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ABSTRACT

By utilizing more computational resources at test-time, large language models
(LLMs) can improve without additional training. One common strategy uses ver-
ifiers to evaluate candidate outputs. In this work, we propose a novel scaling
dimension for test-time compute: scaling the number of verifiers. We introduce
Multi-Agent Verification (MAV) as a test-time compute paradigm that combines
multiple verifiers to improve performance. We propose using Aspect Verifiers
(AVs), off-the-shelf LLMs prompted to verify different aspects of outputs, as one
possible choice for the verifiers in a MAV system. AVs are a convenient build-
ing block for MAV since they can be easily combined without additional training.
Moreover, we introduce BoN-MAV, a simple multi-agent verification algorithm
that combines best-of-n sampling with multiple verifiers. BoN-MAV demon-
strates stronger scaling patterns than self-consistency and reward model verifi-
cation, and we demonstrate both weak-to-strong generalization, where combining
weak verifiers improves even stronger LLMs, and self-improvement, where the
same base model is used to both generate and verify outputs. Our results estab-
lish scaling the number of verifiers as a promising new dimension for improving
language model performance at test-time.
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Figure 1: Scaling test-time compute along two dimensions. Left: Increasing the number of candidate outputs
(n) and comparing three test-time methods: best-of-n with multi-agent verification (BoN-MAV@n), best-of-n
with reward model verification (BoN-RM@n), and self-consistency (cons@n). Right: Increasing the number of
verifiers (m) when selecting between n = 16 candidate outputs (BoN-MAV@16) surpasses the performance of
reward model verification (BoN-RM@16) and self-consistency (cons@16). All candidate outputs are sampled
from Gemini-1.5-Flash on the MATH benchmark (Hendrycks et al., 2021).

1 INTRODUCTION

Scaling the size of large language models (LLMs) and their training datasets has driven remark-
able progress in artificial intelligence (Brown et al., 2020; Chowdhery et al., 2023; Hoffmann et al.,
2022). However, the growing cost of scaling model size and obtaining unseen high-quality pretrain-
ing data has sparked growing interest in methods that improve LLM performance without simply
scaling parameters or data. Among these, a promising new direction has emerged: scaling test-time
compute, where models spend more computational resources during inference—much like humans
spend more time thinking through harder problems.

∗Full version of the paper is available at https://arxiv.org/abs/2502.20379, and see https:
//ardalabs.ai/MultiAgentVerification for the paper webpage.
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Question: Two stars (Star_1 and Star_2) each have masses 1.5 and 1.2 times that of our Sun, respectively. Assuming LTE and using the EW method, astronomers have 
determined the elemental abundances of these two stars: [Si/Fe]_1 = 0.3 dex, [Mg/Si]_2 = 0.3 dex, [Fe/H]_1 = 0 dex, and [Mg/H]_2 = 0 dex. Consider the following photospheric 
composition for the Sun: 12 + log10(nFe/nH) = 7.5 and 12 + log10(nMg/nH) = 7. Calculate the ratio of silicon atoms in the photospheres of Star_1 and Star_2. 
Options: (A) ~3.9, (B) ~12.6, (C ) ~0.8, (D) ~1.2
Correct Answer: (B)

Figure 2: Illustration of the BoN-MAV algorithm. BoN-MAV combines best-of-n sampling with multi-
agent verification: First, n candidate outputs are sampled from a generator LLM. Then, each output is evaluated
by a set of Aspect Verifiers (AVs) that produce binary approvals. Finally, the candidate with the most approvals
is selected as the final answer. See Section 2.3 for algorithm details.

A common strategy for scaling test-time compute is best-of-n sampling (Stiennon et al., 2020; Cobbe
et al., 2021; Nakano et al., 2021), where n candidate outputs are sampled from a generator LLM
and a verifier model scores each candidate output based on its quality or correctness. The highest-
scoring output is then selected. Under this strategy, the amount of test-time compute can be scaled up
by increasing the number of sampled outputs. However, in this work, we propose a new orthogonal
scaling dimension: scaling the number of verifiers. We introduce Multi-Agent Verification (MAV),
a test-time compute paradigm that combines multiple verifiers to improve performance.

Typically, verifiers are implemented as reward models which are trained using reinforcement learn-
ing from human feedback (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022; Bai
et al., 2022a). However, relying on reward models as verifiers introduces two crucial limitations for
multi-agent verification: (1) each reward model has to be trained on expensive curated preference
data, and (2) there is no straightforward way to combine scores generated by heterogeneous reward
models trained on different datasets (they produce uncalibrated scores). These limitations make re-
ward models poorly suited for multi-agent verification and restrict our ability to simply scale up the
number and type of verifiers at test-time.

To address these limitations and enable scalable multi-agent verification, we propose using Aspect
Verifiers (AVs) — off-the-shelf LLMs prompted to verify specific aspects of candidate outputs
through binary True/False approvals. This approach is motivated by the observation that internet data
contains abundant examples of humans providing binary evaluations with feedback (e.g., educational
assessments, academic peer reviews, online forums, and automated code tests), which suggests that
language models may be naturally suited for binary verification. Unlike reward models, AVs do
not require additional training since producing binary approvals falls naturally within the training
distribution of their base LLMs, and their binary outputs can be easily combined across multiple
models through simple voting mechanisms. Thus, the number and type of aspect verifiers can be
easily scaled up without additional training. We note that aspect verifiers are just one possible
implementation choice for the verifiers in a MAV system, which address the two key limitations of
typical reward model verifiers.

By aggregating binary signals across a diverse set of aspect verifiers, we can leverage the grow-
ing ecosystem of language models to produce a more robust verification signal. Each verifier can
focus on different aspects of outputs like mathematical correctness or logical soundness, and em-
ploy different verification strategies such as direct yes/no approval, step-by-step analysis, solution
rephrasing, or edge case checking. Thus, a diverse set of aspect verifiers can be obtained by varying
three key axes: the base LLM, the aspect to verify, and the verification strategy.

To investigate scaling multi-agent verification, we introduce BoN-MAV as a specific algorithm
which combines best-of-n sampling with aspect verifiers. This is one implementation of a MAV
algorithm, combining traditional best-of-n sampling with multiple verifiers. Given an input, BoN-
MAV (1) samples n outputs from a generator LLM, (2) collects binary approvals from a set of m
aspect verifiers, and (3) selects the output with the most approvals. We investigate scaling test-
time compute with this approach along two orthogonal dimensions: the traditional dimension of
increasing the number of sampled candidate outputs n, and our novel test-time scaling dimension of
increasing the number of verifiers m. We find that using multiple diverse verifiers to select between
candidate outputs is an effective strategy, and that performance improves as we use more verifiers.
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More specifically, across multiple domains and LLMs, BoN-MAV demonstrates more effective scal-
ing patterns when we increase the number of sampled outputs, compared to best-of-n with reward
model verification (Stiennon et al., 2020; Cobbe et al., 2021) and self-consistency (Wang et al.,
2022; Li et al., 2022b; Thoppilan et al., 2022; Lewkowycz et al., 2022). We also demonstrate weak-
to-strong generalization (Burns et al., 2023), whereby combining many small aspect verifiers can
improve the performance of even stronger generator LLMs, and we show that BoN-MAV enables
self-improvement by using the same base LLM for both the generator and set of aspect verifiers.
Since BoN-MAV is just one simple approach to multi-agent verification, we expect that substantial
improvements can be achieved using alternative methods.

Overall, our paper makes the following contributions:
(1) We introduce Multi-Agent Verification (MAV) as a new test-time paradigm that combines mul-

tiple verifiers at test-time, opening a novel scaling dimension: scaling the number of verifiers.
(2) We propose Aspect Verifiers (AVs), off-the-shelf LLMs which require no additional training

and naturally support combining verification signals from multiple heterogeneous verifiers us-
ing voting mechanisms.

(3) We demonstrate that BoN-MAV, a simple multi-agent verification algorithm which combines
best-of-n with aspect verifiers, improves the performance of various generator LLMs as we
scale up the number and type of aspect verifiers.

2 MULTI-AGENT VERIFICATION

Multi-Agent Verification (MAV) is a test-time compute paradigm where multiple verifiers are com-
bined to evaluate outputs from a generator LLM. To implement a MAV algorithm, we must address
two questions: (1) What type of verifiers can be easily combined and scaled up in number with-
out additional training? (2) How should we aggregate verification signals from multiple verifiers?
In this section, we propose answers to these questions and describe one simple implementation of
a multi-agent verification algorithm called BoN-MAV. We discuss future directions for alternative
multi-agent verification algorithms in Appendix C.

In Section 2.1, we propose Aspect Verifiers (AVs) as a convenient building block for MAV, since
they require no additional training and naturally support combining multiple verification signals. In
Section 2.2, we describe our approach to aggregating signals across multiple AVs. In Section 2.3,
we outline the BoN-MAV algorithm, which combines best-of-n sampling with aspect verifiers. Sec-
tion 2.4 proposes verifier engineering to select relevant verifiers for specific domains or tasks.

2.1 ASPECT VERIFIERS

In the context of test-time computation with LLMs, a verifier typically refers to a model that evalu-
ates the quality or correctness of an output sampled from a generator LLM. Here, we ask: What type
of verifiers can be easily combined and scaled up in number without additional training?

Prior works have largely focused on using neural reward models as verifiers (Stiennon et al., 2020;
Cobbe et al., 2021; Snell et al., 2024). However, these models present key challenges for scaling
multi-agent verification. First, each reward model requires training on expensive curated prefer-
ence data to produce reliable reward scores (Stiennon et al., 2020). Second, while ensembles of
homogeneous reward models (identical model initializations trained on the same data but with dif-
ferent random seeds) have been proposed as a way to mitigate overoptimization (Coste et al., 2023;
Eisenstein et al., 2023; Gao et al., 2023a), there is no straightforward way to combine scores from
heterogeneous reward models trained on different datasets. This second limitation arises because
scores from different reward models are uncalibrated—–they operate on different numerical scales
based on their distinct training setups. We wish to simply scale up the number and type of verifiers
without additional training.

We propose Aspect Verifiers (AVs) as one possible implementation choice for the verifiers in a
MAV system, which address the two mentioned limitations of typical reward model verifiers. AVs
are off-the-shelf LLMs prompted to evaluate specific aspects of candidate outputs and produce bi-
nary True/False approvals. Unlike reward models, they require no additional training since binary
evaluation is a natural task for LLMs (the internet contains abundant examples of humans providing
binary approvals with explanation, such as educational assessments, academic peer reviews, or on-
line forums), and their binary approvals can be easily combined through voting mechanisms, even
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when AVs are based on completely different models or training data. Moreover, since AVs are based
on LLMs, they can produce CoT reasoning (Wei et al., 2021) to analyze outputs step-by-step before
producing an approval, similar to recent work on generative reward models (Zhang et al., 2024b;
Mahan et al., 2024). Using aspect verifiers, we can easily scale up the number and type of verifiers
which may be based on different LLMs, training algorithms, architectures, data, or prompts.

Aspect Verifiers can be configured along three axes: (1) The base LLM—which model acts as the
verifier (e.g., GPT-4o-mini or Gemini-1.5-Flash), (2) The aspects to verify—what qualities of the
candidate output the verifier is prompted to evaluate (e.g., mathematical correctness, logical sound-
ness, factuality, etc.), (3) The verification strategy—how the verifier reaches its decision (e.g., direct
approval, going over the output step-by-step, rephrasing, checking edge cases, etc.). For example,
an aspect verifier could be implemented as GPT-4o-mini evaluating the mathematical correctness of
an output from a generator LLM by going over it step-by-step. By varying these three axes, we can
create a diverse set of aspect verifiers with differing capabilities. Figure 6 illustrates how multiple
aspect verifiers can evaluate a single candidate output, and Appendix E contains a full list of the
verifiers used in this work and the prompts for each.

2.2 COMBINING ASPECT VERIFIERS

With aspect verifiers as our building block, we ask: How can we effectively aggregate verification
signals across multiple AVs? We take the simplest possible approach in our experiments: each binary
True/False approval is a single vote, and the aggregated score for a candidate output is the sum of
the positive votes from all AVs. That is, the aggregated verification score is the sum of the individual
binary scores from each verifier:

AggScore(o(i)) =
1

|M|
∑
v∈M

BinaryScorev(o
(i)), (1)

where o(i) ∈ O is the ith candidate output from the set of sampled outputs O, M is the set of
aspect verifiers, and BinaryScorev : O → {0, 1} maps a candidate output from O to the binary
approval produced by verifier v ∈ M for that output. This voting strategy gives equal weight to
all verifiers in the final aggregated score, and it proves remarkably effective in our experiments (see
Section 3.1). However, future works could investigate more sophisticated aggregation strategies
such as grouping verifiers by aspect and then voting across aspects, or having aspect verifiers debate
with each other (Du et al., 2023) before producing an approval. We discuss these and other potential
directions for future work in Appendix C.

2.3 BON-MAV

Best-of-n (BoN) sampling is a test-time optimization technique (Stiennon et al., 2020; Cobbe et al.,
2021; Nakano et al., 2021) where n candidate outputs are sampled from a generator LLM, each
candidate is scored by a verifier model, and the highest-scoring output is selected. We introduce
BoN-MAV as a simple multi-agent verification algorithm that combines best-of-n sampling with
aspect verifiers. It uses the simple aggregation strategy from Equation 1 and consists of three
steps: (1) sampling n candidate outputs from a generator LLM, (2) collecting binary approvals
from a set of m aspect verifiers, and (3) selecting the output with the most approvals. That is,
î = argmax0<i<n

(
AggScore(o(i))

)
where o(i) is the ith candidate output, n is the total number of

sampled candidate outputs, and î is the index of the output with the highest aggregated score (the
selected output). Figure 2 illustrates how BoN-MAV can select between a set of candidates.

Using BoN-MAV, we can increase test-time computation by sampling more candidate outputs (in-
creasing n) and by querying more verifiers (increasing m = |M|), where test-time computation can
be easily parallelized during generation as well as verification. In addition, BoN-MAV represents
just one specific approach to multi-agent verification, and more nuanced aggregation algorithms or
alternatives to aspect verifiers could further enhance performance (see Appendix C for discussion).

2.4 VERIFIER ENGINEERING

Using aspect verifiers, we can create a diverse pool of verifiers with different capabilities. However,
not all verifiers are equally relevant for every domain (e.g., math, coding, general knowledge). Thus,
we propose verifier engineering as a process to select a subset of verifiers most effective for a par-
ticular domain (similar to prompt engineering, where prompts are engineered for specific domains
or tasks).
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MATH MMLU-Pro GPQA (diamond) HumanEval

Generator LLM B-MAV Cons RM B-MAV Cons RM B-MAV Cons RM B-MAV Cons RM

Gemini-1.5-Flash 66.0 59.0 61.7 66.7 63.3 60.7 42.0 40.0 46.0 80.0 79.0 79.0
Gemini-1.5-Pro 72.7 70.3 71.0 72.3 71.7 69.3 49.0 45.0 49.0 88.0 84.0 88.0
GPT-4o-mini 73.0 74.7 72.3 67.0 63.7 62.7 50.0 48.0 44.0 84.0 87.0 85.0
GPT-4o 76.3 77.3 80.7 75.7 76.3 72.7 59.0 59.0 58.0 92.0 95.0 92.0
Mistral-7B 26.0 22.0 21.7 36.7 25.7 31.0 36.0 32.0 37.0 59.0 46.0 52.0
Llama-3.1-8B 61.7 61.0 54.7 59.3 55.3 51.3 43.0 36.0 41.0 75.0 62.0 64.0
Gemma-2-9B 58.7 51.7 55.0 57.7 54.3 54.7 34.0 36.0 38.0 32.0 25.0 51.0
Gemma-2-27B 62.3 55.7 59.3 62.0 58.3 60.0 41.0 40.0 41.0 76.0 66.0 76.0

Table 1: Best-of-n with Multi-Agent Verification (BoN-MAV) across models and domains. Performance
(accuracy %) comparison of three test-time verification methods using n = 16 candidate outputs: the BoN-
MAV algorithm (labeled as B-MAV in the table), reward model verification (RM), and self-consistency (Cons).
Results are shown for eight generator LLMs across four domains, with BoN-MAV on each domain using the
domain-specific aspect verifier subset Md. BoN-MAV outperforms self-consistency in nearly all cases, and
generally outperforms RM except on GPQA and HumanEval, where BoN-MAV and RM are comparable.

We engineer domain-specific sets of verifiers by first creating a diverse initial set M and then select-
ing the subset Md ⊆ M which contains the most relevant verifiers for domain d. Specifically, for
each domain d, we select the subset Md ⊆ M which maximizes the average performance across
all generator LLMs evaluated on a validation set. Our current approach keeps the engineered set of
verifiers fixed for all questions in a domain, but future works could explore dynamically customizing
verifiers for particular questions, as we discuss in Appendix C.

3 EXPERIMENTS

In our experiments, we investigate scaling test-time compute along two orthogonal dimensions: the
traditional dimension of increasing the number of sampled candidate outputs n, and our novel test-
time scaling dimension of increasing the number of verifiers m. We aim to address the following
questions: (1) How well does multi-agent verification improve performance across diverse domains
and various generator LLMs? (2) Can multi-agent verification facilitate weak-to-strong general-
ization and self-improvement? (3) How important is engineering a domain-specific set of verifiers
and what are the important design choices? To address these questions, we evaluate the BoN-MAV
algorithm described in Section 2 on the following four domains:

• Mathematics. The MATH dataset (Hendrycks et al., 2021) consists of competition-level math
questions at five difficulty levels. For our experiments, we randomly sample 400 questions
from the test set across all five levels: 100 for validation and 300 for testing.

• General Knowledge & Reasoning. MMLU-Pro (Wang et al., 2024c) is an enhanced version
of the popular MMLU benchmark (Hendrycks et al., 2020) which features more challenging,
reasoning-focused questions and expands the multiple-choice set from four to ten options. As
with MATH, we sample 100 questions for validation and 300 for testing.

• Graduate-Level Reasoning. The GPQA dataset (Rein et al., 2023) consists of graduate-level,
multiple-choice questions in biology, physics, and chemistry. For our experiments, we uti-
lize GPQA’s “diamond” subset — a collection of 198 high-quality and extremely challenging
questions. We sample 98 questions for validation and 100 for testing.

• Coding. HumanEval (Chen et al., 2021) is a widely-used benchmark consisting of 164 Python
programming questions. We sample 64 questions for validation and 100 for testing.

3.1 MAV ENABLES SCALING ALONG TWO DIMENSIONS

Baselines. Here, we investigate how BoN-MAV scales with the number of candidate outputs and
number of verifiers. We compare Best-of-n sampling with Multi-Agent Verification (BoN-MAV)
against two established test-time compute methods: (1) best-of-n sampling with reward model ver-
ification (Stiennon et al., 2020; Cobbe et al., 2021; Nakano et al., 2021), where we use a trained
neural reward model as the external verifier to select the highest-scoring candidate output, and (2)
self-consistency (Wang et al., 2022; Li et al., 2022b; Thoppilan et al., 2022; Lewkowycz et al., 2022),
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Figure 3: Scaling the number of candidate outputs. Performance (accuracy %) of test-time compute meth-
ods as we increase the number of sampled candidate outputs (n), shown for four generator LLMs (Gemini-
1.5-Flash, Gemini-1.5-Pro, Mistral-7B, and Llama-3.1-8B) across all evaluation domains. The BoN-MAV
algorithm demonstrates more effective scaling patterns than self-consistency (cons@n) across all domains, and
stronger scaling than reward model verification (BoN-RM@n) except on GPQA (diamond).
which selects the most common answer from the set of candidates outputs. For reward model verifi-
cation, we use the current top-performing open-source 8B reward model on RewardBench (Lambert
et al., 2024). See Appendix E.3 for more details.

Verifier Engineering For our experiments, we implement the verifier engineering method described
in Section 2.4. To create our initial diverse pool M of 20 aspect verifiers, we vary the three key axes
that define aspect verifiers: (1) Base model: Gemini-1.5-Flash or GPT-4o-mini, (2) Aspect to verify:
Mathematical correctness, logical soundness, factuality, etc., and (3) Verification strategy: Direct
approval, step-by-step verification, solution rephrasing, edge case checking, etc. From this pool,
we then select domain-specific subsets Md ⊆ M that maximize average performance across all
generator LLMs on the corresponding validation sets. The complete list of verifiers and the domain-
specific subsets are detailed in Table 4. We choose Gemini-1.5-Flash and GPT-4o-mini as the base
LLMs for our aspect verifiers since they are cost-effective for large-scale verification and enable
us to demonstrate that combining multiple weaker verifiers can improve the performance of even
stronger generator LLMs (Section 3.2).

Quantitative Results. We evaluate BoN-MAV across four domains using eight generator LLMs
(four closed-source and four open-source). For each model, we sample n = 16 candidate outputs
per question and compare between best-of-n with Multi-Agent Verification (BoN-MAV), best-of-n
with reward model verification (BoN-RM), and self-consistency (cons). As shown in Table 1, BoN-
MAV outperforms self-consistency in nearly all cases, and outperforms reward model verification on
MATH and MMLU-Pro, while achieving comparable results on GPQA (diamond) and HumanEval.

Qualitative Examples. Figure 6 illustrates how multiple aspect verifiers can be used to evaluate
a single candidate output. The first aspect verifier uses direct yes/no approval without step-by-
step thinking and incorrectly approves the output while additional aspect verifiers, using the same
base model but with more thorough verification strategies, successfully identify the error. Additional
examples are provided in Appendix G. Note that for the purposes of illustration, we visualize slightly
different sets of verifiers than the final domain-specific sets used in our experiments.

Scaling the Number of Candidate Outputs. In Figure 3, we show the scaling patterns for various
generator LLMs as we increase the number of sampled candidate outputs (n). Matching the results
in Table 1, BoN-MAV demonstrates more effective scaling patterns than self-consistency across
all domains, and stronger scaling than reward model verification on MATH and MMLU-Pro while
achieving comparable scaling patterns on GPQA (diamond) and HumanEval.
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Figure 4: Scaling the number of verifiers. Performance (accuracy %) of BoN-MAV as we increase the
number of verifiers (m) up to domain-specific subsets Md (detailed in Section 3.1). For each m, we plot the
performance of BoN-MAV averaged across all possible combinations of m verifiers drawn from Md, with
shading indicating the spread of observed values — dark blue shows the 25-75th percentile range (middle
50%) while light blue shows the 5-95th percentile range (90% of outcomes). The leftmost point (m = 0)
represents pass@1 accuracy without verification while the rightmost point (m = |Md|) uses all verifiers in
the domain-specific set. Results demonstrate that increasing the number of verifiers is a promising test-time
scaling dimension, with gains of up to 10% for large LLMs and up to 20% for small ones, even when stronger
generator LLMs (Gemini-1.5-Pro, GPT-4o) are verified by our weaker aspect verifiers. We observe domain
and model-dependent variation and some diminishing returns at higher verifier counts, and we expect better-
engineered verifiers to unlock even stronger scaling patterns.

Scaling the Number of Verifiers. Multi-Agent Verification introduces a powerful new dimension
for scaling test-time compute: scaling the number of verifiers. In Figure 4, we show how accuracy
tends to improve as we increase the number of verifiers m from zero verifiers up to the full domain-
specific subset Md. For each value of m ∈ {0, 1, 2, ..., |Md|}, we plot the average accuracy across
all possible combinations of m verifiers drawn from Md, with the shaded regions indicating the
spread of observed values. Note that Figure 1 shows just one randomly selected sequence of verifiers
for illustration, rather than averaging across all possible combinations like in Figure 4.

Our results demonstrate that scaling verifier count is a promising new dimension for improving
model performance at test-time. In most cases, accuracy improves as we add verifiers, with perfor-
mance gains of up to 10% for large LLMs and up to 20% for small ones. Notably, performance
gains persist even when strong generator LLMs (Gemini-1.5-Pro, GPT-4o) are verified by com-
binations of our weaker verifiers (Gemini-1.5-Flash, GPT-4o-mini), supporting our findings about
weak-to-strong generalization in Section 3.2. However, the magnitude and pattern of improvement
varies and, in some cases, accuracy initially decreases before improving with additional verifiers.
We expect better-engineered verifiers to unlock even stronger scaling patterns.

Scaling Up to 256 Candidate Outputs. We extend our analysis to even larger scales by sampling
256 candidate outputs from Gemini-1.5-Flash on MATH. In Figure 5, we plot accuracy as a function
of both the number of sampled candidate outputs n (left) and the total compute budget (right). The
left plot demonstrates that BoN-MAV consistently improves with additional samples, while reward
model verification and self-consistency plateau early on. Starting at 52.7% base accuracy, the base-
lines plateau around 61% while BoN-MAV continues to 69%—nearly double the improvement. The
right plot shows computational efficiency by comparing accuracy against the total compute budget,
measured as the combined number of queries to both the generator and verifier models. At low
compute budgets, the overhead of querying multiple verifiers with BoN-MAV means we can sample
fewer candidate solutions, leading to initially worse performance than the baselines. However, once
we have sufficient compute, BoN-MAV significantly outperforms both baseline methods.
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Figure 5: Scaling to 256 candidate outputs. Comparison of different test-time verification methods on
MATH (Hendrycks et al., 2021) as we increase the number of candidate outputs sampled from Gemini-1.5-
Flash up to 256. Left: Accuracy (%) versus number of sampled outputs n. BoN-MAV consistently improves
with additional samples while reward model verification (BoN-RM) and self-consistency (cons) plateau much
earlier. Right: Accuracy (%) versus total compute budget (number of queries to both generator LLM and each
verifier). While BoN-MAV initially underperforms due to the overhead of querying multiple verifiers limiting
the number of candidate outputs we can sample, it significantly outperforms both baseline methods once given
sufficient compute to leverage multiple verifiers effectively. Note that both x-axes are on a log scale.

MATH MMLU-Pro GPQA (diamond) HumanEval

Generator LLM B-MAV pass@1 B-MAV pass@1 B-MAV pass@1 B-MAV pass@1

WtoS
Gemini-1.5-Pro 72.7 64.7 72.3 68.0 49.0 45.0 88.0 84.0
GPT-4o 76.3 68.3 75.7 73.3 59.0 54.0 92.0 94.0

SI
Gemini-1.5-Flash 59.0 52.7 64.0 59.3 43.0 42.0 78.0 79.0
GPT-4o-mini 76.0 69.0 65.7 62.3 46.0 38.0 86.0 86.0

Table 2: Weak-to-strong generalization and self-improvement. Performance (accuracy %) using the BoN-
MAV algorithm (labeled as B-MAV in the table) compared to base pass@1 accuracy. For weak-to-strong
generalization (top, “WtoS”), we use aspect verifiers based on weaker models (Gemini-1.5-Flash and GPT-4o-
mini) to improve stronger generator LLMs. For self-improvement (bottom, “SI”), we use aspect verifiers based
on the same model as the generator. BoN-MAV improves performance in nearly all cases.

3.2 MAV ENABLES WEAK-TO-STRONG GENERALIZATION AND SELF-IMPROVEMENT

Weak-to-Strong Generalization. Prior work has shown that weak supervisors can improve the
performance of strong pretrained models (Burns et al., 2023). Here, we show that multi-agent ver-
ification can be used to enhance the performance of strong generator LLMs by combining weaker
verifiers. As shown in Table 2, our strongest generators (Gemini-1.5-Pro and GPT-4o) show substan-
tial improvements over their base pass@1 accuracy when using verifiers based on weaker models
(Gemini-1.5-Flash and GPT-4o-mini), and Figure 4 shows how the performance of Gemini-1.5-Pro
and GPT-4o changes as we scale the number of verifiers. These results suggest that the diverse
perspectives of multiple smaller, computationally cheaper models can collectively produce a verifi-
cation signal robust enough to improve even state-of-the-art generators.

Self-Improvement. Multi-agent verification can also enable models to improve their own perfor-
mance through self-verification. To demonstrate, we configure BoN-MAV to use the same base LLM
for both generation and verification. That is, we sample outputs from a generator LLM (Gemini-1.5-
Flash or GPT-4o-mini) and create multiple aspect verifiers derived from the same LLM. Following
the verifier engineering procedure from Section 3.1, we select the best subset of self-verifiers based
on validation performance. As shown in Table 2, this self-verification approach yields substantial
improvements over base pass@1 accuracy across all domains except HumanEval. For instance,
GPT-4o-mini shows particularly strong self-improvement on MATH (+7%) and GPQA (+8%).

3.3 ANALYSIS: UNDERSTANDING MULTI-AGENT VERIFICATION

To better understand the key design choices that impact multi-agent verification, we conduct two
ablation studies on MMLU-Pro and GPQA (diamond)—the two most challenging domains in our
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Ablation 1: Verifier-Engineering Ablation 2: Verifier Diversity

MMLU-Pro GPQA (diamond) MMLU-Pro GPQA (diamond)

Generator LLM Eng All Eng All Diverse Same Diverse Same

Gemini-1.5-Flash 66.7 65.7 42.0 41.0 66.7 66.3 42.0 39.0
Gemini-1.5-Pro 72.3 70.3 49.0 49.0 72.3 71.0 49.0 55.0
GPT-4o-mini 67.0 65.3 50.0 49.0 67.0 64.7 50.0 42.0
GPT-4o 75.7 75.3 59.0 55.0 75.7 75.0 59.0 58.0

Table 3: Ablation Studies. Left: Performance comparison between using engineered domain-specific verifier
subsets (Eng) versus using all verifiers without tuning (All). Right: Performance comparison between using
diverse verifiers from Md (Diverse) versus querying the single best-performing verifier multiple times (Same).
All metrics are accuracy (%).

evaluation. We investigate: (1) how performance depends on engineering domain-specific sets of
verifiers, and (2) whether using diverse verifiers outperforms repeatedly querying the best verifier.

Effect of Verifier Engineering. In Section 3.1, we introduced verifier engineering as an approach
for selecting a relevant subset of verifiers Md ⊆ M for each domain d. Here, we compare our
engineered verifier subsets Md against a simple baseline that uses all available aspect verifiers
in M (see Appendix E.1 for a full list) without any domain-specific tuning. ?? (left) shows that
engineering the set of verifiers is a more effective strategy. However, Table 5 in the Appendix
shows that even the simple strategy of combining all verifiers in M remains competitive with both
self-consistency and reward model verification baselines.

Effect of Verifier Diversity. Here, we investigate whether using diverse verifiers outperforms re-
peatedly querying a single verifier. Specifically, we compare the performance of our diverse domain-
specific subsets Md versus repeatedly querying the single best-performing verifier v∗ ∈ Md for
domain d (where the number of queries to v∗ equals |Md|). As shown in Table 3 (right), using
diverse sets of verifiers generally outperforms querying the same verifier multiple times.

4 CONCLUSION

We have introduced Multi-Agent Verification (MAV), a test-time compute paradigm that combines
multiple verifiers to improve performance. MAV enables test-time scaling along two orthogonal
dimensions: (1) the traditional dimension of increasing the number of candidate outputs sampled
from a generator LLM, and (2) our novel test-time scaling dimension of increasing the number of
verifiers evaluating each output. We propose Aspect Verifiers (AVs) as one possible implementation
choice for the verifiers in a MAV system. AVs are off-the-shelf LLMs that require no additional
training and naturally support combining verification signals from models based on different LLMs,
training algorithms, architectures, data, or prompts. Thus, AVs are a convenient building block for
multi-agent verification, allowing us to leverage the growing ecosystem of language models and their
diverse capabilities. We introduce BoN-MAV as a simple multi-agent verification algorithm and our
results indicate that increasing the number of diverse verifiers is a promising dimension for scaling
test-time compute. Specifically, we demonstrate that this approach improves test-time performance
across multiple domains and generator LLMs, enables weak-to-strong generalization by combining
multiple weak verifiers to improve stronger generators, and facilitates self-improvement when the
generator LLM is also used as the base LLM for each of the aspect verifiers. Moreover, BoN-MAV
represents just one approach to multi-agent verification and we expect better-engineered verifiers
and more nuanced aggregation strategies to unlock even stronger scaling patterns. We discuss the
limitations of our approach and potential directions for future research in Appendix C. We hope that
our work inspires future research into multi-agent verification algorithms and further exploration of
scaling the number of verifiers as a powerful new dimension for test-time compute.
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B VISUALIZATION

Sampled Candidate Output: (INCORRECT)
Let x = 1.234234...
Multiply both sides of the equation by 1000: 1000x = 1234.234234...
Subtract the first equation from the second equation: 999x = 1233
Solve for x: x = 1233/999
Simplify by dividing the numerator and denominator by 3: x = 411/333

Aspect Verifier #1
Base model: Gemini-1.5-Flash
Aspect: General Correctness
Strategy: Direct Approval

Aspect Verifier #2
Base model: GPT-4o-mini
Aspect: Unit Conversions
Strategy: Step-by-Step

The problem involves converting a 
decimal to a fraction, which 
doesn't involve any units. 
Therefore, there are no units to 
check.

Aspect Verifier #3
Base model: Gemini-1.5-Flash
Aspect: Logical Soundness
Strategy: Step-by-Step

Let's analyze the proposed 
solution step by step.
1. Let x equal 1.234234...: This is 
correctly stated. We define x = 
1.234234....
…
Now, let's check if 411/333 can be 
simplified further. The greatest 
common divisor (GCD) of 411 and 
333 is 3, so we can simplify it 
further: 411 ÷ 3/333 ÷ 3 = 137/111

Thus, the final simplified form of 
1.234234... as an improper fraction 
is 137/111, not 411/333.

Since the proposed solution 
contains an error in the final 
simplification step, we conclude 
that the solution is not entirely 
correct.

Aspect Verifier #4
Base model: GPT-4o-mini
Aspect: General Correctness
Strategy: Summarize Solution

The proposed solution begins by 
letting x equal the repeating 
decimal 1.234234..., which is 
correctly represented as x = 
1.234234....
…
Thus, the fraction simplifies 
correctly to: x = 411/333. 

However, the solution does not 
check if 411/333 can be simplified 
further. Both 411 and 333 can be 
divided by 3 again: 411 ÷ 3 = 137 
and 333 ÷ 3 = 111. Thus, the 
fraction can be simplified further 
to: x = 137/111

The final boxed answer 411/333 is 
not in its simplest form. Therefore, 
the proposed solution contains an 
error in the simplification step.

Aspect Verifier #5
Base model: Gemini-1.5-Flash
Aspect: Math Correctness
Strategy: Step-by-Step

Okay, let's go through the solution 
step-by-step.
• Step 1: Let x equal 1.234234... 
This is a valid way to start, 
assigning a variable to the 
repeating decimal.
…
• Step 5: Solve for x: x = 1233/999. 
This is correct, dividing both sides 
by 999 isolates x.

• Step 6: Simplify by dividing the 
numerator and denominator by 3: x 
= 411/333. This is where the error 
occurs. While both 1233 and 999 
are divisible by 3, the fraction can 
be simplified further.

APPROVAL = FALSE APPROVAL = FALSEAPPROVAL = FALSEAPPROVAL = TRUEAPPROVAL = TRUE

Question: Express 1.234234... as an improper fraction.
Correct Answer: 137/111

Generated Answer: 411/333
Aggregated Verification Score: 2/5

Figure 6: Multi-agent verification for a single solution. An illustration of how combining multiple aspect
verifiers can produce a more robust verification signal. Five different aspect verifiers evaluate an incorrect
MATH (Hendrycks et al., 2021) solution sampled from Gemini-1.5-Pro. The verifiers vary across three dimen-
sions: base models (Gemini-1.5-Flash, GPT-4o-mini), aspects to verify (e.g., general correctness, mathematical
correctness, unit conversions), and verification strategies (e.g., direct yes/no approval, step-by-step verification,
summarization). Two verifiers miss the error: one using direct approval without step-by-step thinking, and
another tasked with checking unit conversions (the problem contains no units to convert, so the verifier finds no
errors and incorrectly approves the solution). The remaining three verifiers each identify the mistake through
careful analysis. This demonstrates how combining diverse verification methods can produce a robust signal
despite individual verifier failures, as the majority correctly identify the error.

C DISCUSSION

Multi-Agent Verification (MAV) introduces a promising dimension for scaling test-time compute:
scaling the number of verifiers. In Section 3, we demonstrated that combining multiple verifiers
enables more effective evaluation of candidate outputs, facilitates weak-to-strong generalization,
and allows for self-improvement. However, our approach has important limitations and there are
several opportunities for future work to explore.

First, our investigation is limited to a pool of 20 aspect verifiers based on just two base LLMs,
and the design of our verifiers is constrained by our ability to come up with diverse verification
strategies and relevant aspects. Future work could explore scaling to many more verifiers and try a
more systematic exploration of the space of verifiers, potentially using LLMs themselves to generate
diverse verification strategies and identify relevant aspects to verify. With better-engineered verifiers
and more systematic exploration, we expect to observe stronger scaling patterns.
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Second, our aggregation technique described in Section 2.2 uses a simple voting mechanism that
directly sums the individual binary approvals from each verifier. This approach does not account for
the confidence or relevance of each verifier, and verifiers do not observe each other’s decisions or
feedback. Future works could explore more sophisticated aggregation methods such as confidence-
weighted voting or allowing verifiers to engage in debate (Du et al., 2023) before producing an ap-
proval. Moreover, our current approach uses a static engineered set of verifiers Md for all questions
in a domain d, even though it may be best to use fewer or different verifiers for specific questions.
Future works could investigate dynamically selecting the best set of verifiers for particular problems
or adaptively choosing additional verifiers based on the results of the first few verification queries.
Additionally, the field of social choice theory (Arrow, 2012; Fishburn, 2015; Kelly, 2013; Brandt
et al., 2016) is concerned with procedures for collective decision-making and might offer insights
for aggregating the perspectives of diverse verifiers. Although, our setting differs in that we care
more about verifier capabilities than preferences.

Next, our implementation of BoN-MAV is limited to only a single generator LLM. Thus, an interest-
ing direction would be to explore sampling from multiple generators in addition to evaluating with
multiple verifiers. Since different models may excel at solving different types of problems, this ap-
proach could make even better use of the growing ecosystem of LLMs and their diverse capabilities.

Furthermore, while our results show that BoN-MAV can improve language model performance at
test-time, we did not investigate finetuning the generator LLM on the outputs selected by our veri-
fiers. Similar to how prior works have finetuned on outputs selected through self-consistency (Huang
et al., 2022) or reward models (Dong et al., 2023), training on outputs selected by MAV systems
could be explored as a method to improve the generator LLM and also each of the LLM-based veri-
fiers. Moreover, an interesting direction for future work is to directly use reinforcement learning to
train both the generator and verifier models. That is, generator LLMs can be trained to maximize the
scores across multiple verifiers, and the verifiers can simultaneously be trained to accurately verify
individual aspects of responses.

Finally, multi-agent verification offers interesting opportunities for AI safety and oversight. The
ability to combine multiple verifiers checking different aspects aligns with recent efforts towards
safety checking the outputs of language models. That is, different verifiers can be engineered to
check various safety and alignment properties, from basic constraints like avoiding harmful content
to more nuanced properties like reasoning transparency. Our results on weak-to-strong generaliza-
tion also align with recent work on scalable oversight, where weaker systems supervise stronger
ones (Amodei et al., 2016; Saunders et al., 2022; Burns et al., 2023). In general, our work connects
to broader ideas in AI alignment about using multiple models to improve safety (Irving et al., 2018).

An underlying thread throughout our work and discussion is the vision of a growing ecosystem
of diverse language models that generate, verify, and learn from each other. Our work on multi-
agent verification represents one step in this direction, and each of the future directions we have
discussed offers a potential avenue for additional progress. We look forward to seeing how the
research community advances these ideas.

D RELATED WORKS

Scaling Test-Time Compute. Recent work has demonstrated that increasing computational re-
sources during inference can significantly improve LLM performance (e.g., Wei et al. 2022; Snell
et al. 2024). One line of research focuses on techniques where a single generator LLM produces
additional output tokens during inference. These include scratchpads or Chain-of-Thought prompt-
ing (Nye et al., 2021; Wei et al., 2022), self-consistency or majority voting techniques (Wang et al.,
2022; Li et al., 2022b; Thoppilan et al., 2022; Lewkowycz et al., 2022), and various self-reflection
methods (e.g., Shinn et al. 2024; Qu et al. 2024; Madaan et al. 2024; Saunders et al. 2022; Bai et al.
2022b). Other works have explored training LLMs to generate special tokens which enhance rea-
soning ability at test-time (e.g., Goyal et al. 2023; Wang et al. 2023a; Herel & Mikolov 2024) or
augmenting language models with tool-use abilities (e.g., Schick et al. 2023; Gao et al. 2023b; Qin
et al. 2023; Qu et al. 2025).

Another line of research focuses on using a verifier model to evaluate the quality or correctness
of outputs sampled from generator models (Cobbe et al., 2021; Zheng et al., 2023; Snell et al.,
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2024). Typically, this is done through best-of-n sampling (Stiennon et al., 2020; Cobbe et al., 2021;
Nakano et al., 2021), where n candidate outputs are generated and the highest-scoring output is
selected based on some verifier. This verification can be performed at the outcome-level (Stiennon
et al., 2020; Cobbe et al., 2021) or process-level (Lightman et al., 2023; Wang et al., 2024a). Recent
works (Coste et al., 2023; Eisenstein et al., 2023) have also explored using ensembles of homo-
geneous reward models (identical model initializations trained on the same data but with different
random seeds) to mitigate reward model overoptimization (Gao et al., 2023a). Additionally, some
approaches allow reward models to produce their own Chain-of-Thought reasoning before scor-
ing (Zhang et al., 2024b; Mahan et al., 2024). Various papers have combined language with search
techniques at test-time, using verifiers to provide a heuristic signal. These verifiers may use LLMs
as prompted value functions (e.g., Yu et al. 2023; Yao et al. 2024; Xie et al. 2024), incorporate real
environment feedback (e.g., Zhou et al. 2023; Koh et al. 2024; Putta et al. 2024; Long 2023; Besta
et al. 2024), or use trained value functions (e.g., Feng et al. 2023; Zhang et al. 2024a; Chen et al.
2024). Unlike prior works which typically rely on a single reward model verifier or homogeneous
reward model ensembles trained on the same data, we propose a framework for combining multiple
heterogeneous verifiers without additional training, and investigate scaling the number and type of
verifiers as a novel test-time scaling dimension.

Multi-Agent Reasoning with Language Models. Recent works have investigated several ap-
proaches to multi-agent interaction for improving language model reasoning. Language model de-
bate (e.g., Du et al. 2023; Chan et al. 2023; Pham et al. 2023; Liang et al. 2023; Subramaniam
et al. 2025; Li et al. 2023; Cohen et al. 2023) and multi-agent discourse (e.g., Chen et al. 2023;
Wang et al. 2023b; 2024b; Xu et al. 2023) have been studied as ways to enhance reasoning, and also
as a direction for scalable oversight research (Irving et al., 2018). Prior works have also explored
performing search with language models, which typically combines a generator LLM and a value
model to guide exploration (see the previous paragraph). Moreover, some works have explored
multi-modal reasoning through agent collaboration (e.g., Zeng et al. 2022; Li et al. 2022a; Ajay
et al. 2023; Jiang et al. 2024). Unlike prior work on multi-agent reasoning which focuses on collab-
orative problem-solving, we introduce a framework specifically for scaling test-time verification by
combining multiple verifiers without training.

E EXPERIMENTAL SETUP

E.1 ASPECT VERIFIER SUBSETS

Table 4 outlines all 20 aspect verifiers in M and which ones were selected for each domain-specific
subset Md.

E.2 GENERATOR LLMS

We evaluate eight generator LLMs (four closed-source models and four open-source models) and
restrict our set of generator models to those released before September 2024. For closed-source
models, we use gemini-1.5-flash-001 and gemini-1.5-pro-001 (Team et al., 2024a), as well as gpt-
4o-mini-2024-07-18 and gpt-4o-2024-08-06 (Achiam et al., 2023). For open-source models, we
use Mistral-7B-v0.3 (Jiang et al., 2023), Llama-3.1-8B (Dubey et al., 2024), Gemma-2-9B, and
Gemma-2-27B (Team et al., 2024b).

E.3 REWARD MODEL BASELINE

Our reward model verification baseline (BoN-RM) uses Skywork/Skywork-Reward-
Llama-3.1-8B-v0.2 (Liu et al., 2024), the top scoring open-source 8B reward model on Re-
wardBench (Lambert et al., 2024) at the time of writing. This pretrained reward model outperforms
numerous larger models including 70B and 340B models, and can be run on academic-scale com-
pute.
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Base Model Aspect to Verify Verification Strategy MATH MMLU-Pro GPQA HumanEval

GPT-4o-mini

Math Correctness Step-by-Step ✓ ✓ ✓

Logical Soundness Step-by-Step ✓ ✓ ✓

Factual Correctness Step-by-Step ✓

Unit Conversions Step-by-Step ✓ ✓ ✓

General Correctness Direct Approval ✓

General Correctness Summarize Solution ✓

General Correctness Explain Differently ✓ ✓ ✓

General Correctness Edge Cases ✓ ✓ ✓

General Correctness Common Mistakes ✓ ✓

General Correctness Domain Knowledge ✓ ✓ ✓

Gemini-1.5-Flash

Math Correctness Step-by-Step
Logical Soundness Step-by-Step ✓

Factual Correctness Step-by-Step
Unit Conversions Step-by-Step ✓ ✓ ✓

General Correctness Direct Approval ✓

General Correctness Summarize Solution ✓

General Correctness Explain Differently ✓ ✓

General Correctness Edge Cases ✓

General Correctness Common Mistakes ✓ ✓

General Correctness Domain Knowledge ✓

Total Verifiers Used 6 8 7 14

Table 4: Overview of all aspect verifiers in M. Checkmarks (✓) indicate which verifiers were
selected for each domain-specific subset Md. The table shows all 20 combinations of base models,
aspects to verify, and verification strategies that we created (10 per base model). The bottom row
shows the number of verifiers |Md| for each domain.

E.4 PROMPTS

For generator LLMs, we use a consistent prompt format across all models while varying the content
by domain. Table 6 contains these domain-specific prompts.

For aspect verifiers, each prompt consists of two components:

1. A domain-dependent system prompt (Table 7) that establishes the verification context (e.g.,
mathematical problems, multiple-choice questions, or code implementations)

2. A domain-independent verification prompt (Table 8 and Table 9) that specifies the aspect to
verify and verification strategy

This two-part structure allows us to combine any aspect-strategy verification method with any do-
main while maintaining consistent evaluation criteria across base models.

F ADDITIONAL RESULTS

Table 5 compares BoN-MAV using all 20 aspect verifiers in M (without domain-specific engi-
neering) against self-consistency and reward model verification. Even without engineering domain-
specific subsets Md, combining all verifiers remains competitive with baseline methods.
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MMLU-Pro GPQA (diamond)

Generator Model MAV-All Cons RM pass@1 MAV-All Cons RM pass@1

Gemini-1.5-Flash 65.7 63.3 60.7 59.3 41.0 40.0 46.0 42.0
Gemini-1.5-Pro 70.3 71.7 69.3 68.0 49.0 45.0 49.0 45.0
GPT-4o-mini 65.3 63.7 62.7 62.3 49.0 48.0 44.0 38.0
GPT-4o 75.3 76.3 72.7 73.3 55.0 59.0 58.0 54.0

Table 5: Performance (accuracy %) of BoN-MAV with all 20 aspect verifiers (without any tun-
ing, labeled as MAV-all in the table) compared to reward model verification (RM), self-consistency
(Cons), and the base pass@1 accuracy of the generator LLM. Using all verifiers without domain-
specific tuning remains competitive with reward model verification and self-consistency.

G ADDITIONAL ILLUSTRATIONS

Figure 7, Figure 8, and Figure 9 provide additional examples of how multiple aspect verifiers eval-
uate a single candidate output. Figure 7 demonstrates verification using multiple strategies with a
single base model on MATH (Hendrycks et al., 2021). Figure 8 shows verification of a coding solu-
tion from HumanEval (Chen et al., 2021). Figure 9 illustrates verification of a correct solution from
GPQA (diamond) (Rein et al., 2023), showing how different base models can assess the same aspect
differently. Each figure follows the same format as Figure 6 from the main paper.

Domain Generator Prompt

MATH You are a helpful assistant skilled in math problem-solving. Always end your
solution with the final numerical answer enclosed in LaTeX \boxed{} notation.
If there is no solution, reply with an empty \boxed{}. Please solve the follow-
ing math problem step by step: < Question > Provide your detailed solution
below:

MMLU-Pro Answer the following multiple choice question. Think step by step before an-
swering, and then output the answer in the format of “The answer is (X)” at
the end, where X is the LETTER of the correct answer.
QUESTION: < Question >
Think step by step, then end with EXACTLY “The answer is (X)”, where X is
the LETTER of the correct answer. Do not include the answer text itself, only
the letter.

GPQA (diamond) Same as MMLU-Pro.

HumanEval Read the following function signature and docstring, and fully implement the
function described. Your response should only contain the code for this func-
tion.
< Function Signature and Docstring >

Table 6: Generator Prompts. Generator prompts by domain. Each domain uses one consistent
prompt across all generator LLMs.
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Aspect Verifier #1
Base model: Gemini-1.5-Flash
Aspect: General Correctness
Strategy: Explain Differently

Okay, let's break down this solution and 
see if it holds up. 

The problem asks us to find "bad" 
integers between 100 and 200 that leave 
a remainder of 3 when divided by 4. A 
"bad" integer is one that can't be made 
into a valid time on a 12-hour clock by 
inserting a colon.

The solution starts by correctly 
identifying the format of a 12-hour clock 
time: hh:mm. It then focuses on the fact 
that for a number to be "bad", the first 
two digits must form an invalid hour (13-
19). This is a good starting point.

The solution then lists the "bad" integers 
as 130, 140, 150, 160, 170, 180, and 190. 
This is where the flaw lies.

Hold on! The solution is missing some 
"bad" integers. For example, 131, 132, 
133, 134, 135, 141, 142, etc. are all "bad" 
because they don't form valid hours. The 
solution only considers numbers ending 
in 0.

Aspect Verifier #3
Base model: Gemini-1.5-Flash
Aspect: General Correctness
Strategy: Direct Approval

Aspect Verifier #2
Base model: Gemini-1.5-Flash
Aspect: Math Correctness
Strategy: Step-by-Step

Okay, let's go through the solution step 
by step.

Step 1: The explanation of the time 
format is correct. A valid 12-hour time is 
indeed represented as hh:mm with the 
specified ranges for hours and minutes. 

Step 2: The explanation of "bad" 
integers is also correct. We need the 
first digit to be 1 or 2 for a valid hour, and 
the last digit to be between 0 and 5 for 
valid minutes.

Step 3: The solution correctly identifies 
that the first digit must be 1 since we're 
looking at numbers between 100 and 
200. The list of valid hours formed by 1a 
is also correct.

Step 4: The solution correctly identifies 
that the minute part b must be between 
0 and 5 for a valid time. However, the list 
of bad integers is incorrect. The solution 
only considers the cases where a is 
between 3 and 9, but it forgets to 
consider the cases where b is between 
6 and 9. For example, 106, 117, 128 are 
all bad integers.

Aspect Verifier #4
Base model: Gemini-1.5-Flash
Aspect: General Correctness
Strategy: Summarize Solution

To summarize the proposed solution, the 
problem involves identifying integers 
between 100 and 200 that are classified 
as "bad" (meaning they cannot form a 
valid time when a colon is inserted) and 
also checking if they are equivalent to 3 
mod 4.

1. Understanding Valid Time: The solution 
correctly identifies that valid hours range 
from 1 to 12, and valid minutes range from 
00 to 59.

2. Identifying Bad Integers: The solution 
correctly notes that for integers between 
100 and 200, the first digit is always 1. It 
then identifies that valid hours can only be 
10, 11, or 12, which corresponds to a = 0, 
1, 2. The integers that cannot form valid 
times are those where a is 3 through 9, 
leading to the bad integers: 130, 140, 150, 
160, 170, 180, and 190.

3. Checking Modulo Condition: The 
solution then checks each of these bad 
integers to see if they are equivalent to 3 
mod 4. The calculations for each integer 
are performed correctly, and it is found 
that none of the bad integers yield a 
remainder of 3 when divided by 4.

4. Conclusion: The conclusion states that 
since there are no bad integers that meet 
the criteria, the final answer is left blank.

Upon reviewing the solution, everything 
appears to be correct. The identification of 
bad integers is accurate, and the modulo 
calculations are also correct. Therefore, 
the proposed solution is valid.

Aspect Verifier #5
Base model: Gemini-1.5-Flash
Aspect: Factual Correctness
Strategy: Step-by-Step

Okay, let's go through the solution step 
by step.

Step 1: The explanation of the time 
format is correct. A valid 12-hour time is 
indeed represented as hh:mm with the 
specified ranges for hours and minutes. 

Step 2: The explanation of "bad" integers 
is also correct. We need the first digit to 
be 1 or 2 for a valid hour, and the last 
digit to be between 0 and 5 for valid 
minutes. The solution correctly 
identifies that the first digit is fixed at 1 
for numbers between 100 and 200.

Step 3: The solution correctly identifies 
the valid hours that can be formed from 
1a. However, it makes a mistake in 
identifying the bad integers. It says that 
for a values of 3 to 9, 1a is not a valid 
hour. This is true, but it then incorrectly 
concludes that the bad integers are 130, 
140, 150, 160, 170, 180, 190. These 
numbers are bad, but there are other 
bad integers as well. For example, 131, 
132, 133, 134, 135 are also bad because 
they don't form valid times.

APPROVAL = FALSE APPROVAL = FALSEAPPROVAL = TRUEAPPROVAL = FALSEAPPROVAL = FALSE

Question: Let an integer x be bad if 
there is no way to insert a colon among 
the digits of x to form a time of day (on a 
twelve-hour, digital clock), and good if a 
colon can be inserted to form a time. 
For example, 100 is good because we 
can write 1:00, but 164 is bad. How 
many bad integers between 100 and 
200 are equivalent to 3 mod 4?
Correct Answer: 10

Generated Answer: 0 
Aggregated Verification Score: 1/5

Sampled Candidate Output: (INCORRECT) 
To solve the problem, we need to identify which integers between 100 and 200 can be classified as "bad" and also 
check if they are equivalent to 3 mod 4. 
…
Given the range of integers from 100 to 200, the first digit of x is fixed at 1 (since we're looking at numbers between 
100 and 200). Therefore, the number can be expressed in the form 1ab, where a and b are the subsequent digits. 

• The valid hours that can be formed from 1a are: 10 (with a = 0), 11 (with a = 1), 12 (with a = 2)
• For a values of 3 to 9, 1a is not a valid hour.

The minute part b can be from 0 to 9, but for the time to be valid, b must be between 0 and 5. Therefore, the bad 
integers will be: 

• For a = 3, 4, 5, 6, 7, 8, 9: 130, 140, 150, 160, 170, 180, 190
These integers cannot form a valid time since the hour 1a is not valid for a from 3 to 9.

3.  Finding Integers that are Equivalent to 3 mod 4: Next, we need to find which of these bad integers are 
equivalent to 3 mod 4. We can calculate x mod 4 for each bad integer: 

• 130 mod 4 = 2, 140 mod 4 = 0, 150 mod 4 = 2, 160 mod 4 = 0, 170 mod 4 = 2, 180 mod 4 = 0, 190 mod 4 = 2
None of these bad integers give a remainder of 3 when divided by 4.

4. Conclusion: Since there are no bad integers between 100 and 200 that are equivalent to 3 mod 4, the final 
answer is 0.

Figure 7: Multi-agent verification for a single solution (additional example). An illustration sim-
ilar to Figure 6. Five different aspect verifiers evaluate an incorrect MATH (Hendrycks et al., 2021)
solution sampled from Gemini-1.5-Pro. All verifiers use Gemini-1.5-Flash as the base model but
vary in their aspects to verify (e.g., general correctness, mathematical correctness) and verification
strategies (e.g., direct approval, step-by-step verification). Four verifiers correctly identify the error,
while one verifier using general correctness through summarization incorrectly approves the solu-
tion. This demonstrates how diverse verification methods can produce more reliable signals even
when using a single base model, as multiple verifiers can compensate when another fails.
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Aspect Verifier #1
Base model: GPT-4o-mini
Aspect: Logical Soundness
Strategy: Step-by-Step

Let's analyze the proposed solution step by step.
…

2. Calculating Total Eaten Carrots:
  - The line eaten = min(number + remaining, need) is intended to 
calculate how many carrots the rabbit will have eaten after the meal.
  - Here, number + remaining gives the total carrots the rabbit could 
potentially eat (the carrots already eaten plus the remaining ones).
  - The min function is used to ensure that the total eaten does not 
exceed the need. This is correct because if the rabbit needs more 
carrots than it can eat, it will only eat what it can.

3. Calculating Remaining Carrots:
  - The return statement is return [eaten, remaining - (eaten - 
number)].
  - The expression remaining - (eaten - number) is meant to calculate 
how many carrots are left after the meal.
  - However, this expression is incorrect. The correct calculation 
should simply be remaining - (eaten - number) only if eaten is greater 
than number. If eaten is less than or equal to number, the remaining 
carrots should not change, as the rabbit has not eaten any additional 
carrots.

4. Final Calculation:
  - If the rabbit eats all the remaining carrots, it should still be hungry, 
which means the total eaten should be number + remaining, and the 
remaining should be 0.
  - If the rabbit eats less than it needs, the remaining should be 
calculated correctly based on how many it actually ate.

Given the above analysis, the calculation for remaining carrots is 
flawed. The logic does not correctly account for the scenario where 
the rabbit eats all remaining carrots and still needs more.

Therefore, the proposed solution is incorrect.

Aspect Verifier #2
Base model: Gemini-1.5-Flash
Aspect: Math Correctness
Strategy: Step-by-Step

Okay, let's analyze the code step by step.

1. eaten = min(number + remaining, need): 
This line calculates the total number of 
carrots eaten. It takes the minimum value 
between the sum of the carrots already 
eaten (number) and the remaining carrots 
(remaining) and the total number of carrots 
needed (need). This is correct because the 
rabbit can't eat more than it needs or more 
than what's available.

2. return [eaten, remaining - (eaten - 
number)]: This line calculates the remaining 
carrots. It subtracts the difference between 
the total eaten (eaten) and the carrots 
already eaten (number) from the initial 
remaining carrots (remaining). This is also 
correct because it accurately reflects the 
number of carrots left after the rabbit eats.

Aspect Verifier #3
Base model: Gemini-1.5-Flash
Aspect: General Correctness
Strategy: Edge Cases

Let's analyze the proposed solution step by step to ensure it 
handles all edge cases and boundary conditions correctly.
…
3. Identifying Issues:
  - The calculation of remaining carrots is incorrect. The 
expression remaining - (eaten - number) does not correctly 
reflect the number of remaining carrots after eating. Instead, 
it should be remaining - (eaten - number) only if eaten is 
greater than number. If eaten is less than or equal to number, 
the remaining carrots should simply be remaining.
  - The logic does not handle the case where the rabbit eats 
all remaining carrots but still needs more. In this case, the 
total eaten should be number + remaining, and the 
remaining should be 0.

4. Testing Edge Cases:
  - Case 1: eat(0, 0, 0) should return [0, 0].
  - Case 2: eat(0, 1, 0) should return [0, 0] (not enough to 
eat).
  - Case 3: eat(0, 1, 1) should return [1, 0] (eats the only 
remaining carrot).
  - Case 4: eat(5, 6, 10) should return [11, 4] (correct).
  - Case 5: eat(4, 8, 9) should return [12, 1] (correct).
  - Case 6: eat(1, 10, 10) should return [11, 0] (correct).
  - Case 7: eat(2, 11, 5) should return [7, 0] (correct).
  - Case 8: eat(1000, 1000, 1000) should return [1000, 1000] 
(already satisfied).
  - Case 9: eat(1000, 1000, 0) should return [1000, 0] 
(already satisfied, no remaining).

5. Conclusion:
  - The proposed solution has a flaw in calculating the 
remaining carrots and does not correctly handle the case 
where the rabbit eats all remaining carrots but still needs 
more.
  - Therefore, the solution does not handle all edge cases 
and boundary conditions correctly.

APPROVAL =TRUEAPPROVAL = FALSE

Question: 
def eat(number, need, remaining):
    """
    You're a hungry rabbit, and you already have eaten a certain number of carrots,
    but now you need to eat more carrots to complete the day's meals.
    you should return an array of [ total number of eaten carrots after your meals,
                                    the number of carrots left after your meals ]
    if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
    
    Example:
    * eat(5, 6, 10) -> [11, 4]
    * eat(4, 8, 9) -> [12, 1]
    * eat(1, 10, 10) -> [11, 0]
    * eat(2, 11, 5) -> [7, 0]
    
    Variables:
    @number : integer
        the number of carrots that you have eaten.
    @need : integer
        the number of carrots that you need to eat.
    @remaining : integer
        the number of remaining carrots that exist in stock
    """

APPROVAL = FALSE

Correct Answer:
def eat(number, need, remaining):
    if(need <= remaining):
      return [ number + need , remaining-need ]

    else:
      return [ number + remaining , 0]

Sampled Candidate Output: (INCORRECT)
def eat(number, need, remaining):
  eaten = min(number + remaining, need)
  return [eaten, remaining - (eaten - number)]

Aggregated Verification Score: 1/3

Figure 8: Multi-agent verification for a single solution (additional example). An illustration
similar to Figure 6. Here, three different aspect verifiers evaluate an incorrect HumanEval (Chen
et al., 2021) solution sampled from Gemini-1.5-Flash. Two verifiers correctly identify the error
through careful analysis, while one verifier incorrectly approves the solution.
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Aspect Verifier #1
Base model: GPT-4o-mini
Aspect: Logical Soundness
Strategy: Step-by-Step

Let's analyze the proposed solution step by step:

1. The experimental setup: The description of the experimental 
setup is accurate. The researchers are indeed trying to analyze the 
interaction of a ligand-receptor pair in neural crest cells using a 
bicistronic vector. This step is logically sound.

2. The Cre-lox system: The explanation of the Cre-lox system is 
correct. The use of loxP-stop-loxP and lox2272-stop-lox2272 
cassettes to control the expression of the ligand and receptor is 
well articulated. This step is also logically sound.

3. Crossing with SOX10-Cre mice: The explanation regarding the 
crossing with SOX10-Cre mice is accurate. SOX10 is indeed 
expressed in neural crest cells, and the intention to activate Cre 
recombinase in these cells to remove the stop cassettes is 
correctly stated. This step is logically sound.

4. Lack of green signal: The observation of no green signal 
(indicating eGFP expression) is noted correctly. This sets the stage 
for analyzing potential reasons for the lack of expression. This step 
is logically sound.

5. Analyzing the options:
 - A. Paracrine relationship: The reasoning here is sound. While a 
paracrine relationship could exist, it does not explain the lack of 
eGFP expression. This analysis is logically sound.
 - B. Receptor-eGFP stuck in the Golgi: The proposed solution 
states that this is a possibility but less likely due to the design of 
the construct. This reasoning is reasonable, but it does not fully 
rule out the possibility. However, it does not directly address the 
lack of signal. This step is somewhat less definitive but still 
logically sound.
 - C. Missing enhancer: The proposed solution suggests that a 
missing enhancer could lead to low expression but is unlikely to 
completely prevent expression. This reasoning is sound, as it 
acknowledges the potential for low expression without ruling it out 
completely. This step is logically sound.
 - D. Receptor and eGFP out of frame: The proposed solution 
concludes that this is the most likely explanation for the lack of 
green signal. If the receptor and eGFP are out of frame, it would 
indeed prevent proper translation of the eGFP, leading to no signal. 
This reasoning is logically sound.

Since all steps in the proposed solution are logically sound and 
lead to a coherent conclusion, I will conclude my verification.

Aspect Verifier #2
Base model: Gemini-1.5-Flash
Aspect: Logical Soundness
Strategy: Step-by-Step

Okay, let's go through the solution step-by-step.

Step 1: The experimental setup is accurately described. The 
researchers are trying to understand the interaction of a 
new ligand-receptor pair in neural crest cells using a 
bicistronic vector with specific promoters and regulatory 
elements. This step is logically sound.

Step 2: The Cre-lox system is correctly explained. The loxP-
stop-loxP and lox2272-stop-lox2272 cassettes are 
designed to block expression until Cre recombinase is 
present. This step is also logically sound.

Step 3: The crossing with SOX10-Cre mice is intended to 
activate Cre recombinase specifically in neural crest cells, 
removing the stop cassettes and allowing expression of 
both the ligand and receptor. This step is logically sound.

Step 4: The lack of green signal is the observed result, and it 
is the problem the researchers are trying to explain. This 
step is logically sound.

Step 5: The analysis of the options is where things get 
tricky. 

* Option A: A paracrine relationship wouldn't prevent the 
expression of the eGFP-tagged receptor. This is a valid 
point.
* Option B: The receptor being stuck in the Golgi is 
possible, but less likely given the transmembrane domain. 
This is also a valid point.
* Option C: A missing enhancer could lead to low 
expression, but not necessarily complete prevention. This 
is a valid point.
* Option D: This is where the logic breaks down. If the 
receptor and eGFP are out of frame, the eGFP would not be 
translated correctly, resulting in the lack of a green signal. 
This is a correct explanation for the lack of green signal. 
However, the solution states that this is the most likely 
explanation. This is where the logic falters. 

Aspect Verifier #3
Base model: Gemini-1.5-Flash
Aspect: General Correctness
Strategy: Explain Differently

Okay, let's break down the solution in a different 
way.

The experiment aims to study the interaction of a 
ligand-receptor pair in neural crest cells. The 
researchers created a bicistronic vector with the 
ligand and receptor genes, each fused to a 
fluorescent protein (mCherry and eGFP, 
respectively). The vector uses a Cre-lox system to 
control gene expression, ensuring that both genes 
are expressed only in neural crest cells where 
SOX10-Cre is active.

The problem is that the researchers don't see any 
green fluorescence, indicating a lack of eGFP 
expression. 

Let's analyze the options:

* A. Paracrine relationship: This is irrelevant to the 
lack of eGFP expression. A paracrine relationship 
describes how the ligand and receptor interact, 
not whether the receptor is expressed.
* B. Receptor-eGFP stuck in the Golgi: This is 
possible, but it's unlikely. The receptor is designed 
with a transmembrane domain, which should 
direct it to the cell membrane, not the Golgi.
* C. Missing enhancer: This could lead to low 
expression, but it's unlikely to completely prevent 
expression. The vector uses a strong promoter 
(CBA) for the ligand, and the IRES element should 
allow for efficient translation of the receptor.
* D. Receptor and eGFP out of frame: This is the 
most likely explanation. If the receptor and eGFP 
coding sequences are not in the correct reading 
frame, the eGFP protein won't be translated 
properly, leading to the lack of green fluorescence.

APPROVAL = FALSEAPPROVAL = TRUE

Question: You identified a new ligand-receptor pair initially expressed in the neural 
crest cells and want to understand the developmental fate of their interaction. The 
receptor is a monomeric transmembrane barrel with eight alpha helices, four 
extracellular helices, and three beta sheets that create a binding site for the ligand. The 
ligand is a coiled-coil of two alpha helices. You create a bicistronic lox-Cre vector with 
the ligand ORF at the 5' position, fused to mCherry; the receptor ORF is at the 3' and 
fused to the eGFP at the C-terminus. The ligand is under the CBA promoter, and 
upstream of the receptor is the IRES regulatory element. Between the ligand ORF and 
mCherry, there is a stop in a loxP-stop-loxP cassette, and between the receptor and the 
eGFP, there is a stop in the lox2272-stop-lox2272 cassette. You had also raised 
antibodies against the overexpressed proteins and now use them to test the construct 
expression on the Western blot after plasmid transfection to primary astrocyte culture. 
Total proteins give a signal proportional to the actin loading. You finally breed a mouse 
model homozygous for your construct in the wt background. You cross it to SOX10-Cre 
hemizygous mice; after the offspring is born you visualize them under the fluorescent 
confocal microscope. You do not observe a green signal. Which of the answers below 
explains the most likely reason for it?
Options:
(A) ligand and the receptor are in a paracrine relationship,
(B) the receptor-eGFP construct is stuck in the Golgi,
(C) the enhancer for the ligand and receptor expression is missing,
(D) the receptor and the eGFP are not in the frame
Correct Answer: (D)

Generated Answer: (D)
Aggregated Verification Score: 2/3

APPROVAL = TRUE

Sampled Candidate Output: (CORRECT)
Here's a step-by-step analysis:

1. The experimental setup: The researchers are trying to analyze the interaction of 
a new ligand-receptor pair specifically in neural crest cells. They've created a 
bicistronic vector that expresses both the ligand (fused to mCherry) and the 
receptor (fused to eGFP) under the control of specific promoters and regulatory 
elements.

2. The Cre-lox system: The vector utilizes the Cre-lox system for conditional gene 
expression. The ligand expression is controlled by a loxP-stop-loxP cassette, while 
the receptor expression is controlled by a lox2272-stop-lox2272 cassette. This 
means that expression of both genes is blocked until Cre recombinase is present.

3. Crossing with SOX10-Cre mice: The researchers crossed their transgenic mice 
with SOX10-Cre mice. SOX10 is a transcription factor expressed in neural crest 
cells. This cross is intended to activate Cre recombinase specifically in neural 
crest cells, thereby removing the stop cassettes and allowing expression of both 
the ligand and receptor.

4. Lack of green signal: Despite the setup, the researchers didn't observe a green 
signal (indicating eGFP expression) under the microscope.

5. Analyzing the options:
 * A. Paracrine relationship: While the ligand and receptor could be in a paracrine 
relationship (acting on nearby cells), this wouldn't necessarily prevent the 
expression of the eGFP-tagged receptor. 
 * B. Receptor-eGFP stuck in the Golgi: This is a possibility, but it's less likely given 
that the construct was designed with a transmembrane domain for the receptor, 
which should direct it to the cell surface.
 * C. Missing enhancer: While a missing enhancer could lead to low expression 
levels, it's unlikely to completely prevent expression.
 * D. Receptor and eGFP out of frame: This is the most likely explanation. If the 
receptor and eGFP coding sequences are out of frame, the eGFP will not be 
translated correctly, resulting in the lack of a green signal.

The answer is (D)

Figure 9: Multi-agent verification for a single solution (additional example). An illustration
similar to Figure 6. Here, three different aspect verifiers evaluate a correct GPQA (diamond) (Rein
et al., 2023) solution sampled from Gemma-2-27B. The verifiers vary in their base models, aspects
to verify, and verification strategies. Notice that Gemini-1.5-Flash incorrectly rejects the solution
when evaluating logical soundness but correctly approves it when prompted to explain the solu-
tion differently. Meanwhile, GPT-4o-mini correctly approves the solution when evaluating logical
soundness. Different base models can produce different evaluations of the same aspect.

23



Published at ICLR 2025 Workshop on Scaling Self-Improving Foundation Models

Domain Aspect Verifier System Prompt

MATH You are a critical verifier tasked with evaluating mathematical problem-
solving. You will be presented with a question and a proposed solution. Your
job is to carefully go over and analyze the solution. Follow the instructions.

MMLU-Pro You are a critical verifier tasked with evaluating multiple-choice question-
answering. You will be presented with a question, the multiple-choice options,
and a proposed solution. Your job is to carefully go over and analyze the solu-
tion. Follow the instructions.

GPQA (diamond) Same as MMLU-Pro.

HumanEval You are a critical verifier tasked with evaluating code implementations. You
will be presented with a prompt and a code implementation. Your job is to
carefully go over and analyze the code. Follow the instructions.

Table 7: Aspect Verifier System Prompts. System prompts for aspect verifiers. These provide
domain-specific context for the verification instructions in Table 8 and Table 9.
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Aspect to Verify Verification Strategy Aspect Verifier Prompt

Mathematical Correctness Step-by-Step QUESTION: <Question>
PROPOSED SOLUTION: <Solution>
INSTRUCTIONS: Go over each step in the proposed so-
lution and check whether it is mathematically correct.
Think out load. If you reach a step that is incorrect, stop
and reply ’FINAL VERIFICATION ANSWER: False’. If
you get to the end of all the steps and each step was cor-
rect, reply ’FINAL VERIFICATION ANSWER: True’.

Logical Soundness Step-by-Step QUESTION: <Question>
PROPOSED SOLUTION: <Solution>
INSTRUCTIONS: Go over each step in the proposed so-
lution and check whether it is logically sound. Think out
load. If you reach a step that is not logically sound, stop
and reply ’FINAL VERIFICATION ANSWER: False’. If
you get to the end of all the steps and each step was log-
ically sound, reply ’FINAL VERIFICATION ANSWER:
True’.

Factual Correctness Step-by-Step QUESTION: <Question>
PROPOSED SOLUTION: <Solution>
INSTRUCTIONS: Go over each step in the proposed so-
lution and check whether the facts presented are cor-
rect. Think out load. If you reach a step with incor-
rect facts, stop and reply ’FINAL VERIFICATION AN-
SWER: False’. If you get to the end of all the steps and
each step had correct facts, reply ’FINAL VERIFICA-
TION ANSWER: True’.

Unit Conversions Step-by-Step QUESTION: <Question>
PROPOSED SOLUTION: <Solution>
INSTRUCTIONS: Check if the units are handled correctly
in each step of the solution. Think out loud. If you find
any issues with the units, stop and reply ’FINAL VERIFI-
CATION ANSWER: False’. If all units are handled cor-
rectly, reply ’FINAL VERIFICATION ANSWER: True’.

Table 8: Aspect Verifier Prompts (Part 1). Aspect verifier prompts for each aspect-strategy com-
bination. These prompts follow the system prompts in Table 7.
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Aspect to Verify Verification Strategy Aspect Verifier Prompt

General Correctness Direct Approval QUESTION: <Question>
PROPOSED SOLUTION: <Solution>
INSTRUCTIONS: Is this solution correct for the given
question? Respond with ONLY ’FINAL VERIFICATION
ANSWER: True’ or ONLY ’FINAL VERIFICATION AN-
SWER: False’. Do not provide any explanation or addi-
tional text.

General Correctness Summarize Solution QUESTION: <Question>
PROPOSED SOLUTION: <Solution>
INSTRUCTIONS: Summarize the solution in your own
words, explore anything you think may be incorrect.
Think out load. If you find something that’s incor-
rect, stop and reply ’FINAL VERIFICATION ANSWER:
False’. If you’ve gone over the solution and everything
seems correct, reply ’FINAL VERIFICATION ANSWER:
True’.

General Correctness Explain Differently QUESTION: <Question>
PROPOSED SOLUTION: <Solution>
INSTRUCTIONS: Explain the solution in a different way
than it was presented. Try to find any flaws in the solu-
tion. Think out load. If you find something that’s incor-
rect, stop and reply ’FINAL VERIFICATION ANSWER:
False’. If you’ve gone over the solution and everything
seems correct, reply ’FINAL VERIFICATION ANSWER:
True’.

General Correctness Edge Cases QUESTION: <Question>
PROPOSED SOLUTION: <Solution>
INSTRUCTIONS: Check if the solution handles edge
cases and boundary conditions, test extreme values or
special cases. Think out loud. If any boundary condi-
tions or edge cases fail, stop and reply ’FINAL VERI-
FICATION ANSWER: False’. If all boundary conditions
and edge cases are handled correctly, reply ’FINAL VER-
IFICATION ANSWER: True’.

General Correctness Common Mistakes QUESTION: <Question>
PROPOSED SOLUTION: <Solution>
INSTRUCTIONS: Check if the solution has any common
mistakes, calculation errors, or misconceptions that typi-
cally found in this type of problem. Think out loud. If you
find any common mistakes, stop and reply ’FINAL VERI-
FICATION ANSWER: False’. If no common mistakes are
found, reply ’FINAL VERIFICATION ANSWER: True’.

General Correctness Domain Knowledge QUESTION: <Question>
PROPOSED SOLUTION: <Solution>
INSTRUCTIONS: Check if the solution correctly applies
relevant domain-knowledge, established theories, and
standard practices for this type of problem. Think out
loud. If any domain knowledge is misapplied or vio-
lated, stop and reply ’FINAL VERIFICATION ANSWER:
False’. If all domain-specific knowledge is correctly ap-
plied, reply ’FINAL VERIFICATION ANSWER: True’.

Table 9: Aspect Verifier Prompts (Part 2). Aspect verifier prompts for each aspect-strategy com-
bination. These prompts follow the system prompts in Table 7.
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