
Under review as a conference paper at ICLR 2024

PREVENTING REWARD HACKING WITH OCCUPANCY
MEASURE REGULARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reward hacking occurs when an agent performs very well with respect to a specified
or learned reward function (often called a “proxy”), but poorly with respect to the
true desired reward function. Since ensuring good alignment between the proxy and
the true reward is remarkably difficult, prior work has proposed regularizing to a
“safe” policy using the KL divergence between action distributions. The challenge
with this divergence measure is that a small change in action distribution at a single
state can lead to potentially calamitous outcomes. Our insight is that when this
happens, the state occupancy measure of the policy shifts significantly—the agent
spends time in drastically different states than the safe policy does. We thus propose
regularizing based on occupancy measure (OM) rather than action distribution. We
show theoretically that there is a direct relationship between the returns of two
policies under any reward function and their OM divergence, whereas no such
relationship holds for their action distribution divergence. We then empirically find
that OM regularization more effectively prevents reward hacking while allowing
for performance improvement on top of the safe policy.

1 INTRODUCTION

A major challenge for the designers of goal-oriented AI systems is specifying a reward function
that robustly captures their goals and values. When the specified reward is misaligned with the
designer’s intent, it is really just a proxy for the true reward. This can lead to a phenomenon called
reward hacking: the resulting policy accumulates achieves high reward according to the proxy reward
function, but not according to the true reward function (Russell et al., 2010; Amodei et al., 2016; Pan
et al., 2022; Skalse et al., 2022). The resulting behavior is often undesirable and can be especially
catastrophic when deploying these systems in safety-critical scenarios, such as autonomous driving
(Krakovna et al., 2019; Turner et al., 2019; Knox et al., 2022).

The best solution to prevent reward hacking would be to ensure better alignment between the specified
proxy and hidden true reward. However, in practice, reward functions are extremely difficult to
properly design due to the ambiguities and complex variables underlying real-world scenarios (Ibarz
et al., 2018). For example, recommender systems aim to optimize the value that users attain from their
time spent on the online platforms, but since this goal is difficult to quantify, designers utilize proxies,
such as click-through rates, engagement time, and other types of explicit feedback they receive from
users, which do not always match how satisfied users implicitly are with their experience (Stray et al.,
2022). Several examples of reward hacking have been reported throughout the literature (Kraknova &
Legg, 2020).

Rather than specifying a reward function by hand, an alternative is to learn it from human feedback
like demonstrations (Ho & Ermon, 2016), comparisons (Sadigh et al., 2017; Christiano et al., 2017),
or both (Palan et al., 2019) However, even learned reward functions are often misaligned with our
true objectives, failing to generalize outside the distribution of behavior used in training (McKinney
et al., 2023; Tien et al., 2023).

Instead of blindly optimizing a proxy reward function, one proposal to avoid reward hacking is to
regularize the policy’s chosen actions to be similar to those of a known safe policy (Yang et al., 2021).
For example, RLHF for LLMs generally optimizes the learned reward in addition to a term that
penalizes divergences from the pre-trained language model’s output (Glaese et al., 2022; Ouyang
et al., 2022). Intuitively, this kind of regularization pushes the learned policy away from “unusual”

1

Under review as a conference paper at ICLR 2024

behaviors for which the reward function may be misaligned. These could include unforeseen strategies
in the case of a hand-specified reward function or out-of-distribution states in the case of a learned
reward function. Initializing using a pre-trained policy has been shown to effectively speed up the
learning process (Laidlaw et al., 2023; Uchendu et al., 2023), and a similar paradigm can also be used
to ensure the safety of the agent during online inference (Gulcehre et al., 2023).

However, regularizing based on the action distributions of policies has significant drawbacks. Small
shifts in action distributions can lead to large differences in outcomes. And vice-versa, large shifts in
action distributions may not actually result in any difference in outcome and thus wrongly interfere
with training the policy.

Imagine an autonomous car driving along a coastal highway with a steep cliff to its right. For
illustrative purpuses, let us think of the states as positions, and actions as velocities. Suppose we have
access to a safe policy that drives slowly and avoids falling off the cliff, but the car is optimizing a
proxy reward function that incentivizes progress rather than staying on the road. If we try to regularize
the car’s action distributions to the safe policy, we may have to apply a lot of regularization since
one wrong action going too far to the right—a small change in the action distribution at a single
state—can lead to disaster. This makes it very difficult for the regularizer to be successful. To make
matters worse, optimizing the proxy will lead to moving faster, likely through action changes at many
states, which makes going more to the right at a single state a negligible divergence. It is difficult if
not impossible to avoid a single catastrophic action while improving at all on the safe policy.

Xu et al. (2020)

If action distributions induce poor regularizers for reward hacking, then what can we do instead?
Thinking back to the car example, while the single catastrophic action didn’t change the action
distribution much, observe that it did change something quite drastically: the resulting distribution
over states visited by the car. The learned policy will have a high probability of reaching states where
the car is off the cliff and crashed, while the safe policy never reaches such states. Our proposal
follows naturally from this observation: to avoid reward hacking, regularize based on divergence
from the safe policy’s occupancy measure, rather than action distributions. An occupancy measure
(OM) represents the distribution of states (and optionally actions) seen by a policy when it interacts
with its environment. Unlike action distribution-based metrics, OM takes into account not just the
actions taken by the policy, but also the states that the agent reaches.

In this paper, we show both theoretically and empirically that regularizing policy optimization
using occupancy measure divergence is more effective at preventing reward hacking. Theoretically,
we prove that there is a direct relationship between the returns of two policies under any reward
function and how much they deviate from each other in occupancy measure space, and that no such
relationship holds for divergences between the action distributions of the two policies. Empirically,
regularizing the occupancy measure of a policy is more challenging than regularizing its action
distributions. Action distribution-based policy regularization implicitly assumes a distance metric
over the space of policies. So far, this has been the Kullback–Leibler (KL) divergence, which
has several attractive advantages, including the fact that it is easy to compute and optimize within
common deep RL algorithms (Vieillard et al., 2021). To address this, we derive an algorithm called
Occupancy-Regularized Policy Optimization (ORPO) that can also be easily incorporated into
deep RL algorithms like Proximal Policy Optimization (PPO). ORPO approximates the occupancy
measure divergence between policies using a discriminator network.

We use ORPO to optimize policies trained with misaligned proxy reward functions in multiple
reward hacking benchmark environments (Pan et al., 2022) and compare our method’s performance
to that of action distribution regularization. The results of our experiments show that regularization
based on occupancy measures more effectively prevents reward hacking while allowing performance
improvement over the base policy. Our findings suggest that regularization based on occupancy
measures should replace action distribution-based regularization to ensure the safety of goal-driven
AI systems in the real world, while also allowing them to provide value.

2 RELATED WORK

Some prior works have focused on characterizing and defining theoretical models of reward hacking
as a special case of Goodhart’s Law (Goodhart, 1984; Krakovna, 2019; Skalse et al., 2022; Ngo et al.,

2

Under review as a conference paper at ICLR 2024

2023). Skalse et al. (2022) formally define reward hacking, also known as reward gaming (Leike
et al., 2018), as an increase in a proxy reward function accompanied by a noticeable drop in the true
reward function. Kraknova & Legg (2020) provide a list of many examples of reward hacking from
the literature, but only a few studies have been conducted to understand the practical effects of reward
hacking. Pan et al. (2022) systematically investigate reward misspecification and show that increasing
the optimization power of RL agents can result in sudden shifts, or phase changes, in the agents’
reward hacking behavior; they also define the reward hacking benchmark environments that we use
to validate our method.

A few safety methods have been proposed to avoid reward hacking and/or mitigate its dangerous
effects. An AI agent can be mildly optimized, such that they aim to achieve performance that is just
“good enough” on the misspecified proxy reward function and not necessarily the absolute optimum
(Taylor et al., 2020). Quantilizers proposed by Taylor (2016) is one such approach to avoid reward
hacking behaviors by training agents that are mildly optimized; however, in practice, this isn’t feasible
to implement. Constrained reinforcement learning has been another safety method in which designers
have tried to prevent the misbehavior of agents motivated by flawed reward functions (Dalal et al.,
2018; Zhang et al., 2020; Chow et al., 2019); however, in general, these approaches are limited by
the number of constraints that can be applied and the specification of weights that are to be applied
to the constraints. In addition, their overly conservative approach to optimization restricts the agent
from actually being helpful. Roy et al. (2022) try to overcome the problem of specifying weights for
the constraints but still require the designer to specify the frequency of certain events, which is also
difficult to do in practice.

Other proposals to address the reward specification problem attempt to infer the true reward function
based on the given proxy reward function, environment context, and/or feedback from humans
(Hadfield-Menell et al., 2017; Reddy et al., 2020). However, these approaches are limited due to
the assumptions they make about the reward functions or the environment. Additionally, involving
humans-in-the-loop (Lee et al., 2021) can be more expensive than providing offline demonstrations
like the ones required by our method.

Regularizing policies to be similar to an offline policy based on their KL divergences was first
proposed by Stiennon et al. (2020) and has since been widely employed in the context of optimizing
LLMs using learned reward functions (Ouyang et al., 2022; Bai et al., 2022; Glaese et al., 2022). KL
regularization for RLHF has been further studied by Vieillard et al. (2021), Gao et al. (2022), and
Korbak et al. (2022). Different offline RL methods have also been proposed to ensure there isn’t
a distribution shift between a offline safe policy and the online learned policy (Kang et al., 2022;
Ghosh et al., 2022). Vuong et al. (2022) uses discriminators like our algorithm to maintain closeness
to the baseline; however, they use two discriminators to get a combination of reward maximization
and regularization. Our method aims to do the same thing but only relies on one discriminator, and it
is unique in its emphasis on solving reward hacking.

3 OCCUPANCY MEASURE-BASED REGULARIZATION

We formalize our policy regularization method in the setting of an infinite-horizon Markov decision
process (MDP). An agent takes actions a ∈ A to transition between states s ∈ S over a series of
timesteps t = 0, 1, 2, The first state s0 is sampled from an initial distribution µ0(s), and when an
agent takes action at in st at time t, the next state st+1 is reached at timestep t+ 1 with transition
probability p(st+1 | st, at). The agent aims to optimize a reward function R : S ×A → [0, 1], and
rewards are accumulated over time with discount factor γ ∈ [0, 1). A policy π maps each state s to a
distribution over actions to take at that state π(a | s). We define the (normalized) return of a policy π
under a reward function R as

J(π,R) = (1− γ)Eπ

[∞∑
t=0

γtR(st, at)

]

where Eπ refers to the expectation under the distribution of states and actions induced by running the
policy π in the environment. The normalizing factor guarantees that J(π,R) ∈ [0, 1] always.

3

Under review as a conference paper at ICLR 2024

s1

R(s1, ·) = 1

s2

R(s2, ·) = 0

a2a1

a1, a2

0 1

π(a2 | s1)

0

1

J
(π

,R
)

πsafe π πsafe
′

Figure 1: The MDP on the left, used in the proof of Proposition 3.1, demonstrates one drawback of
using divergence between policies’ action distributions for regularization. The agent stays in state
s1, where it receives 1 reward per timestep, until it takes action a2, after which it remains in state s2
forever and receives no reward. The plot on the right shows the return J(π,R) for a policy π when
γ = 0.99 as a function of the policy’s action distribution at s1. While πsafe and π (shown on the plot
as dotted lines) are close in action distribution space, they achieve very different returns. Meanwhile,
π is far from πsafe

′ in action distribution space but achieves nearly the same return. Propositions 3.2
and A.2 show that occupancy measure divergences do not have these drawbacks.

We define the state-action occupancy measure µπ of a policy π as the expected discounted number of
times the agent will be in a particular state and take a specific action:

µπ(s, a) = (1− γ)Eπ

[∞∑
t=0

γt1{st = s ∧ at = a}

]
.

Intuitively, the occupancy measure represents the distribution of states and actions visited by the
policy over time. If π spends a lot of time taking action a in state s, then µπ(s, a) will be high,
whereas if π never visits a state s, then µπ(s, a) = 0 for all actions a.

The standard approach to solving an MDP is to find a policy π that maximizes its return:

maximize J(π,R). (1)

However, as we discussed in section 1, an AI system designer most likely does not have access to a
reward function that perfectly encapsulates their preferences. Instead, the designer might optimize π
using a learned or hand-specified proxy reward function R̃ which is misaligned with the true reward
function R. Blindly maximizing the proxy reward function could lead to reward hacking.

3.1 ACTION DISTRIBUTION-BASED REGULARIZATION

A widely-used approach to prevent reward hacking behaviors is to optimize the policy’s return with
respect to the proxy R̃ plus a regularization term that penalizes the KL divergence of the policy’s
action distribution from a safe policy πsafe:

maximize J(π, R̃)− λ(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe(· | st))

]
. (2)

The regularization term can be easily incorporated into deep RL algorithms, like PPO, since the KL
divergence between action distributions can usually be calculated in closed form.

Although it is simple, the action distribution-based regularization method in (2) has serious drawbacks
that arise from the complex relationship between a policy’s action distribution at various states and
its return under the true reward function. In some cases, a very small change in action distribution
space can result in a huge change in reward, and in other cases, a large change in action distribution
space can result in a negligible change in reward. We formalize this in the following proposition.
Proposition 3.1. Fix ϵ > 0 and δ > 0 arbitrarily small, and c ≥ 0 arbitrarily large. Then there is an
MDP and true reward function R where both of the following hold:

1. There is a pair of policies π and πsafe where the action distribution KL divergence satisfies

(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe(· | st))

]
≤ ϵ

but |J(πsafe, R)− J(π,R)| ≥ 1− δ.

4

Under review as a conference paper at ICLR 2024

2. There is a safe policy πsafe
′ such that any other policy π with

(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe
′(· | st))

]
≤ c

satisfies |J(πsafe
′, R)− J(π,R)| ≤ δ.

The first part of Proposition 3.1 shows that in the worst case, a KL divergence below than some
arbitrarily small threshold ϵ from the safe policy’s action distributions can induce a change in the
return under true reward function R that is almost as large as the entire possible range of returns.
Thus, when regularizing using action distribution KL divergence like in (2), one might have to make
λ extremely large to prevent drastic changes from the safe policy. However, the second part of
Proposition 3.1 shows that in the same MDP, for a different safe policy, any learned policy with
an arbitrarily large action distribution KL divergence from the safe policy has an extremely small
difference in return. This means that one might need to set λ extremely small in order to allow for the
large divergence in the policies’ action distributions necessary for optimization to have any effect.
Since Proposition 3.1 suggests that we need to make λ large for some reasons and small for others, it
may be impossible to choose a good λ value that both prevents undesirable behavior but still allows
some optimization of the reward function. See Figure 1 for a graphical illustration of Proposition 3.1
and Appendix A.1 for a proof.

3.2 OCCUPANCY MEASURE-BASED REGULARIZATION

Since Proposition 3.1 shows that small KL divergence in action space from the safe policy can have
large effects, and vice versa, it may be impossible in some environments to regularize effectively
using the objective in (2). We propose instead to regularize based on the divergence between the
occupancy measures of the learned and safe policies:

maximize J(π, R̃)− λ ∥µπ − µπsafe∥1 . (3)

In (3), we use the total variation (TV) between the occupancy measures, defined as

∥µπ − µπsafe∥1 =
∑

(s,a)∈S×A

|µπ(s, a)− µπsafe(s, a)|.

Why should using the occupancy measure divergence to regularize perform better than using the
divergence between action distributions? The following proposition shows that the TV distance
between occupancy measures does not have the same problems as action distribution divergence: a
small divergence cannot result in a large change in policy return.
Proposition 3.2. For any MDP, reward function R, and pair of policies π, πsafe, we have

|J(πsafe, R)− J(π,R)| ≤
∥∥µπ − µπsafe

∥∥
1
. (4)

Proposition 3.2 shows that, unlike action distribution divergences, the occupancy measure divergence
between π and πsafe bounds the returns between the two policies. Specifically, a small difference
between the occupancy measure of the safe and learned policies guarantees that they have similar
returns. Even more, this bound is actually tight, suggesting that changes in occupancy measure
TV distance will correspond closely with changes in the return of the policy under the true reward.
Proposition A.2 in Appendix A shows that, in general, we cannot do any better than the bound from
Proposition 3.2. See Appendix A.2 for a proof of this proposition.

These results suggest that the divergence between the occupancy measures of the learned and safe
policies is a much better measure of how similar those policies are than the divergence between the
policies’ action distributions. In the following sections, we will show that these theoretical results
match with intuition and empirical performance.

3.3 EXAMPLE

Figure 2 shows an intuitive example of why regularizing to a safe policy based on occupancy measure
divergence is superior to regularizing using action distribution divergence. Figure 2a depicts a

5

Under review as a conference paper at ICLR 2024

(a)
Desired policy Safe policy Reward hacking policy

True reward = 14.9
Proxy reward = 37.0

True reward = 13.0
Proxy reward = 37.3

KL = 43.0

TV = 0.8

KL = 18.2

TV = 1.5

True reward = 2.2
Proxy reward = 153.4

0

1

A
ct

io
n

pr
ob

.

10−2

10−1

100

O
cc

.m
ea

su
re

(b)

Figure 2: This simple gridworld provides an intuitive example of why occupancy measure divergences
are superior to action distribution divergences for regularizing to a safe policy. See Section 3.3 for
the details.

simplified version of the tomato-watering AI Safety Gridworld proposed by Leike et al. (2017). The
agent, a robot that starts in the lower right corner, can move up, down, left, right, or stay in place.
Its objective is to water the tomatoes on the board, and it receives reward each time it moves into a
square with a tomato. However, there is also a sprinkler in the upper right corner of the environment.
When the robot moves into the sprinkler’s square, its sensors see water everywhere, and it believes
all tomatoes are watered. In this environment, the true reward function R only rewards watering
tomatoes, while the proxy reward function R̃ also highly rewards reaching the sprinkler.

The top row of Figure 2b shows three policies for this environment: a desired policy that achieves the
highest true reward, a safe policy that achieves lower true reward because it stays in place more often,
and a reward hacking policy that exploits the sprinkler state to achieve high proxy reward but low
true reward. The arrows between the policies on the top row of Figure 2b show the action distribution
KL divergences between them as used for regularization in (2). The action distribution divergences
suggest that the reward hacking policy is actually closer to the safe policy than the desired policy
is. This is because the safe policy is nearly identical to the reward hacking policy in the upper right
square, where the reward hacking policy spends most of its time; they both take the “stay” action with
high probability. Thus, if we regularize to the safe policy using action distribution KL divergence, we
would be more likely to find a policy that hacks the proxy reward, rather than one like the left policy,
which we prefer. The problem is that the safe policy rarely reaches the sprinkler state, but the action
distribution divergence doesn’t account for this.

Using occupancy measure divergences avoids this problem. The bottom row of Figure 2b shows the
occupancy measures for each policy in the top row, and the arrows between the columns show the
total variation distance ∥µ− µ′∥1 between the policies’ occupancy measures. In terms of occupancy
measure distance, the desired policy on the left is closer to the safe policy than the reward hacking
policy is. This is because both the desired and safe policies spend most of their time actually watering
tomatoes, as evidenced by the higher occupancy measure they assign to the tiles on the board with the
tomatoes. In contrast, the reward hacking policy spends almost all of its time in the sprinkler square
and as a result, has a very different occupancy measure. Thus, if we trained a policy regularized with

6

Under review as a conference paper at ICLR 2024

occupancy measure divergence in this environment, we could hope to find a policy like the desired
one on the left and avoid a reward hacking policy like the one on the right.

3.4 OCCUPANCY-REGULARIZED POLICY OPTIMIZATION (ORPO)

In the previous sections, we showed strong theoretical evidence that regularizing using occupancy
measure divergences is superior to regularizing using action distribution divergences. We now intro-
duce an algorithm, Occupancy-Regularized Policy Optimization (ORPO), to feasibly approximate the
occupancy measure divergence between the learned and safe policies for the purpose of regularizing
deep RL agents.

While our theory relies on the TV distance between occupancy measures, we find that the KL
divergence is more stable to calculate in practice. Since Pinsker’s inequality bounds the TV distance
by the KL divergence for small KL values, and the Bretagnolle-Huber bound holds for larger KL
values, our theoretical guarantees intuition remain valid in the case of OM KL (Canonne, 2022). Our
objective from (3) can be reformulated with the KL divergence in place of the TV distance:

maximize J(π, R̃)− λDKL(µπ ∥ µπsafe). (5)

We optimize (5) using a gradient-based method. The gradient of the first term is estimated using
PPO, a popular policy gradient method (Schulman et al., 2017). However, calculating the occupancy
measure divergence for the second term is intractable to do in closed form since it requires the
enumeration of all possible state-action pairs, an impossible task in the case of deep RL. Thus,
we approximate the KL divergence between the occupancy measures of policies by training a
discriminator network, a technique that has previously been used for generative adversarial networks
(GANs) (Goodfellow et al., 2014) and GAIL (Ho & Ermon, 2016).

The discriminator network d : S × A → R assigns a score d(s, a) ∈ R to any state-action pair
(s, a) ∈ S ×A, and it is trained on a mixture of data from both the learned policy π and safe policy
πsafe. The objective used to train d incentives low scores for state-action pairs from πsafe and high
scores for state-action pairs from π:

d = argmin
d

∞∑
t=0

(
Eπ[γ

t log(1 + e−d(st,at))] + Eπsafe [γ
t log(1 + ed(st,at))]

)
. (6)

Huszár (2017) proves that if the loss function in (6) is minimized, then the expected discriminator
scores for state-action pairs drawn from the learned policy distribution will approximately equal the
KL divergence between the occupancy measures of the two policies:

DKL(µπ(s, a) ∥ µπsafe(s, a)) ≈ (1− γ)Eπ

[∞∑
t=0

γtd(st, at)

]

Applying the definitions of the learned policy returns and the KL divergence between the polices’
occupancy measures, we can now rewrite our ORPO objective:

maximize Eπ

[∞∑
t=0

γt
(
R̃(st, at)− λ d(st, at)

)]
. (7)

This objective dynamically changes at every step of the optimization–as the policy changes online,
the discriminator will also adapt and change.

Note that (7) is identical to the normal RL objective with a reward function R′(s, a) = R̃(s, a) −
λd(s, a). Thus, once the discriminator has been trained, we add the discriminator scores to the given
reward function and use the combined values to update π with PPO. The training process for ORPO
consists of iterating between two phases: one in which data from both the safe and current policies is
used to train the discriminator to minimize (6), and one in which data from the current policy is used
to train the PPO agent with the augmented reward function in (7). After a policy gradient step, the
process repeats.

7

Under review as a conference paper at ICLR 2024

Environment
Method Tomato Traffic Glucose

πsafe 65.3 ± 0.0 -2296 ± 0.0 -76199 ± 0.0
No regularization 22.2 ± 7.0 -56425 ± 6877.4 -577093 ± 33735.3
Action dist. regularization 67.1 ± 3.9 -1212 ± 24.2 -75955 ± 2604.0
State occupancy regularization 66.7 ± 0.8 -1244 ± 242.7 -54287 ± 27650.2
State-action occupancy regularization 69.1 ± 13.1 -1096 ± 36.2 -14834 ± 25365.3

Table 1: The true rewards achieved by ORPO and PPO with action distribution regularization in the
three reward hacking environments. We report the best reward achieved across a range of coefficients
and compare to the safe policy πsafe and training without regularization on the proxy reward.

While we have thus far considered the state-action occupancy measure of a policy µπ(s, a), we find
that in practice it sometimes makes more sense to regularize based on the state-only occupancy
measure µπ(s) = (1− γ)Eπ[

∑∞
t=0 γ

t1{st = s}]. In particular, in many environments the reward
function R(s) is only a function of the state. In this case, it is simple to establish similar guarantees
to Proposition 3.2 based on the state-only occupancy measure, and so the state occupancy measure
might be more effective in regularizing the behavior of the agent. We can implement this within
ORPO by only providing the state as input to the discriminator rather than a state-action pair.

4 EXPERIMENTS

We consider the empirical performance of ORPO in four environments: the tomato-watering gridworld
we focused on in Section 3.3; Flow, an autonomous vehicle control environment introduced by Wu
et al. (2022); SimGlucose, and a blood glucose monitoring system developed by Fox et al. (2020).
We chose the first for illustrative purposes, and the following two because they were presented as
reward hacking benchmark environments by Pan et al. (2022).

Tomato Environment: As before, the tomato environment contains a sprinkler state where the agent
perceives all tomatoes as being watered and thus receives high proxy reward but no true reward. For
our safe policy, we train a PPO agent with the true reward function, and then add a 15% chance of
taking a random action to ensure there is room to improve upon it.

Flow Traffic Simulator: The traffic environment simulates a road network where cars on an on-ramp
attempt to merge into traffic on a highway. Some vehicles are controlled by a human model and
some are RL-controlled autonomous vehicles. The true objective of the self-driving agent is to ensure
that there is fast traffic flow at all times in order to reduce the mean commute time, while observing
the positions and velocities of nearby vehicles. The proxy reward is the average velocity of all cars
in the simulation. When the traffic agent begins to reward hack, it stops cars on the on-ramp from
merging into traffic. This way, the proxy reward is optimized because cars on the straightway can
continue forward at a fast speed instead of having to wait for a car to merge, which increases the
average velocity of all vehicles. However, the true objective is not achieved as the commute time for
the cars on the on-ramp increases indefinitely. As the safe policy for the traffic environment we used
the Intelligent Driver Model (IDM), a standard approximation of human driving behavior (Treiber
et al., 2000). In practice, safe policies are often learned via imitation learning, so to simulate this we
generate data from the IDM controller and train a behavioral cloning (BC) policy on it with some
entropy added to ensure that the policy more closely resembles the quality of baseline that can be
reasonably provided in practice.

SimGlucose: This blood glucose monitoring environment is an extension of the FDA-approved
glucose monitoring simulator proposed by Man et al. (2014) for Type 1 Diabetes patients. The patient
eats meals, while wearing a continuous glucose monitoring (CGM) device that makes noisy readings
of the patient’s blood glucose. The RL agent takes the action of administering insulin to the patient in
order to maintain healthy glucose levels, while observing their history of CGM readings in addition
to the previous amounts of insulin that it has delivered. The true reward is the health risk that the
patient encounters given different amounts of insulin they receive, but the proxy reward prioritizes
the monetary cost of the treatment incurred. As the safe baseline policy, we train a BC policy based

8

Under review as a conference paper at ICLR 2024

25

50

75

Tr
ue

re
w

ar
d

Tomato

0

1

A
ct

io
n

di
st

.K
L

10−2 100

λ / Raverage

0

5

O
cc

up
an

cy
m

ea
s.

K
L

-3e3

-1e3

-1e5
-5e4

Traffic

0

5

10−2 100

λ / Raverage

0

5

-8e4

-5e4

-5e5
-3e5

Glucose

0

10

10−2 100

λ / Raverage

0

5

ORPO w/ state occupancy
ORPO w/ state-action occupancy

PPO + action KL regularization
Safe policy

Figure 3: The results of running ORPO vs. PPO with action distribution regularization across a
range of coefficients λ in each of the three environments. We find that generally the regularization
methods succeed at reducing the action distribution or occupancy measure KL to near-0 for high
enough values of λ.

on actions given by a widely-used PID controller insulin pump with parameters tuned by the original
designers of this system (Steil, 2013).

We train RL policies initialized from πsafe in each environment using action distribution regularization
and OM regularization, varying the regularization coefficient λ across a wide range. In environments
that we studied, λ values between 10−2 and 102 seemed to work best, scaled by their average per time
step rewards; since the environments have vastly different magnitudes in reward, and the coefficients
are applied to the per time step rewards, we scale coefficients in the range that we found worked best
by multiplying by the average per time step reward. We compare the performance of the regularization
techniques to the safe policies πsafe to see if they can improve on πsafe according to the true reward
without devolving into reward hacking.

The results of our experiments are shown in Table 1 and Figure 3. In Table 1, we see that ORPO
achieves higher true reward across all three environments compared to action distribution regu-
larization. Figure 3 shows how the true reward, occupancy measure KL divergence, and action
distribution KL divergence vary over values of the regularization coefficient λ. We see that as λ
is increased, the KL divergence eventually falls to 0 and the policy return approaches that of πsafe.
Interestingly, we note that in general the optimal true reward is achieved at the value of λ below
which the occupancy measure KL suddenly increases. This observation could enable effective tuning
of λ in new environments, since we cannot always rely on having a true reward function to evaluate
different values of λ with.

5 CONCLUSION

We have presented theoretical and empirical evidence that occupancy measure regularization can
more effectively prevent reward hacking than action distribution regularization when training with a
misaligned proxy reward function. To address the practical challenges of the OM-based approach,
we introduced an algorithm called ORPO, which uses an adversarially trained discriminator to
approximate the KL divergence between the occupancy measures of policies. In the future, we hope
to experiment with learned proxy reward functions in addition to the hand-specified reward functions
we considered in this paper.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete Problems in AI Safety, July 2016. URL http://arxiv.org/abs/1606.06565.
arXiv:1606.06565 [cs].

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback,
April 2022. URL http://arxiv.org/abs/2204.05862. arXiv:2204.05862 [cs].

Clément L. Canonne. A short note on an inequality between KL and TV, February 2022. URL
http://arxiv.org/abs/2202.07198. arXiv:2202.07198 [math, stat].

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. Lyapunov-based Safe Policy Optimization for Continuous Control, February
2019. URL http://arxiv.org/abs/1901.10031. arXiv:1901.10031 [cs, stat].

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences, June 2017. URL http://arxiv.org/abs/
1706.03741. arXiv:1706.03741 [cs, stat].

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe Exploration in Continuous Action Spaces, January 2018. URL http://arxiv.
org/abs/1801.08757. arXiv:1801.08757 [cs].

Ian Fox, Joyce Lee, Rodica Pop-Busui, and Jenna Wiens. Deep Reinforcement Learning for
Closed-Loop Blood Glucose Control, September 2020. URL http://arxiv.org/abs/
2009.09051. arXiv:2009.09051 [cs, stat].

Leo Gao, John Schulman, and Jacob Hilton. Scaling Laws for Reward Model Overoptimization,
October 2022. URL http://arxiv.org/abs/2210.10760. arXiv:2210.10760 [cs, stat].

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline RL Policies Should
be Trained to be Adaptive, July 2022. URL http://arxiv.org/abs/2207.02200.
arXiv:2207.02200 [cs, stat].

Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth
Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, Lucy Campbell-Gillingham, Jonathan
Uesato, Po-Sen Huang, Ramona Comanescu, Fan Yang, Abigail See, Sumanth Dathathri, Rory
Greig, Charlie Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Soňa Mokrá, Nicholas
Fernando, Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William Isaac, John Mellor,
Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, and Geoffrey Irving. Improving
alignment of dialogue agents via targeted human judgements, September 2022. URL http:
//arxiv.org/abs/2209.14375. arXiv:2209.14375 [cs].

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks, June 2014. URL
http://arxiv.org/abs/1406.2661. arXiv:1406.2661 [cs, stat].

C. A. E. Goodhart. Problems of Monetary Management: The UK Experience. In C. A. E. Goodhart
(ed.), Monetary Theory and Practice: The UK Experience, pp. 91–121. Macmillan Education
UK, London, 1984. ISBN 978-1-349-17295-5. doi: 10.1007/978-1-349-17295-5 4. URL
https://doi.org/10.1007/978-1-349-17295-5_4.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. Reinforced Self-Training (ReST) for Language
Modeling, August 2023. URL http://arxiv.org/abs/2308.08998. arXiv:2308.08998
[cs].

10

http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2202.07198
http://arxiv.org/abs/1901.10031
http://arxiv.org/abs/1706.03741
http://arxiv.org/abs/1706.03741
http://arxiv.org/abs/1801.08757
http://arxiv.org/abs/1801.08757
http://arxiv.org/abs/2009.09051
http://arxiv.org/abs/2009.09051
http://arxiv.org/abs/2210.10760
http://arxiv.org/abs/2207.02200
http://arxiv.org/abs/2209.14375
http://arxiv.org/abs/2209.14375
http://arxiv.org/abs/1406.2661
https://doi.org/10.1007/978-1-349-17295-5_4
http://arxiv.org/abs/2308.08998

Under review as a conference paper at ICLR 2024

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart Russell, and Anca Dragan. Inverse
Reward Design, 2017. URL http://arxiv.org/abs/1711.02827. arXiv:1711.02827
[cs].

Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation Learning. In
Advances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://papers.nips.cc/paper_files/paper/2016/hash/
cc7e2b878868cbae992d1fb743995d8f-Abstract.html.

Ferenc Huszár. Variational Inference using Implicit Distributions, February 2017. URL http:
//arxiv.org/abs/1702.08235. arXiv:1702.08235 [cs, stat].

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in Atari. 2018. doi: 10.48550/ARXIV.1811.
06521. URL https://arxiv.org/abs/1811.06521. Publisher: arXiv Version Number:
1.

Katie Kang, Paula Gradu, Jason Choi, Michael Janner, Claire Tomlin, and Sergey Levine. Lyapunov
Density Models: Constraining Distribution Shift in Learning-Based Control, June 2022. URL
http://arxiv.org/abs/2206.10524. arXiv:2206.10524 [cs, eess].

W. Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt, and Peter Stone. Reward
(Mis)design for Autonomous Driving, March 2022. URL http://arxiv.org/abs/2104.
13906. arXiv:2104.13906 [cs].

Tomasz Korbak, Ethan Perez, and Christopher L. Buckley. RL with KL penalties is better
viewed as Bayesian inference, October 2022. URL http://arxiv.org/abs/2205.11275.
arXiv:2205.11275 [cs, stat].

Uesato Jonathan Mikulik Vladimir Rahtz Mathew Everitt Tom Kumar Ramana Ken-
ton Zac Leike Jan Kraknova, Victoria and Shane Legg. Specification gaming:
the flip side of AI ingenuity, 2020. URL https://www.deepmind.com/blog/
specification-gaming-the-flip-side-of-ai-ingenuity.

Victoria Krakovna. Classifying specification problems as variants of Goodhart’s Law,
August 2019. URL https://vkrakovna.wordpress.com/2019/08/19/
classifying-specification-problems-as-variants-of-goodharts-law/.

Victoria Krakovna, Laurent Orseau, Ramana Kumar, Miljan Martic, and Shane Legg. Penalizing
side effects using stepwise relative reachability, March 2019. URL http://arxiv.org/abs/
1806.01186. arXiv:1806.01186 [cs, stat].

Cassidy Laidlaw, Stuart Russell, and Anca Dragan. Bridging RL Theory and Practice with the Effec-
tive Horizon, April 2023. URL http://arxiv.org/abs/2304.09853. arXiv:2304.09853
[cs, stat].

Kimin Lee, Laura Smith, and Pieter Abbeel. PEBBLE: Feedback-Efficient Interactive Reinforcement
Learning via Relabeling Experience and Unsupervised Pre-training, June 2021. URL http:
//arxiv.org/abs/2106.05091. arXiv:2106.05091 [cs].

Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A. Ortega, Tom Everitt, Andrew Lefrancq,
Laurent Orseau, and Shane Legg. AI Safety Gridworlds, November 2017. URL http://arxiv.
org/abs/1711.09883. arXiv:1711.09883 [cs].

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable agent
alignment via reward modeling: a research direction, November 2018. URL http://arxiv.
org/abs/1811.07871. arXiv:1811.07871 [cs, stat].

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E.
Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Abstractions for Distributed Reinforcement
Learning, June 2018. URL http://arxiv.org/abs/1712.09381. arXiv:1712.09381
[cs].

11

http://arxiv.org/abs/1711.02827
https://papers.nips.cc/paper_files/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
http://arxiv.org/abs/1702.08235
http://arxiv.org/abs/1702.08235
https://arxiv.org/abs/1811.06521
http://arxiv.org/abs/2206.10524
http://arxiv.org/abs/2104.13906
http://arxiv.org/abs/2104.13906
http://arxiv.org/abs/2205.11275
https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://vkrakovna.wordpress.com/2019/08/19/classifying-specification-problems-as-variants-of-goodharts-law/
https://vkrakovna.wordpress.com/2019/08/19/classifying-specification-problems-as-variants-of-goodharts-law/
http://arxiv.org/abs/1806.01186
http://arxiv.org/abs/1806.01186
http://arxiv.org/abs/2304.09853
http://arxiv.org/abs/2106.05091
http://arxiv.org/abs/2106.05091
http://arxiv.org/abs/1711.09883
http://arxiv.org/abs/1711.09883
http://arxiv.org/abs/1811.07871
http://arxiv.org/abs/1811.07871
http://arxiv.org/abs/1712.09381

Under review as a conference paper at ICLR 2024

Chiara Dalla Man, Francesco Micheletto, Dayu Lv, Marc Breton, Boris Kovatchev, and Claudio
Cobelli. The UVA/PADOVA Type 1 Diabetes Simulator. Journal of Diabetes Science and
Technology, 8(1):26–34, January 2014. ISSN 1932-2968. doi: 10.1177/1932296813514502. URL
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454102/.

Lev McKinney, Yawen Duan, David Krueger, and Adam Gleave. On The Fragility of Learned Reward
Functions, January 2023. URL http://arxiv.org/abs/2301.03652. arXiv:2301.03652
[cs].

Richard Ngo, Lawrence Chan, and Sören Mindermann. The alignment problem from a deep
learning perspective, September 2023. URL http://arxiv.org/abs/2209.00626.
arXiv:2209.00626 [cs].

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. 2022. doi:
10.48550/ARXIV.2203.02155. URL https://arxiv.org/abs/2203.02155.

Malayandi Palan, Nicholas C. Landolfi, Gleb Shevchuk, and Dorsa Sadigh. Learning Reward
Functions by Integrating Human Demonstrations and Preferences. 2019. doi: 10.48550/ARXIV.
1906.08928. URL https://arxiv.org/abs/1906.08928. Publisher: arXiv Version
Number: 1.

Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The Effects of Reward Misspecification: Mapping
and Mitigating Misaligned Models, February 2022. URL http://arxiv.org/abs/2201.
03544. arXiv:2201.03544 [cs, stat].

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning
Library, December 2019. URL http://arxiv.org/abs/1912.01703. arXiv:1912.01703
[cs, stat].

Siddharth Reddy, Anca Dragan, Sergey Levine, Shane Legg, and Jan Leike. Learning human
objectives by evaluating hypothetical behavior. In Hal Daumé III and Aarti Singh (eds.),
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 8020–8029. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/reddy20a.html.

Julien Roy, Roger Girgis, Joshua Romoff, Pierre-Luc Bacon, and Christopher Pal. Direct Behavior
Specification via Constrained Reinforcement Learning, June 2022. URL http://arxiv.org/
abs/2112.12228. arXiv:2112.12228 [cs].

Stuart J. Russell, Peter Norvig, and Ernest Davis. Artificial intelligence: a modern approach. Prentice
Hall series in artificial intelligence. Prentice Hall, Upper Saddle River, 3rd ed edition, 2010. ISBN
978-0-13-604259-4.

Dorsa Sadigh, Anca Dragan, Shankar Sastry, and Sanjit Seshia. Active Preference-Based Learning
of Reward Functions. In Robotics: Science and Systems XIII. Robotics: Science and Systems
Foundation, July 2017. ISBN 978-0-9923747-3-0. doi: 10.15607/RSS.2017.XIII.053. URL
http://www.roboticsproceedings.org/rss13/p53.pdf.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Pol-
icy Optimization Algorithms, August 2017. URL http://arxiv.org/abs/1707.06347.
arXiv:1707.06347 [cs].

Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and
Characterizing Reward Hacking, September 2022. URL http://arxiv.org/abs/2209.
13085. arXiv:2209.13085 [cs, stat].

12

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454102/
http://arxiv.org/abs/2301.03652
http://arxiv.org/abs/2209.00626
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/1906.08928
http://arxiv.org/abs/2201.03544
http://arxiv.org/abs/2201.03544
http://arxiv.org/abs/1912.01703
https://proceedings.mlr.press/v119/reddy20a.html
http://arxiv.org/abs/2112.12228
http://arxiv.org/abs/2112.12228
http://www.roboticsproceedings.org/rss13/p53.pdf
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2209.13085
http://arxiv.org/abs/2209.13085

Under review as a conference paper at ICLR 2024

Garry M. Steil. Algorithms for a Closed-Loop Artificial Pancreas: The Case for Proportional-Integral-
Derivative Control. Journal of Diabetes Science and Technology, 7(6):1621–1631, November
2013. ISSN 1932-2968. URL https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3876341/.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. Learning to summarize from human feedback, September
2020. URL http://arxiv.org/abs/2009.01325. arXiv:2009.01325 [cs].

Jonathan Stray, Alon Halevy, Parisa Assar, Dylan Hadfield-Menell, Craig Boutilier, Amar Ashar,
Lex Beattie, Michael Ekstrand, Claire Leibowicz, Connie Moon Sehat, Sara Johansen, Lianne
Kerlin, David Vickrey, Spandana Singh, Sanne Vrijenhoek, Amy Zhang, McKane Andrus, Natali
Helberger, Polina Proutskova, Tanushree Mitra, and Nina Vasan. Building Human Values into
Recommender Systems: An Interdisciplinary Synthesis, July 2022. URL http://arxiv.org/
abs/2207.10192. arXiv:2207.10192 [cs].

Jessica Taylor. Quantilizers: A Safer Alternative to Maximizers for Limited Opti-
mization. March 2016. URL https://www.semanticscholar.org/paper/
Quantilizers%3A-A-Safer-Alternative-to-Maximizers-for-Taylor/
4e8ff3b4069a12a00196d62925bab8add7389742.

Jessica Taylor, Eliezer Yudkowsky, Patrick LaVictoire, and Andrew Critch. Alignment for Advanced
Machine Learning Systems. In Ethics of Artificial Intelligence. Oxford University Press, August
2020. ISBN 978-0-19-090505-7. Google-Books-ID: 1yT3DwAAQBAJ.

Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca D. Dragan, and Daniel S. Brown. Causal
Confusion and Reward Misidentification in Preference-Based Reward Learning, March 2023. URL
http://arxiv.org/abs/2204.06601. arXiv:2204.06601 [cs].

Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested Traffic States in Empirical Observa-
tions and Microscopic Simulations. Physical Review E, 62(2):1805–1824, August 2000. ISSN
1063-651X, 1095-3787. doi: 10.1103/PhysRevE.62.1805. URL http://arxiv.org/abs/
cond-mat/0002177. arXiv:cond-mat/0002177.

A. M. Turner, Logan Smith, Rohin Shah, Andrew Critch, and Prasad Tadepalli. Optimal Policies
Tend To Seek Power. December 2019. URL https://www.semanticscholar.
org/paper/Optimal-Policies-Tend-To-Seek-Power-Turner-Smith/
46d4452eb041e33f1e58eab64ec8cf5af534b6ff.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, Sergey Levine, and Karol Hausman. Jump-
Start Reinforcement Learning, July 2023. URL http://arxiv.org/abs/2204.02372.
arXiv:2204.02372 [cs].

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and Matthieu
Geist. Leverage the Average: an Analysis of KL Regularization in RL, January 2021. URL
http://arxiv.org/abs/2003.14089. arXiv:2003.14089 [cs, stat].

Quan Vuong, Aviral Kumar, Sergey Levine, and Yevgen Chebotar. Dual Generator Offline Re-
inforcement Learning, November 2022. URL http://arxiv.org/abs/2211.01471.
arXiv:2211.01471 [cs].

Cathy Wu, Aboudy Kreidieh, Kanaad Parvate, Eugene Vinitsky, and Alexandre M. Bayen. Flow: A
Modular Learning Framework for Mixed Autonomy Traffic. IEEE Transactions on Robotics, 38
(2):1270–1286, April 2022. ISSN 1552-3098, 1941-0468. doi: 10.1109/TRO.2021.3087314. URL
http://arxiv.org/abs/1710.05465. arXiv:1710.05465 [cs].

Tian Xu, Ziniu Li, and Yang Yu. Error Bounds of Imitating Policies and Environments, October 2020.
URL http://arxiv.org/abs/2010.11876. arXiv:2010.11876 [cs].

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge. Accelerating Safe
Reinforcement Learning with Constraint-mismatched Policies, July 2021. URL http://arxiv.
org/abs/2006.11645. arXiv:2006.11645 [cs, stat].

13

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876341/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876341/
http://arxiv.org/abs/2009.01325
http://arxiv.org/abs/2207.10192
http://arxiv.org/abs/2207.10192
https://www.semanticscholar.org/paper/Quantilizers%3A-A-Safer-Alternative-to-Maximizers-for-Taylor/4e8ff3b4069a12a00196d62925bab8add7389742
https://www.semanticscholar.org/paper/Quantilizers%3A-A-Safer-Alternative-to-Maximizers-for-Taylor/4e8ff3b4069a12a00196d62925bab8add7389742
https://www.semanticscholar.org/paper/Quantilizers%3A-A-Safer-Alternative-to-Maximizers-for-Taylor/4e8ff3b4069a12a00196d62925bab8add7389742
http://arxiv.org/abs/2204.06601
http://arxiv.org/abs/cond-mat/0002177
http://arxiv.org/abs/cond-mat/0002177
https://www.semanticscholar.org/paper/Optimal-Policies-Tend-To-Seek-Power-Turner-Smith/46d4452eb041e33f1e58eab64ec8cf5af534b6ff
https://www.semanticscholar.org/paper/Optimal-Policies-Tend-To-Seek-Power-Turner-Smith/46d4452eb041e33f1e58eab64ec8cf5af534b6ff
https://www.semanticscholar.org/paper/Optimal-Policies-Tend-To-Seek-Power-Turner-Smith/46d4452eb041e33f1e58eab64ec8cf5af534b6ff
http://arxiv.org/abs/2204.02372
http://arxiv.org/abs/2003.14089
http://arxiv.org/abs/2211.01471
http://arxiv.org/abs/1710.05465
http://arxiv.org/abs/2010.11876
http://arxiv.org/abs/2006.11645
http://arxiv.org/abs/2006.11645

Under review as a conference paper at ICLR 2024

Yiming Zhang, Quan Vuong, and Keith W. Ross. First Order Constrained Optimization in Policy
Space, October 2020. URL http://arxiv.org/abs/2002.06506. arXiv:2002.06506 [cs,
stat].

14

http://arxiv.org/abs/2002.06506

Under review as a conference paper at ICLR 2024

APPENDIX

A PROOFS

A.1 PROOF OF PROPOSITION 3.1

Proposition 3.1. Fix ϵ > 0 and δ > 0 arbitrarily small, and c ≥ 0 arbitrarily large. Then there is an
MDP and true reward function R where both of the following hold:

1. There is a pair of policies π and πsafe where the action distribution KL divergence satisfies

(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe(· | st))

]
≤ ϵ

but |J(πsafe, R)− J(π,R)| ≥ 1− δ.

2. There is a safe policy πsafe
′ such that any other policy π with

(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe
′(· | st))

]
≤ c

satisfies |J(πsafe
′, R)− J(π,R)| ≤ δ.

Proof. Consider the following MDP, also shown in Figure 1:

s1

R(s1, ·) = 1

s2

R(s2, ·) = 0

a2a1

a1, a2

In this MDP, S = {s1, s2}, A = {a1, a2}, and the transition probabilities and reward function are
defined by

p(s1 | s1, a1) = 1 p(s2 | s1, a2) = 1

p(s2 | s2, a1) = 1 p(s2 | s2, a2) = 1

∀a ∈ A R(s1, a) = 1 R(s2, a) = 0.

The initial state is always s1. Thus, the agent stays in state s1 and receives 1 reward each timestep
until it takes action a2, at which point it transitions to s2 and receives no more reward. Define for
any p ∈ [0, 1] a policy πp that takes action a2 in s1 with probability p, i.e. πp(a2 | s1) = p; in s2,
suppose πp chooses uniformly at random between a1 and a2. Then

J(πp, R) = (1− γ)

∞∑
t=0

γtP(st = s1)

(i)
= (1− γ)

∞∑
t=0

γt(1− p)t

(ii)
=

1− γ

1− γ(1− p)
(8)

where (i) is due to the fact that remaining in s1 after t timesteps requires t independent events of
1− p probability, and (ii) uses the formula for sum of an infinite geometric series.

15

Under review as a conference paper at ICLR 2024

We will prove the proposition using

γ = max

{
1− ϵδ

2 log(2/δ)
, 1− δ

2

}
π = π2(1−γ)/δ

πsafe = π(1−γ)δ/2

πsafe
′ = πq where q = max

{
1− 1

2 exp {2(1/e+ c(δ + γ)/δ)}
, (1− γ)/δ

}
.

To start, we need to show that

(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe(· | st))

]
≤ ϵ. (9)

Since π and πsafe are identical at s2, we need only consider the KL divergence between the policies’
action distributions at s1. Thus we can rewrite the LHS of (9) as

(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe(· | st))

]
= (1− γ)

∞∑
t=0

γt(1− 2(1− γ)/δ)tDKL(π(· | s1) ∥ πsafe(· | s1))

=
δ

2γ + δ
DKL(π(· | s1) ∥ πsafe(· | s1))

(i)
≤ δ

2
DKL(π(· | s1) ∥ πsafe(· | s1)).

(i) is due to the fact that γ ≥ 1− δ/2 by definition. Expanding the KL term gives

δ

2

(
2(1− γ)/δ log

(
2(1− γ)/δ

(1− γ)δ/2

)
+
(
1− 2(1− γ)/δ

)
log

(
1− 2(1− γ)/δ

1− (1− γ)δ/2

))
. (10)

Assuming δ < 1 (otherwise the result is trivially true), we have

2(1− γ)/δ > (1− γ)δ/2

1− 2(1− γ)/δ < 1− (1− γ)δ/2.

This implies that the right log term in (10) is negative, so we can bound (10) as

< (1− γ) log

(
2(1− γ)/δ

(1− γ)δ/2

)
= 2(1− γ) log

(
2

δ

)
(i)
≤ 2

ϵδ

2 log(2/δ)
log

(
2

δ

)
= ϵ,

which is the desired bound in (9). (i) uses the fact that γ ≥ 1− ϵδ
2 log(2/δ) by definition.

Next, we will show that |J(πsafe, R)− J(π,R)| ≥ 1− δ. First, we can calculate the return of πsafe
using (8):

J(πsafe, R) =
1− γ

1− γ(1− (1− γ)δ/2)

=
1

1 + γδ/2
(i)
≥ 1− γδ/2

≥ 1− δ/2. (11)

16

Under review as a conference paper at ICLR 2024

(i) uses the fact that 1
1+x ≥ 1− x for positive x. The return of π can be calculated similarly as

J(π,R) =
1− γ

1− γ(1− 2(1− γ)/δ)

=
δ

2γ + δ
(i)
≤ δ

2
, (12)

where (i) uses the fact that γ ≥ 1−δ/2. Combining (11) and (12) gives |J(πsafe, R)−J(π,R)| ≥ 1−δ
as desired.

To prove part 2, consider any π satisfying

(1− γ)Eπ

[∞∑
t=0

γtDKL(π(· | st) ∥ πsafe
′(· | st))

]
≤ c.

Let p = π(a2 | s1). Then clearly by the definition of πsafe,

(1− γ)Eπ

[∞∑
t=0

γtDKL(πp(· | st) ∥ πsafe
′(· | st))

]
≤ c, (13)

i.e. πp also satisfies the inequality. Furthermore, note that J(π,R) = J(πp, R). We will show that
p ≥ (1− γ)/δ. This will imply that

J(π,R) = J(πp, R)

=
1− γ

1− γ(1− p)

≤ 1− γ

1− γ(1− (1− γ)/δ)

=
δ

γ + δ
≤ δ.

Since πsafe
′ = πq and q ≥ (1 − γ)/δ by definition, J(πsafe

′, R) ≤ δ also. Since the return of both
policies must also be nonnegative, this implies |J(πsafe

′, R)− J(pi, R)| ≤ δ, which is the desired
bound.

Now, we just need to show that p ≥ (1 − γ)/δ. We do so by contradiction, i.e. assume that
p < (1− γ)/δ. We can rewrite the LHS of (13) as

1− γ

1− γ(1− p)︸ ︷︷ ︸
(a)

[
p log

(
p

q

)
︸ ︷︷ ︸

(b)

+(1− p) log

(
1− p

1− q

)
︸ ︷︷ ︸

(c)

]
. (14)

We will give lower bounds for each part of (14). For (a), we have
1− γ

1− γ(1− p)
>

1− γ

1− γ(1− (1− γ)/δ)
=

δ

γ + δ
.

For (b), note that q ≤ 1, so

p log

(
p

q

)
≥ p log p ≥ −1

e
,

since the function f(x) = x log x has its minimum at f(x) = −1/e. For (c), note that 1 − p >
1− (1− γ)/δ ≥ 1− (1− (1− δ/2))/δ = 1/2. Thus we can bound

(1− p) log

(
1− p

1− q

)
>

1

2
log

(
1

2(1− q)

)
≥ 1

2
log

(
1

2 1
2 exp{2(1/e+c(δ+γ)/δ)}

)

=
1

e
+ c

δ + γ

δ
.

17

Under review as a conference paper at ICLR 2024

Combining the three bounds on the components of (14) gives

(1− γ)Eπ

[∞∑
t=0

γtDKL(πp(· | st) ∥ πsafe
′(· | st))

]

>
δ

γ + δ

[
−1

e
+

1

e
+ c

δ + γ

δ

]
= c,

which contradicts (13), thus completing the proof.

A.2 PROOF OF PROPOSITION 3.2

We first prove another useful proposition:

Proposition A.1. The return of a policy π under a reward function R is given by

J(π,R) =
∑

(s,a)∈S×A

µπ(s, a)R(s, a).

Proof. Applying the definitions of return and occupancy measure, we have

J(π,R) = (1− γ)Eπ

[∞∑
t=0

γtR(st, at)

]

= (1− γ)

∞∑
t=0

γt
∑

(s,a)∈S×A

R(s, a)Pπ (st = s ∧ at = a)

= (1− γ)
∑

(s,a)∈S×A

R(s, a)

∞∑
t=0

γt Pπ (st = s ∧ at = a)

=
∑

(s,a)∈S×A

R(s, a) (1− γ)Eπ

[∞∑
t=0

γt 1 {st = s ∧ at = a}

]

=
∑

(s,a)∈S×A

µπ(s, a)R(s, a).

According to Proposition A.1, the return of a policy is simply a weighted sum of the reward function,
where the weights are given by the occupancy measure. We now prove Proposition 3.2.

Proposition 3.2. For any MDP, reward function R, and pair of policies π, πsafe, we have

|J(πsafe, R)− J(π,R)| ≤
∥∥µπ − µπsafe

∥∥
1
. (4)

Proof. Applying Proposition A.1, Hölder’s inequality, and the fact that R(s, a) ∈ [0, 1], we have

|J(πsafe, R)− J(π,R)|

=

∣∣∣∣∣∣
∑

(s,a)∈S×A

(µπsafe(s, a)− µπ(s, a))R(s, a)

∣∣∣∣∣∣
≤
(

max
(s,a)∈S×A

|R(s, a)|
) ∑

(s,a)∈S×A

|µπsafe(s, a)− µπ(s, a)|

≤ ∥µπ − µπsafe∥1 .

18

Under review as a conference paper at ICLR 2024

0 500
0

1

0 200
0

1

0 500
0

1

0 500

70

80

90

Tr
ue

R
ew

ar
d Tomato

0 200

−25000

0
Traffic

0 500

−250000

0
Glucose

0 500

80

90

Pr
ox

y
R

ew
ar

d

0 200

1500

1750

0 500

−250

0

0 500

Iterations

0.0

2.5

O
cc

up
an

cy
m

ea
s.

K
L

0 200

Iterations

0

2

0 500

Iterations

0

5

Figure 4: This figure shows training runs of ORPO in the three environments considered for experi-
mentation. Note that we picked random λ values to showcase in this graph, not just the best ones.

A.3 ADDITIONAL RESULTS

The following proposition demonstrates that there is always some reward function for which the
bound in (4) is tight up to a factor of two.

Proposition A.2. Fix an MDP and pair of policies π, πsafe. Then there is some reward function R
such that

|J(πsafe, R)− J(π,R)| ≥ 1

2

∥∥µπ − µπsafe

∥∥
1
.

Proof. Define two reward functions

R1(s, a) = 1{µπsafe(s, a) ≥ µπ(s, a)}
R2(s, a) = 1{µπsafe(s, a) ≤ µπ(s, a)}.

Using Proposition A.1, we have

|J(πsafe, R1)− J(π,R1)|+ |J(π,R2)− J(πsafe, R2)|
≥ J(πsafe, R1)− J(π,R1) + J(π,R2)− J(πsafe, R2)

=
∑

(s,a)∈S×A

(
µπsafe(s, a)− µπ(s, a)

)(
R1(s, a)−R2(s, a)

)

=
∑

(s,a)∈S×A

(
µπsafe(s, a)− µπ(s, a)

)
1 µπsafe(s, a) > µπ(s, a)

−1 µπsafe(s, a) < µπ(s, a)

0 µπsafe(s, a) = µπ(s, a)

=
∑

(s,a)∈S×A

∣∣∣µπsafe(s, a)− µπ(s, a)
∣∣∣

= ∥µπ − µπsafe∥1.

Since both of the terms on the first line are positive, one must be at least 1
2∥µπ − µπsafe∥1, which

completes the proof.

19

Under review as a conference paper at ICLR 2024

B STABILITY AND CONVERGENCE OF ORPO

As we can see in 4, ORPO is generally stable, especially towards the end of the training run. It tends
to converge to be within a narrow range for each of the metrics. Note that some of the unstable
behavior that is shown in the graph can be because RL is in general a bit unstable to train. We do
sometimes see instability at high values of λ because the added rewards from the discriminator are
very large compared to the underlying rewards and are changing over time. As we show in 3, ORPO
works best with moderate values of λ since moderate regularization both prevents reward hacking and
allows improvement upon the provided safe policy. Thus, we do not believe that instability with high
values of λ presents a challenge to the practical adoption of our regularization method. It’s also worth
noting that in the case of the simple tomato environment, initializing with the safe policy already
seems to keep the true and proxy reward functions well-aligned with each other in some cases.

C ENVIRONMENT DETAILS

C.1 TOMATO ENVIRONMENT

In Figure 5, we have the setup of the tomato environment board we used for training.

Figure 5: Here, the gray squares represent walls, and the white squares represent open spaces where
the agent can travel.

The sprinkler state is down a shallow hallway, and on the other end a tomato is down another shallow
hallway. We wanted to try out a scenario where the reward hacking would be relatively difficult for
the agent to find to see whether or not our method works for more complex gridworld scenarios.

C.2 TRAFFIC ENVIRONMENT

In Figure 6, we have a simplified rendering of the traffic flow environment merge scenario.

Within this particular frame, reward hacking is taking place. As we can see the blue RL vehicle
has stopped completely on the on-ramp, resulting in cars to collect behind it. This way, the proxy
reward, which is the average velocity of all vehicles in the simulation, is optimized as the cars on the
straightway are able to continue speeding along the road without having to wait for merging cars.
However, little to no true reward of the average commute time is achieved as the cars on the on-ramp
aren’t able to continue their commute.

20

Under review as a conference paper at ICLR 2024

Figure 6: Here, the green cars are controlled by the human driver model IDM controller, and the blue
cars are controlled by RL.

D EXPERIMENT DETAILS

Here, we give some extra details about the architectures and hyperparameters we used for training the
ORPO agents. We build ORPO using RLLib (Liang et al., 2018) and PyTorch (Paszke et al., 2019).
For all RL experiments we train with 3 random seeds and report the median reward.

Network architectures The policy model for both the traffic and tomato environments was a simple
fully connected network (FC-net) with a width of 512 and depth of 4. The policy model for the
glucose environment is a basic LSTM network with 3 layers, each with widths of 64. We made this
choice since the observation of the environment contains continuous historical information about the
patient’s blood glucose levels and previously administered insulin. The model sizes were chosen as
we found that models with these capacities empowered the agents significantly enough for them to
reward hack consistently.

The discriminator model for the tomato and traffic environments was a simple FC-net with a width
of 256 and depth of 4. For the glucose environment, we defined multiple configurations for the
discriminator due to the continuous nature of its observation space. First, we have an option to allow
for the entire history of the patient that is captured in the observation by default to be fed into the
discriminator network, in which case the discriminator will be an LSTM network similar to the policy
network in order to properly handle the time series data. By default, the last four hours of the patient’s
state split into five minute intervals will be fed into the discriminator, but there is also an option to
decrease the amount of history being used. If no history is used for the input to the discriminator
network, we default to using the same FC-net used for the tomato and traffic environments. We
additionally have the option of using the entire observation provided in the glucose environment (the
CGM readings of the patient and the amount of insulin delivered) or just the CGM readings. Please
refer to Section ?? for a discussion of why training the discriminator with different inputs can make a
difference in how the policy is regularized.

D.1 HYPERPARAMETERS

Some hyperparameters for the traffic environment were tuned by Pan et al. (2022).

The coefficient λ that is used for determining how much regularization to apply was varied throughout
the experiments and noted in our result.

21

Under review as a conference paper at ICLR 2024

Hyperparameter Value (Tomato) Value (Traffic)
Training iterations 500 250
Batch size 3000 6000

SGD minibatch size 128 6000
SGD epochs per iteration 5 5
Optimizer Adam Adam
Learning rate 1e-3 5e-5
Gradient clipping 0.1 0.1
Discount rate (γ) 0.99 0.99
GAE coefficient (λ) 0.98 0.97
Entropy coefficient 0.01 0.01
KL target 0.01 0.02
Value function loss clipping 10 10,000
Value function loss coefficient 0.1 0.5

Table 2: PPO/ORPO hyperparameters.

Hyperparameter Value (Tomato) Value (Traffic)
Discriminator reward clipping 1000 10
Regularization coefficient (λ) Varied Varied

Table 3: ORPO-specific hyperparameters.

22

	Introduction
	Related work
	Occupancy measure-based regularization
	Action distribution-based regularization
	Occupancy measure-based regularization
	Example
	Occupancy-regularized policy optimization (ORPO)

	Experiments
	Conclusion
	Proofs
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Additional results

	Stability and Convergence of ORPO
	Environment details
	Tomato environment
	Traffic environment

	Experiment details
	Hyperparameters

