
achieve competitive performance. In this section, we show that their empirical result heavily relies on
the availability of a large amount of FRS training data. This dependency is a significant limitation, as
FRS data are typically scarce. If a sufficient amount of FRS data were already available for training,
we could directly compute the statistics using the data, eliminating the need for training a closure
model or running coarse-grid simulations.

Our analysis investigates the evolution of the distribution (or measure) to determine whether it con-
verges to µ∗. In terms of finite-dimensional dynamical systems (ODEs), the evolution of distribution
is governed by the Liouville equation. This observation motivates us to generalize the Liouville
equation into function space and conduct our study therein. Rigorous definitions of related notions
and detailed proofs for all claims made in this section can be found in Appendix C.

Functional Liouville Flow: If we expand functions onto an orthonormal basis, u =
∑

i ziψi, a
PDE system (of u) can be viewed as an infinite-dimensional ODE (of z). In this way, we yield the
functional version of the Liouville equation describing how the probability density of u evolves.
Under this framework, we only need to check the stationary Liouville equation to obtain the limit
invariant distribution of a dynamical system and compare it with µ∗.

10



In the coarse-grid setting, we similarly derive the evolution of the density of u and yield the optimal
dynamics of v ∈ F(H) (different from CGS in eq. (2)), v is exactly the same as u here),

∂tv = Eu∼µt
[FAu|Fu = v], (7)

where µt is the distribution of u ∈ H following the original dynamics at time t and this expectation
is conditioned on the samplings of u satisfying Fu = v. Here we arrive at the same result in [50].
Unfortunately, µt depends on t and the initial distribution of u ∈ H, which is underdetermined and
will suffer from non-unique issues if restricted to a coarse-grid system, similar to what is discussed
in the previous section. In practice, one can only fix one particular µ̂, a distribution in H, and
assign the dynamics in reduced space as ∂tv = Eu∼µ̂[FAu|Fu = v]. Checking the resulting
Liouville equation, we show that µ∗ is the choice for µ̂ to guarantee convergence towards F#ρ

∗,
the optimal approximation of µ∗ in F(H). Back to the learning methods listed in Section 2, due
to the L2 variational characterization of conditional expectation, the underlying choice of µ̂ is the
empirical measure of those training data coming from FRS, ideally µ∗. Consequently, one has to use
numerous FRS training data due to the slow convergence of empirical measures for high-dimensional
distribution.

As is the case, these learning methods often rely on a large amount of fine-grid data coming from one
long FRS trajectory or multiple FRS trajectories which are expensive. Furthermore, most methods
still rely on a coarse-grid solver that iteratively evolves with relatively small time steps, and some
methods require that the coarse simulation starts from a downsampled version of high-fidelity data
close to the attractor. These aspects hinder the further application of these methods.

A.6 Introduction to Operator Learning

The goal of operator learning[31, 32, 51] is to approximate mappings between function spaces
rather than vector spaces. One of the representatives is Fourier Neural Operator (FNO) [31], whose
architecture can be described as:

GFNO := Q ◦ (WL +KL) ◦ · · · ◦ σ(W1 +K1) ◦ P, (8)

where P and Q are pointwise lifting and projection operators. The intermediate layers consist
of an activation function σ, pointwise operators Wℓ and integral kernel operators Kℓ : u →
F−1(Rℓ · F (u)), where Rℓ are weighted matrices and F denotes Fourier transform.

A.7 Provable Convergence to Long-term Statistics:

The universal approximation capability of FNO has been proved[32, 52]. Some might doubt that since
small errors will rapidly escalate over time in chaotic systems, we have to train an FNO that perfectly
fits the ground truth, which would be unrealistic. However, we have the following result. Intuitively,
we show that there exists a true trajectory (from a different initial value) that is consistently close
to the simulation we get with approximate FNO. Since the invariant measure is independent of the
initial condition, we obtain a good approximation of the (filtered) invariant measure.

Theorem A.1. For any h > 0, denote µ̂h,θ := lim
N→∞

1
N

N∑
n=1

δGn
θ v0(x), any v0(x) with x ∈ D′. For

any ϵ > 0, there exists δ > 0 s.t. as long as ∥(Gθu)(·, h) − S(h)u∥H < δ,∀u ∈ H, we have
WH(µ̂h,θ,F#µ

∗) < ϵ, where WH is a generalization of Wasserstein distance in function space.

The proof can be found in Appendix E. Details about WH can be found in Appendix B.2. These
results show that even if the trained operator jumps a large step h in time and has errors as is in
practice, we can still obtain a good estimation of statistics by rolling it out and computing the time
average. In practice, a 10% ∼ 20% relative error of single-step prediction suffices.

B Notations, Auxiliary Results, and Basic Assumptions

In this section, we first summarize the notations in this paper, then review and define some of the
important concepts, and finally state the basic assumptions in this work. We would encourage the
readers to always check this section when they have any confusion regarding the proof.
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B.1 Notations

Table 3: List of Notations

Notation Description
µ Distributions.

F# Push-forward of a mapping F . If y = F (x) and the distribution of x is µx, then the
distribution of y is F#µx.

F# Pull-back of a mapping F . If y = F (x) and the distribution of y is µy, then the
distribution of x is F#µy .

H (Original) Function Space, see eq. (5).

A The operator of the dynamics, see eq. (5).

S(t) Semigroup induced by eq. (5).

u Functions in H.

F Filter. F : H → H. The image space is finite-rank and denoted as F(H).

D The set of grids in fully-resolved simulations. The number of grids is |D|.

D′ The set of grids in coarse-grid simulations. The number of grids is |D′|.

P(Ω) The set of all probability distributions supported on a set Ω.

WH The Wasserstein distance for measures in H, with ∥ · ∥H being the cost function.

⟨·, ·⟩ The pair of linear functionals and elements in a Banach space X . Specifically, for
x ∈ X , f ∈ X ∗, its dual space, ⟨f, x⟩ := f(x). Thanks to Riesz Representation
Theorem, we will also use this notation for inner products in Hilbert space.

⊗ For a Hilbert space H, u ∈ H, v ∈ H, u ⊗ v is defined as the linear operator
w → ⟨v, w⟩u, w ∈ H.

⊕ u⊕ v := (u, v).

C0 Continuous function space, equipped with L∞ norm.

C∞
c Smooth and compactly-supported functions.

dG(u, v) The Gateaux derivative of operator G at u in the direction of v.

ℵ0 Aleph-zero, countably infinite.

[n] {1, 2, ...n}

DT The set of time-grids.

MDT
(u0) The set of functions that are indistinguishable from u0 merely based on values on

spatiotemporal grid D′ ×DT , see Assumption D.5.

Ix, I (Spatial) Grid-measurement operators, see Definition D.1.

FDT
, F Spatiotemporal grid-measurement operators, see Theorem D.2.

w.r.t. with regard to
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Notation Description
wlog without loss of generality

B.2 Optimal Transport in Function Space

Given a Banach space X and two distributions µ1, µ2 ∈ P(X ), we want to measure the closeness
of these two distributions.

Recall that in finite-dimensional X , the (Monge formulation of) c−Wasserstein distance is defined
as

Wc(µ1, µ2) := inf
T

∫
X

c(x, Tx)µ1(dx), s.t. T#µ1 = µ2, (9)

where T is a measurable mapping from X to X , and c = c(x, y) is non-negative bi-variate function
known as cost function.

We could naturally generalize this concept into measures in arbitrary Banach space X and define
the Wasserstein distance correspondingly. In particular, we use the metric in X as cost function and
define

WX (µ1, µ2) := inf
T

∫
X

∥Tx− x∥µ1(dx), s.t. T#µ1 = µ2. (10)

For more backgrounds and rigorous definitions of concepts appeared above, [53, 54] are standard
references for optimal transport, and [55, 56] are good references for measure theory (and probability)
in function space.

B.3 Dynamical Systems

We would like to refer the readers to classical textbooks on dynamical systems [57, 58] and ergodic
theorems [59] for detailed proofs of lemmas stated in this subsection.

B.3.1 Discrete Time System

Let X be a compact metric space and f : X → X be a continuous map. The generic form of discrete-
time dynamical system is written as xn+1 = f(xn), n ∈ N or n ∈ Z (if f is a homeomorphism).
Definition B.1. Λ ⫋ X is an invariant set of f if f(Λ) = Λ.

In the following discussion, we further assumeX to be a C∞ Riemannian manifold without boundary.
Definition B.2. An invariant set Λ ⫋ X of f is hyperbolic if for each x ∈ Λ, the tangent space TxX
splits into a direct sum

TxX = Es(x)⊕ Eu(x), (11)
invariant in the sense that

Tf(Es(x)) = Es(f(x)), T f(Eu(x)) = Eu(f(x)), (12)

such that, for some constant C ≥ 1 and λ ∈ (0, 1), the following uniform estimates hold:

|Tfn(v)| ≤ Cλn|v|, ∀x ∈ Λ, v ∈ Es(x), n ≥ 0, (13)

|Tfn(v)| ≥ 1

C
λ−n|v|, ∀x ∈ Λ, v ∈ Eu(x), n ≥ 0. (14)

Lemma B.3. (Shadowing Lemma) Let Λ ⊂ X be a hyperbolic set of f . For any ϵ > 0, there is
η0, η1 > 0 such that for any {xn}n∈N satisfying (i) d(xn,Λ) < η0; (ii) |xn+1 − f(xn)| < η1 for all
n, there exists y ∈ X such that |xn − f (n)y| < ϵ, ∀n.

B.3.2 Continuous Time System

Recall that the dynamical system we consider is{
∂tu(x, t) = Au(x, t)
u(x, 0) = u0(x), u0 ∈ H, (15)
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where u0 is the initial value and H is a function space containing functions of interests. We will
occasionally refer to Au as vector field governing the dynamics. This dynamics induced a semigroup
{S(t)}t≥0.

Definition B.4. Given a measure µ ∈ P(H), the system is mixing if for any measurable set
A, B ⊂ H, lim

t→∞
µ(A ∩ S(t)(B)) = µ(A)µ(B).

Definition B.5. A measure µ ∈ P(H) is said to be an invariant measure of this system if S(t)#µ = µ
for all t > 0.

Lemma B.6. If a system is mixing, then it is ergodic.

For ergodic systems, there is an invariant measure independent of the initial condition, defined as

µ∗ := lim
T→∞

1

T

∫ T

t=0

δS(t)udt, u ∈ H, a.e. (16)

where δ is the Dirac measure.

Definition B.7. The semigroup is said to be uniformly compact for t large, if for every bounded set
B ⊂ H there exists t0 which may depend on B such that ∪t≥t0S(t)B is relatively compact in H.

Lemma B.8. If S(t) is uniformly compact, then there is a compact attractor in this system.

B.4 Assumptions

Without loss of generality, we carry out our discussion in the regime where H is a separable
Hilbert space to make the proof more readable and concise. We also make the following technical
assumptions.

Assumption B.9. H can be compactly embedded into C0.

Assumption B.10. The system eq. (15) is mixing. The semigroup is uniformly compact.

Assumption B.11. The attractor and invariant measure are unique.

Assumption B.12. The attractor is hyperbolic w.r.t S(t) for any t > 0.

We remark that these assumptions are either proved or supported by experimental evidence in many
real scenarios [60, 61, 46, 62].

For brevity, we will ignore the difference between fully-resolved simulation (FRS) and the exact
solution to eq. (15) in the following discussions.

C Formal Introduction of Functional Liouville Flow

In this section, we first formally introduce functional Liouville flow in Appendix C.1. Based on this
theoretical framework, we will reformulate the task of estimating long-term statistics of dynamical
systems with coarse-grid simulations in Appendix C.2. Finally, we will provide in Appendix C.3 a
detailed version of the discussion in Appendix A.5.

C.1 Framework of Functional Liouville Flow for studying Invariant Measure

Functions as vectors: As a corollary of Hahn-Banach theorem, we could always construct a set of
orthonormal basis {ψi}i of H such that the filtered space F(H) = span{ψ1, ...ψn}, where we usually
have n = |D′|. For any function u ∈ H, there exists a unique decomposition u(x) =

∑∞
i=1 ziψi(x)

with zi = ⟨u, ψi⟩. This canonically induces an isometric isomorphism:

T : H → ℓ2, u 7→ z = (z1, z2, ...). (17)

By this means, we can rewrite the original PDE(15) into an ODE in ℓ2, denoted by

dz

dt
= f(z), where f(z) ∈ ℓ2, f(z)i = ⟨ψi,A ◦ T −1z⟩, (18)

where ⟨, ⟩ is the inner product in H.
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Example C.1. For Kuramoto–Sivashinsky Equation

∂tu+ u∂xu+ ∂xxu+ ∂xxxxu = 0, (x, t) ∈ [0, 2π]× R+, (19)

if we choose {ψk} as the Fourier basis {eikx}k∈Z, then zk is the coefficient of k-th Fourier mode and
the ODE for z is (component-wise),

dzk
dt

= (−k4 + k2)zk − ik

2

∑
j+l=k

zjzl. (20)

One could further make zk real numbers by choosing sin, cos basis.

Functional Liouville flow: Recall that in ODE system dx
dt = f(x), x ∈ Rd, if the initial state x0

follows the distribution µ0 whose probability density is ρ0(x), then the probability density of x(t),
denoted by ρ(x, t), satisfies the Liouville equation,

∂tρ = −∇ · (fρ). (21)

Now we want to generalize this result into function space. We need to address the issue that there
is in general no probability density function for measures in function space. We will show that it
is reasonable to carry on our study by fixing a sufficiently large N and investigating the truncated
system of the first N basis, and viewing the densities as the (weak-)limit when N → ∞.

Proposition C.2. For any µ supported on a bounded set B ⊂ H and any ϵ > 0, there exsits t0 and
N s.t. for any u0 ∼ µ and any t > t0, if we write S(t)u0 as

∑∞
i=0 ziψi, then ∥

∑
i>N ziψi∥ < ϵ.

Proof. Define Qm :=
∑

i>m ψi ⊗ ψi. Then the statement is equivalent to ∥QNS(t)u0∥ < ϵ, for all
u ∈ B, t > t0.

Due to Assumption B.10, there exists t0 such that ∪t>t0S(t)B is relatively compact. This implies
that there exists finite (denoted byN1) points {ui} satisfying that for any u0 ∈ B, t > t0, there exists
i ≤ N1 s.t. ∥S(t)u0 − ui∥ < ϵ

3 . We define Mi := minj{j|∥Qjui∥ < ϵ
5}. We have Mi < ∞, ∀i.

Choosing N as max
i≤N1

Mi completes the proof.

Remark C.3. We can always restrict our discussion within distributions supported on bounded set
whose complement occurs with a probability smaller than machine precision.

Back to the dynamics eq. (15) or the equivalent ODE eq. (18), we first make a generalization.
Since the invariant measure is independent of initial condition, we know that for any distribution
µ0 ∈ P(H)(instead of only delta distributions at u0) from which we sample random initial conditions
u0 ∼ µ0 and evolve these functions, the long-term average lim

T→∞
1
T

∫ T

t=0

(
S(t)#

)
µ0dt will still

converge to µ∗. We will carry out our discussion in this generalized setting where the initial condition
is sampled from a distribution µ0 in function space. We will denoted

(
S(t)#

)
µ0, the distribution at

time t, as µt, and denoted their density functions for corresponding z as ρ(·, t) (i.e., µt = T #ρ(·, t)).
For brevity, we will view u ∈ H and z ∈ ℓ2 as the same and not mention T # or T# for µt and ρ(·, t).

If we use the component-form of f , f = (f1, f2, ....), with each fi a mapping from ℓ2 → R, with
exactly the same argument to derive eq. (21), we have

∂tρ(z, t) = −
∞∑
i

∂zi(fi(z)ρ(z, t)) := −∇z · (fρ), ρ(z, 0) = ρ0(z). (22)

We will refer to this as functional Liouville flow, i.e., the Liouville equation in function space, and
denote the R.H.S. operator ρ→ −∇z · (fρ) as L ρ.

Reinterpretation of Invariant Measure: With functional Liouville flow, we obtain a new charac-
terization of invariant measure µ∗ (whose distribution is denoted as ρ∗).

Proposition C.4. ρ∗ is the solution to stationary Liouville equation L ρ = 0.
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Proof. Denote p(z, t) := 1
t

∫ t

s=0
ρ(z, s)ds, the finite-time average distribution.

Note that for any z,

ρ(z, t) =ρ(z, 0) +

∫ t

s=0

∂tρ(z, s)ds (23)

=

∫ t

0

L ρ(z, s)ds+ ρ(z, 0) (24)

=L

∫ t

s=0

ρ(z, s)ds+ ρ(z, 0) = L (tp(z, t)) + ρ(z, 0). (25)

Also, we have ρ(z, t) = ∂t(
∫ t

s=0
ρ(z, s)ds) = ∂t(tp(z, t)), we conclude that

∂t(tp(z, t)) = tL p(z, t) + ρ(z, 0). (26)

From this, we yield

∂tp(z, t) = L p(z, t) +
1

t
(ρ(z, 0)− p(z, t)). (27)

By definition we know p(z, t) → ρ∗ as t → ∞, thus ∂tp → 0. The term 1
t (ρ(z, 0) − p(z, t)) will

also tend to zero as t→ ∞ (recall that they are probability density and thus are uniformly bounded
in L1). Therefore, the limit density ρ∗ satisfies L ρ∗ = 0.

C.2 Reformulation of Estimating Long-term Statistics

We reformulate the problem of estimating long-term statistics with coarse-grid simulation with the
help of functional Liouville flow. Recall that D′ is the set of coarse grid points, and coarse-grid
simulation (CGS) is equivalent to evolving functions in F(H), where F is the filter (see Section 2).

C.2.1 Notations

We start by defining several notations.

Define the orthonormal projection onto F(H) as P =
n∑

i=1

ψi ⊗ ψi. We remark here that in many

situations, we have P = F .

Let us decomposite z and u into the resolved part and unresolved part,

z = v ⊕w, v := (c1, c2, ...cn), w := (cn+1, cn+2, ...); (28)

u(x) = v(x) + w(x), v(x) := T −1v = Pu, w(x) := T −1w = (I − P )u. (29)

In particular, w ∈ F(H)⊥ is the unresolved part in coarse-grid simulations. With this decomposition,
we rewrite any density ρ(z) as a joint distribution ρ(v,w) and define marginal distribution for v as
ρ1(v), and the conditional distribution of w given v as ρ(w|v). With a little abuse of notation, we
will occasionally refer to the probability density as its distribution, and vice versa.

We will also divide the vector field f into resolved part fr and unresolved part fu, which are
(f1, f2, ..., fn) and (fn+1, fn+2, ...) respectively.

C.2.2 Reformualtion of Coarse-grid Simulation

We first show that the optimal approximation of µ∗ (or ρ∗) in the reduced space is its marginal
distribution, if we construct densities with orthonormal basis, as is in eq. (17).
Proposition C.5. ρ∗1 = argmin

µ∈P(F(H))

WH(µ, µ∗).

Proof. From the construction of P and the definition of WH, for any measurable mapping
T : H → F(H), ∫

H
∥Tu− u∥µ∗(du) ≥

∫
H
∥Pu− u∥µ∗(du). (30)
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Thus, for any µ ∈ P(F(H)),

WH(µ, µ∗) ≥
∫
H
∥Pu− u∥µ∗(du) = WH(P#µ

∗, µ∗). (31)

Note that ρ∗1 = P#µ
∗, this completes the proof.

This result motivates us to check the evolution of ρ1(v, t), which should achieve the optimal approxi-
mation ρ∗1.

Note that by definition, for any distribution ρ ∈ P(H), ρ1(v) =
∫
ρ(v,w)dw. Combine this with

eq. (22), we yield

∂tρ1(v, t) =

∫
∂tρ(v,w, t)dw (32)

=−
∫

∇v · (fr(v,w)ρ(v,w, t))dw −
∫

∇w · (fu(v,w)ρ(v,w, t))dw (33)

=−∇v ·
(
ρ1(v, t)

ρ1(v, t)

∫
fr(v,w)ρ(v,w, t)dw

)
− 0 (34)

=−∇v ·
(
ρ1(v, t)

∫
fr(v,w)

ρ(v,w, t)∫
ρ(v,w′, t)dw′ dw

)
(35)

=−∇v ·
(
ρ1(v, t)Ew∼ρ(w|v;t)[fr(v,w)|v]

)
. (36)

where we use the divergence theorem for the second term in the second line.

The corresponding ODE dynamics for this Liouville equation eq. (36) is

dv

dt
= Ew∼ρ(w|v;t)[fr(v,w)|v]. (37)

If we transform it back into H space, it becomes (informally)

∂tv = Eu∼µt [FAu|Fu = v], (38)

as is presented in Appendix A.5 in main text. This describes (one of) the optimal dynamics in the
reduced space.

C.2.3 The Effect of Closure Modeling

Apart from the original motivation of closure modeling to approximate the commutator FA−AF ,
we alternatively interpret it as assigning a vector field Aθ in the reduced space F(H) and accordingly
the coarse-grid dynamics is

∂tv = Aθv, (39)
here Aθ plays the role of Av + clos(v; θ) in eq. (2).

We will refer to both Aθ and clos(·; θ) as the target of closure modeling for brevity.

As an application of Proposition C.4, we only need to check the solution to the stationary Liouville
equation related to this dynamics to decide whether or not the resulting limit distribution is the
optimal one ρ∗1.

C.3 Detailes for Discussion in Appendix A.5

The dynamics of the filtered trajectory in Equation (38) (we will refer to the equivalent version
eq. (37) for convenience), which is also derived in [50], has inspired many works for the design of
closure models. Unfortunately, we want to point out that it is impractical to utilize this result for
closure model design.

The decision regarding subsequent motion at the state (v, t) have to made only based on information
from the reduced space, which contains merely v itself and the distribution of v. For any given v, only
one prediction can be made for the next time step. Similar to the non-uniqueness issue highlighted in
Section 2, however, since ρ(w|v; t) depends on t and ρ0(the initial distribution of u ∈ H), typically
there are multiple distinct ρ(v,w, t) with exactly the same v and marginal distribution in F(H).
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In practice, if one hopes to follow the form of conditional expectation as in eq. (37), he can only
fix one particular q(v,w), a distribution in H, and assign the vector field in reduced space as
Ew∼q(w|v)[fr(v,w)

∣∣v].
Now, we check the limit distribution we will obtain with this dynamics. From Proposition C.4, we
know that limit distribution ρ̂1(v) is the solution to (usually in weak sense)

∇v ·
(
Ew∼q(w|v)[fr(v,w)

∣∣v]ρ1(v)) = 0. (40)

Proposition C.6. ρ∗1 is the solution to eq. (40) if q = ρ∗.

Proof. By definition, ρ∗(v,w) satisfies

∇v · (fr(v,w)ρ∗(v,w, t)) +∇w · (fu(v,w)ρ∗(v,w, t)) = 0. (41)

Integral over w and use divergence theorem, we yield

0 =

∫
∇v ·

(
fr(v,w)ρ∗(v,w)

)
dw + 0 (42)

= ∇v ·
∫
fr(v,w)ρ∗1(v)ρ

∗(w|v)dw (43)

= ∇v ·
(
Ew∼ρ∗(w|v)[fr(v,w)

∣∣v]ρ1(v)) (44)

This gives the proof.

Thus, we show that ρ∗ is the correct choice for q to guarantee convergence towards ρ∗1 in F(H). Back
to the learning methods discussed in Section 2, if we follow the new interpretation in Appendix C.2.3,
the loss function is

Jap(θ) = Eu∼pdata
∥AθFu−FAu∥2 (45)

= E(v,w)∼pdata(v,w)|fr(v; θ)− fr(v,w)|2, (46)

where we transform the original objective function into ℓ2 space of z in the second line, and fr(·; θ)
is the counterpart of Aθ in ℓ2, pdata is the empirical measure of training data from fully-resolved
simulations(FRS).

Due to the L2 variational characterization of conditional expectation, the underlying choice of q(v,w)
in those existing learning methods is pdata. Consequently, one has to use numerous FRS training
data due to the slow convergence of empirical measure of the high-dimensional distribution ρ∗.

D Proof of Theorem 2.1

For the first claim in Theorem 2.1, it has already been shown in the main text that the mapping of
closure model u → (FA − AF)u is not well-defined. We will make this claim more precise in
Appendix D.1, and then give the proof for the second claim in Appendix D.2 and the proof for the
third claim in Appendix D.3.

D.1 Proof of Theorem 2.1(i)

By transforming the original dynamics into the space of ℓ2, it is easier to see why the mapping of
closure model is not well-defined. Since AFu = Au, we only need to show that u→ FAu is not
well defined. The counterpart of this mapping in ℓ2 space is v → fr(v,w). If it were a well-defined
mapping, there would be a mapping f̃r(v) such that fr(v,w) ≡ f̃r(v) for all w. In other words, the
reduced system is independent of the unresolved part. This property rarely holds in most dynamical
systems, except for a few trivial cases like the heat equation.

Next we show that the approximation error has a positive lower bound.
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We could always construct u1, u2 ∈ H such that u1 = u2 and FAu1 ̸= FAu2. Therefore, for any
model clos(u; θ) the approximation error

sup
u∈H

∥clos(u; θ)− (FA−AF)u∥H (47)

≥ sup
u∈{u1,u2}

∥clos(u; θ)− (FA−AF)u∥H (48)

≥1

2

(
||(FA−AF)u1 − clos(u; θ)||H + ||clos(u; θ)− (FA−AF)u2||H

)
(49)

≥1

2
||(FA−AF)u1 − (FA−AF)u2||H (50)

=
1

2
∥F(Au1 −Au2)∥H (51)

has a lower bound independent of the model, where we apply the fact that Fu1 = Fu2 = u in the
last line.

D.2 Proof of Theorem 2.1(ii)

Notations: Recall that H is the function space, and D′ is the set of coarse grid points,
D′ = {x1, x2, ..., xn}. The filtered value of two functions being the same is equivalent to the fact
that these two functions have the same values on the grid points in D′.
Definition D.1. Define grid-measurement operator (at x0)

Ix0
: H → R : u 7→ u(x0) (52)

For brevity, we will use Ij for Ixj . We further define ID′ (abbreviated as I if there is no ambiguity),

ID′ : H → Rn, u 7→ (u(x1), u(x2), ...u(xn))
T . (53)

Before we delve into the details of the proof, we would like to remind the readers of heat equation as
an concrete and easy-to-check example where our result holds.

Our original theorem is stated for a continuous time interval. We first prove its finite version.
Theorem D.2. Given DT the set of time grids, with |DT | = N and DT = {t1, t2, ...tN}, for any
r ∈ N, any function u0 ∈ H ∩ C0, there exists an r-dimensional manifold Mr ⊂ H ∩ C0 such that

IS(t)u′ = IS(t)u0, ∀t ∈ DT , ∀u′ ∈Mr. (54)

Proof. For m ∈ N, given m linearly independent functions {ϕi}1≤i≤m ⊂ H, we can construct
an affine manifold A := u0 + span{ϕ1, ...ϕm} and define the following mapping (spatiotemporal
grid-measurement operator):

F = FDT
: A→ RnN (55)

v 7→
N⊕
j=1

IS(tj)v. (56)

Note that we have a canonical coordinate system for A:

A ↔ Rm (57)

v = u0 +

m∑
i=1

ciϕi ↔ (c1, ...cm), (58)

thus, F is a mapping between finite-dimensional manifolds, and we can compute its Jacobian
J (v) ∈ Rm×Nn, whose elements consist of the grid-measurement of Gateaux derivatives,
IjdS(tk)(v, ϕl), j ∈ [n], k ∈ [N ], l ∈ [m].

By a generalization of Sard’s theorem for Banach manifold [63], we know that for any u0, any r, there
exists m = Nn + r linearly independent functions {ϕi}mi=1 such that the Jacobian is everywhere
full-rank (i.e., rank= Nn) in the affine manifold A. By pre-image theorem, since F−1{Fu0} is
non-empty (for at least Fu0 is in this set), it is an m−Nn = r dimensional manifold. This gives the
proof.
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Corollary D.3. Given DT the set of time grids, with |DT | = N and DT = {t1, t2, ...tN}, for any
r ∈ N, any function u0 ∈ H ∩ C0, there exists infinite u′ ∈ H such that IS(t)u′ = IS(t)u0 for all
t ∈ DT .

Proof. For any r ≥ 1, there are infinite points in the manifold we yield in the theorem above.

Remark D.4. We require u ∈ C0 only to exclude the artificial case of modifying the function value
on a zero-measure set.

From the result above, we see that for any u0 and finite time-grid set DT , F−1{Fu0} is an infinite-
dimensional manifold. To complete our proof, we make two technical assumptions. One can check
these assumptions for specific dynamical systems to derive the final result. We also remark that they
are not the weakest set of assumptions to guarantee the final result, we adopt them here primarily to
keep the proof concise.

For a time-grid set DT , and a function u0, we denote as MDT
(u0) the set of all functions u′ that

IS(t)u′ = IS(t)u0, ∀t ∈ DT .

Assumption D.5. For every u0 and finite DT , the infinite-dimensional manifold MDT
(u0) is un-

bounded.

Assumption D.6. Given any finite τ , and an arbitrary bounded set Ω ⊂ H, we could assign a
sequence of linearly independent functions {ϕi;u}∞i=1 ⊂ H for each u ∈ H such that for any
functions u, v, any subset B ⊂ N, and any finite subset DT of [0, τ ], there exists a continuous
mapping

G : MDT
(u)

⋂{
u+ span{ϕi;u | i ∈ B}

}
→MDT

(v)
⋂{

v + span{ϕi;v | i ∈ B}
}

(59)

depending only on u, v, B, DT , such that

sup
w∈Ω∩MDT

(u)

∥Gw − w∥ ≤ CΩ∥u− v∥, (60)

where the constant CΩ only depends on Ω and τ , and not on u, v, B, DT .

Before moving on, we first review a classical result.

Lemma D.7. There exists a bijection between N and N2.

Proof. This is a standard result in set theory, and its proof can be found in many textbooks.

We give an example on how to construct such a bijection (see Figure 2). We write 1,2,3,4,...
zigzaggingly to fill the N2 plane. In this way, we construct a mapping ι : N2 → N, with ι(i, j)
defined as the value written at (i, j)-position in the N2 plane. Clearly, ι is a bijection.

With ι, we can partition N into ℵ0(countably infinite) disjoint subsequences, {ι(i, j)}j∈N for each i.

1 2

3

4

5

6 7

8

9

10 12

13

14 · · ·

· · ·

· · ·

...
...

...
...

· · ·

Figure 2: Illustration of a bijection between N and N2 using a zigzag numbering scheme.

We are finally ready for the proof of Theorem 2.1(ii).
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Theorem D.8. For any u ∈ H and finite τ , there exist infinite u′ ∈ H such that FS(t)u′ = FS(t)u
for all t ∈ [0, τ).

Proof. Let K be a dense Hilbert subspace of H that can compactly embedded into H, with norm
∥ · ∥K. For instance, if H = Hk, the Sobolev space W 2,k, then we can choose K as Hk+1.

Step 1: We first deal with the case when u ∈ K.

Define a sequence of time-grid set Dj as { i
2j τ |0 ≤ i < 2j}. Similar to the argument in Theorem D.2,

we can construct a sequence {ϕi}∞i=1 ⊂ K satisfying the following properties.

(i) They are linearly independent.

(ii) For any j ∈ N, m > 2j , B ⊂ N with |B| = m, the spatiotemporal grid-measurement F for
D′ ×Dj has full-rank Jacobian everywhere in the affine manifold u+ span{ϕk : k ∈ B}.

Based on the N− N2 bijection ι, we define the following subspaces:

Ek := span{ϕι(k,i) : i ∈ N}. (61)

There are ℵ0 such subspaces in total, we will next find a point u′ in each Ek such that
IS(t)u′ = IS(t)u for all t ∈ [0, τ).

WLOG, we will only show how to construct u′ in E1.

We denote
Mj = E1 ∩MDj

(u). (62)

By the construction of Dj we have M1 ⊃M2 ⊃M3 ⊃ ....

We first fix three constants 0 < B0 < B1, B2 > 0 and and construct a sequence of {ui} ⊂ E1 such
that

(i) ui ∈Mi.

(ii) B0 < ∥ui − u∥H < B1.

(iii) ∥ui∥K < B2.

This construction is achievable due to Assumption D.5 and the fact that u ∈ K.

Since K can be compactly embedded into H, there there exists a subsequence {uij} of {ui} that is
convergent in H. We denote its limit as u∞. From (ii), we have ∥u∞∥H <∞ and u∞ ̸= u.

Due to Assumption B.9, we have uij → u∞ in C0, which implies that for any Dj , FDju∞ = FDju.

Because of the continuity of the mapping t 7→ IxS(t)v for any x ∈ D′, v ∈ H, we know that
IS(t)u′ = IS(t)u for all t ∈ [0, τ).

To conclude, for each Ek, there exists u′ ∈ Ek that is not distinguishable from u merely based on
function values restricted to the grid D′ ×DT . Recall that for any j ̸= k, by construction we have
Ej ∩Ek = {u}, thus these u′ in different Ek are mutually different. This completes the proof for the
case u ∈ K.

Step 2 Now we give the proof for general u ∈ H.

Since K is dense in H, there exists a sequence {un} ⊂ K such that ∥un − u∥H < 1
2n . We keep using

the constantB0, B1, B2 and define Ω := {v ∈ H | ∥v−u∥H < B1+1}. Following Assumption D.6,
we obtain the constant CΩ and linearly independent set {ϕi;un}∞i=1 for each n. Following the first
part of this proof, we define

En
k := span{ϕι(k,i);un | i ∈ N} Mn

j,k := En
k ∩MDj

(un), (63)

and again we only need to consider the case when k = 1, and thus abbreviate Mn
j,k as Mn

j .

We will restrict our discussion within n > n0 :=

⌈
max{log2

6(CΩ+1)
B0

, log2 3(CΩ + 1)}
⌉
+ 1.
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We inductively construct a sequence (indexed by n) of sequence {unj }j ⊂ En
1 as follows:

(I) For n = n0, we construct {unj }j the same as the first part of the proof.

(i) unj ∈Mn
j .

(ii) B0 < ∥unj − un∥H < B1.

(iii) ∥unj ∥K < B2.

(II) Now suppose we have constructed {unj }j , we apply Assumption D.6 for un, un+1,
B = {ι(1, i) | i ∈ N} and Dj and obtain a continuous mapping G. We choose un+1

j as Gunj .

Next, we give some estimations for un+1
j .

First, note that we have

∥un − un+1∥H ≤ ∥un − u∥H + ∥u− un+1∥H <
3

2n+1
, (64)

and thus ∥unj − un+1
j ∥H ≤ CΩ

3
2n+1 by construction. Based on this, we have

∥un+1
j − un+1∥H ≥ ∥unj − un∥H − ∥unj − un+1

j ∥H − ∥un − un+1∥H (65)

≥ ∥unj − un∥H − 3(CΩ + 1)

2n+1
. (66)

By induction, we have

∥un+1
j − un+1∥H ≥ ∥un0

j − un0∥H −
∑
n>n0

3(CΩ + 1)

2n+1
>
B0

2
. (67)

We also have

∥un+1
j − un+1∥H ≤ ∥unj − un∥H + ∥unj − un+1

j ∥H + ∥un − un+1∥H (68)

≤ ∥unj − un∥H +
3(CΩ + 1)

2n+1
. (69)

By induction, we have

∥un+1
j − un+1∥H ≤ ∥un0

j − un0∥H +
∑
n>n0

3(CΩ + 1)

2n+1
< B1 +

1

2
. (70)

Similar to what is done in the first part of the proof, we can choose vn0 as one of the limit points of
{un0

j }j . Inductively, we can construct a sequence of vn such that

(i) vn is one of the limit points of {unj }j

(ii) ∥vn − vn−1∥H ≤ 3CΩ+1
2n .

Thus, {vn}n is a Cauchy sequence in H and we denote its limit as v. Because of Assumption B.9,
we have that IS(t)v = IS(t)u, ∀t ∈ [0, τ). It is also clear that

v ∈M[0,τ)(u) ∩
{
u+ span{ϕι(1,i);u | i ∈ N}

}
, (71)

and

∥v − u∥H = ∥ lim
n→∞

(vn − un)∥H ≥ lim inf
n→∞

∥un − vn∥H ≥ B0

2
. (72)

With exactly the same argument as in the first step, we construct infinite mutually-different functions
that are not distinguishable from u on D′ × [0, τ). This completes the proof.
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D.3 Proof of Theorem 2.1(iii)

Theorem D.9. One cannot obtain the ρ∗1 if there is randomness in the evolution of dynamics.

Proof. Our proof will be carried out for a more general setting.

Consider two dynamics
dv

dt
= b1(v) (73)

dv = b2(v)dt+ σ(v)dW. (74)

The first one corresponds to the deterministic motion as is in the original dynamical system (trans-
formed into ℓ2). Either ρ∗ it ρ∗1 is the limit distribution of certain deterministic dynamics. The
second one corresponds to the dynamics of the stochastic closure model. Here dW is a d dimensional
Brownian motion where d is the latent dimension of the model.

From Appendix C, we know that the limit distribution of eq. (73) is the solution to stationary Liouville
equation,

∇ · (b1ρ) = 0. (75)

As for eq. (74), similar to how we handle deterministic systems in Appendix C and how we derive
the Fokker-Planck equation in finite-dimensional systems, we can generalize Fokker-Planck equation
into function space and yield that the limit distribution of eq. (74) is the solution to stationary
Fokker-Planck equation,

∇ · (b2ρ)−
1

2
∇2 : (σσT ρ) = 0. (76)

Next, we argue by contradiction to show that ρ∗1 or ρ∗ will not satisfy eq. (76).

Suppose ρ∗1 is the solution to both eq. (75) and eq. (76). We then have that for any k ∈ R, ρ∗1 is the
solution to

∇ · (kb1 + b2ρ)−
1

2
∇2 : (σσT ρ) = 0. (77)

We can expand this equation and write it in the following form

A(v) : ∇2ρ+Bk(v) · ∇ρ+ Ck(v)ρ = 0, (78)

in particular, A = − 1
2σσ

T and Ck(v) has the form C(v) + k∇ · b1.

Recall that ρ∗1 is supported on the compact attractor(denoted as Ω) of the original dynamical system.
Now let us consider the maximum point of ρ∗1 in Ω. If there exists local maximum point v0 ∈ Ω◦(its
interior), then the Hessian of ρ∗1 at v0 is semi-negative-definite and ∇ρ∗1(v0) = 0. Thus we have

Ck(v0)ρ
∗
1(v0) = −A(v) : ∇2ρ∗1(v0) ≥ 0. (79)

We could always choose k such that the L.H.S. has a negative value. Contradiction!

This suggests that there is no local maxima of ρ∗1 in Ω◦. Thus, the maxima of ρ∗1 is on the boundary.
However, ρ∗1

∣∣
∂Ω

= 0. This suggests ρ∗1 = 0. Contradiction!

This completes the proof.

E Proof of TheoremA.1

As a preliminary result, we show the following properties of the dynamical systems under considera-
tion.

Lemma E.1. For any h > 0, any initial condition u0 ∈ H, lim
N→∞

1
N

N∑
n=1

δS(nh)u0
= µ∗.

Proof. Denote G := S(h). From Assumption B.10, we know that for any measurable set A, B ⊂ H,
lim
t→∞

µ(A ∩ S(t)(B)) = µ(A)µ(B). In particular lim
n→∞

µ(A ∩ S(nh)(B)) = µ(A)µ(B). This
suggests that the system defined by

un+1 = Gun (80)
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is mixing.

From Lemma B.6, this system is ergodic, thus having an invariant measure w.r.tG. SinceG#µ
∗ = µ∗,

due to the uniqueness of invariant measure, we derive the proof.

In the following proof, we will use the notation G := S(h), which is the learning target (ground-
truth operator), and Ĝ for the approximate operator we obtain after training. By the design of the
neural operator, the input of Ĝ can be vectors in Rd for any dimensionality d, serving as various
discretizations of a particular function from H. Here we violate the concepts a little bit by denoting
Ĝ as a mapping from H to H (approximating S(h)) instead of H to H × [0, h](approximating
u → {S(t)u}t≤h) as is in our algorithm in main. In practice, we only use the last element of the
output sequence, corresponding to the prediction for S(h)u, for estimating statistics. To be specific,
to estimate long-term statistics in coarse-grid systems with learned operator Ĝ, we use as input a
function in reduced space v(x) ∈ F(H), x ∈ D′ (equivalent to an R|D′| vector consisting of the
function values on the grids), and autoregressively compute Ĝ(n)v, n ∈ N. The invariant measure is
estimated by

µ̂D′ := lim
N→∞

1

N

N∑
n=1

δĜ(n)v. (81)

We first remind readers of the following fact.
Fact E.2. For any function u0 ∈ H, let u⃗ := (u0(x1), ...u0(xn))

T , n = |D′|, be the discretization
of u0 in the coarse-grid system. There exists u ∈ H (possibly different from u0) such that

u⃗ = ID′u′, Ĝ(u⃗) = ID′Ĝu. (82)

Now, we prove our main result.
Theorem E.3. For any h > 0 and any ϵ > 0, there exists δ > 0 such that, as long as
∥Ĝu−Gu∥H < δ, ∀u ∈ H, we will have WH(µ̂D′ , ρ∗1) < ϵ.

Proof. We will first deal with dynamics in the original space H. We have two dynamics, the exact
one and the approximate one,

un+1 = Gun, u0 = u0 ∈ H; (83)

ûn+1 = Ĝûn, û0 = u0 ∈ H. (84)

Both dynamics will converge to an attractor, Ω and Ω̂, respectively.

With Lemma B.3, we know that there exists η0, η1 > 0 such that for any {un}n∈N ⊂ H satisfying
(i) d(un,Ω) < η0; (ii) ∥un+1 −G(un)∥ < η1 for all n, there exists ũ ∈ H such that

∥un −G(n)ũ∥ < ϵ, ∀n ∈ N. (85)

From Therorem 1.2 in Chapter 1 of [60], we know that there exists η2 > 0 such that

∥Gu− Ĝu∥ < η2, ∀u ∈ H ⇒ dist(Ω, Ω̂) <
η0
5
. (86)

Now we choose δ as min{η1, η2} and define the approximate operator Ĝ as well as dynamics and
attractor accordingly.

We next choose n0 ∈ N such that supn≥n0
dist(ûn, Ω̂) < η0

5 . This implies that
supn≥n0

dist(ûn,Ω) < 3η0

5 . We apply Lemma B.3 to obtain a function ũ ∈ H such that

∥un −G(n−n0)ũ∥ < ϵ, ∀n ≥ n0. (87)
For any N ∈ N, we define

µN : =
1

N

N∑
n=0

δG(n)ũ (88)

µ̂N : =
1

N

n0+N∑
n=n0

δûn . (89)
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By constructing the transport mapping T : un 7→ G(n−n0)ũ, n0 ≤ n ≤ n0 +N , we have that

WH(µ̂N , µN ) < ϵ. (90)

Note that µ̂N → µ̂D(estimated invariant measure with fine-grid simulations) as N → ∞, we derive

WH(µ̂D, µ
∗) ≤ ϵ. (91)

Recall that P is the orthonormal projection towards F(H) and that ∥Pu− Pu′∥ ≤ ∥u− u′∥ for any
u, u′ ∈ H. In light of Fact E.2, we derive WH(µ̂D′ , ρ∗1) ≤ ϵ.

F Experiment Setup and Data Generation

F.1 Kuramoto–Sivashinsky Equation

We consider the following one-dimensional KS equation for u(x, t),

∂tu+ u∂xu+ ∂xxu+ ν∂xxxxu = 0, (x, t) ∈ [0, L]× R+, (92)

with periodic boundary conditions. The positive viscosity coefficient ν reflects the traceability of this
equation. The smaller ν is, the more chaotic the system is. We study the case for ν = 0.01, L = 6π.

FRS is conducted with exponential time difference 4-order Runge-Kutta (ETDRK4)[64] with 1024
uniform spatial grid and 10−4 time grid. The CGS is conducted with the same algorithm except with
128 uniform spatial grids and 10−3 timegrid. We choose h = 0.1 for our model.

Dataset The training dataset for the neural operator consists of two parts, the CGS data and FRS
data. The CGS dataset contains 6000 snapshots from 100 CGS trajectories. Snapshots are collected
from time t = 20 + k, k = 1, 2....60. The data appears as input-label pairs (v(·, t), v(·, t + h)),
where h = 0.1 for KS. The FRS dataset contains 105 snapshots from 3 FRS trajectories. Snapshots
are collected from t = 20 + 2k, k = 1, 2, ...35. The data appears as input-label pairs
(u(·, t), {u(·, t+ k

4h)|k = 1, 2, 3, 4}).
As for input functions of PDE loss, they come from adding Gaussian random noise to FRS data.

Estimating Statistics For all methods in this experiment, statistics are computed by averaging over
t ∈ [20, 150] and 400 trajectories with random initializations.

F.2 Navier-Stokes Equation

We consider two-dimensional Kolmogorov flow (a form of the Navier-Stokes equations) for a viscous
incompressible fluid (fluid field) u(x, y, t) ∈ R2,

∂tu = −(u · ∇)u−∇p+ 1

Re
∆u+ (sin(4y), 0)T , ∇ · u = 0, (x, y, t) ∈ [0, L]2 ×R+, (93)

with periodic boundary conditions. In the experiment, we deal with the vorticity form of this equation.

∂tw = −u · ∇w +
1

Re
∆w +∇× (sin(4y), 0)T , (94)

where w = ∇× u. The positive coefficient Re is the Reynolds number. The larger Re is, the more
chaotic the system is. We consider the case Re = 100, L = 2π.

FRS is conducted with pseudo-spectral split-step [65] with 128 ∗ 128 uniform spatial grid and self-
adaptive time grid. The CGS is conducted with the same algorithm except with 16 ∗ 16 uniform
spatial grids. For our model, we choose h = 1.

Dataset The training dataset for the neural operator consists of two parts, the CGS data and FRS data.
The CGS dataset contains 8000 snapshots from 80 CGS trajectories. Snapshots are collected from time
t = 80+4k, k = 1, 2....100. The data appears as input-label pairs (u(·, t), {u(·, t+ k

16h)|k ∈ [16]}).,
where h = 0.1 for KS. The FRS dataset contains 110 snapshots from 1 FRS trajectories. Snapshots
are collected from t = 50 + 3k, k = 1, 2, ...110. The data appears as input-label pairs
(u(·, t), {u(·, t+ k

16h)|k ∈ [16]}).
As for input functions of PDE loss, they come from adding Gaussian random noise to FRS data.

25



Estimating Statistics For all methods in this experiment, statistics are computed by averaging over
t ∈ [1800, 3000] and 400 trajectories with random initializations.

G Implementation Details

G.1 Physics-Informed Operator Learning

Algorithm 1 Multi-stage Physics-Informed Operator Learning
Input: Neural operator Gθ; training data set Dc(CGS), Df (FRS), Dp(randomly sampled).
Hyper-parameters: Training iterations Ni(i = 1, 2, 3). Weights combining two loss λi(t)

(i = 1, 2), which decay as t increases. Parameters regarding optimizer.
1: for t = 1, · · · , N1 do
2: Minimize J(θ;Dc)

3: for t = 1, · · · , N2 do
4: Minimize λ1(t)Jdata(θ;Dc) + Jdata(θ;Df )

5: for t = 1, · · · , N3 do
6: Minimize λ2(t)Jdata(θ;Df ) + Jpde(θ;Dp)

7: return Gθ

Following the notations in the main, we formally summarize our algorithm as in Algorithm 1.

For input initial value u0 (function restricted on the grid, which is a 1D tensor for KS and 2D tensor
for NS), we repeat u0 T times to make it a 2D tensor or 3D tensor (u0, u0, ...u0), respectively, where
T is a hyperparameter. For the implementations, the neural operator will learn to predict the mapping

(u0, u0, ...u0) →
T⊕

j=1

S

(
j

T
h

)
u0, (95)

which is a discretization of {S(t)u0}t∈[0,h].

KS Equation Following the architecture in the original FNO paper[31], our model is a 4-layer
FNO with 32 hidden channels and 64 projection channels. We choose h = 0.1, T = 64. The data
loss will only be computed for the time grid where there is label information.

We first train the model with CGS data, we use ADAM for optimization, with learning rate 5e-2,
scheduler gamma 0.7 and scheduler stepsize 100. We train with batchsize 32 for 1000 epochs.

Then we train the model with CGS data and FRS data. λ1(0) = 1 and halves every 100 epochs. We
train with batchsize 32 for 250 epochs.

Finally, we train the model with PDE loss. We train with batch size 8 for 1487 epochs. Each batch
contains 4 functions for computing the data loss and 4 functions for computing the PDE loss. λ2(t)
decreases by 1.7 for every 500 epochs.

When we finish training, the L2 relative error on the FRS test set is ∼ 12%.

NS Equation Our model is a 4-layer FNO, with 32 hidden channels and 64 projection channels.
We choose h = 1, T = 32. The data loss will only be computed for time grid where there is label
information.

We first train the model with CGS data, we use ADAM for optimization, with learning rate 4e-3,
scheduler gamma 0.6 and scheduler stepsize 50. We train with batch size 32 for 60 epochs.

Then we train the model with CGS data and FRS data. λ1(t) = 1t≤20 and halves every 100 epochs.
We train with batch size 8 for 53 epochs.

Finally, we train the model with PDE loss. We train with batch size 16 for 1530 epochs. Each batch
contains 8 functions for computing data loss and 8 functions for computing PDE loss. λ2(t) decreases
by 1.8 for every 60 epochs.

When we finish training, the L2 relative error on the FRS test set is ∼ 19%. The training takes ∼ 40
minutes to complete.
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G.2 Baseline Method: Single State Closure Model

The network follows the Vision Transformer [66] architecture. For KS equation, the input was
partitioned into 1× 4 patches, with 2 transformer layers of 6 heads. The hidden dimension is 96 and
the MLP dimension is 128. For NS equation, the input was partitioned into 4 × 4 patches, with 2
transformer layers of 6 heads. The hidden dimension is 96 and the MLP dimension is 128. For both
experiments, we use AdamW optimizer [67] with learning rate 1e− 4 and weight decay 1e− 4.

H More Experiment Results and Visualizations

H.1 Statistics

We formally introduce the statistics we consider.

Total Variation for Invariant Measures As is mentioned in the main text, we propose to directly
compare the estimated invariant measure resulting from the time average of simulations and that of
ground truth.

Recall that we have expanded u ∈ H onto orthonormal basis u =
∑∞

i=1 ziψi. In particular, for
v ∈ F(H), v ∈ span{ψi : i ≤ |D′|}. We compute the total variation(TV) distance for the (marginal)
distribution of each vi, where TV distance of two distributions (probability densities) ν, µ is defined
as

dTV (µ, ν) =
1

2

∫
|µ(x)− ν(x)|dx. (96)

For experiments we consider in this work, a natural choice of ψi is the Fourier basis functions,
{ei 2kπ

L x}k∈Z for 1D KS and {ei 2π
L (kx+jy)}k,j∈Z2 for 2D NS.

With a little abuse of definition, the corresponding zi are complex numbers. [68] shows that the limit
distribution of Argzi is uniform distribution on [0, 2π]. Thus, it suffices to check the distribution of
mode length |zi|.

Other Statistics In the following, we use ûk to denote the k-th Fourier mode of u. When u is a
multi-variate function, k is a tuple.

• Energy Spectrum.
Oe(u; k) = |ûk|2 (1D), Oe(u; k0) =

∑
|k|1=k0

|ûk|2 (general).

The k0-th energy spectrum is Oe(k) := Eu∼µ∗Oe(u; k0).

• Spatial Correlation.
Os(u;h) =

∫
u(x)u(x+ h)dx. The h spatial correlation is Os(h) := Eu∼µ∗Os(u;h).

• Auto Correlation Coefficient.
Note that Os is a function of h.
The k-th Auto Correlation Coefficient is Oa(k) := |(Ôs)k|2.

• The distribution of Vorticity (w(x) for NS) and Velocity (u(x) for KS).

• The variance of the function value.

• Dissipation Rate: 1
Re

∫
−u(x)2dx, where

∫
− refers to averaged integral

∫
−Ωf(x)dx :=

∫
Ω
f(x)dx∫
Ω
dx

. (97)

In practice, we usually check the distribution of this quantity.

• Kinetic Energy:
∫
−(u− ū)2dx where ū(x) := lim

T→∞
1
T

∫ T

0
u(x, t)dt. In practice, we usually

check the distribution of this quantity.
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Table 4: Error on Different Statistics: KS equation Header: From left to right: Average relative
error on energy spectrum, max relative error on energy spectrum, average relative error on auto-
correlation coefficient, max error on auto-correlation coefficient, total variation distance from (ground
truth) velocity distribution, average component-wise TV distance(error), and max component-wise
TV distance(error).

Method Avg. Eng. Max Eng. Avg. Cor. Max Cor. Velocity Avg. TV Max TV

CGS (No closure) 12.5169% 77.8223% 13.1275% 80.5793% 0.0282 0.0398 0.2097
Eddy-Viscosity [69] 7.6400% 48.3684% 8.7583% 56.5878% 0.0276 0.0282 0.1462
Single-state [30] 12.5323% 78.6410% 13.1052% 81.2461% 0.0280 0.0410 0.2111

Our Method 7.4776% 20.4176% 7.8706% 22.7046% 0.0284 0.0272 0.0849

Table 5: Error on Different Statistics: NS equationHeader: From left to right: Average relative
error on energy spectrum, max relative error on energy spectrum, total variation distance from (ground
truth) vorticity distribution, average component-wise TV distance(error), max component-wise TV
distance(error), and variance of vorticity.

Method Avg. Eng. Max Eng. Vorticity Avg. TV Max TV Variance

CGS (No closure) 178.4651% 404.9923% 0.1512 0.4914 0.8367 253.4234%
Smagorinsky [14] 52.9511% 120.0723% 0.0483 0.2423 0.9195 20.1740%
Single-state [30] 205.3709% 487.3957% 0.1648 0.5137 0.8490 298.2027%

Our Method 5.3276% 8.9188% 0.0091 0.0726 0.2572 2.8666%

H.2 Experiment Results

The error of all statistics we considered for KS equation is listed in Table 4 and plotted in Figure 3.

The error of all statistics we considered for NS equation is listed in Table 5 and plotted in Figure 6.

The visualization of TV error for each (marginal) distribution is shown in Figure 4 and its log scale
visualization is shown in Figure 5.

H.3 Ablation Study

We carry out an ablation study for KS equation to verify the effect of pertaining with data loss and
CGS data loss. The training dataset is described in Appendix F. The results are as in Figure 7.

We conclude that pretraining with data loss is beneficial to the optimization of the PDE loss function
and that pretraining with CGS data can improve the generalization property of the model. Even
though CGS data is potentially incorrect, it is utilizable for training because they contain some
information of the underlying PDE.
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(a) Energy Spectrum (b) Spatial Correlation

(c) Auto Correlation Coefficient

Figure 3: Experiment Results for KS Equation ’FRS’(blue line) refers to fully-resolved simulation,
and serves as ground truth. ’CGS’: coarse-grid simulation(no closure model). ’Eddy-Visc.’: classical
eddy-viscosity model. ’Single’: learning-based single-state closure model. Our method (purple) is
closest to ground truth among all coarse-grid methods.
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(a) Coarse-grid Simmulation (no closure model) (b) CGS with Smagorinsky model

(c) Learning-based single-state model (d) Our method

Figure 4: TV error for NS Equation The (k, j)-element represents the TV error regarding the
distribution of the mode length of (k, j) Fourier basis ei

2π
L (kx+jy).
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(a) Coarse-grid Simulation (no closure model)) (b) CGS with Smagorinsky model

(c) Learning-based single-state model (d) Our method

Figure 5: log-scale TV error for NS Equation The (k, j)-element represents the logarithm of TV
error regarding the distribution of the mode length of (k, j) Fourier basis ei

2π
L (kx+jy).
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(a) Energy Spectrum (b) Dissipation Distribution

(c) Vorticity Distribution (d) Kinetic Energy Distribution

(e) Distribution of component for (2, 2) Fourier basis (f) Distribution of component for (5, 6) Fourier basis

Figure 6: Experiment Results for NS Equation ’FRS’(blue line) refers to fully-resolved simulation,
and serves as ground truth. ’CGS’: coarse-grid simulation(no closure model). ’Smag.’: classical
Smagorinsky model. ’Single’: learning-based single-state closure model. Our method (purple) is
closest to ground truth among all coarse-grid methods.
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(a) (b)

(c)

Figure 7: Experiment Results during training for KS Equation (a)L2 relative error on training
set for PDE-loss minimization. The optimization achieves a smaller loss when the model has been
pre-trained with data loss(purple curve). (b)L2 relative error on the test set for PDE-loss minimization.
The model achieves a smaller error when it has been pre-trained with data loss(purple curve). (c) L2

relative error on the test set for FRS data-loss minimization. The model has better generalization if it
has been pre-trained with CGS data loss (green curve).
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D3S3@NeurIPS Paper Checklist (Optional)

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count toward the page limit.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 1, Appendix A.4

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [NA] .

Justification: The theoretical analysis and method in this manuscript work for general
settings (i.e., general dynamics as in Eqn(1)). As for all deep learning methods, we cannot
yet provide rigorous guarantees on the convergence of training. Moreover, certain extensions
have been out of scope for the current paper, e.g., large-scale 3D equations. These two
aspects might be considered our limitations, which we will mention in our final version.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Appendix B, Appendix D.2, Appendix C, Appendix D, Appendix E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix G, Appendix H

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The file size of code and dataset exceeds the limit. We will make our code and
dataset publicly available after peer-review.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix H

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: Error bars are not reported because it would be too computationally expensive,
and they will be hardly noticable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix G, Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: References
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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