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ABSTRACT

The curvature of the loss, provides rich information on the geometry underly-
ing neural networks, with applications in second order optimisation and Bayesian
deep learning. However, accessing curvature information is still a daunting en-
gineering challenge, inaccessible to most practitioners. We hence provide a soft-
ware package the Deep Curvature Suite, which allows easy curvature evalua-
tion for large modern neural networks. Beyond the calculation of a highly ac-
curate moment matched approximation of the Hessian spectrum using Lanczos,
our package provides: extensive loss surface visualisation, the calculation of the
Hessian variance and stochastic second order optimisers. We further address and
disprove many common misconceptions in the literature about the Lanczos algo-
rithm, namely that it learns eigenvalues from the top down. We prove using high
dimensional concentration inequalities that for specific matrices a single random
vector is sufficient for accurate spectral estimation, informing our spectral visuali-
sation method. We showcase our package practical utility on a series of examples
based on realistic modern neural networks such as the VGG-16 and Preactivated
ResNets on the CIFAR-10/100 datasets. We further detail 3 specific potential use
cases enabled by our software: research in stochastic second order optimisation
for deep learning, learning rate scheduling using known optimality formulae for
convex surfaces and empirical verification of deep learning theory based on com-
paring empirical and theoretically implied spectra.

1 INTRODUCTION

The success of deep neural networks trained with gradient based optimisers in speech and object
recognition (LeCun et al., 2015), has led to an explosion in easy to use high performance software
implementations. Automatic differentiation packages such as TensorFlow (Abadi et al., 2016) and
PyTorch (Paszke et al., 2017) have become widely adopted. Higher level packages, such as Keras
(Chollet, 2015) allow practitioners users to state their model, dataset and optimiser in a few lines of
code, effortlessly achieving state of the art performance.

However, software for extracting second order information, representing the curvature of the loss
at a point in weight space, has not kept abreast. Researchers aspiring to evaluate curvature infor-
mation need to implement their own libraries, which are rarely shared or kept up to date. Naive
implementations, which rely on full eigendecomposition (cubic cost in the parameter count) are
computationally intractable for all but the smallest of models. Hence, researchers typically ignore
curvature information or use highly optimistic approximations. Examples in the literature include
the diagonal elements of the matrix or of a surrogate matrix,Chaudhari et al. (2016); Dangel et al.
(2019), which we show in AppendixE can be very misleading.

2 MOTIVATION

The curvature of the loss informs us about the local conditioning of the problem (i.e the ratio of
the largest to smallest eigenvalues λ1

λP
). This determines the rate of convergence for first order

methods and informs us about the optimal learning and momentum rates (Nesterov, 2013). Hence
easily accessible curvature information could allow practitioners to scale their learning rates in an
optimal way throughout training, instead of relying on expert scheduling, we investigate this using
our software in Section 5.2. Research areas where curvature information features most prominently
are analyses of the Loss Surface and Newton type optimization methods.
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2.1 LOSS SURFACES

Recent neural network loss surfaces using full eigendecomposition (Sagun et al., 2016; 2017) have
been limited to toy examples with less than five thousand parameters. Hence, loss surface visual-
isation of deep neural networks have often focused on two dimensional slices of random vectors
(Li et al., 2017) or the changes in the loss traversing a set of random vectors drawn from the d-
dimensional Gaussian distribution (Izmailov et al., 2018). It is not clear that the loss surfaces of
modern expressive neural networks, containing millions or billions of dimensions, can be well cap-
tured in this manner. Small experiments have shown neural networks have a large rank degeneracy
Sagun et al. (2016) with a small number of large outliers. However high dimensional concentration
theorems Vershynin (2018) guarantee that even a large number of randomly sampled vectors are
unlikely to encounter such outliers and hence have limited ability to discern the geometry between
various solutions. Other works, that try to distinguish between flat and sharp minima have used the
diagonal of the Fisher information matrix (Chaudhari et al., 2016), an assumption we will challenge
in this paper. Specifically we show in Appendix E, that diagonal approximations do not capture key
properties in synthetic and real neural network examples.

From a practical perspective, specific properties of the loss surface are not captured by the aforemen-
tioned approaches. Examples include the flatness as specified by the trace, Frobenius and spectral
norm. These measures have been extensively used to characterise the generalisation of a solution
found by SGD (Wu et al., 2018; Izmailov et al., 2018; He et al., 2019; Jastrzkebski et al., 2017; 2018;
Keskar et al., 2016). Under a Bayesian and minimum description length argument (Hochreiter and
Schmidhuber, 1997) flatter minima should generalise better than sharper minima. The magnitude of
these outliers have been linked to poor generalisation performance Keskar et al. (2016) and as a con-
sequences the generalisation benefits of large learning rate SGD Wu et al. (2018); Jastrzkebski et al.
(2017). These properties are extremely easy in principle to estimate, at a computational cost of a
small multiple of gradient evaluations. However the calculation of these properties are not typically
included in standard deep learning frameworks, which limits the ability of researchers to undertake
such analysis.

Other important areas of loss surface investigation include understanding the effectiveness of batch
normalisation(Ioffe and Szegedy, 2015). Recent convergence proofs (Santurkar et al., 2018) bound
the maximal eigenvalue of the Hessian with respect to the activations and bounds with respect to the
weights on a per layer basis. Bounds on a per layer basis do not imply anything about the bounds
of the entire Hessian and furthermore it has been argued that the full spectrum must be calculated to
give insights on the alteration of the landscape (Kohler et al., 2018).

2.2 SECOND ORDER OPTIMISATION METHODS

Second order optimisation methods solve the minimisation problem for the loss, L(w) ∈ R asso-
ciated with parameters w ∈ RP×1 and perturbation δw ∈ RP×1 to the second order in Taylor
expansion,

δw∗ = argminδwL(w + δw) = argminδwL(w + δw) = −H̄−1∇L(w). (1)

Sometimes, such as in deep neural networks when the HessianH = ∇2L(w) ∈ RP×P is not posi-
tive definite, a positive definite surrogate is used. Note that Equation 1 is not lower bounded unless
H is positive semi-definite. Often either a multiple of the identity is added (known as damping)
to the Hessian (H → H + γI) Dauphin et al. (2014) or a surrogate positive definite approxima-
tion to the Hessian H̄ , such as the Generalised Gauss-Newton (GGN) (Martens, 2010; Martens and
Sutskever, 2012) is employed. To derive the GGN, we express the loss in terms of the activation
L(w) = σ(f(w)) of the output of the final layer f(w). Hence the elements of the Hessian can be
written as

H(w)ij =

dy∑
k=0

dy∑
l=0

∂2σ(f(w))

∂fl(w)∂fk(w)

∂fl(w)

∂wj

∂fk(w)

∂wi
+

dy∑
k=0

∂σ(f(w))

∂wj

∂2fk(w)

∂wj∂wi
. (2)

The first term on the LHS of Equation 2 is known as the Generalised Gauss-Newton matrix.

Despite the success of second order optimisation methods using the GGN for difficult problems on
which SGD is known to stall, such as recurrent neural networks (Martens and Sutskever, 2012), or
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auto-encoders (Martens, 2016). Researchers wanting to implement second order methods such as
(Vinyals and Povey, 2012; Martens and Sutskever, 2012; Dauphin et al., 2014) face the aforemen-
tioned problems of difficult implementation. As a small side note, Bayesian neural networks using
the Laplace approximation feature the Hessian inverse multiplied by a vector (Bishop, 2006).

2.3 CONTRIBUTIONS

We introduce our package, the Deep Curvature suite, a software package that allows analysis and
visualisation of deep neural network curvature. The main features and functionalities of our package
are:

• Eigenspectrum analysis of the curvature matrices Powered by the Lanczos Meurant and
Strakoš (2006) techniques implemented in GPyTorch (Gardner et al., 2018) and outlined in
Section 3, with a single random vector we use the Pearlmutter matrix-vector product trick
Pearlmutter (1994) for fast inference of the eigenvalues and eigenvectors of the common
curvature matrices of the deep neural networks. In addition to the standard Hessian matrix,
we also include the feature for inference of the eigen-information of the Generalised Gauss-
Newton matrix, a commonly used positive-definite surrogate to Hessian1.

• Advanced Statistics of Networks In addition to the commonly used statistics to evaluate
network training and performance such as the training and testing losses and accuracy, we
support computations of more advanced statistics: For example, we support squared mean
and variance of gradients and Hessians (and GGN), squared norms of Hessian and GGN,
L2 and L-inf norms of the network weights and etc. These statistics are useful and relevant
for a wide range of purposes such as the designs of second-order optimisers and network
architecture.

• Visualisations For all main features above, we include accompanying visualisation tools.
In addition, with the eigen-information obtained, we also feature visualisations of the loss
landscape by studying the sensitivity of the neural network to perturbations of weights.

• Second Order Optimisation We include out of the box stochastic lanczos second order
optimisers which use the absolute Hessian Dauphin et al. (2014) or the Generalised Gauss
Newton Martens (2010) as curvature matrices

• Batch Normalisation Support Our code allows for the use of batch normalisation(Ioffe
and Szegedy, 2015) in neural networks, which is integrated by default on most modern
convolutional neural networks. Since the way in watch batch normalisation is calculated
has a big effect on the resulting curvature calculations and can be dependent on the order
in which the samples are processed, we offer two models of evaluation. Train mode which
depends on the order in which the samples are processed and is similar to what the optimiser
sees during training and evaluation mode, in which the statistics are pre-computed and
hence invariant to sample shuffling. We expand on the differences between these methods
in Appendix A.

Our software makes calculating and visualising curvature information as simple as calculating the
gradient at a saved checkpoint in weight-space. The computational complexity of our approach is
O(mP ), where m is the number of Lanczos steps 2 and P is the number of model parameters.
This in stark contrast full exact eigendecomposition which has a numerical cost of O(P 3), which is
infeasible for large neural networks.

2.4 RELATED WORK

Recent work making curvature information more available using diagonal approximations, disallows
the use of batch normalisation(Dangel et al., 2019). Our software extends seamlessly to support

1The computation of the GGN-vector product is similar with the computational cost of two backward passes
in the network. Also, GGN uses forward-mode automatic differentiation (FMAD) in addition to the commonly
employed backward-mode automatic differentiation (RMAD). In the current PyTorch framework, the FMAD
operation can be achieved using two equivalent RMAD operations.

2which corresponds to the number of moments of the underlying Hessian/GGN density which we wish to
match
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Functionality Deep Curvature Suite PyHessian

Hessian Density Estimation 3 3
GGN Density Estimation 3 7
Loss Surface Visualisation 3 3
Gradient Variance 3 7
Hessian/GGN Variance 3 7
Second Order Optimisers 3 7

Table 1: Table of Contributions: comparison between our released soft-
ware and that of another PyTorch based Hessian tool PyHessian

Figure 1: Deviation of the mini-batch Hessian (left)/GGN (right)
spectral norm from the full dataset, Figure from Granziol (2020).

batch normalization In Appendix E.5 we explicitly compare against their diagonal MC approxima-
tions on synthetic and real neural network examples and find these approximations inadequate for
spectral analysis. Independent work has also uses the Lanczos algorithm for Hessian computation
Yao et al. (2019); Ghorbani et al. (2019); Papyan (2018); Izmailov et al. (2019). We compare the
functionality of our package to that of PyHessian Yao et al. (2018) in Table 1.

One major extra functionality we offer is the calculation of the GGN. For common activatios and loss
functions, such as the cross-entropy loss and sigmoid activation, the generalised Gauss-Newton is
equivalent to the Fisher information matrix (Pascanu and Bengio, 2013). Hence this approximation
to the Hessian is interesting in its own right and many theoretical analyses, consider the generalised
Gauss-Newton or Fisher information matrices as opposed to the Hessian Pennington and Worah
(2018); Karakida et al. (2019); Papyan (2019). Hence accessing the GGN spectrum could be a major
asset to researchers. Another extra functionality we offer is the calculation of the Hessian/GGN
variance. This quantity has been used to derive optimal learning rates in Wu et al. (2018) and
to predict the effect of minibatching on curvature using a random matrix theory model (Granziol,
2020). We include an example figure where the theoretical prediction is validated using our software
in Figure 1.

3 LANCZOS, MISCONCEPTIONS AND SPECTRAL DENSITY APPROXIMATIONS

The Lanczos Algorithm Meurant and Strakoš (2006), on which our package is based, (Algorithm 1
in the Appendix) is an iterative algorithm for learning a subset of the eigenvalues/eigenvectors of any
Hermitian matrix, requiring only matrix vector products. It is an adaptation of the power iteration
method, where the Krylov subspace K (H,v) = span{v,Hv,H2v, ...}, is orthogonalised using
Gram-Schmidt, resulting in improved convergence. The Lanczos algorithm, is subject to many
misconceptions in the literature, which limits its penetration in the research community. Two of
which we state here and explicitly debunk in Appendix B.2

• We can learn the negative and interior eigenvalues by shifting and inverting the matrix sign
H → −H + µI

• Lanczos learns the largest m [λi,ui] pairs of H ∈ RP×P with high probability (Dauphin
et al., 2014)

The key properties of the Lanczos algorithm, which we summarise here (and expand upon in Ap-
pendix B) are:

• When seeded with a vector v the Lanczos algorithm gives a discrete spectral density which
matches the m moments vHv,vH2v, ...,vHmv.

• If the vector v is zero mean unit variance (such as a Gaussian or Rademacher Hutchinson
(1990)), this in expectation gives an m moment matched approximation to the spectral
density p(λ) of the underlying matrixH .

• For a large dimensional matrix P →, we expect a single random vector to give an m
moment matched approximation of the underlying spectral density. We give the proof
for this in Appendix C.This informs our visualisation technique of using a single random
vector.

• When seeded with a random vector v, Lanczos converges quickly to the end points of the
spectral support of p(λ), the spectral density ofH .
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4 AN ILLUSTRATED EXAMPLE

We give an illustration on an example of using the Deep Curvature package. We train a VGG16 net-
work on CIFAR-100 for 100 epochs. With the checkpoints generated, we may now compute analyse
the eigenspectrum of the curvature matrix evaluated at the desired point in training.To evaluate the
Hessian/GGN with 100 Lanczos iterations, we run the code given in Table 2.

Network T r a i n i n g

t r a i n n e t w o r k (
d i r = ’VGG16 / ’ ,
d a t a s e t = ’ CIFAR100 ’ ,
d a t a p a t h = ’ d a t a / ’ ,
epochs =100 , model= ’VGG16 ’ ,
o p t i m i z e r = ’SGD ’ ,
o p t i m i z e r k w a r g s =
{ ’ l r ’ : 0 . 0 3 , ’mom’ : 0 . 9 ,
’ w e i g h t d e c a y ’ : 5e −4})

E i g e n s p e c t r u m Computa t ion

c o m p u t e e i g e n s p e c t r u m (
d a t a s e t = ’ CIFAR100 ’ ,
d a t a p a t h = ’ d a t a / ’ ,
model= ’VGG16 ’ ,
c h e c k p o i n t p a t h = ’ c h e c k p o i n t . p t ’ ,
s a v e s p e c t r u m p a t h = ’ spec t rum −ggn ’ ,
s a v e e i g v e c =True ,
l a n c z o s i t e r s =100 ,
c u r v a t u r e m a t r i x = ’ g g n l a n c z o s ’ , )

Table 2: Training a Neural Network and Calculating the Eigenspectrum using the Deep Curvature Suite package

This function call saves the spectrum results (including eigenvalues, eigenvectors and other related
statistics) in the save spectrum path path string defined. To visualise the spectrum as stem
plot we simply run the code given in Table 3 with corresponding example Figure shown.

E i g e n s p e c t r u m V i s u a l i z a t i o n

p l o t s p e c t r u m ( ’ l a n c z o s ’ ,
p a t h = ’ spec t rum −ggn . npz ’ )
p l t . show ( )

0.02 0.63 1.28 1.93
Eigenvalue Size
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Table 3: Eigenspectrum plotting code and corresponding stem plot

Finally, with the eigenvalues and eigenvectors computed, we might be interested in knowing how
sensitive the network is to perturbation along these directions. To achieve this, we first construct a
loss landscape by setting the number of query points and maximum perturbation to apply. To achieve
that, we call the code given in Table 4. In this example, we set the maximum perturbation to be 1

Loss S u r f a c e

b u i l d l o s s l a n d s c a p e (
d a t a s e t = ’ CIFAR100 ’ ,
d a t a p a t h = ’ d a t a / ’ ,
model= ’VGG16 ’ ,
d i s t = 1 . , n p o i n t s =21 ,
s p e c t r u m p a t h = h e s s i a n ’ ,
c h e c k p o i n t p a t h = ’ ck . p t ’ ,
s a v e p a t h = ’ s c a p e . npz ’
p l o t l o s s l a n d s c a p e
( ’ l a n d s c a p e −100 . npz ’ )
p l t . show ( ) )

T r a i n Loss

0.2 0.1 0.0 0.1 0.2
0.0

0.1

0.2

0.3

0.4

0.5

T e s t Loss

0.2 0.1 0.0 0.1 0.2

1.8

2.0

2.2

2.4

2.6

 = -0.0470
 = -0.0452
 = -0.0442
 = -0.0348
 = -0.0136
 = -0.0004
 = 0.0002
 = 0.0059
 = 1.8656
 = 2.3449
 = 2.6695
 = 6.8819

Table 4: Loss surface visualization along the sharpest Hessian eigenvectors with the Deep Curvature Suite

(dist argument) and number of query points along each direction to be 21 (n points argument).
The corresponding plots in Training and Testing loss are also shown. Although we choose to show
loss, the package returns the results for accuracy also, which we show in Appendix D.
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5 EXAMPLE RESEARCH APPLICATIONS

In this section we list 3 example scientific applications of our software package. We investigate
second order optimisation for deep neural networks using our inbuild stochastic Lanczos optimiser,
online learning rate scheduling and verifying predictions made using random matrix theory in theo-
retical deep learning.

5.1 SIMPLICITY OF SECOND ORDER OPTIMISATION WITH THE DEEP CURVATURE SUITE

To enable researchers to experiment with stochastic second order optimisation algorithms for deep
neural networks, we implement a Lanczos based optimiser (which takes the absolute Hessian
Dauphin et al. (2014), or Generalised Gauss Newton Martens (2010) as input). The code for run-
ning this optimiser is summarised in Table 5. We plot the training error of the VGG-16 network on

SGD T r a i n i n g

t r a i n n e t w o r k (
d i r = ’VGG16−CIFAR100 / ’ ,
d a t a s e t = ’ CIFAR100 ’ ,
d a t a p a t h = ’ d a t a / ’ , epochs =100 ,
model= ’VGG16 ’ , o p t i m i z e r = ’SGD ’ ,
o p t i m i z e r k w a r g s ={
’ l r ’ : 0 . 0 1 ,
’momentum ’ : 0 . 9 ,
’ w e i g h t d e c a y ’ : 0
’ b a t c h s i z e ’ : 128} )

Lanczos T r a i n i n g

t r a i n n e t w o r k (
d i r = ’VGG16−CIFAR100 / ’ ,
d a t a s e t = ’ CIFAR100 ’ ,
d a t a p a t h = ’ d a t a / ’ , epochs =100 ,
model= ’VGG16 ’ , o p t i m i z e r = ’LancGN ’ ,
o p t i m i z e r k w a r g s ={
’ l r ’ : 1 ,
’ damping ’ : 10 ,
’ w e i g h t d e c a y ’ : 0
’ b a t c h s i z e ’ : 128
’ c u r v a t u r e b a t c h s i z e ’ : 128} )

Table 5: Comparison of SGD training and Second Order Optimisation using the Deep Curvature Suite

CIFAR-100 dataset, which has over 16 million parameters and hence is out of reach of full inver-
sion methods, in Figure 2b. We keep the ratio of damping constant to learning rate constant, where
δ = 10α, for a variety of learning rates in {1, 0.1, 0.01, 0.001, 0.0001} with a batch size of 128 for
both the gradient and the curvature, all of which post almost identical performance. We also com-
pare against different learning rates of Adam and the best grid searched learning rate of SGD, both
of which converge significantly slower per iteration compared to our stochastic Newton methods.
We note that in terms of practical optimisation that the cost of running a stochastic second order
optimiser is far greater than that of SGD. For this example, where we use 20 Lanczos iterations,
the per iteration cost scales as ≈ 40 times that of SGD. Hence we expect these algorithms simply
to serve as useful baselines against more computationally efficient approximations. One example
future direction could be to invert the matrices less frequently as done in Martens and Grosse (2015),
reducing computational cost.

5.2 SPECTRAL STOCHASTIC GRADIENT DESCENT WITH THE DEEP CURVATURE SUITE

SGD is incredibly sensitive to the choice of initial learning rate and its scheduling. Whilst adap-
tive methods are considered more robust to the initial learning rate choice and its schedule, they
have been shown to perform poorly on validation or held out test data Wilson et al. (2017). Hence
practitioners typically experiment with a variety of schedules, such as the step, linear, exponential,
polynomial and cosine annealing. One potential application of our codebase is to use a stochastic
estimate of the curvature and to use established optimal learning and momentum rates for the local
quadratic approximation at the given point in weightspace Nesterov (2013), given in Equation 3.

αPolyak =
2√

λ1 +
√
λP

, ρ =

(√
λ1 −

√
λP√

λ1 +
√
λP

)2

, αNesterov =

√
λP
λ1
ρ =

√
λ1 −

√
λP√

λ1 +
√
λP

. (3)

Where λ1, λP refer to the largest and smallest eigenvalues of the Hessian respectively. The learning
rates and momenta α, ρ are given for both Polyak and Nesterov momentum respectively. There are
several complications to the above method. Firstly the Hessian of neural networks is in general not
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positive definite and hence λP < 0 (these optimality formulae are strictly for convex methods).
Secondly the loss surface at each point in weight space is likely to be different and it is impractical
to recalculate the optimal step size using Equation 3 for every iteration, even if we sub-sample the
data. We note from the work of Granziol (2020), that the loss surface when using a mini-batch
varies to that of the full surface (it is sharper) and hence the learning rates when training using a
mini-batch must be optimal for the minibatch surface and not that of the full dataset. As an example
use case for our software we consider whether the method of Izmailov et al. (2018), which combines
SGD with Polyak averaging Polyak and Juditsky (1992) at the end of training (which they denote
SWA), to improve generalisation performance, could be improved. Instead of fine tuning the linear
decay learning rate schedule by hand, we instead learn the learning rate using Equation 3 at regular
intervals by estimating the curvature using a sub-sampled Lanczos spectral estimate.

We run the preactivated ResNet-110 on the CIFAR-100 dataset for 180 epochs and learn the Polyak
and Nesterov learning rates and momenta every 20 epochs using the same mini-batch size as the
gradient batch size 128 for 20 Lanczos iterations. Since the smallest Ritz values are very very close
to 0, which would result in a momentum ρ = 1, we use a heuristic to remove the smallest Ritz
values, whereby if the Ritz value of largest spectral mass has more than 50% of the spectral mass,
it is removed and the resulting density renormalised, forming the new spectral density of interest.
All methods employ Polyak Avearging at epoch 161 as in Izmailov et al. (2018). We plot the results
in Figure 2a and show that the Nesterov variant (SSGDMN) of online learning rate and momentum
learning performs well against the baseline (SWA). Interestingly the Polyak variant (SSGDM) learns
to drop the learning rate at regular intervals, similar to classical training methods, which does not
perform as well as keeping the learning rate high and using Polyak averaging at the end of training.

5.3 VERIFYING RANDOM MATRIX THEORY IN DEEP LEARNING USING OUR PACKAGE

The full spectrum of deep neural networks can be used to validate/invalidate novel theoretical con-
tributions. As an example. analysis relating the loss surface to spin-glass models from condensed
matter physics and random matrix theory (Choromanska et al., 2015b;a) rely on a number of unreal-
istic assumptions, such as input independence (i.e. for an input x that the feature xi is independent
of xj , for images which have spatial correlations, such assumptions are clearly violated). One po-
tential verification of the practical applicability of these results, that does not involve checking that
the assumptions are satisfied, would be to visualise the spectra of large real networks and commonly
used datasets. This follows because spin glass models have Hessians given by random matrices
(Arous and Guionnet, 1997) with known analytical forms (Tao, 2012; Akemann et al., 2011). Hence
statistical tests comparing the real world observed spectra and that underlying the specific spin glass
model could be undertaken, showing that the results hold despite the assumptions not being met.
Two primary random matrix eigenvalue distributions to which the spectra of many classes of ran-
dom matrices converge (and which feature in theoretical deep learning papers) are the semi-circle
and the Marchenko-Pastur densities defined below.

elementsHi,j are i.i.d normal︷ ︸︸ ︷
p(λ) =

1

2π

√
4σ2 − λ21|λ|≤2σ︸ ︷︷ ︸

Semi-Circle Law

,

elementsXi,j are i.i.d normalH = XTX︷ ︸︸ ︷
p(λ) =

√
(λ− λ+)(λ− λ−)

2πλqσ2︸ ︷︷ ︸
Marchenko-Pastur

, λ± = σ2(1±√q)2 (4)

If there areN samples andP parameters andN < P the Marchenko-Pastur density has a degeneracy
fraction 1− N

P .
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Figure 3: Neural network Hessian spectra at the end of training for the VGG-16BN and PreResNet-110 on the CIFAR-100 dataset and an
example of the semi-circle law

In the example of Choromanska et al. (2015a), the corresponding Hessian spectral denisty is the
semi-circle law, shown in Figure 3b. This differs greatly from neural network spectra found us-
ing our package, such as that of the VGG-16 with BN shown in Figure 3a and the Preactived
ResNet-110, for the CIFAR-100 datasets, shown in Figure 3c. Major differences include the rank-
degeneracies (we find that over 90% of the spectral mass resides in the peak nearest the origin)
and outliers. The proof techniques used in Arous and Guionnet (1997), which underlie the claims in
Choromanska et al. (2015a) specifically use the large deviation principle of the Gaussian Orthogonal
Ensemble (which converges to the semi-circle law) and hence forbid outliers.

The GGN has been modelled as the Marchenko-Pastur density in the literature (Pennington and
Bahri, 2017; Sagun et al., 2017; 2016). The Residual matrix R(w), which is the difference of
the Hessian and the GGN, has been modelled by the Wigner ensemble which gives the semi-circle
law in Pennington and Bahri (2017). In Figure 4 we plot the GGN and Residual of a VGG-16
network on the CIFAR-100 dataset. The GGN unlike the Marchenko-Pastur has no spectral gap (the
density tails off exponentially) and many outliers. Similarly the shape and rank-degeneracy of the
Residual matrix varies significantly from the semi-circle and contains outliers. Whilst a single set of
negative results does not invalidate an entire framework, it implies that further research is required
to extend the claims of Choromanska et al. (2015a); Pennington and Bahri (2017) to practical deep
learning. These results using our package demonstrate that the underlying spectral densities of the
matrices in question vary considerably from those given by the theoretical predictions. This implies
that the conclusions made may not necassarily hold in real neural networks and requires further
investigation.
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Figure 4: The Generalised Gauss Newton and Residual Matrix at various Epochs of Training for the VGG-16 on CIFAR-100 and a sample
Marcenko-Pastur density

6 CONCLUSION

We introduce the Deep Curvature suite in PyTorch framework, based on the Lanczos algorithm
implemented in GPyTorch (Gardner et al., 2018), that allows deep learning practitioners to learn
spectral density information as well as eigenvalue/eigenvector pairs of the curvature matrices at
specific points in weight space. Our package also allows the user to evaluate the Generalised Gauss
Newton spectral density, the variance of both the Hessian and the Generalised Gauss Newton and
includes two stochastic Lanczos based optimisers. Together with the software, we also include a
succinct summary of the linear algebra, iterative method theory including proofs of convergence
and misconceptions and stochastic trace estimation that form the theoretical underpinnings of our
work. We also give 3 example scientific applications of our work, namely second order optimisation
on large scale neural networks, learning rate scheduling using spectral information and evaluation
of theoretical results which make predictions on spectral denisities of the Hessian of the neural
networks which they are modelling.
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A SUBTLETIES OF BATCH NORMALISATION

Most modern convolutional neural networks use batch normalisation Ioffe and Szegedy (2015).
Whilst we refer the reader to Ioffe and Szegedy (2015) for a full description of batch normalisation,
a subtlety which is introduced is that the output of a network for one sample depends on the samples
in the mini-batch (as they are used to compute the statistics). Since these statistics are used to
normalise and center the layers, they have a large effect on the curvature calculation. In our software
package, we give the user two options to deal with this. We denote one Train Mode and the other
Evaluation Mode. We detail them both below

A.1 TRAIN MODE

With batch norm in train mode the output of the network for one sample depends on other samples in
the mini-batch. This effect influences the result of hessian-vector product computation on a dataset.
In particular, if the order of samples in the dataset is changed, then the set of mini-batches also
changes and the hessian-vector product will be different. We take this effect into account and fix the
order of samples in the dataset, so that hessian-vector product for different networks is computed
on the same set of mini-batches. Conceptually, one can use the following interpretation of a neural
network with batch norm layers in train mode: the input of such a network is not a single sample
but a mini-batch of samples. Instead of thinking about a dataset of samples we should think about a
dataset of mini-batches. With the fixed order of samples, we guarantee that all models are evaluated
on the same dataset of mini-batches.

A.2 EVALUATIONMODE

One can also use BN layers in eval mode with BN statistics computed over the whole dataset. With
BN layers in eval mode the output of a network on sample does not depend on other samples in
the mini-batch. Our code the mode of BN layers can be specified as a parameter for hessian-vector
product computation.

B LEARNING TO LOVE LANCZOS

The Lanczos Algorithm, on which our package is based, (Algorithm 1) is an iterative algorithm for
learning a subset of the eigenvalues/eigenvectors of any Hermitian matrix, requiring only matrix
vector products. It can be regarded as a far superior adaptation of the power iteration method, where
the Krylov subspace K (H,v) = span{v,Hv,H2v...} is orthogonalised using Gram-Schmidt.
Beyond having improved convergence to the power iteration method (Bai et al., 1996) by storing the
intermediate orthogonal vectors in the corresponding Krylov subspace, Lanczos produces estimates
of the eigenvectors and eigenvalues of smaller absolute magnitude, known as Ritz vectors/values.
Despite its known superiority to the power iteration method and relationship to orthogonal poly-
nomials and hence when combined with random vectors the ability to estimate the entire spectrum
of a matrix, these properties are often ignored or forgotten by practitioners. We compare against
diaognal approximations for random and synthetic matrices in Appendix E.

The Lanczos method be be explicitly derived by considering the optimization of the Rayleigh quo-
tient (Golub and Van Loan, 2012)

r(v) =
vTHv

vTv
(5)

over the entire Krylov subspace Km(H,v) as opposed to power iteration which is a particular
vector in the Krylov subspace u = Hmv. Despite this, practitioners looking to learn the leading
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λ1/λ2 m = 5 m = 10 m = 15 m = 20

1.5 1.1×10−4

3.9×10−2
2×10−10

6.8×10−4
3.9×10−16

1.2×10−5
7.4×10−22

2.0×10−7

1.1 2.7×10−2

4.7×10−1
5.5×10−5

1.8×10−1
1.1×10−7

6.9×10−2
2.1×10−10

2.7×10−2

1.01 5.6×10−1

9.2×10−1
1.0×10−1

8.4×10−1
1.5×10−2

7.6×10−1
2.0×10−3

6.9×10−1

Table 6: Lk−1/Rk−1 For different values of spectral gap λ1/λ2 and iteration numberm, Table from (Golub and Van Loan, 2012)

eigenvalue, very often resort to the power iteration, likely due to its implementational simplicity.
We showcase the power iterations relative inferiority to Lanczos with the following convergence
theorems

Theorem 1. Let HP×P be a symmetric matrix with eigenvalues λ1 ≥ .. ≥ λP and corresponding
orthonormal eigenvectors z1, ..zP . If θ1 ≥ .. ≥ θm are the eigenvalues of the matrix Tm obtained
after m Lanczos steps and q1, ...qm the corresponding Ritz eigenvectors then

λ1 ≥ θ1 ≥ λ1 −
(λ1 − λn) tan2(θ1)

(cm−1(1 + 2ρ1))2

λP ≤ θk ≤ λm +
(λ1 − λn) tan2(θ1)

(cm−1(1 + 2ρ1))2

(6)

where cm is the Chebyshev polyomial of order k. cos θ1 = |qT1 z1| & ρ1 = (λ1 − λ2)/(λ2 − λn)

Proof. see (Golub and Van Loan, 2012).

Theorem 2. Assuming the same notation as in Theorem 1, after m power iteration steps the corre-
sponding extremal eigenvalue estimate is lower bounded by

λ1 ≥ θ1 ≥ λ1 − (λ1 − λn) tan2(θ1)

(
λ2
λ1

)2m−1
(7)

From the rapid growth of orthogonal polynomials such as Chebyshev, we expect Lanczos superiority
to significantly emerge for larger spectral gap and iteration number. To verify this experimentally,
we collect the non identical terms in the equations 6 and 7 of the lower bounds for λ1 derived by
Lanczos and Power iteration and denote them Lk−1 and Rk−1 respectively. For different values of
λ1/λ2 and iteration number m we give the ratio of these two quatities in Table 6. As can be clearly
seen, the Lanczos lower bound is always closer to the true value, this improves with the iteration
number m and its relative edge is reduced if the spectral gap is decreased.

B.1 THE PROBLEM OF MOMENTS: SPECTRAL DENSITY ESTIMATION USING LANCZOS

In this section we show that that the Lanczos Tri-Diagonal matrix corresponds to an orthogonal
polynomial basis which matches the moments of vTHmv and that when v is a zero mean random
vector with unit variance, this corresponds to the moment of the underlying spectral density.

Stochastic trace estimation Using the expectation of quadratic forms, for zero mean, unit vari-
ance random vectors

EvTr(vTHmv) = TrEv(vvTHm) = Tr(Hm)

=

P∑
i=1

λmi = P

∫
λ∈D

λmdµ(λ)
(8)

where we have used the linearity of trace and expectation. Hence in expectation over the set of
random vectors, the trace of the inner product of v and Hmv is equal to the m’th moment of the
spectral density ofH .
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Lanczos-Stieltjes The Lanczos tri-diagonal matrix T can be derived from the Moment matrixM ,
corresponding to the discrete measure dα(λ) satisfying the moments µi = vTHiv =

∫
λidα(λ)

(Golub and Meurant, 1994)

M =


1 vTHv . . . vTHm−1v

vTHv vTH2v
. . .

...
...

. . . . . .
...

vTHm−1v . . . . . . vTH2m−2v


and hence for a zero mean unit variance initial seed vector, the eigenvector/eigenvalue pairs of T
contain information about the spectral density of H as shown in section B.1. This is given by the
following Theorem

Theorem 3. The eigenvalues of Tk are the nodes tj of the Gauss quadrature rule, the weights wj
are the squares of the first elements of the normalized eigenvectors of Tk

Proof. See Golub and Meurant (1994)

A quadrature rule is a relation of the form,∫ b

a

f(λ)dµ(λ) =

M∑
j=1

ρjf(tj) +R[f ] (9)

for a function f , such that its Riemann-Stieltjes integral and all the moments exist on the measure
dµ(λ), on the interval [a, b] and where R[f ] denotes the unknown remainder. The first term on the
RHS of equation 9 using Theorem 3 can be seen as a discrete approximation to the spectral density
matching the first m moments vTHmv (Golub and Meurant, 1994; Golub and Van Loan, 2012)

For nv starting vectors, the corresponding discrete spectral density is given as

p(λ) =
1

nv

nv∑
l=1

( m∑
k=1

(τ
(l)
k )2δ(λ− λ(l)k )

)
, (10)

where τ (l)k corresponds to the first entry of the eigenvector of the k-th eigenvalue, λk, of the Lanczos
tri-diagonal matrix, T , for the l-th starting vector (Ubaru and Saad; Lin et al., 2016).

B.2 COMPUTATIONAL COMPLEXITY

For large matrices, the computational complexity of the algorithm depends on the Hessian vector
product, which for neural networks is O(mNP ) where P denotes the number of parameters in
the network, m is the number of Lanczos iterations and N is the number of data-points. The full
re-orthogonalisation adds two matrix vector products, which is of cost O(m2P ), where typically
m2 � N . Each random vector used can be seen as another full run of the Lanczos algorithm, so for
d random vectors the total complexity is O(dmP (N +m))

Importance of keeping orthogonality The update equations of the Lanczos algorithm lead to a
tri-diagonal matrix T = Rm×m, whose eigenvalues represent the approximated eigenvalues of the
matrix H and whose eigenvectors, when projected back into the the Krylov-subspace, K (H,v),
give the approximated eigenvectors of H . In finite precision, it is known (Meurant and Strakoš,
2006) that the Lanczos algorithm fails to maintain orthogonality between its Ritz vectors, with corre-
sponding convergence failure. In order to remedy this, we re-orthonormalise at each step (Bai et al.,
1996) (as shown in line 9 of Algorithm 1) and observe a high degree of orthonormality between the
Ritz eigenvectors. Orthonormality is also essential for achieving accurate spectral resolution as the
Ritz value weights are given by the squares of the first elements of the normalised eigenvectors. For
the practitioner wishing to reduce the computational cost of maintaining orthogonality, there exist
more elaborate schemes (Meurant and Strakoš, 2006; Golub and Meurant, 1994).

We also explicitly debunk some key persistent myths, given below.
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Algorithm 1 Lanczos Algorithm
1: Input: Hessian vector product {Hv}, number of steps m
2: Output: Ritz eigenvalue/eigenvector pairs {λi,ui} & quadrature weights τi
3: Set v := v/

√
(vTv)

4: Set β := 0, vold := v
5: Set V (:, 1) := v
6: for j in 1, ..,m do
7: w = Hv − βvold
8: T (j, j) = α = wTv
9: w = w − αw − V V Tw

10: β =
√
wTw

11: vold = v
12: v = w/β
13: V (:, j + 1) = v
14: T (j, j + 1) = T (j + 1, 1) = β
15: end for
16: {λi, ei} = eig(T )
17: ui = V ei
18: τi = (eTi [1, 0, 0...0])2

• We can learn the negative and interior eigenvalues by shifting and inverting the matrix sign
H → −H + µI

• Lanczos learns the largest m [λi,ui] pairs of H ∈ RP×P with high probability (Dauphin
et al., 2014)

Since these two related beliefs are prevalent, we disprove them explicitly in this section, with Theo-
rems 4 and 5.
Theorem 4. The shift and invert procedure H → −H + µI , changes the Eigenvalues of the Tri-
diagonal matrix T (and hence the Ritz values) to λi = −λi + µ

Proof. Following the equations from Algorithm 1

wT
1 = (−H + µI)v1 & α1 = vT1Hv1 + µI

w2 = w1 − α1v1 = (H + µI)v1 − (vT1Hv1 + µI)v1

w2 = (H − vT1Hv1)v1 & v2 = w2/||w2||
α2 = vT2 (−H + µI)v2 = −vT2Hv2 + µ

β2 = ||w2||

(11)

Assuming this for m − 1, and repeating the above steps for m we prove by induction and finally
arrive at the modified tridiagonal Lanczos matrix T̃

T̃ = −T + µI

λ̃i = −λi + µ ∀1 ≤ i ≤ m
(12)

Remark. No new Eigenvalues of the matrix H are learned. Although it is clear that the addition of
the identity does not change the Krylov subspace, such procedures are commonplace in code per-
taining to papers attempting to find the smallest eigenvalue. This disproves the first misconception.
Theorem 5. For any matrix H ∈ RP×P such that λ1 > λ2 > ..... > λP and

∑m
i=1 λi <∑P

i=m+1 λi in expectation over the set of random vectors v the m eigenvalues of the Lanczos Tridi-
agonal matrix T do not correspond to the top m eigenvalues ofH

Proof. Let us consider the matrix H̃ = H − λm+1+λm
2 I ,{

λi > 0, ∀i ≤ m
λi < 0, ∀i > m

(13)
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Under the assumptions of the theorem, Tr(H̃) < 0 and hence by Theorem 3 and Equation 8 there
exist no wi > 0 such that

m∑
i=1

wiλ
k
i =

1

P

P∑
i=1

λki ∀ 1 ≤ k ≤ m (14)

is satisfied for k = 1, as the LHS is manifestly positive and the RHS is negative. By Theorem 4 this
holds for the original matrixH .

Remark. Given that Theorem 5 is satisfied over the expectation of the set of random vectors, which
by the CLT is realised by Monte Carlo draws of random vectors as d → ∞ the only way to really
span the top m eigenvectors is to have selected a vector which lies in the m dimensional subspace
of the P dimensional problem corresponding to those vectors, which would correspond to knowing
those vectors a priori, defeating the point of using Lanczos at all.
Remark. Given the relationship between the moments of the spectral density and the expectation
over the set of random vectors, one may be curious to ask how we expect the deviation to be de-
pending on the number of random vectors actually used in practice. Whilst usually packages using
Lanczos use a number of random vectors (increasing the corresponding computational cost), in
Appendix C we demonstrate that we expect the difference to reduce as we increase the problem
dimension P . This informs our choice of only using a single random vector in our package, we
compare results for different random vectors in Appendix C and find minimal differences.

C EFFECT OF VARYING RANDOM VECTORS

Given that the proofs for the moments of Lanczos matching those of the underlying spectral density,
are true over the expectation over the set of random vectors and in practice we only use a Monte
Carlo average of random vectors, or in our experiments using stem plots, just a single random vector.
We justify this with the following Lemma
Lemma 1. Let u ∈ RP×1 random vector, where ui is zero mean and unit variance and finite 4’th
moment E[u4

i ] = m4. Then forH ∈ RP×P , then

i)E[uTHu] = TrH

ii)Var[uTHu] ≤ (2 +m4) Tr(HTH)

Proof.

E[uTHu] =

P∑
i,j=1

Hi,jE[uivj ] =

P∑
i=1

Hi,i = TrH (15)

E[||uTHu||2] =
∑
i,j

∑
k,l

Hi,jH
T
k,lE[uiu

T
j uku

T
l ]

∑
i,j

∑
k,l

Hi,jH
T
k,l[δi,jδk,l + δi,lδj,k + δi,kδj,l +m4δi,j,k,l]

= (TrH)2 + (2 +m4) Tr(H2)

(16)

Remark. Let us consider the signal to noise ratio for some positive definiteH � cI(√
Var[uTHu]

E[uTHu]

)2

∝ 1

1 +
∑P
i6=j λiλj∑P
k λ

2
k

=
1

1 +
P−1〈λiλj〉
〈λ2
k〉

≤ 1

1 + P−1
κ2

(17)

where 〈..〉 denotes the arithmetic average. For the extreme case of all eigenvalues being identical,
the condition number κ = 1 and hence this reduces to 1/P → 0 in the P →∞ limit, whereas for a
rank-1 matrix, this ratio remains 1. For the MP density, which well models neural network spectra,
κ is not a function of P as P → ∞ and hence we also expect this benign dimensional scaling to
apply.
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We verify this high dimensional result experimentally, by running spectral visualisation but using
two different random vectors. We plot the results in Figure 5. We find both figures 5a & 5b to be
close to visually indistinguishable. There are minimal differences in the extremal eigenvalues, with
former giving {λ1, λn} = {6.8885,−0.0455} and the latter {6.8891,−0.0456}, but the degeneracy
at 0, bulk, triplet of outliers at 2.27 and the large outlier at 6.89 is unchanged.
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Figure 5: VGG16 Epoch 300 end of training Lanczos stem plot for different random vectors

C.1 WHY WE DON’T KERNEL SMOOTH

Concurrent work, which has also used Lanczos with the Pearlmutter trick to learn the Hessian (Yao
et al., 2018; Ghorbani et al., 2019), typically uses nv random vectors and then uses kernel smoothing,
to give a final density. In this section we argue that beyond costing a factor of nv more computa-
tionally, that the extra compute extended in order to get more accurate moment estimates, which
we already argued in Section C are asymptotically error free, is wasted due to the kernel smoothing
(Granziol et al., 2019). The smoothed spectral density takes the form:

p̃(λ) =

∫
kσ(λ− λ′)p(λ′)dλ′ =

n∑
i=1

wikσ(λ− λi) (18)

We make some assumptions regarding the nature of the kernel function, kσ(λ−λi), in order to prove
our main theoretical result about the effect of kernel smoothing on the moments of the underlying
spectral density. Both of our assumptions are met by (the commonly employed) Gaussian kernel.
Assumption 1. The kernel function kσ(λ− λi) is supported on the real line [−∞,∞].
Assumption 2. The kernel function kσ(λ− λi) is symmetric and permits all moments.
Theorem 6. The m-th moment of a Dirac mixture

∑n
i=1 wiδ(λ − λi), which is smoothed by a

kernel kσ satisfying assumptions 1 and & 2, is perturbed from its unsmoothed counterpart by an
amount

∑n
i=1 wi

∑r/2
j=1

(
r
2j

)
Ekσ(λ)(λ2j)λ

m−2j
i , where r = m if m is even and m − 1 otherwise.

Ekσ(λ)(λ2j) denotes the 2j-th central moment of the kernel function kσ(λ).

Proof. The moments of the Dirac mixture are given as,

〈λm〉 =

n∑
i=1

wi

∫
δ(λ− λi)λmdλ =

n∑
i=1

wiλ
m
i . (19)

The moments of the modified smooth function (Equation equation 18) are

〈λ̃m〉 =

n∑
i=1

wi

∫
kσ(λ− λi)λmdλ

=

n∑
i=1

wi

∫
kσ(λ′)(λ′ + λi)

mdλ′

= 〈λm〉+

n∑
i=1

wi

r/2∑
j=1

(
r

2j

)
Ekσ(λ)(λ

2j)λm−2ji .

(20)

17



Under review as a conference paper at ICLR 2021

We have used the binomial expansion and the fact that the infinite domain is invariant under shift
reparametarization and the odd moments of a symmetric distribution are 0.

Remark. The above proves that kernel smoothing alters moment information, and that this process
becomes more pronounced for higher moments. Furthermore, given that wi > 0, Ekσ(λ)(λ2j) > 0
and (for the GGN lambdai > 0, the corrective term is manifestly positive, so the smoothed moment
estimates are biased.

D LOCAL LOSS LANDSCAPE

The Lanczos algorithm with enforced orthogonality initialised with a random vector gives a moment
matched discrete approximation to the Hessian spectrum. However this information is local to the
point in weight space w and the quadratic approximation may break down within the near vicinity.
To investigate this, we use the loss landscape visualisation function of our package: We display
this for the VGG-16 on CIFAR-100 in Figure 8. We see for the training loss 6a that the eigenvector
corresponding to the largest eigenvalue λ = 6.88 only very locally corresponds to the sharpest
increase in loss for the training, with other extremal eigenvectors, corresponding to the eigenvalues
λ = {2.67, 2.35} overtaking it in loss change relatively rapidly. Interestingly for the testing loss, all
the extremal eigenvectors change the loss much more rapidly, contradicting previous assertions that
the test loss is a ”shifted” version of the training loss (He et al., 2019; Izmailov et al., 2018). We
do however note some small asymettry between the changes in loss along the opposite ends of the
eigenvectors. The flat directions remain flat locally and some of the eigen-vectors corresponding to
negative values correspond to decreases in test loss. We include the code in ??
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Figure 6: VGG-16 CIFAR-100 Loss surface visualised along 6 negative and position eigenvalues

CIFAR-10 DATASET

To showcase the ability of our software to handle multiple datasets we display the Hessian of the
VGG-16 trained in an identical fashion as its CIFAR-100 counterpart of CIFAR-10 in Figure ??,
along with the a plot of a selection of Ritz vectors traversing the training loss surface in Figure 8a
and testing loss surface in Figure 8b along with also the training accuracy surface (Figure 9a) and
testing accuracy surface (Figure 9b).
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Figure 7: VGG-16 CIFAR-100 Accuracy surface visualised along 6 negative and position eigenvalues
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Figure 8: VGG-16 CIFAR-10 Loss surface visualised along 6 negative and position eigenvalues

E EXAMPLES ON SMALL RANDOM MATRICES

In this section, we use some examples on small random matrices to showcase the power of our
package that uses the Lanczos algorithm with random vectors to learn the spectral density. Here,
we look at known random matrices with elements drawn from specific distributions which converge
to known spectral densities in the asymptotic limit. Here we consider Wigner Ensemble (Wigner,
1993) and the Marcenko Pastur (Marchenko and Pastur, 1967), both of which are extensively used
in simulations or theoretical analyses of deep neural network spectra (Pennington and Bahri, 2017;
Choromanska et al., 2015a; Anonymous, 2020).
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Figure 9: VGG-16 CIFAR-10 Accuracy surface visualised along negative and positive eigenvalues

E.1 WIGNER MATRICES

Wigner matrices can be defined in Definition E.1, and their distributions of eigenvalues are governed
by the semi-circle distribution law (Theorem 7).
Definition E.1. Let {Yi} and {Zij}1≤i≤j be two real-valued families of zero mean, i.i.d random
variables, Furthermore suppose that EZ2

12 = 1 and for each k ∈ N

max(E|Zk12, E|Y1|k) <∞ (21)

Consider a P × P symmetric matrix MP , whose entries are given by{
MP (i, i) = Yi
MP (i, j) = Zij = MP (j, i), if x ≥ 1

(22)

The Matrix MP is known as a real symmetric Wigner matrix.
Theorem 7. Let {MP }∞P=1 be a sequence of Wigner matrices, and for each P denote XP =

MP /
√
P . Then µXP , converges weakly, almost surely to the semi circle distribution,

σ(x)dx =
1

2π

√
4− x21|x|≤2 (23)

For our experiments, we generate random matrices H ∈ RP×P with elements drawn from the
distribution N (0, 1) for P = {225, 10000} and plot histogram of the spectra found by eigende-
composition, along with the predicted Wigner density (scaled by a factor of

√
P ) in Figures 10b &

10d and compare them along with the discrete spectral density approximation learned by lanczos in
m = 30 steps using a single random vector d = 1 in Figures 10a & 10c. It can be seen that even
for a small number of steps m� P and a single random vector, Lanczos impressively captures not
only the support of the eigenvalue spectral density but also its shape. We note as discussed in section
B.2 that the 30 Ritz values here do not span the top 30 eigenvalues even approximately.

E.2 MARCENKO-PASTUR

An equally important limiting law for the limiting spectral density of many classes of matrices con-
strained to be positive definite, such as covariance matrices, is the Marcenko-Pastur law (Marchenko
and Pastur, 1967). Formally, given a matrix X ∈ RP×T with i.i.d zero mean entires with vari-
ance σ2 < ∞. Let λ1 ≥ λ2, ... ≥ λP be eigenvalues of Yn = 1

TXX
T . The random measure

µP (A) = 1
P #{λj ∈ A}, A ∈ R
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Figure 10: Lanczos stem plot for a single random vector withm = 30 steps compared to actual eigenvalue histogram for matrices of the form
H ∈ RP×P , where each element is a drawn from a normal distribution with unit variance, converging to the Wigner semi circle.
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Figure 11: Lanczos stem plot for a single random vector withm = 30 steps compared to actual eigenvalue histogram for matrices of the form
H ∈ RP×P , whereH = XXT /k, where each element ofXP×k , k = 0.5P is a drawn from a normal distribution with unit variance,
converging to the Marcenko-Pastur distribution with q = 0.5.

Theorem 8. Assume that P,N → ∞ and the ratio P/N → q ∈ (0,∞) (this is known as the
Kolmogorov limit) then µP → µ in distribution where{

(1− 1
q )10∈A + ν1/q(A), if q > 1

νq(A), if 0 ≤ q ≤ 1
(24)

dνq =

√
(λ+ − x)(x− λ−)

λx2πσ2
, λ± = σ2(1±√q)2 (25)

Here, we construct a random matrix X ∈ P× T with independently drawn elements from the dis-
tribution N (0, 1) and then form the matrix 1

TXX
T , which is known to converge to the Marcenko-

Pastur distribution. We use P = {225, 10000} and T = 2P and plot the associated histograms from
full eigendecomposition in Figures 12b & 12d along with their m = 30, d = 1 Lanczos stem coun-
terparts in Figures 12a & 12c. Similarly we see a faithful capturing not just of the support, but also
of the general shape. We note that both for Figure 10 and Figure 12, the smoothness of the discrete
spectral density for a single random vector increases significantly, even relative to the histogram.

We also run the same experiment for P = 10000 but this time with T = 0.5P so that exactly half
of the eigenvalues will be 0. We compare the Histogram of the eigenvalues in Figure 11b against its
m = 30, d = 1 Lanczos stem plot in Figure 11a and find both the density at the origin, along with
the bulk and support to be faithfully captured.

E.3 COMPARISON TO DIAGONAL APPROXIMATIONS

As a proxy for deep neural network spectra, often the diagonal of the matrix (Bishop, 2006) or the
diagonal of a surrogate matrix, such as the Fisher information, or that implied by the values of the
Adam Optimizer (Chaudhari et al., 2016) is used. We plot the true eigenvalue estimates for random
matrices pertaining to both the Marcenko-Pastur (Fig. 14a) and the Wigner density (Fig. 14b) in
blue, along with the Lanczos estimate in red and the diagonal approximation in yellow. We see here
that the diagonal approximation in both cases, fails to adequately the support or accurately model the
spectral density, whereas the lanczos estimate is nearly indistinguishable from the true binned eigen-
spectrum. This is of-course obvious from the mathematics of the un-normalised Wigner matrix. The
diagonal elements are simply draws from the normal distribution N (0, 1) and so we expect the

21



Under review as a conference paper at ICLR 2021

0

0.02

0.04

0.06

0.08

0.1

-0.5 0 0.5 1 1.5 2 2.5 3

(a) Stem m = 30, P = 225

0 0.5 1 1.5 2 2.5 3
Eigenvalue 

0

0.02

0.04

0.06

0.08

0.1

 P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n 
f(

)

(b) Histogram,P = 225

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-0.5 0 0.5 1 1.5 2 2.5 3

(c) Stem m = 30, P = 104

0 0.5 1 1.5 2 2.5 3
Eigenvalue 

0

0.02

0.04

0.06

0.08

0.1

 P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n 
f(

)

(d) Histogram, P = 104

Figure 12: Lanczos stem plot for a single random vector withm = 30 steps compared to actual eigenvalue histogram for matrices of the form
H ∈ RP×P , where H = XXT /k, where each element of XP×k , k = 2P is a drawn from a normal distribution with unit variance,
converging to the Marcenko-Pastur distribution with q = 2.
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Figure 13: Generated matrices H ∈ R1000×1000 with known eigenspectrum and Lanczos stem plots for different values of m =
{5, 15, 30}

diagonal histogram plot to approximately follow this distribution (with variance 1). However the
second moment of the Wigner Matrix can be given by the Frobenius norm identity

E
(

1

P

P∑
i

λ2i

)
= E

(
1

P

P∑
i,j=1

H2
i.j

)
= E

(
1

P
χ2
P 2

)
= P (26)

Similarly for the Marcenko-Pastur distribution, We can easily see that each element of H follows a
chi-square distribution of 1/Tχ2

T , with mean 1 and variance 2/T .

E.4 SYNTHETIC EXAMPLE

The curvature eigenspectrum of neural network often features a large spike at zero, a right-skewed
bulk and some outliers (Sagun et al., 2016; 2017).3 In order to simulate the spectrum of a neural
network, we generate a Matrix H ∈ R1000×1000 with 470 eigenvalues drawn from the uniform
distribution from [0, 15], 20 drawn from the uniform [0, 60] and 10 drawn from the uniform [−10, 0].
The matrix is rotated through a rotation matrix U , i.eH = UDUT whereD is the diagonal matrix
consisting of the eigenvalues and the columns are gaussian random vectors which are orthogonalised
using Gram-Schmidt orthogonalisation. The resulting eigenspectrum is given in a histogram in

3Some examples of this can be found in later sections on real-life neural network experiments - see Figures
15 and 5.
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Figure 14: Two randomly generated matrices H ∈ R500×500 with the histogram of the true eigenvalues in blue, the Lanczos estimate
m = 30, d = 1 in red and the diagonal approximation in yellow
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Figure 13a and then using the same random vector, successive Lanczos stem plots for different
number of iterations m = [5, 30] are shown in Figure 13. Figure 13b, for a low number of steps,
the degeneracy at λ = 0 is learned, as are the largest and smallest eigenvalues, some information
is retained about the bulk density, but some of the outlier eigenvalues around λ ≈ 20 and λ ≈ 30
are completely missed out, along with all the negative outliers except the largest. For m = 30
even the shape of the bulk is accurately represented, as shown in Figure 13d. Here, we would like
to emphasise that learning the outliers is important in the neural network context, as they relate to
important properties of the network and the optimisation process (Ghorbani et al., 2019).

On the other hand, we note that the diagonal estimate in Figure 13c gives absolutely no spectral
information, with no outliers shown (maximal and minimal diagonal elements being 5.3 and 3.3
respectively and it also gets the spectral mass at 0 wrong. This builds on section E.3, as further-
ing the case against making diagonal approximations in general. In neural networks, the diagonal
approximation is similar to positing no correlations between the weights. This is a very harsh as-
sumption and usually a more reasonable assumption is to posit that the correlations between weights
in the same layer are larger than between different layers, leading to a block diagonal approximation
(Martens, 2016), however often when the layers have millions of parameters, full diagonal approxi-
mations are still used. (Bishop, 2006; Chaudhari et al., 2016).

E.5 COMPARISON TO BACKPACK

For 16-layer VGG network, on the CIFAR-100 dataset the GGN diagonal computations Dangel et al.
(2019) require over 125GB of GPU memory. Hence we use their Monte Carlo approximation to the
GGN diagonal against both our GGN-Hessian-Lanczos spectral visualizations. We plot a histogram
of the Monte Carlo approximation of the diagonal GGN (Diag-GGN) against both the Lanczos GGN
(Lanc-GGN) and Lanczos Hessian (Lanc-Hess) in Figure 15. Note that as the Lanc-GGN and Lanc-
Hess are displayed as stem plots (with the discrete spectral density summing to 1 as opposed to
the histogram area summing to 1). We note that the Gauss-Newton approximation quite closely
resembles its Hessian counterpart, capturing the majority of the bulk and the outlier eigenvectors at
λ1 ≈ 6.88 and the triad near λi ≈ 2.29. The Hessian does still have significant spectral mass on
the negative axis, around 37%. However most of this is captured by a Ritz value at −0.0003, with
this removed, the negative spectral mass is only 0.05%. However the Diag-GGN gives a very poor
spectral approximation. It vastly overestimates the bulk region, which extends well beyond λ ≈ 1
implied by Lanczos and adds many spurious outliers between 3 and the misses the largest outlier of
6.88. Computational Cost Using a single NVIDIA GeForce GTX 1080 Ti GPU, the Gauss-Newton
takes an average 26.5 seconds for each Lanczos iteration with the memory useage 2850Mb. Using
the Hessian takes an average of 27.9 seconds for each Lanczos iteration with 2450Mb memory
usage.
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Figure 15: Diagonal Generalised Gauss-Newton monte carlo approximation (Diag-GGN) against m = 100 Lanczos using Gauss-Newton
vector products (Lanc-GGN) or Hessian vector products (Lanc-Hess)

23


	Introduction
	Motivation
	Loss Surfaces
	Second Order Optimisation Methods
	Contributions
	Related Work

	Lanczos, Misconceptions and Spectral Density Approximations
	An Illustrated Example
	Example Research Applications
	Simplicity of Second Order Optimisation with the Deep Curvature Suite
	Spectral Stochastic Gradient Descent with the Deep Curvature Suite
	Verifying Random Matrix Theory in Deep Learning using our Package

	Conclusion
	Subtleties of Batch Normalisation
	Train Mode
	EvaluationMode

	Learning to love Lanczos
	The Problem of Moments: Spectral Density Estimation Using Lanczos
	Computational Complexity

	Effect of Varying Random Vectors
	Why we don't kernel smooth

	Local loss landscape
	Examples on Small Random Matrices
	Wigner Matrices
	Marcenko-Pastur
	Comparison to Diagonal Approximations
	Synthetic Example
	Comparison to Backpack


