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Abstract

Reinforcement learning research experienced sub-
stantial jumps in its progress after the first achieve-
ment on utilizing deep neural networks to ap-
proximate the state-action value function in high-
dimensional states. While deep reinforcement
learning algorithms are currently being employed
in many different tasks from industrial control
to biomedical applications, the fact that an MDP
has to provide a clear reward function limits the
tasks that can be achieved via reinforcement learn-
ing. In this line of research, some studies pro-
posed to directly learn a policy from observing
expert trajectories (i.e. imitation learning), and
others proposed to learn a reward function from
expert demonstrations (i.e. inverse reinforcement
learning). In this paper we will focus on robust-
ness and vulnerabilities of deep imitation learning
and deep inverse reinforcement learning policies.
Furthermore, we will layout non-robust features
learnt by the deep inverse reinforcement learning
policies. We conduct experiments in the Arcade
Learning Environment (ALE), and compare the
non-robust features learnt by the deep inverse re-
inforcement learning algorithms to vanilla trained
deep reinforcement learning policies. We hope
that our study can provide a basis for the future
discussions on the robustness of both deep inverse
reinforcement learning and deep reinforcement
learning.

1. Introduction
Learning from complex state representations was initially
achieved by utilizing deep neural networks as function ap-
proximators (Mnih et al., 2016). With this initial success
reinforcement learning algorithms currently can solve highly
complex games (e.g. Go), can learn several robotics tasks
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(Dosovitsky et al., 2017), and are currently being used in di-
verse fields from finance to biomedical applications (Yauney
& Pratik, 2018).

While various tasks can be learned by reinforcement learn-
ing algorithms, the fact that an MDP has to provide a reward
function can be quite restrictive for certain types of tasks.
To address this several studies focused on proposing algo-
rithms to learn functioning policies without the presence
of a reward function. One way to achieve this is to learn
an optimal policy from expert trajectories (i.e. imitation
learning), and another way is to construct a reward function
from observing expert policies (i.e. inverse reinforcement
learning).

Initially adversarial perturbations in deep neural networks
were discussed by (Goodfellow et al., 2015). The authors
of this work demonstrate the effects of introducing invisible
adversarial perturbations to the images of the neural net-
work classifiers. Following this the adversarial robustness
of deep reinforcement learning policies towards optimized
perturbations has been discussed by many studies (Huang
et al., 2017; Kos & Song, 2017; Korkmaz, 2020; 2021c).
Furthermore, quite recent studies showed that the adversar-
ial perturbations do not need to be specifically optimized,
neither for the state observations nor for the MDP, to cause
damage to the deep reinforcement learning policy perfor-
mance (Korkmaz, 2022). Yet, to the best of our knowledge
our paper is the first one to investigate the robustness of deep
inverse reinforcement learning and deep imitation learning
policies.

In our paper we want to answer several questions:

• Do state-of-the-art deep imitation learning policies
and deep inverse reinforcement learning policies have
vulnerabilities towards the state representations they
have learnt?

• What are the differences in the non-robust features
learnt between state-of-the-art deep inverse reinforce-
ment learning policies and vanilla trained deep rein-
forcement learning policies?

Hence, to answer these questions in this paper we focus
on investigating robustness of deep imitation learning and
deep inverse reinforcement learning, and make the following
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contributions:

• We utilize the KMAP algorithm to provide an accu-
rate portrayal of the non-robust features learnt by the
state-of-the-art imitation learning and deep inverse re-
inforcement learning algorithms.

• We conduct experiments in the Arcade Learning En-
vironment (ALE) and we compare the non-robust fea-
tures learnt by the state-of-the-art imitation learning
policy to the vanilla deep reinforcement learning algo-
rithm for high dimensional state representation envi-
ronments.

• We demonstrate that the policies learnt via vanilla
deep reinforcement learning algorithms are more ro-
bust compared to the state-of-the-art imitation learning
algorithms.

2. Relative Work and Background
2.1. Deep Reinforcement Learning

In this paper we focus on deep reinforcement learning for
Markov decision processes (MDPs) given by a set of con-
tinuous states S, a set of discrete actions A, a transition
probability distribution P on S×A×S, and a reward func-
tion r : S ×A→ R. A policy π : S → P(A) for an MDP
assigns a probability distribution on actions to each s ∈ S.
The goal for the reinforcement learning agent is to learn a
policy π that maximizes the expected cumulative discounted
rewards

R = Eat∼π(st,·)
∑
t

γtR(st, at, st+1),

where at ∼ π(st). In Q-learning the learned policy is
parametrized by a state-action value function Q : S ×A→
R, which represents the value of taking action a in state s.
Learning the optimal state-action value function is achieved
via iterative Bellman update

Q(st, at) = R(st, at) + γ
∑
st

P(st+1|st, at)V (st+1).

(1)
Let a∗(s) = argmaxaQ(s, a) denote the highest Q-value
for an action in state s. The ε-greedy policy of the agent for
Q-learning is given by taking action a∗(s) with probability
1− ε, and a uniformly random action with probability ε.

2.2. Inverse Reinforcement Learning and Imitation
Learning

Inverse reinforcement learning focuses on constructing a
reward function from a set of observations of expert demon-
strations. Thus, once the reward function is learnt from

expert trajectories reinforcement learning is used to learn an
optimal policy. In particular, in this line of research (Ng &
Russell, 2000) shows that multiple different reward function
can be constructed for an observed optimal policy. Another
approach for learning without rewards is imitation learning,
which focuses on the setting of learning a functioning policy
from observing a given set of expert trajectories (Kostrikov
et al., 2020). Quite recently, Garg et al. (2021) proposed to
construct a single Q-function from the observed expert tra-
jectories to represent both the reward function and the policy
(IQ-Learn). This study is the first to achieve the learning
of functioning policies via inverse reinforcement learning
from highly complex state representations. Furthermore,
the authors of this study argue that the fact that a single
Q-function is learnt from expert demonstrations is enough
to reconstruct the reward function. Thus, this study shows
that the predicted rewards from the IQ-Learn algorithm are
highly correlated with the true rewards received from the
environment.

2.3. Robustness in Reinforcement Learning

The robustness of reinforcement learning policies has been
under discussion starting from the initial work of (Huang
et al., 2017) mostly focusing on demonstrating the suscepti-
bilities of deep reinforcement learning policies to impercep-
tible malicious (i.e. adversarial) perturbations produced via
the fast gradient sign method proposed by Goodfellow et al.
(2015). Several different studies have been conducted so far
on optimizing for specifically crafted adversarial perturba-
tions in deep reinforcement learning; however, some studies
took a different direction and focused on more natural un-
optimized effects on the environment (Korkmaz, 2021b).
These studies consider natural semantically meaningful
modifications to the environment. Quite recently, (Korkmaz,
2023) proposed a framework to contrast the adversarial and
natural perturbations that are intrinsic to the MDP within
the imperceptibility bound. Furthermore, the results of this
study demonstrate that the state-of-the-art adversarial train-
ing techniques limit the generalization capabilities of the
deep reinforcement learning agents. While some studies
went more along the optimization side of these perturbations
(Korkmaz, 2020), several focused on ways to make deep
reinforcement learning policies robust to adversarial pertur-
bations. On this line of research several studies modeled
the relationship between the deep reinforcement learning
policy and intervention made by the adversary as a zero-sum
Markov game (Gleave et al., 2020; Pinto et al., 2017). In
some of these zero-sum Markov game models the adversary
intervention is limited to changing the environment dynam-
ics (Pinto et al., 2017), in others this intervention is limited
to a set of natural actions taken by the adversary in the given
environment (Gleave et al., 2020). While several theoreti-
cally justified adversarial training algorithms were proposed
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Vanilla Deep Reinforcement Learning Deep Inverse Reinforcement Learning

Figure 1: KMAP results of vanilla trained deep reinforcement learning policy and the state-of-the-art deep inverse
reinforcement learning policy for Pong.

more recently, several concerns and criticisms were raised
on their promised robustness capacities and their robust-
ness notions (Korkmaz, 2022). Following these concerns
on the certified adversarial training techniques some work
proposed to detect adversarial directions in deep neural pol-
icy loss landscape to make robust decisions (Korkmaz et al.,
2023). Quite recently Korkmaz (2021c) proposed several
techniques to investigate and estimate the vulnerabilities
of deep reinforcement learning policies by revealing the
current non-robust features learnt by the state-of-the-art
adversarial training techniques.

3. Investigating Robustness of Deep Imitation
Learning and Deep Inverse Reinforcement
Learning

In this section we will use the tools introduced in Korkmaz
(2021c;a) to investigate robustness of imitation learning poli-
cies. In particular, to highlight the non-robust features learnt
by the imitation learning policy trained in high dimensional
state representations we will use the KMAP algorithm. In
more detail, let Zi,j : S → S be the function which sets the
i, j coordinate of s to zero and leaves the other coordinates
unchanged. K(i, j) defined as,

K(i, j) = Q(s, argmax
a

Q(s, a))−Q(s, argmax
a

Q(Zi,j(s), a)).

(2)
Thus,K(i, j) builds a portrait of the contribution and weight
of each observed feature on the learnt representation and the
decision that has been made by the policy over visited state
observations for an entire episode.

All of the experiments are conducted in the Arcade Learning
Environment (ALE) (Bellemare et al., 2013) with the Ope-
nAI version (Brockman et al., 2016). The vanilla trained
deep reinforcement learning policy is trained via Deep Dou-

ble Q-Network proposed by (Hasselt et al., 2016) (the initial
idea is proposed in (van Hasselt, 2010)). The deep inverse
and deep imitation learning policy is trained via the IQ-
Learn algorithm proposed by (Garg et al., 2021). All of
the hyperparameters are exactly the same with the original
paper.

Figure 1 shows the KMAP results for the vanilla trained
deep reinforcement learning policy and the policy trained
with imitation learning. We observe that the non-robust
feature patterns learnt by imitation learning are completely
different and disjoint from the game semantics compared
to vanilla trained deep reinforcement learning. In partic-
ular, the KMAP results provided in Figure 1 demonstrate
that the sensitivities of the vanilla trained deep reinforce-
ment learning policy are centered around the paddle and
the opponent’s paddle contact proximity, which is tightly
related to winning the game and achieving the objective.
While the non-robust feature patterns learnt by the deep
inverse reinforcement learning policy are independent from
the state representations and MDP semantics, Figure 1 also
demonstrates the sparsity of the non-robust features learned
by vanilla trained deep reinforcement learning policy when
compared to deep inverse reinforcement learning policy.
While (Korkmaz, 2021c) initially introduced the tools to
investigate the vulnerabilities and sensitivities of the state-
of-the-art adversarially trained deep reinforcement learning
policies, we show that KMAP also provides insights to deep
neural policies that are able to learn without the presence
of a reward function. One intriguing takeaway from the
results presented in Section 3 is that exploration plays a
foundational role in the representations learnt by the policy.
Thus, the fact that non-robust features learnt by the deep
inverse reinforcement learning policy are decoupled from
the MDP semantics demonstrates the role of the exploration
on the non-robust feature patterns learnt by the agent.
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4. Conclusion
In this paper we focused on the robustness of deep inverse
reinforcement learning policies and deep imitation learning
policies. In particular we wanted to answer the following
questions: (i) Do the-state-of-the-art deep inverse reinforce-
ment learning and deep imitation learning policies learn
non-robust features from the MDP they are trained in?, and
(ii) What are the differences in the non-robust features learnt
by the deep inverse reinforcement learning policies and deep
reinforcement learning policies? We show in the Arcade
Learning Environment (ALE) that deep inverse reinforce-
ment learning policies and deep imitation learning policies
do learn non-robust features from complex state representa-
tion MDPs. More importantly, when compared to the vanilla
trained deep reinforcement learning policies the deep inverse
reinforcement learning policies learn non-robust features
that are disjoint from the game semantics. Furthermore, the
non-robust features learnt by the vanilla trained deep rein-
forcement learning policies are sparser than the non-robust
features learnt by the deep inverse reinforcement learning
and deep imitation learning policies. We believe our study
can provide an initial basis on understanding the robustness
of deep imitation and deep inverse reinforcement learning
policies.
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