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ABSTRACT

The image Difference Captioning (IDC) task is to describe the distinctions between
two images. However, existing datasets do not offer comprehensive coverage
across all image-difference categories. In this work, we introduce a more extensive
dataset, DiffTell, which encompasses various types of differences between images,
including global image alterations, object-level changes, and text manipulations.
DiffTell includes both newly collected data and filtered data used in previous
studies. Additionally, to scale up the data collection without prohibitive human
labor costs, we explore the possibility of automatically filtering for quality control.
We prove that both traditional methods and recent multimodal large language
models (MLLMs) show improved performance on the IDC task after training
on the DiffTell dataset. We conducted extensive ablation studies to provide a
thorough analysis of the performance gain from DiffTell. Experiments show DiffTell
significantly enhances the availability of resources for IDC research, offering a
more comprehensive foundation and benchmark for future investigations.

1 INTRODUCTION

Given the great progress in image generation (Ramesh et al., 2021; Rombach et al., 2022a), dissemi-
nating AI-modified fake images can lead to widespread misinformation, erosion of public trust, and
manipulation of public opinion on critical issues. Emerging open standards, such as C2PA (Coali-
tion for Content Provenance and Authenticity, 2023), outline provenance frameworks that utilize
perceptual hashing techniques to link images found in the public domain with a federated database
of original content (Black et al., 2021; Pizzi et al., 2022). Upon retrieving the source image, image
difference captioning (IDC) models can describe the discrepancies between the circulated image and
its original, enabling individuals to make more informed and nuanced trust assessments. IDC has
been researched with various algorithms (Tan et al., 2019; Qiu et al., 2021; Tu et al., 2021; Guo et al.,
2022b; Yao et al., 2022b; Tu et al., 2023e;a). However, the image domain and the difference types of
the current IDC dataset are either limited or small-scaled, as summarized in Table 1. This makes the
generalization ability of the current model unsatisfactory; thus, a comprehensive IDC dataset on a
large scale is needed.

The IDC dataset consists of the data triplet, including one image pair (the original and the manipulated)
and one language caption describing the difference between them. The formal definition is given in
Section 3.1. As shown in Table 1, existing datasets focus either on domain-specific images, such
as Spot-the-diff (Jhamtani & Berg-Kirkpatrick, 2018a) with frames of the surveillance videos, or
3D-rendered scenes with limited objects and change types (color, texture, add, drop, remove) in
CLEVR (Park et al., 2019b). Even though image editing request (IER) has various types of editing
on the real natural images, it is limited in volume (∼ 4K) since manual human editing is costly
and time-consuming, making it harder to scale up (Tan et al., 2019). Given the development of
generative AI and image editing technologies, language-guided AI-manipulated image data have
been created with data triplet: before-edited image, after-edited image, language editing request.
InstructPix2Pix (Brooks et al., 2023) leverages GPT-3 (Brown et al., 2020) to scale up possible editing
commands and resort to prompt2prompt (Hertz et al., 2022) for automatic editing. However, we
find that it includes a high error rate, which is over 60%. MagicBrush (Zhang et al., 2023) provides
10K manually annotated real image editing triplets with careful quality control but only contains
local edits. It has showcased the importance of high-quality data for language-guided image editing.
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Therefore, we identify a need for an IDC dataset that is varied in manipulation types and maintains
high quality at a large scale.

To better support research in image difference captioning, we introduce the DiffTell dataset, specifi-
cally created to encompass a broader range of editing types, including both real and synthesized image
pairs, while maintaining careful quality control. We include four categories of image difference:
background change, local object change, text manipulation, and image style change from various
data sources. Examples of the DiffTell dataset are illustrated in Fig. 1. We first include two accessible
language-guided image editing datasets InstructPix2Pix (Brooks et al., 2023) and MagicBrush (Zhang
et al., 2023). We manually filtered out the noisy, low-quality data in InstructPix2Pix. As text manipu-
lation is critical in creating fake news, we enriched the text addition and removal data by inpainting
the text in MARIO-10M images (Chen et al., 2023a). In addition, we extended the object addition
and removal by inpainting the COCO (Lin et al., 2014) dataset. All AI-generated editing outcomes
have passed the quality filtering process. Moreover, since the labor cost of manual quality filtering
could be expensive when scaled up, we further learn an automatic data filtering model to reduce
the cost and observed the benefit of such an auto filtering process according to model captioning
performance.

Multimodal large language model (MLLMs) have become increasingly popular in the research
community due to their strong general-purpose capability. By linking large language models (LLMs)
with visual conditioning (Liu et al., 2023e; Zhu et al., 2023), MLLMs have shown impressive results
in natural instruction-following and visual reasoning capabilities. Meanwhile, the DiffTell dataset
can serve as a visual instruct finetuning (Liu et al., 2023e) step upon the multiple MLLM models.
We demonstrate the general improvement of IDC performance using the DiffTell dataset on various
baselines, indicating its value and benefits. In summary, our contributions are

• Proposing the DiffTell dataset that includes various kinds of changes with high-quality samples on
a larger scale than previous datasets;

• Proving that DiffTell can boost the IDC on various baselines on both IER and PSBattle datasets;
•A detailed analysis of how the DiffTell dataset enhances IDC in different editing categories;
• Probing the model-based data filtering given the fixed amount of human-filtered data, allowing

potential data scale-up.

Table 1: The comparison involves DiffTell and currently available datasets designed for the image
difference captioning (IDC) task. “Real” and “Syn.” signify the presence of real and synthetic images
in the datasets, respectively. “Human Anno.” indicates whether the dataset is filtered with human
annotations. The term “comprehensive” category denotes that the dataset can encompass all the
categories outlined in Section 3.2. A more detailed existing dataset description is given in Section A.

Dataset Size Real Syn. Human Anno. Categories Domain

CLEVR-Change 70K ✗ ✓ ✗ Local object primitive 3D shapes
Spot-the-Diff 13K ✓ ✗ ✓ Local object top-down street view

IER 4K ✓ ✗ ✓ Comprehensive varied natural images
PSBattl 100 ✓ ✗ ✓ Comprehensive varied natural images

DiffTell (Ours) 70K ✓ ✓ ✓ Comprehensive varied natural images & genAI

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

With the development of visual encoder and its combination to large language models (LLMs), multi-
modal large language models (MLLMs) (Liu et al., 2024; 2023c;d; Zhu et al., 2023) show promising
capability to understand images, accept text inputs, and generate natural-language responses. Increas-
ing the model capacity and dataset size can generally improve the capability of MLLMs (Zhang et al.,
2022; Bai et al., 2023; Chen et al., 2023c). Visual encoders (Radford et al., 2021; Li et al., 2022; 2023)
are applied to encode visual information into visual tokens, providing input for the LLMs. Other
strategies like expanding the instruction-tuning dataset (Liu et al., 2023a) and increasing the visual
resolution (Wang et al., 2023; Bai et al., 2023; Liu et al., 2023b) can also improve the performance of
the MLLMs. Recently, MLLMs have been used to understand fine-grained images, such as in local
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region understanding (Chen et al., 2023b; Liu et al., 2023f). Image difference captioning is closely
related to fine-grained image understanding with multiple-image input.

2.2 IMAGE DIFFERENCE CAPTIONING

As mentioned above, MLLMs are used to understand the local region. Image difference captioning
(IDC) is more challenging because the model needs to not only understand each image correctly but
also capture and identify the difference between two images correctly and express it precisely in
language. In IDC, the caption aims to describe the differences between the images while ignoring
their commonalities. The first work on IDC, Spot-the-Diff (Jhamtani & Berg-Kirkpatrick, 2018b),
categorizes different types of changes and uses an LSTM-based network to model them. DUDA (Park
et al., 2019a) improves the robustness against slight global changes by analyzing image differences at
a CNN semantic level instead. Viewpoint invariant encoders have been proposed in M-VAM (Shi
et al., 2020b), VACC (Kim et al., 2021), and VARD (Tu et al., 2023c) to mitigate potential viewpoint
differences, while (Sun et al., 2022) uses bidirectional encoding to improve change localization
and NCT (Tu et al., 2023d) aggregates neighboring features with a transformer. IDC-PCL (Yao
et al., 2022a) and CLIP4IDC (Guo et al., 2022a) adopt BERT-like training strategies to model the
difference-captioning language. SCORER (Tu et al., 2023f) applies a self-supervised cross-view
representation reconstruction technique for difference captioning. Recently, with the advancement
of MLLMs, more datasets have integrated the existing IDC dataset to train powerful MLLMs with
diverse capabilities. For instance, LLaVA-OneVision (Li et al., 2024) includes the CLEVR dataset,
while Mantis-Instruct (Jiang et al., 2024) incorporates the Spot-the-Diff dataset.

2.3 IMAGE EDITING

One of the biggest challenges in IDC is the shortage of high-quality, comprehensive datasets of
paired images. The development of diffusion model (Ho et al., 2020) significantly improves the
quality and controllability of the generated images. By controlling the cross-attention, diffusion
models can transform the image globally (Rombach et al., 2022a; Saharia et al., 2022). Local editing
depends on the fine-grained predicted or user-provided mask, such as inpainting (Lugmayr et al.,
2022; Nichol et al., 2021; Avrahami et al., 2022). Different from the image transformation and local
editing, the input of the instruction-guided image editing is in the command format rather than the
detailed description and mask (Brooks et al., 2023). DiffTell significantly benefits from the progress
in image generation models (Rombach et al., 2022b), especially the local editing model, leveraging
their capabilities to enhance the quality and diversity of the dataset.

3 PROBLEM FORMULATION AND DATASET CONSTRUCTION

3.1 PROBLEM DEFINITION

For IDC problem, when presented with two similar images, denoted as I1 and I2, our objective is to
employ a vision-language (VL) model, fθ, to articulate the distinctions between I1 and I2 in natural
language. This can be represented as: TI1,I2 = fθ(I1, I2), where TI1,I2 represents the descriptive
caption text provided by the model regarding the dissimilarities between the images, and θ signifies
the model parameters within the VL model. The elements I1, I2, and TI1,I2 collectively form the
constituents of each sample within the IDC dataset.

3.2 IDC CATEGORIES

Considering that our main motivation is to alleviate the misinformation and spreading of doctored
images, we focus on the image pairs created by manipulation or editing and exclude the pairs without
any correlation or cannot be easily obtained by human/AI editing. To further concretize the research
problem, we categorize four image difference types as background change, local object modification,
style change and text manipulation. Background change is alterations related to the background,
such as removing, adding, or changing the background of an image. Text manipulation involves
addition, removal, or modification of text within the original image. Local object change is about
object re-colorization, appearance editing, object removal, insertion, or translation. Style change is
the artistic style change, such as realistic photo to painting, and photo-realistic style change, such

3
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Is the image
in-painted
correctly?

Caption: Remove the Zebra

Y

Do the image
pair and text
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Make the harbor
park a dessert

Make her wear a
crown

Caption: Remove the text USA
DRINKING TEAM

The example should
be dropped

N

N

Y
Caption: Make her wear a crown

MARIO-10M

InstructPix2Pix

Stage 1: Data Collection Stage 2: Human Filtering Stage 3: Finalization

Skip Step 2

Skip Step 2
MagicBrush

GIER

DiffTell

Caption:
put a forest 
to the side 
of the field.

Caption:
Add the 
green tone 
to the image

Original Image Input Mask Firefly Output

Original Image Input Mask Firefly Output

Figure 1: The data collection pipeline involves two steps. Initially, data is gathered from COCO,
MARIO-10M, InstructPix2Pix, MagicBrush, and GIER. For COCO and MARIO-10M, an in-painting
process is applied to the images with the help of masks, and the labeling team subsequently filters out
unsuccessful cases (Step 2). The three images are the original image, the input mask and the output
from Firefly Generative Fill from the left to the right. In the second (lower) COCO example, where
the scissors remain unaltered, the labeling team excludes this case from the dataset. Similarly, for
the first (upper) MARIO-10M example, although the text in green is removed, the generation model
introduces an additional element outlined in the red box, leading to the exclusion of this example as
well. In the case of InstructPix2Pix, the labeling team verifies the alignment between image pairs
and language instructions. Instances with unsuccessful modification (e.g., the dessert modification
in the top example) are removed from the dataset. For the MagicBrush and GIER datasets, Step 2
is skipped as they have already undergone manual filtering. The final stage involves compiling the
filtered data, resulting in the creation of the DiffTell dataset.

as adjusting the brightness or tone. Existing datasets such as IER mainly include the first three
categories but lack text manipulation. However, text manipulation is crucial in our scope since some
text changes can flip the message of an image, leading to fake news and forged messages. For
example, the message of a smiling face image can be changed from happiness to sarcasm by adding
the sentence “absolutely thrilled to be overworked and underpaid.” Therefore, we put additional
effort into text manipulation data collection. The detailed elaboration of each difference category is
as follows.

3.3 DATASET COLLECTION PIPELINE

Based on the definition in Section 3.1, the triplet (I1, I2, TI1,I2) reflecting the four categories given
above is the fundamental element to build an image difference captioning (IDC) dataset. As the
mirrored task of IDC, the instruction-guided image editing dataset is considered, which provides
(I1, I2, TI1,I2) exactly. We select InstructPix2Pix (Brooks et al., 2023), GIER (Shi et al., 2020a),
and MagicBrush (Zhang et al., 2023) as the subset of our dataset due to the editing types, dataset
sizes/qualities. The difference categories of those three datasets are given in Table 2.
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Table 2: Summary of the source datasets from which we derived our dataset. “Syn. Image” indicates
whether the image domain contains synthetic images, while the “F. rate” denotes the ratio of images
retained after manual filtering by our labeling team if needed, which is equal to (100% - Rejection
Rate).

Datasets Syn. Image F. Rate (%) Image Difference Categories Dataset Size

InstructPix2Pix ✓ 35.13 Background, Image style, Local object 17,592
GIER ✗ 100.00 Background, Local object, Image style 6,179

MagicBrush ✗ 100.00 Local object, Text 8,807
MARIO-10M ✗ 26.86 Text 30,903

COCO ✗ 43.87 Local object 12,886

DiffTell ✓ Comprehensive 67,589

Most existing vision datasets only provide I1 and its corresponding annotations, like the object
segmentation mask or the object’s name. Empowering the generative model (Rombach et al., 2021;
Yang et al., 2023), we can remove an object from the image to generate I2 although a quality check
step is necessary due to the limitation of the generative model. The difference caption TI1,I2 can be
generated based on the editing operation from the generative model. For datasets only providing I1,
such as COCO and MARIO-10M, we mainly focus on object change and text manipulation. For the
generation of I2, we apply the inpainting model Firefly Generative Fill1 and the details of how to
generate images are given in Appendix G. TI1,I2 is based on the template “Add <Text> / <Object>”
or “Remove <Text> / <Object>” depends on the order of I1 and I2, which is determined by a random
number generator whose probability is 0.5. For the datasets providing I1, I2 and TI1,I2 without
manually filtering like InstructPix2Pix, we ask the labeling team to filter them. We provide the details
of each subset and annotation details below.

InstructPix2Pix (Brooks et al., 2023) provides I1, I2 and TI1,I2 , where (I1, I2) are generated
by StableDiffusion (Rombach et al., 2022a) in combination with Prompt-to-Prompt, and TI1,I2 is
produced by a finetuned GPT-3 (Brown et al., 2020). It is a large (450K+) dataset with various image-
difference categories thanks to the automated process. However, the automated process occasionally
mismatches the image pair and its corresponding instruction. We present such a noisy sample in
Fig. 1. The instruction “Make the harbor park a dessert” does not describe the difference between
the image pair. To mitigate this, our labeling team meticulously reviews a subset to retain clear and
accurate samples. After reviewing 50,012 selected triplets from the InstructPix2Pix dataset, we obtain
17,592 image pairs covering background, style, and local object change.

GIER (Shi et al., 2020a) also provides the (I1, I2, TI1,I2) triplet, presenting 6,179 image pairs.
IER and GIER are both from the same source and complementary to each other. More specifically,
they are both from the human Photoshop-edited images based on the language editing instructions.
GIER is mostly characterized by its global tone and lighting editing. We employ these pairs along
with expert annotations as I1, I2, and TI1,I2 respectively, while standardizing the language style by
removing unnecessary politeness indicators like “Please.”

MagicBrush (Zhang et al., 2023) constitutes a high-quality dataset for multi-turn image editing,
meticulously curated through manual filtering, providing (I1, I2, TI1,I2) triplets in high quality, which
can be used directly in IDC task. To adapt this multi-turn editing to fit our framework, we segmented
it into several single-turn edits and randomized their order. As a result, we incorporate 8,807 image
pairs from Magicbrush into DiffTell.

MARIO-10M (Chen et al., 2023a): Text manipulation data is gathered based on MARIO-10M,
a dataset offering rough segmentation masks and optical character recognition (OCR) results for
text within images. The dataset only provides I1, and we use FireFly Generative Fill to remove the
masked text from the images to generate I2 with the input of I1 and its corresponding mask. We
apply mask dilation, enlarging the original mask by 5 pixels to make the region of interest (ROI)
covered by the mask as much as possible. Our labeling team carefully verifies the resulting images
to ensure that the text is fully removed and there is no additional element added in I2, leading to
the retention of 30,903 image pairs out of 115,059 in our dataset. For filtered image pairs (I1, I2),

1As a type of artificial intelligence that can translate text and other inputs into extraordinary results, Firefly
Generative Fill model can generate the image according to the image or text input and be accessed at https:
//firefly.adobe.com.
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the language templates TI1,I2 we use are “add text” or “remove text,” depending on the order of the
image pair. We also add the OCR results to the caption, with examples given in Fig. 1.

COCO (Lin et al., 2014): Similar to MARIO-10M dataset, COCO dataset only provides I1 and we
need to generate I2 and TI1,I2 . We initially generated masks for each instance from the annotations in
the training set. Different from MARIO-10M, the mask cannot be used directly because some of the
object masks are tiny, while some occupy almost the whole image, although the object is the same.
To ensure proper object sizes, a mask filtering technique is applied, selecting objects within a specific
size range based on the distribution of mask sizes within each class. For each class, we select the
images with the masks whose area is 50%-75% of the largest area to ensure that the change within
the image pairs is obvious and meaningful while not occupying the full image. This process results in
a selection of 128,969 images from an initial pool of 860,001. Similar to the MARIO-10M approach,
mask dilation is applied in case of potential detail loss in polygon masks. Objects are in-painted using
FireFly Generative Fill, and the resulting images are scrutinized by our labeling team, resulting in a
final selection of 12,886 image pairs out of 29,374 for our dataset. After getting the image pairs with
and without the object from inpainting, we follow the language template in MARIO-10M, which is
“add <object>” or “remove <object>” as shown in Fig. 1. The COCO subset in DiffTell focuses on
local object change.

Quality Check Statistics We use LabelBox2 as our crowdsourcing platform. Each sample added to
DiffTell is initially labeled by an annotator and then reviewed by a high-performing annotator selected
by us. To identify high-performing annotators, we have each annotator label 500 images to assess
their understanding of the task, and we manually evaluate their accuracy. The top 30% of annotators
are selected as high-performing and assist with the review process on a larger scale. On average, the
labeling time is 56.73 seconds, while the reviewing time averages 72.44 seconds.

Rationality of Data Construction with Generative Model Considering the circulated deceptive
doctored images are usually edited by humans or AI, we also create the image pair with human or
AI manipulation. InstructPix2Pix, MagicBrush, Mario-10M, and COCO are AI-edited, and GIER is
human Photoshopped. And we can control the type of difference in the dataset based on the editing
we applied, allowing future balancing and debias of various IDC categories.

3.4 DATASET ANALYSIS

Following the dataset collection, we conduct a statistical analysis of the DiffTell dataset based on the
four categories in Section 3.2. The contribution to each editing category within each subset of DiffTell
is presented in Fig. 3b. Background and image style changes are from GIER and InstructPix2Pix.
MARIO-10M is for text manipulation. Local object change is from all the subsets except MARIO-
10M. Over 72.9% images’ resolution is 512 × 512. The largest image is 1024 × 1024, which is
over 10%. The ratio of the images in other resolution is less than 1.5%. The average length of
the difference description is 9.72 words. The longest description is 66 words, while the shortest is
3 words. The most descriptions contain 9 words. The description length distribution are given in
Figure 2. We attach more dataset illustration and how the labeling team works to filter the data to the
Appendix G.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Benchmark Datasets and Evaluation Metrics We conduct experiments on the IER dataset (Tan et al.,
2019) and the PSBattle dataset (Black et al., 2024), which encompass a wide range of image editing
differences. The PSBattle dataset is sourced from the PSRequest channel on Reddit3, comprising 100
pairs of images, each associated with at least three captions depicting image modifications (Black
et al., 2024). Note that we exclude CLEVR (Park et al., 2019b) and Spot-the-difference (Jhamtani
& Berg-Kirkpatrick, 2018a) from our evaluation because they only focus on a single image domain
(simple geometry and surveillance camera), and their image pairs are not created by human/AI
edit, deviating from our motivation of building a dataset with various image difference types to

2https://labelbox.com
3https://www.reddit.com/r/photoshopbattles/

6

https://labelbox.com
https://www.reddit.com/r/photoshopbattles/


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60
0

5000

10000

15000

Figure 2: The difference description length distribution in DiffTell

avoid deceptive image doctoring. In the case of IER, we evaluate performance on the testing set by
comparing models trained exclusively on the IER training set and those trained on a combination of
the IER training set and the DiffTell dataset. There exists overlap between GIER and IER datasets
and we drop the samples in GIER which also exist in the IER testing set. For the PSBattle dataset,
we adopt it as an out-of-domain dataset to test the zero-shot capability of our model. Aligned with
prior captioning research, we employ BLEU@4 (Papineni et al., 2002) (B@4), METEOR (Banerjee
& Lavie, 2005) (M), CIDEr (Vedantam et al., 2015) (C), and ROUGE-L (Lin, 2004) (R-L) as the
evaluation metrics.

Baselines and Implementation Details We implement several baseline methods for IDC to com-
prehensively illustrate the benefits of the DiffTell dataset, including both IDC-specific and MLLM
methods. For IDC-specific methods, we use CLIP4IDC (Guo et al., 2022b). For MLLM methods, we
report OpenFlamingo-3B (Awadalla et al., 2023), Fuyu-8B (Bavishi et al., 2023) and Llave-interleave-
8B (Liu et al., 2023c) here. We follow the instruction tuning methods to train the MLLMs. Without
further clarification, the prompt we use across all the experiments is “What is the difference between
two images?”. We also try the diverse instruction prompts and results are given in Appendix D but
the difference is not significant. The implementation details and the results of more baselines (Tu
et al., 2023b;d) are given in Appendix B.

Table 3: Comparison of the methods fine-tuned on IER training set with and without DiffTell. The
testing sets are the IER testing set and the PSBattle dataset.

Testing Set Method DiffTell BLEU@4 METEOR CIDEr ROUGE-L

IER CLIP4IDC ✗ 5.65 10.23 22.52 28.95
✓ 8.64 13.54 28.14 36.84

IER OpenFlamingo-3B ✗ 4.45 14.87 15.80 29.79
✓ 6.49 16.68 21.04 31.36

IER Fuyu-8B ✗ 4.85 11.84 23.67 28.10
✓ 9.59 16.52 41.05 35.44

IER Llave-Interleave-8B ✗ 6.09 14.05 29.69 32.67
✓ 11.06 17.35 44.79 37.21

PSBattle CLIP4IDC ✗ 0.00 3.08 1.59 13.83
✓ 3.08 6.25 3.63 21.22

PSBattle OpenFlamingo-3B ✗ 2.35e-04 2.33 7.71 19.24
✓ 2.12 6.60 4.02 16.10

PSBattle Fuyu-8B ✗ 1.38 4.79 4.19 12.23
✓ 2.15 7.57 4.05 13.73

PSBattle Llave-Interleave-8B ✗ 2.60 8.88 7.86 18.01
✓ 4.13 9.39 8.55 21.09

Table 4: Results of IER testing set from OpenFlamingo-3B model finetuned on different datasets.

Metrics IER + InstructP2P + OCR + MagicBrush + COCO + GIER + DiffTell

B@4 4.45 5.41 6.24 5.70 4.67 6.35 6.49
M 14.87 14.54 15.73 13.94 11.64 10.86 16.68
C 15.80 15.69 17.29 15.71 11.50 19.07 21.04

R-L 29.79 30.38 31.28 29.05 26.20 29.76 31.36
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(a) Category-wise ROUGE-L comparison on IER testing set using
OpenFlamingo-3B trained with different subsets in DiffTell.
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Figure 3: Category-wise ROUGE-L score in DiffTell and general statistics of DiffTell

4.2 MAIN RESULT

Quantitative Result We report the experiment results on the IER testing set and PSBattle dataset with
and without DiffTell in Table 3. Results demonstrate DiffTell’s ability to enhance performance across
nearly all evaluation metrics and for all baseline methods, underscoring the contribution of the DiffTell
dataset on IDC. Notice that OpenFlamingo-3B with LLM backbone is less capable than CLIP4IDC
with a much smaller model size. We suspect that the Flamingo model does not have direct modeling
of the interaction between the two images because each image feature is cross-attentioned by language
token, then the language tokens will interact via causal attention. In contrast, in CLIP4IDC, the two
image patch features extracted by CLIP are fused using a transformer, which is a direct information
interaction among image tokens, serving as a strong condition to guide the transformer decoder to
generate the language that describes the visual difference. There is no image encoder in the Fuyu
model, and the image is patched linearly to the transformer. Thus, Fuyu can accept an image of
the arbitrary size, improving its capability to detect tiny differences and small objects. This can be
the reason why Fuyu improves greatly after fine-tuning. For Llava-Interleave-8B, the pre-trained
interleaved dataset provides a good knowledge base for the model to understand the context with
multiple image inputs. Thus, it outperforms the IDC-specific model without DiffTell and can perform
best among all the baselines. In addition, the performance on the PSBattle dataset is generally lower
than IER, which is as expected since PSBattle is used for zero-shot tests without the training set.

Qualitative Study We compare the prediction for the OpenFlamingo-3B and CLIP4IDC models
trained with and without DiffTell. The visualization examples of IER and PSBattle testing set are
shown in Figs. 4 and 5, respectively.

As depicted in Fig. 4, the model demonstrates enhanced proficiency in describing local object
changes, text detection and recognition, background alterations, and image style changes. In the
text manipulation example, the model exhibits OCR capabilities without relying on existing OCR
techniques. Notably, in the local object change example, the model accurately identifies the addition
of a tattoo on the girl’s back, showcasing its capability to recognize modified objects and discern
correct object relationships. Furthermore, in the third example depicting a background change, the
model with DiffTell uses around rather than from, underscoring its spatial recognition capability.

In the zero-shot testing scenario of PSBattle, anticipating imperfect predictions is reasonable. How-
ever, it is crucial to observe the conceptual similarity between predictions and ground truth. Similar
to the earlier findings, the model acquires the capability of object change perception and OCR even
without an LLM backbone.

4.3 ABLATION STUDY

Since DiffTell is a dataset with several subsets contributing to different image difference categories,
it is necessary to study the contribution of each subset to the IDC performance. We consider two
parts: the contribution of each subset to the general performance and the contribution of each subset
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Ours: add an tribal tattoo to the 
girls back.
W/o DiffTell: remove the
background
GT: color her skin darker, color 
her tattoo more black

Ours: add the text Pool Party.

W/o DiffTell: Change the 
background to blue.
GT: Add text "Pool Party

Ours: remove all the 
background around the cat. 
W/o DiffTell: remove the 
background from the cat.
GT: Remove all background 
except for the cats face

Ours: change the background of 
the image to a gold color.
W/o DiffTell: change the 
background to a city. 
GT: Change blue color to 
yellow

<Local object change> <Text manipulation> <Background change> <Image style change>

Figure 4: Visual comparison that illustrates the impact of utilizing the DiffTell dataset on Flamingo’s
performance across four distinct categories in the IER testing set. Our dataset demonstrates its
effectiveness in enhancing performance, especially in local object description, text detection and
recognition, spatial recognition, and image style description. The text in green shows an obviously
precise expression over the text in red.

Ours: add the text free hugs.
W/o DiffTell: add a blue filter .
GT: The bird on the left now has a sign 
that says "Free Hugs" on it.

<Text manipulation>

Ours: add the eagle has been replaced by a tiger.
W/o DiffTell: add a blue filter.
GT: The heads of the birds have been replaced with the heads of 
tigers.

<Local object change>

Figure 5: The visual comparison illustrates the impact of utilizing the DiffTell dataset on the
CLIP4IDC model’s performance across two categories in the PSBattle dataset.

to each category. We show the performance on the IER testing set from the OpenFlamingo-3B model
finetuned with the IER training set and each subset in DiffTell in Table 4. Almost every subset can
improve the performance, and in sum, the DiffTell can boost the performance further. The
improvement is relatively marginal for the COCO dataset. One possible reason is the disparity in the
data distribution. Only 23 categories of objects from the COCO dataset exist in the IER dataset, and
COCO’s caption template is not the same as that in the IER testing set.

We show another ablation study on the category-wise contribution. To better study the performance
of each category, we compute the statistics of the IER testing set based on the category given in
Section 3.2. The statistics are given in Table 6 in the Appendix. Fig. 3a provides an overview of
the contributions based on the IER testing set and OpenFlamingo-3B of each subset in DiffTell to
each category, regarding ROUGE-L. For detailed results across all categories and evaluation metrics,
please refer to the Appendix F. Compared to the model trained exclusively on IER, the model trained
on our subset derived from MARIO-10M shows a notable performance improvement, benefiting
from the versatility of words in various real-life scenarios. Our subset derived from GIER contributes
positively to overall performance, except for text manipulation, where no such data exists in the GIER
dataset. The absence of background change data in the MagicBrush dataset leads to a performance
decrease in the background change category. COCO, designed for local object changes, enhances
performance in this category. In the InstructPix2Pix dataset, the lack of background modification
data results in a performance decrease, specifically in background change. In summary, the subset
belonging to the specific categories can generally contribute to the corresponding categories in
the IER testing set.
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OpenFlamingoModel

The difference between <image> and
<image> is Remove Text ”The BEAR JEW”

<EOS>

The feature of
<EOS>

Linear Quality
Classifier

Accepted / Rejected

Figure 6: The framework of the automatic data filtering pipeline. The image pair and difference
caption will be passed to the OpenFlamingo model, and the output feature of <EOS> token will be
used for the classification of acceptance or rejection

Table 5: The results of performance on IER testing set using the data with automatic classifier or not.

Training Set BLEU@4 METEOR CIDEr ROUGE-L

IER 4.45 14.87 15.80 29.79
IER + 10K random Data 4.41 14.88 15.59 29.63
IER + 10K data filtered by classifier 6.01 15.41 17.66 31.08
IER + 10K filtered by the human 6.10 15.54 17.39 31.11

4.4 AUTOMATIC DATA FILTERING

The cost of manual data filtering can become a bottleneck when scaling up this dataset. To address
this, we propose an alternative automatic data filtering pipeline, as shown in Fig. 6. Using a dataset
previously reviewed by humans, we compile both accepted and rejected samples as the training set
for a binary classifier. The classifier’s input consists of features extracted by the OpenFlamingo-3B
model, which has been fine-tuned on the IDC task. This classifier can assist annotators in more
efficiently filtering the data.

To validate the effectiveness of our pipeline, we train a quality classifier on an annotator-validated
subset of MARIO-10M, comprising 10K accepted and 10K rejected samples. We use an SVM as the
classifier, splitting 16K samples for training and 4K for testing, achieving an accuracy of 85.22%.
The classifier is then applied to unseen data from MARIO-10M, filtering 10K accepted samples.
This unseen data is newly in-painted using FireFly Generative Fill, as explained in Section 3.3, and
generation stops once 10K accepted samples are collected through the classifier. We compare the
performance on IER dataset of the IDC model (OpenFlamingo-3B) trained on three subsets from
MARIO-10M: 10K auto-filtered samples, 10K randomly selected samples, and 10K manually filtered
samples. The randomly selected data is taken directly from the in-painted model without quality
control, while the manually filtered data is a subset of MARIO-10M used in DiffTell. The results in
Table 5 demonstrate that the auto-filtered training data can achieve much better performance than
unfiltered data (random data), and be comparable to human filtered training data. Such a result shows
the necessity of the filtering step in our designed pipeline and highlights the classifier’s effectiveness
and the potential for scaling data collection using this auto-filtering pipeline.

5 CONCLUSION AND LIMITATION

In this study, we introduce DiffTell, an extensive and high-quality dataset for image difference
captioning (IDC). This dataset addresses the gaps in diversity and scale that were previously present
in the IDC task. Through comprehensive experiments conducted on diverse testing sets and employing
various baseline methods, we demonstrate the efficacy of our dataset in enhancing performance.
Additionally, we analyze to understand the improvement contributed by each component of DiffTell to
different image difference categories. We aspire that DiffTell will play a significant role in advancing
the development of more sophisticated multi-modality models for IDC and language-guided image
editing in the future. As for future work, at this time, we only use human-filtered data for supervised
fine-tuning. We hope to utilize the human-filtered data (acceptance and rejection) for preference
optimization (Rafailov et al., 2024; Meng et al., 2024) to boost the performance.
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RoadMap The supplementary matrial is composed as follows. Section A presents a detailed
description of the existing datasets in IDC. Section B gives the implementation details. Section C
presents more baselines which are not included in the main paper. Section D presents the details
using diverse instruction prompts. Section E presents the zero-shot or few-shot performance on
LLMs without being finetuned on IER testing set. Section F presents more results from ablation
study. Section G discusses more about the dataset collection. Section H gives a brief introduction of
PSBattle dataset. Section I illustrate some failure cases. Section J discusses the limitation. We will
release the code and the dataset once the paper is accepted.

A EXISTING DATASETS

The most commonly used datasets in the IDC task are CLEVR change (Park et al., 2019b), Spot-
the-Diff (Jhamtani & Berg-Kirkpatrick, 2018b) and Image Editing Request (IER) (Tan et al., 2019).
CLEVR change constitutes a sizable synthetic dataset characterized by moderate viewpoint variations.
Spot-the-difference is composed of pairs of frames extracted from video surveillance footage and the
corresponding textual descriptions of visual changes. IER is crawled from the practical image editing
requests from the Reddit channel, consisting of 3,939 pairs of real images, accompanied by 5,695
editing instructions. Each image pair in the training set is associated with one instruction. In contrast,
each image pair is linked to three instructions for a more objective evaluation in the validation and
testing sets. Because IER is collected from a real-world scenario, it covers more image difference
categories such as background change, text manipulation, and local object change. The definition of
the image difference categories can be found in Section 3.2. Due to the single domain in CLEVR
and Spot the Difference datasets, we mainly use IER in this work as the testing set, which aligns our
scope to have a comprehensive, diverse, and practical dataset.

Table 6: Statistics of each image difference category in the IER testing set.

Category Background Text Local object Image style

Number of Images 117 53 277 223

B IMPLEMENTATION DETAILS

B.1 TRAINING DETAILS

For CLIP4IDC, We adopt the official implementation of CLIP4IDC. However, as it lacks the
training script and the pretrained weights for IER, we reproduce the CLIP4IDC4 model trained
on IER exactly following its provided training hyper-parameter settings of the CLEVR dataset.
For VARD-LSTM5 and NCT6, there is still no official implementation for IER and we repro-
duce them using the settings in CLEVR dataset. The pre-trained Biaffine Parse in NCT we
use is from Diaparser7. For OpenFlamingo-3B, the vision encoder and language encoder are
ViT-L-14 and anas-awadalla/mpt-1b-redpajama-200b. The cross attention interval
is 1. For OpenFlamingo-9B, the vision encoder keeps the same and the language encoder becomes
anas-awadalla/mpt-7b. The cross attention interval is 4. For LLaVA-Interleave-8B, the lan-
guage model we use is meta-llama/Meta-Llama-3-8B-Instruct. For Fuyu-8B, we use
adept/fuyu-8b. The training platform we use is 8 NVIDIA A100s with the 80GB GPU memory.
The training epochs is 10 for the MLLMs and the base learning rate is 1e− 5 with cosine scheduler.
The weight decay is 0.01 and the global batch size 128. The training will last about 20 hours.

4https://github.com/sushizixin/CLIP4IDC
5https://github.com/tuyunbin/VARD
6https://github.com/tuyunbin/NCT
7https://github.com/Unipisa/diaparser
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C THE PERFORMANCE OF MORE BASELINES

Besides the methods in the main text, we test more baselines including NCT (Tu et al., 2023e) and
VARD-LSTM (Tu et al., 2023b) given in Table 7.

Table 7: The comparison of the methods fine-tuned on image editing request (IER) training set with
and without DiffTell using more baselines.

Testing Set Method DiffTell BLEU@4 METEOR CIDEr ROUGE-L

IER NCT ✗ 1.64 7.97 7.47 19.40
✓ 1.94 9.63 7.58 23.79

IER VARD-LSTM ✗ 1.60 8.06 5.49 18.87
✓ 1.71 8.54 6.02 20.08

PSBattle NCT ✗ 2.78e-08 0.73 1.12 4.53
✓ 1.65e-06 1.22 3.11 9.78

PSBattle VARD-LSTM ✗ 1.49e-08 0.43 1.56 7.01
✓ 7.46e-07 0.88 2.07 7.79

D THE EXPERIMENTS WITH DIVERSE PROMPTS

In instruction tuning, incorporating diverse prompts enhances model robustness, making them more
adaptable and better at generating accurate responses across varying contexts (Bukharin & Zhao,
2023). Initially, we use a uniform prompt “What is the difference between two images?” across all
datasets and ask the model to provide an answer. To ablate this, we expand the prompt into nine
different variations and compare the performance against the single-prompt approach, as shown in
Table 8. The nine prompts we use are as follows. The model we use is OpenFlamingo-3B. As a
complex vision-language task, it is more important for the model to understand two images, identify
the difference and express the answer. Thus, to improve the vision encoder could be more useful.

• Please tell me the editing instruct of how to edit <|image|> to look like <|image|>.
• Identify the transformations applied to <|image|> to achieve the appearance of <|image|>.
• Outline the steps required to edit <|image|> so that it matches the look of <|image|>.
• Explain the edits necessary to convert <|image|> into <|image|>.
•What alterations were made to <|image|> to create <|image|>?
• Detail the changes from <|image|> to <|image|>.
•<|image|> is image1, <|image|> is image2, tell me what the change is between these two images.
•<|image|> is image1, <|image|> is image2, tell me what the change is from image1 to image2.

Table 8: The results of performance on IER testing set using the diverse prompts. The model we use
is OpenFlamingo-3B.

Testing Set DiffTell D. Prompt BLEU@4 METEOR CIDEr ROUGE-L

✗ ✗ 4.45 14.87 15.80 29.79
IER ✓ ✗ 6.49 16.68 21.04 31.36

✓ ✓ 6.32 16.59 23.88 30.34
✗ ✗ 2.35e-04 2.33 7.71 19.24

PSBattle ✓ ✗ 2.12 6.60 4.02 16.10
✓ ✓ 1.77 6.45 4.48 16.46
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Add a gorilla to 
the background

<BOS><image> image and <image> image are different in Add a gorilla to the background. <EOC> <image> image and <image>
image are different in Put a cell phone in Jesus hand. <EOC><image>image and <image>image are different in

Put a cell 
phone in 
Jesus hand

Support examples

Query

Figure 7: The example of how we construct the few-shot prompt.

Table 9: The results of zero-shot or few-shot prompt results on IER testing set. The few-shot prompt
is the composition of 3 training examples from the training set.

Method Few-shot BLEU@4 METEOR CIDEr ROUGE-L

OpenFlamingo-3B ✗ 1.18 8.07 8.72 16.63
✓ 0.84 7.64 4.09 17.54

OpenFlamingo-9B ✗ 1.15 8.26 6.04 19.00
✓ 1.99 9.18 5.01 20.93

E ZERO-SHOT/FEW-SHOT PROMPT RESULTS

Investigating the potential of zero-shot learning is essential for the method utilizing LLM. For few-
shot prompt testing, we randomly choose three examples from the IER training set. Performance
results on the PSBattle dataset are not reported due to the absence of training data in that specific
dataset. The detailed results can be found in Table 9. The few-shot prompt example is shown in
Fig. 7. The results show that image difference caption (IDC) is a hard task for the current LLMs
although they are trained on huge amount of data. Even with few-shot prompt, the results are still not
satisfying.

F MORE ABLATION STUDY RESULTS

Due to the page limit in the main paper, we only present the contribution of each subsets of DiffTell to
the performance of each category regarding ROUGE-L in Fig. 3a. We present the other three metrics
here as shown in Figs 8, 9, 10, respectively.

Based on the four evaluation metrics, we can find that each dataset can contribute to at least one
category of the performance on IER, showing that the positive effect by enlarging the dataset, which
is the aim of this work.

G DATASET COLLECTION DETAILS

Image In-painting We use FireFly Generative Fill to in-paint the image. The inputs we can provide
are the original image and the prompt for the generative model. There is no need for us to select the
parameters. The illustration is given in Fig. 11. We generate I2 for COCO and MARIO-10M subsets
in DiffTell.

Data Filtering The illustration of how the annotators filter the data is given in Fig. 12 , Fig. 13
and Fig. 14 which are for InstructPix2Pix, COCO and MARIO-10M subsets, repsectively. For
InstructPix2Pix, the annotators filter whether the TI1,I2 matches (I1, I2) or whether the change
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IER Only IER+MARIO-10M IER+GIER IER+MagicBrush IER+COCO IER+InstructP2P
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Figure 8: The category-wise BLEU@4 comparison on IER testing set using OpenFlamingo-3B
trained with different subsets in DiffTell.
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Figure 9: The category-wise METEOR comparison on IER testing set using OpenFlamingo-3B
trained with different subsets in DiffTell.

reflects on I1 and I2 because (I1, I2, TI1,I2) has already been provided. For COCO and MARIO-
10M only providing I1, the annotators filter whether the object or the text is successfully in-painted
from I1.

H PSBATTLE DATASET

The PSBattle dataset is another practical dataset used in (Black et al., 2024) that consists of images
edited in Adobe PhotoshopTM and is curated from the "Photoshopbattles" subreddit. We include
this dataset only for the evaluation of out-of-domain data to test the generalizability of the models.
This dataset comprises over 10,000 images, each paired with several modified variants generated
according to editing instructions provided by users. In total, there are 102,208 variants created by
31,000 different artists. For our study, we randomly selected 100 image pairs, each accompanied by
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Figure 10: The category-wise CIDER comparison on IER testing set using OpenFlamingo-3B trained
with different subsets in DiffTell.

(a) The image before in-painting (b) The image after in-painting

Figure 11: We in-paint the image using Firefly Generative Fill in PhotoShop. For each image,
we provide the original image (I1) and the corresponding mask. The mask is used to identify the
selected area shown with the red arrow. We use prompt to ask Firefly to in-paint the image and fit the
background. Normally, the Firefly will return 3 to 4 in-painted images.

three captions obtained through crowd-sourced annotation on MTurk. The illustration of PSBattle
dataset is shown in Fig. 15.

I FAILURE CASES

Although the model gains performance improvement in IDC, there are still some cases where the
model fails to predict correctly. We illustrate the failure cases in Fig. 16. The model may sometimes
limit its predictions to local changes rather than providing a comprehensive description. In the first
example shown in Fig. 16, the model exclusively identifies the difference in the head from the body,
neglecting the other face and the relationship between the two faces. Although the model recognizes
the change in the second example, it produces an inaccurate description. These shortcomings may
result from the limited diversity in the dataset. A predominant portion of the images in DiffTell
originates from real-life scenarios. The model struggles to capture surreal or fantastical compositions,
such as a body with two heads, as the training data may not adequately represent those instances.
Following our methodology in creating DiffTell, incorporating more data sources covering a wider
range of fine-grained domains may help the model to establish connections between objects and
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Figure 12: The labeling illustration of InstructPix2Pix subsets. The two images are I1 and I2. TI1,I2
is given in Editing Instruction. The annotator is asked to identify whether the TI1,I2 matches (I1, I2)
or whether the change reflect on I1 and I2 and give the answer “Yes” or “No”. We keep those which
are identified as “Yes”.

Figure 13: The labeling illustration of COCO subsets. From the left to the right, the first, second
and third images are the original image (I1), the input mask and the in-painted image. We provide
the input mask and object name to remind the annotator which area should focus on. The annotator
selects “Acceptable” and “Unacceptable”. We keep those which are identified as “Acceptable”.
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Figure 14: The labeling illustration of MARIO-10M subsets. From the left to the right, the first,
second and third images are the original image (I1), the input mask and the in-painted image.
We provide the input mask and object name to remind the annotator which area should focus on.
The annotator selects “Acceptable” and “Unacceptable”. We keep those which are identified as
“Acceptable”.

• hanging person added
• The right image has a person hanging off the end of the track 

with a horrified expression on his face.
• On the right, a man is clinging to the bomb bay door, about to 

fall. He is not there at all on the left.

• In the right picture the gun is visible
• Added Head hair in left eagle and cap and gun in the left 

one.
• Hawks are fighting each others in second one Hawk kept 

machine gun.

• A new face has been given to batman. I think it is the face of 
Will Ferral.

• The mask only covers part of the face and the man wears 
glasses now.

• Batman has been given a bushy head of hair and a large pair of 
glasses.

• The hippo is wearing a cross and holding a bible.
• The hippo is now carrying a bible and a crucifix 

necklace.
• The hippo is holding a bible and a crucifix in one of its 

hooves.

Figure 15: Four examples in PSBattle dataset.

accurately identify specific object categories, thus providing detailed captions for cases like the object
in the tattoo.
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Ours: the woman has been turned into a 
boy.
GT: The baby face and the woman's face 
have been altered in the new one.

Ours: add bird.

GT: Add butterfly fern tattoo image.

Figure 16: Illustration of the failure cases from the model trained with DiffTell. The first example is
from CLIP4IDC on PSBattle. The second is from Flamingo on the IER testing set.

J MORE VISUAL RESULTS

J.1 FAILURE CASES IN DATA FILTERING

As mentioned in Section 3.3, we present the importance of the data filtering by showing more cases
in InstructP2P, COCO and MARIO-10M datasets in Figure 17, 18 and 19, respectively.

make the mural of the Michelin Guide make it 1920s

Add a river. as a cartoon

Figure 17: Within the InstructP2P dataset, we have identified four sets of images, each composed
of the original image, the altered image, and the corresponding instruction. All four of these image
sets represent instances of failure. In the first pair of images, not only is the mural altered as per the
instruction, but there are also changes to the face of the person in white and the text on the wall. The
second pair exhibits subtle changes that are unrelated to the provided instruction. For the third pair,
the images undergo significant alterations, including the addition of a river, surpassing the intended
modifications. In the fourth pair, the changes between the two images fail to accurately reflect the
given instruction. The InstructP2P dataset is characterized by a high noise ratio, leading to a low
acceptance rate of 35.13% during manual filtering.
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COCO Image COCO Mask In-painted Image

Figure 18: We choose four sets of images in COCO dataset, each comprising the original image,
the dilated mask, and the in-painted image. The initial two sets depict instances of failure, whereas
the latter two sets showcase successful outcomes. The initial failure occurs when the mask fails to
adequately cover the object, and the second failure is attributed to the inadvertent addition of another
object despite the mask effectively covering the intended object. The labeling team is instructed to
exclude images falling into DiffTell.
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MAIRO-10M Image MAIRO-10M Mask In-painted Image

Figure 19: We select four image sets from the MAIRO-10M dataset, each including the original
image, the dilated mask, and the in-painted image. All four of these cases have been deemed failures
and subsequently excluded by the labeling team. The mask in MARIO-10M dataset is not very
precise. All of these 4 image sets show this issue. In the first image set, the text is not very clear,
either. Besides the inadequate mask and addition objects which exist in the COCO dataset, another
issue of MARIO-10M dataset is the existence of low-quality images.
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Ours: add a gorilla to the photo.
W/o DiffTell: remove the man from the photo.
GT: Add a gorilla to the background

Ours: add cell_phone.
W/o DiffTell: remove the background. .
GT: Put a cell phone in Jesus hand

Ours: change this background to red.
W/o DiffTell: remove the background from the photo.
GT: Add rose colored background to picture with 
ombre circle radiating out

Ours: Replace the background with stars and 
an outer space background.
W/o DiffTell: remove the man from the image.
GT: distort an image, add the effect, change 
the background

Ours: Increase the exposure of the entire photo.
W/o DiffTell: Change the background of the picture 
to a darker one.
GT: Brighten up this area

Ours: add colors to the photo.
W/o DiffTell: remove the background.
GT: Color the black & white image

Ours: Add a formula to the dogs ears.
W/o DiffTell: remove the dog from the picture.
GT: add equations over the dogs face

Ours: add the text THE REMINATOR.
W/o DiffTell: change the background to blue.
GT: Add The Terminator text

Local Object

Background

Image Style

Text Editing

Figure 20: More examples from IER testing dataset regarding the four categories from OpenFlamingo-
3B.

J.2 MORE SUCCESSFUL CASES

To better illustrate the improvement from DiffTell, we select another two prediction results in
IER testing set from the four categories respectively, shown in Fig. 20. The model we use is
OpenFlamingo-3B.
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