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ABSTRACT

All-in-one image restoration aims to develop a single model for diverse degra-
dations, a challenge whose success critically hinges on the precise representation
of the underlying degradation process. Existing methods simplify this challenge
by mapping each degradation to a coarse-grained, monolithic representation—
effectively treating them as discrete categories (e.g., ”haze,” ”noise”). This
paradigm, even in prompt-learning variants, fundamentally fails to capture the
continuous and fine-grained nature of real-world corruptions, such as varying in-
tensities, leading to suboptimal performance. To address this, we argue that degra-
dations are better represented as a composition of a finite set of learnable, elemen-
tary degradation primitives. We introduce DACode, a novel framework built upon
a global, learnable codebook embodying these primitives. The core of DACode
is a two-stage, dual cross-attention mechanism. First, in the Context-Aware Code
Adaptation stage, the codebook primitives act as queries to attend to the input
image features, generating a contextually-adapted codebook. Subsequently, in
the Code-based Feature Modulation stage, the image features query this adapted
codebook, aggregating relevant primitive information to perform targeted feature
restoration. This dynamic process allows DACode to construct highly specific
restorative features for each input. Notably, our analysis reveals that DACode
learns to activate distinct code combinations in response to both varying degrada-
tion types (e.g., haze vs. rain) and severities (e.g., light vs. heavy haze), providing
direct evidence for its fine-grained modeling capability and interpretability. Ex-
tensive experiments show that DACode significantly outperforms state-of-the-art
methods across all-in-one restoration benchmarks. Code are availale in an anony-
mous repository https://anonymous.4open.science/r/DAcode-847A/

1 INTRODUCTION

Image restoration (Banham & Katsaggelos, 1997) is a fundamental low-level vision task that aims
to recover high-quality, clean images from observations degraded by a multitude of factors. While
deep learning models have yielded impressive results on specific restoration tasks such as denois-
ing (Zhang et al., 2017), deraining (Li et al., 2018b), and dehazing (Wu et al., 2021), these spe-
cialized networks embody a “one-model-per-task” paradigm. This approach is not only resource-
intensive but also lacks the flexibility to handle the diverse and often unpredictable degradations
encountered in real-world applications. Consequently, developing a single, unified model for All-
in-One image restoration has become a key and highly-watched research direction.

Significant progress (Chen et al., 2021) has been made in this area (Li et al., 2022; Park et al., 2023;
Guo et al., 2024). A common thread in existing methods, however, is the reliance on a coarse-
grained, categorical representation of degradation. They simplify the complex problem by map-
ping each degradation type to a monolithic, high-level label (e.g., “haze”), using mechanisms like
task-specific prompts (Potlapalli et al., 2023; Kong et al., 2024; Chen et al., 2024) or classifier
heads (Conde et al., 2024). This paradigm is fundamentally ill-equipped to capture the fine-grained,
continuous spectrum of real-world corruptions. For instance, it struggles to differentiate between a
light mist and a heavy fog (intensity differences), a limitation conceptually illustrated in Figure 1(a).
Moreover, attempting to address this continuous spectrum by discretizing it—for instance, requiring
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a distinct prompt for each specific noise level (e.g., σ = 15, 25, 50) as seen in methods like Promp-
tIR (Potlapalli et al., 2023)—inevitably leads to a combinatorial explosion. This inherent limitation
in modeling rich details severely constrains the performance and generalization of existing models.

Heavy Haze

Light Haze

Categorical
Model

Singular 
"Haze" Cue 

✓  

Singular 
"Haze" Cue 

PSNR: 27.3dB

PSNR: 37.6dB
(a) Prior Categorical Models

Heavy Haze

Light Haze ✓  

PSNR: 35.6dB
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(b)  Our Compositional Paradigm with Adaptive Cues

DACode ✓  Heavy Haze
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PSNR: 35.6dB
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(b)  Our Compositional Paradigm with Adaptive Cues

DACode ✓  

Figure 1: Conceptual illustration of our proposed Compositional Paradigm versus the prior Cate-
gorical Paradigm. (a) Prior models based on the Categorical Paradigm, represented here by the
state-of-the-art InstructIR (Conde et al., 2024). This coarse, one-size-fits-all representation leads to
suboptimal performance, failing on the challenging case (PSNR: 27.3dB). (b) In contrast, our DA-
Code operates under a Compositional Paradigm. It intelligently assembles different combinations
of fine-grained “degradation primitives” to form bespoke, adaptive cues for each scenario, enabling
consistently restoration quality.

To address this fundamental representational bottleneck, we advocate for a paradigm shift towards
fine-grained, compositional modeling. We posit that any complex degradation can be more effec-
tively represented by adaptively combining a set of learnable, elemental “degradation primitives”.
Building on this insight, we propose DACode Degradation-Adaptive Codebook, a novel framework
that materializes this new paradigm, as depicted in Figure 1(b). The core of DACode is a learnable
Codebook trained to capture these underlying primitives. Its key innovation lies in a two-stage, dual
cross-attention mechanism that forms a bespoke degradation representation for each input. First, the
codebook queries the image features to become context-aware. Subsequently, the image features
query this adapted codebook to aggregate targeted restorative information. This design empowers
our model to transcend discrete categorical constraints and naturally handle continuously varying
and mixed degradations.

Our extensive experiments validate the superiority of this approach, with DACode establishing a
new state-of-the-art across multiple challenging benchmarks. The main contributions of this work
are summarized as follows:

• We identify the limitation of coarse-grained representation in existing methods and propose
a new fine-grained, compositional modeling paradigm for all-in-one image restoration.

• We design DACode, a novel framework centered around a degradation-adaptive codebook
and a dual cross-attention mechanism, which materializes the proposed paradigm.

• We achieve state-of-the-art performance and provide analyses that validate the model’s
efficacy and its unique ability for interpretable, fine-grained degradation modeling.

2 RELATED WORK

2.1 SINGLE-TASK IMAGE RESTORATION

Deep learning-based image restoration has evolved rapidly, beginning with foundational CNN ar-
chitectures (Dong et al., 2014; Zhang et al., 2017). The performance of these CNN-based mod-
els was progressively advanced through the integration of more sophisticated mechanisms, such
as channel and spatial attention (Zhang et al., 2018; Zamir et al., 2020), multi-stage refinement
schemes (Zamir et al., 2021), and long-range feature interactions (Liu et al., 2018). The advent of
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the Vision Transformer (ViT) (Dosovitskiy et al., 2021) marked a significant paradigm shift. Re-
searchers began to tailor Transformer architectures for image restoration to better model long-range
dependencies (Yang et al., 2020; Chen et al., 2023b). However, the quadratic computational cost of
the self-attention mechanism posed a major bottleneck for high-resolution images. This challenge
spurred a wave of innovation focused on efficiency, leading to the development of window-based
attention (Wang et al., 2022; Chen et al., 2022), linearized attention mechanisms (Deng et al., 2022),
and sparse attention patterns (Chen et al., 2023a). This line of research culminated in powerful and
versatile architectures like Restormer (Zamir et al., 2022) and Uformer (Wang et al., 2022), which
can achieve state-of-the-art results on various individual restoration tasks. However, despite their
architectural unity, these models must be independently trained and stored for each specific degra-
dation. This “one-model-per-task” constraint severely limits their practicality in real-world scenarios
that demand handling of multiple, unpredictable degradations, thereby motivating the need for the
true All-in-One models discussed in the following section.

2.2 ALL-IN-ONE IMAGE RESTORATION

Early efforts in all-in-one image restoration, such as IPT (Chen et al., 2021), established the vi-
ability of using a single, large Transformer-based backbone for multiple tasks. Following this, a
dominant trend has emerged: developing explicit mechanisms to make models degradation-aware.
This has been approached through various strategies, including learning degradation representations
via contrastive learning (Li et al., 2022), employing explicit classifiers to guide task-specific fil-
ters (Park et al., 2023; Hu et al., 2025), and learning distinct task-oriented centers (Zhang et al.,
2023). More recently, prompt-based learning has become a popular paradigm. In this approach,
a unique prompt is learned for each degradation type to enhance the feature representation of the
restoration network, as exemplified by PromptIR (Potlapalli et al., 2023; Kong et al., 2024). This
concept has been extended by leveraging textual information for more flexible control (Conde et al.,
2024; Luo et al., 2024) or by optimizing the multi-task learning process to resolve conflicts between
degradation tasks (Wu et al., 2024). A common denominator across these diverse approaches is their
emphasis on distinguishing degradations at a category level. By focusing on high-level categorical
distinctions, these methods largely neglect crucial details like varying degradation intensity or tex-
ture. Our work, DACode, is fundamentally different. It directly addresses this gap by proposing a
compositional approach that models degradations at a much finer granularity, assembling bespoke
representations from a learned set of elementary primitives.

3 METHODOLOGY

Our overall network architecture is a hierarchical U-Net (Ronneberger et al., 2015), as illustrated in
Figure 2. The encoder takes a degraded image Id ∈ RH×W×3 and passes it through four hierarchi-
cal stages. The first three stages each contain a series of Transformer Blocks (TBs) followed by a
downsampling layer, which halves the spatial resolution while doubling the feature channel dimen-
sion to extract progressively abstract features. The symmetric decoder mirrors this structure with
three corresponding upsampling stages, where features from the encoder are re-introduced via skip
connections to preserve fine-grained details, ultimately restoring the clean image Ic ∈ RH×W×3.
In line with contemporary all-in-one restorers like AdaIR (Cui et al., 2025) and PromptIR (Potla-
palli et al., 2023), the backbone is constructed with Transformer Blocks, whose design is based on
the powerful Restormer (Zamir et al., 2022), comprising a Multi-Dconv Head Transposed Atten-
tion (MDTA) module and a Gated-Dconv Feed-Forward Network (GDFN), which we refer to as the
FFN. The detailed architectures of the MDTA and FFN modules are provided in the supplementary
material.

While this powerful backbone excels at modeling spatial context, it lacks a specialized mechanism
to adapt to the fine-grained characteristics of diverse degradations, a critical capability for the all-
in-one challenge. To address this gap, our key innovation is the strategic insertion of our proposed
Degradation-Adaptive Codebook (DAC) Block. Following the architectural patterns of recent
leading methods (Potlapalli et al., 2023; Cui et al., 2025), we insert a DAC Block within each stage
of the decoder. As detailed in Figure 2, each DAC Block is a complete processing unit, comprising
our novel DACode module—which serves as a degradation-aware attention mechanism—followed
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Figure 2: The overall architecture of our proposed network. Our key innovation, the Degradation-
Adaptive Codebook (DAC) block, is placed in the decoder stages to guide restoration with fine-
grained degradation knowledge.

by the same FFN used in the standard TBs. This design allows our model to inject degradation-
specific knowledge at multiple scales during the reconstruction process.

3.1 THE DACODE MODULE

The DACode module, detailed in the top panel of Figure 2, is the technical core of our framework and
the materialization of our proposed compositional paradigm. It is designed to dynamically generate a
bespoke representation for any given degradation through a two-stage, dual cross-attention process:
(a) Context-Aware Code Adaptation and (b) Code-based Feature Modulation. Let the input feature
map to the module be X ∈ RH×W×D. For processing, we flatten its spatial dimensions to obtain
Xflat ∈ RN×D, where N = H ×W .

At the heart of our framework lies a globally shared and learnable codebook, denoted as C ∈
RNc×D. This codebook consists of Nc code vectors, which we conceptualize as “degradation prim-
itives”, each with dimension D.

3.1.1 STAGE 1: CONTEXT-AWARE CODE ADAPTATION

For the universal primitives to be effective, they must first be tailored to the context of a specific de-
graded image. We achieve this by having the primitives query the image content via a cross-attention
mechanism, where the codebook vectors C serve as queries (Q) and the input image features Xflat
act as keys (K) and values (V ). This allows the codebook to “read” the image and produce an update
vector ∆C:

∆C = Attention(LN(C), Xflat, Xflat), (1)
where LN(·) denotes Layer Normalization. The original codebook is then refined through a residual
connection, controlled by a learnable, per-primitive scaling factor αc ∈ RNc×1:

C ′ = C + αc ⊙∆C. (2)

Here, ⊙ denotes broadcasted element-wise multiplication. This process yields a contextually-
adapted codebook C ′ ∈ RNc×D that is now conditioned on the specific content and degradation
style of the input.

3.1.2 STAGE 2: CODE-BASED FEATURE MODULATION

With the context-aware codebook C ′ obtained, the second stage performs feature modulation by
reversing the roles in the attention mechanism. This time, the image features Xflat serve as queries
(Q) to the adapted codebook C ′, which acts as both keys (K) and values (V ). This allows each
image feature location to “look up” and aggregate the most relevant restorative information from the
entire set of adapted primitives. The modulated feature Xmod is computed as:

Xmod = Attention(LN(Xflat),LN(C ′),LN(C ′)). (3)

Intuitively, this step materializes the compositional principle: the restoration of each pixel is guided
by a bespoke representation, synthesized on-the-fly by combining the most relevant degradation
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primitives from the adapted codebook. The final output Xmod is then passed to the subsequent FFN
within the DAC Block.

4 EXPERIMENT

To rigorously evaluate our proposed DACode framework, we conduct a series of comprehensive ex-
periments on the challenging task of all-in-one image restoration. In this section, we first detail our
experimental setup, including the datasets and implementation specifics. Subsequently, we present
the main quantitative and qualitative results, where we compare DACode against a range of state-
of-the-art methods on both 3-task and 5-task benchmarks. Across all tasks, we quantify restoration
quality using two standard metrics: the Peak Signal-to-Noise Ratio (PSNR) and the Structural Sim-
ilarity Index (SSIM). For both metrics, higher scores signify superior restoration performance.

Table 1: Quantitative comparison (PSNR / SSIM) for all-in-one restoration on three tasks. The best
results are in bold, and the second-best are underlined.

Method Dehazing Deraining Denoising on BSD68 Average Params
SOTS Rain100L σ = 15 σ = 25 σ = 50

AirNet (Li et al., 2022) 27.94 / 0.962 34.90 / 0.967 33.92 / 0.933 31.26 / 0.888 28.00 / 0.797 31.20 / 0.910 9M
PromptIR (Potlapalli et al., 2023) 30.58 / 0.974 36.37 / 0.972 33.98 / 0.933 31.31 / 0.888 28.06 / 0.799 32.06 / 0.913 36M
Art-PromptIR (Wu et al., 2024) 30.83 / 0.979 37.94 / 0.982 34.06 / 0.934 31.42 / 0.891 28.14 / 0.801 32.49 / 0.917 33M
InstructIR (Conde et al., 2024) 30.22 / 0.959 37.98 / 0.978 34.15 / 0.933 31.52 / 0.890 28.30 / 0.804 32.43 / 0.913 16M
PromptIR-TUR (Wu et al., 2025) 31.17 / 0.978 38.57 / 0.984 34.06 / 0.932 31.40 / 0.887 28.13 / 0.797 32.67 / 0.916 33M
AdaIR (Cui et al., 2025) 31.06 / 0.980 38.64 / 0.983 34.12 / 0.935 31.46 / 0.892 28.19 / 0.802 32.69 / 0.918 29M
VLU-Net (Zeng et al., 2025) 30.71 / 0.980 38.93 / 0.984 34.13 / 0.935 31.48 / 0.892 28.23 / 0.804 32.70 / 0.919 35M
MoCE-IR (Zamfir et al., 2025) 31.34 / 0.979 38.57 / 0.984 34.11 / 0.932 31.45 / 0.888 28.18 / 0.800 32.73 / 0.917 25M

Ours (DACode) 31.50 / 0.982 39.10 / 0.985 34.24 / 0.937 31.60 / 0.895 28.34 / 0.809 32.96 / 0.922 29M

Table 2: Quantitative comparison (PSNR / SSIM) for all-in-one restoration on five tasks. Best
results are in bold, second-best are underlined. Note that for denoising, we report results for σ = 25
following standard practice in this setting.

Method Dehazing Deraining Denoising Deblurring Low-Light Average Params
SOTS Rain100L BSD68σ=25 GoPro LOL

AirNet (Li et al., 2022) 21.04 / 0.884 32.98 / 0.951 30.91 / 0.882 24.35 / 0.781 18.18 / 0.735 25.49 / 0.847 9M
PromptIR (Potlapalli et al., 2023) 25.20 / 0.931 35.94 / 0.964 31.17 / 0.882 27.32 / 0.842 20.94 / 0.799 28.11 / 0.883 33M
Gridformer (Wang et al., 2024) 26.79 / 0.951 36.61 / 0.971 31.45 / 0.885 29.22 / 0.884 22.59 / 0.831 29.33 / 0.904 34M
InstructIR (Conde et al., 2024) 27.10 / 0.956 36.84 / 0.973 31.40 / 0.873 29.40 / 0.886 23.00 / 0.836 29.55 / 0.908 17M
Transweather-TUR (Wu et al., 2025) 29.68 / 0.966 33.09 / 0.952 30.40 / 0.869 26.63 / 0.815 23.02 / 0.838 28.56 / 0.888 38M
AdaIR (Cui et al., 2025) 30.53 / 0.978 38.02 / 0.981 31.35 / 0.889 28.12 / 0.858 23.00 / 0.845 30.20 / 0.910 29M
VLU-Net (Zeng et al., 2025) 30.84 / 0.980 38.54 / 0.982 31.43 / 0.891 27.46 / 0.840 22.29 / 0.833 30.11 / 0.905 35M
MoCE-IR (Zamfir et al., 2025) 30.48 / 0.974 38.04 / 0.982 31.34 / 0.887 30.05 / 0.899 23.00 / 0.852 30.58 / 0.919 25M

Ours (DACode) 31.13 / 0.981 39.27 / 0.986 31.54 / 0.894 29.46 / 0.886 23.21 / 0.860 30.92 / 0.921 29M

4.1 EXPERIMENTAL SETTINGS

4.2 IMPLEMENTATION DETAILS

We propose two model variants built upon a 4-level encoder and 3-level decoder U-Net architecture.
Our standard model, DACode, has a base channel dimension of 48 and uses [4, 6, 6, 8, 6, 6, 12]
Transformer blocks across its seven stages. The lightweight DACode-s variant reduces the channel
dimension to 32 with a shallower block configuration of [4, 6, 6, 8, 2, 4, 8]. The number of primitives
in the DACode module is set to Nc = 64 for both variants. Models are trained a total of 150 epochs
on two NVIDIA L40 GPUs using the AdamW optimizer (Loshchilov & Hutter, 2017) to minimize
the L1 loss. We use a batch size of 12. The learning rate is initialized to 2 × 10−4 and decayed to
zero via a cosine annealing schedule. Input patches of size 128 × 128 are randomly cropped from
training images.

Datasets and Benchmarks. To comprehensively evaluate DACode, our experiments are struc-
tured across three distinct benchmarks that progressively increase in complexity. First, we use a
standard 3-task setting to assess performance on common, isolated degradations. This includes: (i)
Deraining on the Rain100L dataset Wenhan Yang & Yan (2017); (ii) Dehazing on the SOTS indoor
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Figure 3: Qualitative comparison for all-in-one restoration on three tasks.

dataset Li et al. (2018a); and (iii) Denoising, for which we train on a composite of BSD400 Arbelaez
et al. (2010) and WED Ma et al. (2016) with additive white Gaussian noise (σ ∈ {15, 25, 50}) and
test on the BSD68 benchmark Martin et al. (2001). Second, we expand to a more extensive 5-task
setting to demonstrate the model’s versatility. This setup supplements the above tasks with (iv) De-
blurring on the GoPro dataset Nah et al. (2017) and (v) Low-Light Enhancement on the LOL-v1
dataset Wei et al. (2018). Finally, to directly validate our model’s core capability in handling com-
plex scenarios, we conduct experiments on the CDD11 dataset Guo et al. (2024) with Composited
Degradations . This benchmark is specifically designed to test performance on mixed corruptions,
containing 11 degradation types that include both single modalities (e.g., rain, snow, haze, low-light)
and their combinations (e.g., haze-rain, low-light-snow).

4.3 QUANTITATIVE AND QUALITATIVE COMPARISONS

To comprehensively evaluate our framework, we first benchmark DACode against state-of-the-art
(SOTA) methods on two standard all-in-one settings: a foundational 3-task benchmark and a more
extensive 5-task benchmark. The quantitative results are presented in Table 1 and Table 2. Our
DACode framework demonstrates clear superiority, achieving the best overall performance in both
settings. On the demanding 5-task benchmark, for instance, DACode surpasses the powerful MoCE-
IR (Zamfir et al., 2025) baseline by a notable 0.34 dB in average PSNR. These quantitative improve-
ments are visually substantiated by our qualitative results in Figure 3. The comparisons reveal our
model’s enhanced ability to restore fine-grained details and vibrant colors, such as the intricate skin
texture in the deraining example and the faithful color rendition of the cyclist’s raincoat in the de-
hazing case.

Beyond the standard benchmarks of isolated degradations, we further probe our model’s capabilities
in more realistic and complex scenarios using the CDD11 benchmark for composite degradations.
For a fair comparison against the predominantly lightweight methods evaluated on this dataset, we
utilize our smaller variant, DACode-S. As shown in Table 3, our approach demonstrates overwhelm-
ing superiority. Notably, DACode-S achieves an average PSNR of 29.81 dB, surpassing the next-
best method, Moce-IR-S, by a substantial margin of 0.76 dB, despite having a comparable model
size. This commanding performance is consistent across all 11 degradation types, spanning single,
double, and even the most challenging triple-composite corruptions. This result provides strong,
direct evidence for the effectiveness of our fine-grained, compositional paradigm in disentangling
and restoring complex, real-world image degradations.

Collectively, these strong quantitative and qualitative results across all benchmarks validate the ef-
fectiveness and robustness of our proposed framework.
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Table 3: Quantitative comparison on the CDD11 dataset. Best results are in bold, second-best are
underlined. (Top) PSNR results. (Bottom) SSIM results.

Method Haze(H) Low(L) Rain(R) Snow(S) H+R H+S L+H L+R L+S L+H+R L+H+S Average Params.

AirNet (Li et al., 2022) 24.21 24.83 26.55 26.79 22.21 23.29 23.23 22.82 23.29 21.80 22.24 23.75 8.9M
PromptIR (Potlapalli et al., 2023) 26.10 26.32 31.56 31.53 24.54 23.70 24.49 25.05 24.51 24.49 23.33 25.97 38.5M
OneRestore (Guo et al., 2024) 32.52 26.48 33.40 34.31 29.99 30.21 25.79 25.58 25.19 24.78 24.90 28.47 6.0M
Moce-IR-S (Zamfir et al., 2025) 32.66 27.26 34.31 35.91 29.93 30.19 26.24 26.25 26.04 25.41 25.39 29.05 11.0M

DACode-S (Ours) 34.30 27.32 35.22 36.83 31.24 31.35 26.59 26.64 26.58 25.97 25.97 29.81 12.5M

Method Haze(H) Low(L) Rain(R) Snow(S) H+R H+S L+H L+R L+S L+H+R L+H+S Average Params.

AirNet Li et al. (2022) 0.951 0.778 0.891 0.919 0.868 0.901 0.779 0.710 0.723 0.708 0.725 0.814 8.9M
PromptIR Potlapalli et al. (2023) 0.969 0.805 0.946 0.960 0.924 0.925 0.789 0.771 0.761 0.789 0.747 0.853 38.5M
OneRestore Guo et al. (2024) 0.990 0.826 0.964 0.973 0.957 0.964 0.822 0.799 0.789 0.788 0.791 0.878 6.0M
Moce-IR-S Zamfir et al. (2025) 0.990 0.824 0.970 0.980 0.964 0.970 0.817 0.800 0.793 0.789 0.790 0.881 11.0M

DACode-S (Ours) 0.991 0.834 0.974 0.981 0.968 0.972 0.831 0.814 0.808 0.806 0.805 0.890 12.5M

Table 4: Ablation study on the number of code primitives
(Nc). The case Nc = 0 represents our backbone without
the DACode module. Best results are in bold.

Nc 0 32 48 64 (Ours) 80 96 128

PSNR 31.98 32.51 32.72 32.96 32.74 32.93 32.96
SSIM 0.909 0.914 0.918 0.922 0.918 0.920 0.921

Table 5: Ablation on the Context-Aware
Code Adaptation stage. Best results are
in bold.

Method PSNR SSIM

DACode w/o Adaptation 32.71 0.914
Full DACode (Ours) 32.96 0.922

5 ABLATION STUDIES

In this section, we conduct a series of targeted ablation studies to rigorously validate our proposed
DACode framework. Our investigation is structured to first analyze the impact of the codebook size
(Nc), which demonstrates the overall efficacy of our module and determines its optimal configura-
tion. We then specifically investigate the criticality of the first stage in our dual-attention mechanism:
the Context-Aware Code Adaptation. Finally, we provide in-depth qualitative visualizations that of-
fer direct evidence of our model’s fine-grained and adaptive modeling capabilities. Unless otherwise
specified, all ablation experiments are conducted on the 3-task setting.

5.1 ANALYSIS ON THE NUMBER OF CODE PRIMITIVES

The number of learnable primitives, Nc, in our codebook is a critical hyperparameter that directly
influences the model’s representational capacity and parameter overhead. To quantify the overall
effectiveness of our DACode module and find an optimal configuration, we evaluate the model’s
performance while varying Nc in the set {0, 32, 48, 64, 80, 96, 128}. The Nc = 0 setting serves as a
crucial baseline, as it effectively removes the DACode module.

The quantitative results, summarized in Table 4, lead to two primary conclusions. First, the results
reveal the substantial impact of our DACode module. Removing it entirely (Nc = 0) causes a
drastic performance drop of 1.83 dB in average PSNR (from 32.96 dB to 31.13 dB). This clearly
demonstrates that our proposed module is essential for high-quality restoration. Second, we observe
a consistent trend of performance improvement as Nc increases from 32 to 64, with both PSNR and
SSIM metrics reaching their peak at Nc = 64. Interestingly, further increasing the codebook size
beyond 64 leads to performance saturation. While the PSNR at Nc = 128 matches our peak result,
it offers no additional benefits, incurs a higher parameter cost, and results in a slightly lower SSIM
score. This analysis indicates that Nc = 64 provides the optimal trade-off between representational
capacity and model efficiency. Consequently, we adopt Nc = 64 as the default configuration for all
our experiments.

5.2 EFFICACY OF CONTEXT-AWARE CODE ADAPTATION

We hypothesize that a static codebook of universal primitives is suboptimal for the diverse na-
ture of image degradations. To this end, our DACode module incorporates a crucial first stage:
Context-Aware Code Adaptation, designed to dynamically refine these primitives based on the
input image’s context. To validate the importance of this stage, we design an ablation variant named
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(a) Activation Fingerprints of the codebook across the three restoration tasks.

(b) Top-5 most activated primitives for each task, sorted by response strength.

Figure 4: Functional specialization of primitives across different tasks. The visualizations in (a) the
Activation Fingerprints and (b) the Top-5 primitives reveal a clear spectrum of specialization. We
can identify three primary roles: (1) Task-Specific Primitives, which are dominantly activated for
a single task (e.g., primitives #40 and #37 for Dehazing). (2) Property-Specific Primitives, which
are co-activated for tasks with shared underlying properties, such as the additive, high-frequency
nature of Denoising and Deraining (e.g., primitives #9 and #63). (3) Universal Primitives, such as
#44, which are consistently activated across all three tasks, likely modeling fundamental restoration
properties. This clear division of labor validates the richness and interpretability of our composi-
tional approach.

“DACode w/o Adaptation”, where this mechanism is disabled. Specifically, we bypass the code
update step in Eq. 2, forcing the model to use the same static, global codebook for all inputs.

The results, presented in Table 5, confirm our hypothesis. Disabling the adaptation mechanism
leads to a substantial performance drop of 1.79 dB in average PSNR and 0.013 in average SSIM.
This significant gap demonstrates that while a global codebook can learn generic primitives, the
ability to dynamically specialize them for each unique degradation instance is critical for achieving
high-fidelity restoration. Without this context-aware adaptation, the model is constrained to a less
effective, one-size-fits-all approach.

5.3 QUALITATIVE ANALYSIS: VERIFYING ADAPTIVE MODELING

Beyond quantitative metrics, it is crucial to qualitatively verify that our DACode module operates
according to our core motivation. To this end, we visualize the codebook’s activation patterns in
response to different degradation tasks on their respective standard benchmarks, as presented in
Figure 4 and Figure 5. The complete response figures for different tasks are available in the supple-
mentary material.

Functional Specialization of Primitives. Figure 4 illustrates how the primitives in our codebook
have specialized for different roles when tested on distinct tasks. We observe a clear spectrum of
specialization: First, some primitives are highly task-specific. For instance, primitives like #40
and #37 are dominantly activated only for Dehazing, demonstrating that the model learns repre-
sentations dedicated to a single degradation family. Second, other primitives specialize in shared
properties across tasks. A notable overlap exists between Denoising and Deraining, which share

8
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Noise
σ=15

Noise
σ=50

(a) Denoising: σ = 15 vs. σ = 50

Light
Rain

Heavy
Rain

(b) Deraining: Light vs. Heavy

Light
Haze

Heavy
Haze

(c) Dehazing: Light vs. Heavy

Figure 5: Severity-aware activation of the DACode module. The model assembles different com-
binations of Top-5 primitives in response to varying degradation intensity. This is demonstrated
across three tasks: (a) Denoising, where the dominant primitive shifts from #41 (σ = 15) to #32
(σ = 50); (b) Deraining, with a shift from #39 (light) to #61 (heavy); and (c) Dehazing, shifting
from #42 (light) to #53 (heavy). This behavior validates our model’s ability to perform fine-grained
modeling by composing different ”recipes” of primitives to match the input’s specific characteris-
tics. Zoom in for best view.

key primitives such as #9 and #63. We attribute this to the shared nature of their data synthesis as
additive degradations that introduce high-frequency artifacts, suggesting these primitives function
as general-purpose high-frequency artifact removers. Finally, we find evidence of universal prim-
itives. Code #44, for example, appears as a Top-5 activated primitive across all three tasks. We
hypothesize that such universal codes learn to model fundamental, task-agnostic properties essential
for general image reconstruction, such as restoring fine textures. This clear division of labor—from
universal, to property-specific, to task-specific functions—powerfully demonstrates the richness of
the representations learned by our compositional paradigm.

Severity-Aware Activation. Furthermore, our model demonstrates a remarkable capability for
severity-awareness. As illustrated in Figure 5, the model astutely adapts its response even within the
same task. It composes different “recipes” of primitives, with visibly different activation strengths
and participating codes, to precisely match the intensity of each input image. This, combined with
the hierarchical activation, validates that DACode learns a rich, internal language of degradation
rather than relying on monolithic labels.

6 CONCLUSION

In this paper, we identified a fundamental limitation in existing all-in-one image restoration meth-
ods: their reliance on coarse-grained, categorical representations of degradation. To address this,
we proposed a paradigm shift towards fine-grained, compositional modeling. Our framework, DA-
Code, materializes this new paradigm through a novel degradation-adaptive codebook and a dual
cross-attention mechanism. The superiority of our compositional approach was validated through
extensive experiments, where DACode established a new state-of-the-art on multiple challenging
benchmarks. More than just performance, our in-depth analyses provided direct evidence for our
core hypothesis. We revealed that the learned codebook exhibits a remarkable degree of functional
specialization, with primitives ranging from universal to task-specific. This confirms that our model
does not merely memorize tasks, but learns a rich, internal language of degradation, assembling
different “recipes” of primitives to precisely match the type and severity of each unique corruption.

7 THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this paper, we employed a Large Language Model (LLM) to assist with
improving the language and readability of the text. The primary use of the LLM was for proofread-
ing, including correcting grammatical errors and refining sentence structure to enhance clarity. We
confirm that the LLM was not used for research ideation, developing the methodology, conducting
experiments, analyzing results, or drawing conclusions. All intellectual contributions and scientific
claims are solely those of the authors.
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A APPENDIX

A.1 INTRODUCTION

This supplementary document provides additional details, experiments, and visualizations to com-
plement our main paper. The contents are organized as follows:

• Section A.2: A detailed architectural breakdown of the standard Transformer Block used
in our backbone, including the specific structures of the Multi-Dconv Head Transposed
Attention (MDTA) and the Feed-Forward Network (FFN).

• Section A.3: Complete, unabridged visualizations of the codebook activation responses
(i.e., the full 64-primitive bar charts), providing a comprehensive view of the results sum-
marized in the main paper.

• Section A.4: Additional qualitative results, providing more visual comparisons of our
method against state-of-the-art approaches on various restoration tasks.
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Figure 6: (a) Detailed architecture of the core components within a standard Transformer Block
(TB). (b) The Multi-Dconv Head Transposed Attention (MDTA) module. Unlike standard self-
attention which computes spatial relationships, MDTA computes attention across feature channels,
making it more efficient for high-resolution images. (c) The Gated-Dconv Feed-Forward Network
(GDFN), which we refer to as the FFN in our main paper. It employs a gating mechanism to control
feature flow and enhance representational power.

A.2 DETAILED NETWORK ARCHITECTURES

In the main paper, we mentioned that the Transformer Blocks (TBs) in our backbone are based on
the Restormer Zamir et al. (2022) design. Each TB is composed of two core components: a Multi-
Dconv Head Transposed Attention (MDTA) module for feature aggregation, and a Gated-Dconv
Feed-Forward Network (GDFN) for feature transformation, which we refer to as the FFN. Here, we
provide a detailed architectural breakdown of these two modules, as illustrated in Figure 6.

Figure 7: The complete distribution of the 64 code primitives’ responses for the Denoising task,
averaged over all noise levels (σ ∈ {15, 25, 50}) on the BSD68 dataset.

Multi-Dconv Head Transposed Attention (MDTA) The MDTA module, shown in Figure 6(b),
is designed to efficiently model long-range dependencies while maintaining a low computational
cost. Given an input feature map Xin ∈ RH×W×C , it first passes through a Layer Normalization
(LN). Then, to generate the query (Q), key (K), and value (V ) projections, the normalized features
are processed by three parallel branches. Each branch consists of a 1 × 1 convolution to adjust the
channel dimension, followed by a 3× 3 depth-wise convolution to aggregate local spatial context.

The key innovation of MDTA is its use of transposed attention. Instead of computing attention across
the spatial dimension (N×N , where N = H×W ), it computes attention across the channel dimen-
sion. To achieve this, the key projection K is transposed and multiplied with the query projection Q
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Figure 8: The complete distribution of the 64 code primitives’ responses for the Deraining task on
the Rain100L dataset.

Figure 9: The complete distribution of the 64 code primitives’ responses for the Dehazing task on
the SOTS dataset.

to generate a channel-wise attention map of size C×C. This map represents the inter-dependencies
between different feature channels. The attention map is then applied to the value projection V to
produce the aggregated features. Finally, the output is passed through a 1×1 convolution and added
to the input Xin via a residual connection to form the output Xout.

Gated-Dconv Feed-Forward Network (GDFN) The GDFN, which we refer to as the FFN
throughout our paper, serves as the primary feature transformation unit within each block. As il-
lustrated in Figure 6(c), it replaces the standard FFN found in conventional Transformers with a
more powerful gating mechanism.

Given a layer normalized input Xin, the GDFN first splits the processing into two parallel branches.
The first branch applies a 1×1 convolution followed by a 3×3 depth-wise convolution and a GELU
activation function to process the features. The second branch follows a similar convolutional path
but without a non-linear activation, effectively acting as a learnable gate. The outputs of these two
branches are then fused via element-wise multiplication. This gating mechanism allows the network
to control which information is propagated forward, enhancing its representational power. Finally,
the gated features are passed through a final 1 × 1 convolution, and the result is added back to the
input Xin via a residual connection.

A.3 FULL CODEBOOK ACTIVATION VISUALIZATIONS

This section provides the complete, unabridged visualizations of the codebook activation responses
for each of the three primary restoration tasks discussed in the main paper. While the main paper
presents condensed visualizations (e.g., activation fingerprints and Top-K charts) for brevity and
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Figure 10: Qualitative comparison on challenging composite degradations from the CDD11
dataset. The examples shown are (from top to bottom): haze-snow, low-light-haze-snow, and low-
light-haze-rain.

clarity, these full-distribution plots allow for a detailed inspection of the entire 64-primitive code-
book’s behavior. The results shown here correspond to the activations from the DACode module at
Layer 1.

The activation patterns shown in Figure 7, 8, and 9 provide a comprehensive view of the functional
specialization within our codebook. While each task has a unique activation signature, the full dis-
tributions allow for deeper analysis. For instance, one can observe the long tail of less-activated
primitives and how their relative importance shifts between tasks. These plots serve as the foun-
dational data from which the more condensed visualizations and analyses in the main paper are
derived.

A.4 ADDITIONAL QUALITATIVE RESULTS

To further demonstrate the superior performance and robustness of our proposed DACode frame-
work, this section provides additional qualitative results. We present a wider variety of challenging
visual examples for the Denoising, Deraining, and Dehazing tasks, comparing our method against
several state-of-the-art approaches. As shown in Figure 11, the columns compare results from differ-
ent methods against our proposed DACode and the Ground Truth. In the Denoising examples, our
method excels at restoring intricate textures and natural colors (e.g., the tiger’s fur and the pattern
on the book cover), avoiding the color shifts or blurriness present in other methods. For Deraining,
DACode effectively removes heavy rain streaks while preserving challenging background details
(e.g., the jets on the tarmac and the soldiers’ uniforms). In the Dehazing scenarios, our approach
recovers significantly more vibrant colors and sharper text details (e.g., the “STATION” sign ), out-
performing competitors that leave a residual hazy appearance.

To visually substantiate these strong quantitative results on composite degradations, we present
challenging qualitative comparisons in Figure 10. A consistent pattern emerges across scenarios
like haze-snow and low-light-haze-rain: while competing methods often struggle to handle the co-
occurrence of multiple degradations—resulting in residual haze, color casts, or detail loss—our
DACode-S demonstrates a superior ability to disentangle them. For instance, in the windmill scene
(bottom row), DACode-S is the only method to effectively remove the thick atmospheric interfer-
ence and restore the fine structural details, closely matching the ground truth. Similarly, in the beach
scene (middle row), our approach excels at recovering the vibrant green hues of the foliage and cor-
recting the severe color cast, whereas other methods yield washed-out or color-biased results. These
visual results provide compelling, intuitive evidence for our compositional paradigm, highlighting
its effectiveness in generating high-fidelity restorations for complex degradation mixtures.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Degraded Image PromptIR InstructIR AdaIR Ours Ground Truth

D
en

o
isin

g
D

era
in

in
g

D
eh

a
zin

g

Figure 11: Additional qualitative comparisons for all-in-one restoration on the 3-task bench-
mark. The figure presents two additional challenging examples for each of the three tasks: Denois-
ing (rows 1-2), Deraining (rows 3-4), and Dehazing (rows 5-6).
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