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ABSTRACT

The approach of Reinforcement Learning from Human Feedback (RLHF) is widely
used for enhancing pre-trained Language Models (LM), enabling them to bet-
ter align with human preferences. Existing RLHF-based LMs however require
complete retraining whenever new queries or feedback are introduced, as human
preferences may differ across different domains or topics. LM retraining is of-
ten impracticable in most real-world scenarios, due to the substantial time and
computational costs involved, as well as data privacy concerns. To address this
limitation, we propose Continual Proximal Policy Optimization (CPPO), a novel
method that is able to continually align LM with dynamic human preferences.
Specifically, CPPO adopts a weighting strategy to decide which samples should be
utilized for enhancing policy learning and which should be used for solidifying past
experiences. This seeks a good trade-off between policy learning and knowledge
retention. Our experimental results show that CPPO outperforms strong Contin-
uous learning (CL) baselines when it comes to consistently aligning with human
preferences. Furthermore, compared to PPO, CPPO offers more efficient and stable
learning in non-continual scenarios.

1 INTRODUCTION

Recent studies (Stiennon et al., 2020; Bai et al., 2022a; Ouyang et al., 2022) have shown that
Reinforcement Learning from Human Feedback (RLHF) can significantly enhance language models
by aligning them with human intention. RLHF uses human preferences as a reward signal to fine-tune
language models with the Proximal Policy Optimization (PPO) algorithm. The RLHF-based model
can effectively generate answers preferred by humans for tasks that lack standardized solutions, such
as summarization(Stiennon et al., 2020), translation(Kreutzer et al., 2018), and dialogue(Jaques et al.,
2020), without over-optimizing metrics such as ROUGE(Lin, 2004) or BLEU(Papineni et al., 2002).

In real-world applications, learning continuously changing human preferences is more practical
than learning invariable human preferences. For example, the progression from the onset of the
COVID-19 virus in human society to widespread infections and finally to achieving herd immunity
has seen corresponding changes in government policies and human perspective. An AI agent that
keeps pace with the times should exhibit behavior that aligns with current government policies and
human understanding preferences at different stages, rather than remaining static.

However, traditional alignment methods(Stiennon et al., 2020; Ouyang et al., 2022), lack flexibility
for continual learning (CL) of human preferences. Recent approach (Bai et al., 2022a) tackles these
problems by periodically retraining the Preference Model (PM) and policy based on both new and
historical data, it might be inefficient and impractical due to the involved concerns of computational
cost and data privacy.

In this paper, we propose a more practical approach by enhancing RLHF with continual learning
(CL), aiming to optimize two conflicting objectives: preserving old knowledge and acquiring new

∗ Corresponding authors: Yu Lei (leiy01@pcl.ac.cn) and Ruifeng Xu (xuruifeng@hit.edu.cn).

1



Published as a conference paper at ICLR 2024

knowledge (Rolnick et al., 2019). This leads to a long-standing challenge known as the stability-
plasticity1 dilemma (Abraham & Robins, 2005). Moreover, due to the vast action space (vocabulary)
of LMs, the RLHF algorithms (e.g., PPO) usually suffer from the issues of inefficiency and instability
during training (Ramamurthy et al., 2022). To tackle these challenges, we attempt to seek a good
tradeoff between policy learning and knowledge retention with stable learning by designing a sample-
wise weighting strategy over the rollout2 samples. Our weighting strategy is motivated by the fact
that a desired policy should always generate high-reward results with high probabilities.

Specifically, we first categorize the rollout samples into five types according to their rewards and
generation probabilities, as shown in Figure 1. We then assign each rollout sample with a policy
learning weight α and a knowledge retention weight β, in the following way. 1) For a high-
performance sample, we assign a high α and a high β, in order to consolidate the knowledge of
this sample. 2) For a high-variance or overfitting sample, we assign a high α and a low β, so as
to learn more knowledge of this sample and force the new policy to be different from the old one
in generating such a sample. 3) For a noisy sample, we assign a low α and a low β to decrease its
impact on learning. 4) For a normal sample, we make no changes.
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Figure 1: Five types of the rollout are uti-
lized in our method.

Based on the above weighting strategy, we develop a
novel PPO-based method, named continual proximal
policy optimization (CPPO). CPPO implements the
weighting strategy in two different ways: heuristic and
learnable, resulting in two different CPPO methods
(see Section 3.2 for details). The heuristic approach
sets the weight with linear gain or decay according to
strategy. The learnable approach converts the strategy
into several inequality constraints and learns the best
weight by optimizing the Lagrange function.

Experimental results on real-world summarization
datasets demonstrate that our proposed CPPO methods
significantly outperform the PPO re-training methods
and the strong CL baselines, in both CL and non-CL
settings (detailed in Appendix F). Furthermore, addi-
tional experiments in both settings verify the superior
training stability of CPPO compared to the original
PPO algorithm.

2 PRELIMINARY AND TASK FORMULATION

PPO algorithm (Schulman et al., 2017) utilizes the clipped surrogate objective with a learned state-
value function, and the entropy bonus (Mnih et al., 2016) is added to the original reward. The total
objective is approximately maximized in each iteration step i = 1, 2, ..., I (in the NLP scene, step-i
denotes the generation of the i-th token):

LCLIP+V F
i (θ) = Ei[L

CLIP
i (θ)− c · LV F

i (θ)] (1)

where c is the coefficient, and LV F
i is a squared-error loss (Vθ(si) − V targ

i )2. The clipped policy
learning objective is: LCLIP

i (θ) = min(ri(θ)·Ai, clip(ri(θ), 1±ϵ)·Ai), where ri(θ) =
πθ(ai|si)

πθold
(ai|si)

is the probability ratio, ϵ is the clip hyperparameter, si is the i-th state, Ai is the truncated version of
generalized advantage estimation.

Task Formulation: In this paper, we propose the task of continually learning human preferences
under an offline continual learning setting(Biesialska et al., 2020). Formally. we consider a task
sequence of T = {T1, T2, ...} to continually learn a policy model on the corresponding human

1In this context, stability refers to the retention of previously acquired knowledge, which is different from the
training stability mentioned later. Plasticity, on the other hand, refers to the ability to adapt to new knowledge
through policy learning.

2In the context of RLHF, a rollout, also known as a trajectory or episode, entails generating a response
sequence, such as a summary, to a given conversation prompt, starting from a particular state (i.e. the initial
prompt). The responses generated during the rollout are then used to update the policy network.
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preference datasets HF = {HF 1, HF 2, ...} and prompt datasets S = {S1, S2, ...}. For each task
Tt(t = 1, 2, ...), the policy πt is initialized by πt−1 and then is trained against the reward model rt
, where the reward model rt is learned on HF t. The initial policy π0 is the SFT model, namely,
π0 = πSFT . Let x = (s, a) denote the prompt s and answer a pair. The final objective is to learn a
policy model πθ that maximizes the overall reward on all of the learned human preferences:

max
θ

ΣT
t=1Es∼St,a∼πθ(·|s)

[
rt(s, a)

]
(2)

3 CONTINUAL PROXIMAL POLICY OPTIMIZATION

3.1 MOTIVATION AND THEORETICAL ANALYSIS

To optimize the objective 2 in the CL paradigm, the key is to balance the tradeoff between policy
learning and knowledge retention, i.e., to learn a policy πt that not only fits current task t but also
retains the knowledge of previous tasks. This is typically accomplished by maximizing πt’s average
reward and meanwhile minimizing the difference between πt and πt−1 by KL-based knowledge
distillation (Kaplanis et al., 2019):

max
θ

Es∼St,a∼πθ(·|s)
[
rt(s, a)

]
− Es∈St−1

DKL(Pπθ
(a|s) ∥ Pπt−1

(a|s)) (3)

where Pπθ
(a|s) denotes the probability that policy πθ generates the answer a to the prompt s.

However, in the RLHF setting, we argue that a more effective way to achieve policy learning is to
maximize the rewards of the results that πθ has a high probability to generate. This is because LMs
usually have a vast action space (vocabulary size) and adopt a sampling strategy such as beam search
that favors high-probability generative results. For knowledge retention, on the other hand, it is more
important to make πθ retain πt−1’s certain knowledge that generates high-reward outputs rather than
all.

To accomplish the above ideas, we propose a theoretically desirable objective for continual RLHF at
task Tt:

max
θ

E(s,a)∈D1
rt(s, a)− E(s,a)∈D2

DKL(Pπθ
(a|s) ∥ Pπt−1

(a|s)) (4)

where, D1 = {(s, a)|s ∼ St, a ∼ πθ(·|s), Pπθ
(a|s) > µa[Pπθ

(a|s)] + kσa[Pπθ
(a|s)]} and D2 =

{(s, a)|s ∼ St−1, a ∼ πt−1(·|s), rt(s, a) > µa[rt(s, a)] + kσa[rt(s, a)]} denote the sets of samples
with high generation probability and high rewards, respectively. µ and σ denote the mean and
standard deviation respectively, and k is a hyperparameter. It is important to note that here we
use rt(s, a) instead of rt−1(s, a). Since the reward model is continually learneded, we assume
rt−1(s, a) ≈ rt(s, a) when s ∈ St−1 and a ∼ πθ(·|s). To simplify notation, the subsequent sections
of the paper use x instead of (s, a).

The KL divergence term requires a significant amount of memory to store the probability distribution
of each token across the vast vocabulary. To tackle this problem, we incorporate a low computational
knowledge retention penalty term LKR

i (θ) = (logPπθ
(xi)− logPπt−1(xi))

2. We compute the L2
distance of the log generation probability of true tokens instead of the KL divergence of the entire
vocabulary’s probability distribution. We find the former is effective for knowledge retention and
needs NOT to save the vocabulary’s probability distribution in the memory3.

We introduce ID1
(x) and ID2

(x) to denote the indicator functions of the sets of D1 and D2, respec-
tively. By introducing the actor-critic version, the clipped ratio, and the entropy bonus, we claim that
Eq.(4) can be written to (the derivation is detailed in Appendix Section B):

J
′
(θ) = L

ID1
·CLIP+ID2

·KR+V F
i (θ)

= Ei[ID1(x) · LCLIP
i (θ)− ID2(x) · LKR

i (θ)− c · LV F
i (θ)]

(5)

Compared with objective Eq. (1), Eq.(5) introduces the learning weights ID1(x), ID2(x), and the
LKR
i loss. Unfortunately, it is still impractical to directly optimize the objective, since the training

3In our task, the reference model generates 512 summaries (max 50 tokens) in one rollout. The vocabulary
size is nearly 5e+4. If we use FP16 to save the logits or proability tensor, it takes about 512*50*5e4*2 Bit/1e9 =
1.28GB of memory. However, computing LKR only needs to save the probability of true tokens, which takes
only 512*50*2 Bit/1e9 = 2.56E-05GB of memory.
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samples in D1 and D2 are seldom as indicated by the Cantelli Inequation4 P (X > µ[X]+kσ[X]) <
1/(1 + k2). To make Eq.(5) easy to optimize, we generalize the indicator functions ID1

(x) and
ID2

(x) to positive real-valued functions α(x) and β(x), which gives each sample a non-zero learning
weight.

3.2 WEIGHTING STRATEGY

Our method utilizes sample-wise balance weights α(x) and β(x) to regulate the policy learning and
knowledge retention processes, aiming to find a balance between knowledge retention and policy
learning. The final objective is:

J(θ) = Lα·CLIP+β·KR+V F
i (θ)

= Ei[α(x)L
CLIP
i (θ)− β(x)LKR

i (θ)− c · LV F
i (θ)]

(6)

for task t = 1, 2, ..., T . Next, we propose a weighting strategy for balancing policy learning and
knowledge retention.

3.2.1 BALANCING POLICY LEARNING AND KNOWLEDGE RETENTION

To simplify the expression, we define the operator F [·] = µ[·]−kσ[·] and operator G[·] = µ[·]+kσ[·].
As shown in Figure 1 and Table 1, we classify the rollout samples into 5 rollout types based on the joint
distribution of (Pπθ

(x), R(x)). If Pπθ
(x) or R(x) is outside the discriminant interval (F [·], G[·]), it

is considered as high or low. Now, we detail each rollout type and corresponding weight strategy.

Table 1: The determining condition of rollout type and corresponding
weight strategy to balance policy learning and knowledge retention.
We monitor the generating probability Pπθ

(x) and the corresponding
reward score R(x). The rollout type of sample x depends on whether
the Pπθ

(x) and R(x) fall in or outside the discriminant interval
(F [·], G[·]).

ID Rollout Type Determining Condition Weight Strategy

r1 High-performance Pπθ
(x) ≥ G[Pπθ

] R(x) ≥ G[R] α(x) ↑ β(x) ↑
r2 Overfitting Pπθ

(x) ≥ G[Pπθ
] R(x) ≤ F [R] α(x) ↑ β(x) ↓

r3 High-variance Pπθ
(x) ≤ F [Pπθ

] R(x) ≥ G[R] α(x) ↑ β(x) ↓
r4 Noisy Pπθ

(x) ≤ F [Pπθ
] R(x) ≤ F [R] α(x) ↓ β(x) ↓

r5 Normal Pπθ
(x) or R(x) ∈ (F,G) − −

High-performance sample:
If both Pπθ

(x) and R(x) are
high, it indicates that the old
policy has high confidence to
generate x which gets a high
reward, implying that it is al-
ready performing well. In this
case, we ask the new policy to
enhance both policy learning
and knowledge retention.

Overfitting sample: A high
Pπθ

(x) with a low R(x) in-
dicates that the old policy is
likely overfitting (due to high
probability) to the biased sample (due to low reward score). We aim to reduce the generation proba-
bility of the biased sample x, which can be achieved through policy learning. However, knowledge
retention will maintain the high probability of the biased sample x. Therefore, we enhance policy
learning and slow down knowledge retention.

High-variance sample: If Pπθ
(x) is low while R(x) is high, it suggests that sample x has high

variance. Due to the low Pπθ
(x), the likelihood of generating x next time is low. To achieve stable

(low variance) performance, we aim to increase the generation probability of sample x, which can be
accomplished through policy learning. However, knowledge retention will maintain a low generation
probability. Therefore, we enhance policy learning and slow down knowledge retention.

Noisy sample: If both Pπθ
(x) and R(x) are low, sample x is considered noisy data which may lead

to overoptimization against the PM (Gao et al., 2022). Therefore, we slow down both knowledge
retention and policy learning.

Normal sample: If at least one of Pπθ
(x) and R(x) falls within the discriminant interval, we

consider it a normal condition and do not alter the learning process.

4Cantelli’s inequality (also called the Chebyshev-Cantelli inequality and the one-sided Chebyshev inequality)
is a version of Chebyshev’s inequality for one-sided tail bounds.
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Figure 2: The surfaces of heuristic weights. The weights are equal to 1 when rollout samples fall in
the normal zone.

3.2.2 HOW TO DETERMINE BALANCE WEIGHTS?

The above weight strategies constitute several inequality constraints of α(x) and β(x), shown in Table
2. Determining balance weights requires finding a feasible solution that satisfies those constraints.
We provide two methods to determine balance weights including the heuristic weight method and the
learnable weight method.

Table 2: The constraint of weights and heuristic weights.
ID Constraint of α(x) Constraint of β(x) Heuristic α(x) Heuristic β(x)

r1 α(xr5)− α(xr1) < 0 β(xr5)− β(xr1) < 0 min(ub,
Pπθ

(x)−µ[Pπθ
]

kσ[πθ]
) min(ub, R(x)−µ[R]

kσ[R] )

r2 α(xr5)− α(xr2) < 0 β(xr2)− β(xr5) < 0 min(ub,
Pπθ

(x)−µ[Pπθ
]

kσ[πθ]
) max(lb, 2 + R(x)−µ[R]

kσ[R] )

r3 α(xr5)− α(xr3) < 0 β(xr3)− β(xr5) < 0 min(ub,
Pπθ

(x)−µ[Pπθ
]

kσ[πθ]
) max(lb, 2 + R(x)−µ[R]

kσ[R] )

r4 α(xr4)− α(xr5) < 0 β(xr4)− β(xr5) < 0 max(lb, 2 +
Pπθ

(x)−µ[Pπθ
]

kσ[πθ]
) max(lb, 2 + R(x)−µ[R]

kσ[R] )

r5 − − 1 1

All Ex∼πt−1 [α(x)] = 1 Ex∼πt−1 [β(x)] = 1 − −

Heuristic α(x) and β(x): If Pπθ
(x) or R(x) fall within the discriminant interval, the balance

weights are set to 1. If they are further away from the discriminant interval, the weights will linearly
increase or decrease (depending on the rollout type). We can plot the surfaces of α(x) and β(x) in 3D
coordinate systems, as shown in Figure 2. The heuristic weights α(x) and β(x) for a given sample x
can be calculated by the formula presented in Table 2.

Learnable α(x) and β(x): Heuristic α(x) and β(x) lack enough adaptation ability to the dynamic
learning process. Hence, we propose the learnable balance weights to automatically balance policy
learning and knowledge retention. We learn 2N parameters for each rollout batch in which the LM
generates N responses, the 2N parameters can be discarded before the next rollout batch.

Our goal is to find a set of weights that satisfy the constraints in Table 2. Unlike the typical
optimization problem solved by the Lagrange Multiplier method, we do not need to minimize an
additional objective function. It should be noted that the optimization objective of CPPO in Eq.6 is
not directly optimized using the Lagrange Multiplier method.

We employ a more straightforward strategy. We construct an unconstrained optimization objective by
adding all the terms on the left side of the inequalities (in Table 2) together:

Lcoef (ϕ) = Ex∼πt−1 [(αϕ(x)− 1)2 + (βϕ(x)− 1)2] + τ(α(xr5)− α(xr1) + β(xr5)− β(xr1)

+ α(xr5)− α(xr2) + β(xr2)− β(xr5) + α(xr5)− α(xr3) + β(xr3)− β(xr5)

+ α(xr4)− α(xr5) + β(xr4)− β(xr5))

(7)

where, α(x) = (ub− lb) · sig(ϕ1
x)+ lb, β(x) = (ub− lb) · sig(ϕ2

x)+ lb, and sig is sigmoid function,
lb and ub are lower and upper bound of α(x) and β(x). We directly optimize Eq. 7 using SGD to find
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a set of weights that satisfy the constraints. We set multiplier τ as a hyperparameter, and τ = 0.1 is
selected from {0.01, 0.1, 0.5, 1.0}. For more hyperparameter sensitivity analysis experiments, please
refer to Appendix E.1. We found this simple idea is highly effective in our scenario. In Appendix E.2,
we analyze the time and memory required for SGD to find feasible solutions and found that it does
NOT significantly increase the overall training time and memory.

4 EXPERIMENTS

We assess the performance of CPPO and baseline methods in the domain incremental learning (DIL)
summary task. We also evaluate CPPO on non-continual learning tasks (Appendix Section F).

4.1 THE EXPERIMENTAL CONFIGURATION FOR CONTINUAL LEARNING FROM HUMAN
PREFERENCES

Dataset and split: In accordance with previous research (Stiennon et al., 2020), we eval-
uate our method using the Reddit TL;DR (Völske et al., 2017) dataset for summariza-
tion. We use the human preference data provided by CarperAI5. To the best of our
knowledge, there are limited benchmark datasets proposed for evaluating continual RLHF
methods. Consequently, we divide the Reddit TL;DR dataset based on domains into two
parts, which are outlined in Table 3. Each part corresponds to a distinct alignment task.

Table 3: The dataset is utilized for continual learning. The human feedback
data is used for training the reward model. The post (prompt) and summary
(label) of Reddit TL;DR are used for SFT. The domain of "r / others" includes
28 categories, such as books, travel, and cooking. It’s worth noting that the
summary (label) data is not used in the reinforcement learning (RL) process.

Task ID Data Data split Train Valid Test Domain

task-1 Human Feedback part-1 52243 - 45148 r / relationships
Reddit TL;DR part-1 63324 3462 3539 r / relationships

task-2 Human Feedback part-2 40291 - 38481 r / others
Reddit TL;DR part-2 53398 2985 3014 r / others

Experiment settings:
We evaluate CPPO un-
der the DIL setting
with two tasks, and
the historical data is
assumed inaccessible.
This scenario is typical
in real-world applica-
tions, such as develop-
ers continually learn-
ing an open-Source
RLHF model like vicuna(Chiang et al., 2023) in a special domain (e.g., game) without permis-
sion to access the pre-training corpus. For each task, we employ a 1.3B gpt2-xl (Radford et al.,
2019) model with a value head as the reward model (RM). The RM is continually trained for
5 epochs on each task using the MAS(Aljundi et al., 2018) method. Since the policy is prone
to over-optimize against the PM (Gao et al., 2022), we train a 6.7B gptj (Wang & Komatsuzaki,
2021) model as the reference PM (rPM) to measure the performance of alignment. The rPM is
trained on entire human preferences data. We conduct experiments to evaluate the RM trained
with and without MAS through accuracy and forgetting ratio (Chaudhry et al., 2018) (FR) of ac-
curacy. The evaluation results of RM and rPM are shown in Table 4. The accuracy is computed
by counting the percentage of the reward scores of human-preferred responses that are higher
than the reward scores of human-NOT-preferred responses(Yuan et al., 2023). We initialize the
SFT model from gpt2-s and train it on the Reddit TL;DR part-1 for 5 epochs. However, we
do not perform the SFT process in task-2 as we observe no significant effects on performance.

Table 4: The evaluation results of RMs and rPM.
Reward Model Acc(HF test

1 ) Acc(HF test
2 ) FR

RM1 0.7441 - -
RM2 w MAS 0.7203 0.7482 0.024
RM2 w/o MAS 0.6971 0.7496 0.047
rPM 0.7624 0.7592 -

Metrics: We use the forgetting radio (Chaudhry
et al., 2018) of the ROUGE and reference PM
score to measure the extent to which the old
policy is forgotten. Notably, we consider the
alignment tax (Ouyang et al., 2022) as part of
forgetting since it arises when the SFT model
learns human preferences during the RL step. After learning all tasks, we evaluate the models on the
entire test set using both reference PM score and ROUGE score. Table 5 presents the metrics used to

5URL: https://huggingface.co/datasets/CarperAI/openai_summarize_
comparisons
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evaluate each task, as well as the final evaluation metric. A well-performing model is expected to
achieve high scores in both the reference PM and ROUGE metrics.

Table 5: Metrics for our tasks. Dtest
i (i = 1, 2) denote the test data of Reddit TL;DR data part-i, and

rPM(Mi,Dtest
i )(i = 1, 2) denote the reference PM score of model Mi on dataset Dtest

i .
Metric Definition

Task-1 reference PM Score on Task-1 (rPMS1, ↑) rPM(M1,Dtest
1 )

Task-1 Alignment Tax (AT, ↓) Rouge(MSFT ,Dtest
1 )−Rouge(M1,Dtest

1 )
Task-2 reference PM Score on Task-2 (rPMS2, ↑) rPM(M2,Dtest

2 )
Task-2 Score Forgetting Ratio (SFR, ↓) rPM(M1,Dtest

1 )− rPM(M2,Dtest
1 )

Final eval reference PM Score on entire test data (rPMS, ↑) rPM(M2,Dtest
1 ∪ Dtest

2 )

4.2 RESULTS OF CONTINUAL LEARNING FROM HUMAN PREFERENCES

Table 6 shows the results of continual learning from human preferences on the summary task. We ob-
serve that CL methods, such as EWC (Kirkpatrick et al., 2017) regularization or policy consolidation
(Kaplanis et al., 2019) can improve the training stability of the PPO method, thereby ensuring that the
policy does not change too much with every policy gradient step. This leads to improved rPMS. Our
method outperforms CL baselines by achieving the most significant enhancement in policy learning
(rPMS) and possessing Backward Transfer (BWT) (Lopez-Paz & Ranzato, 2017) capability (negative
SFR). This is because our learning strategy is sample-adaptive and balances policy learning and
knowledge retention. Additionally, CPPO performs better than Iterated RLHF because PPO is not
stable enough in the learning process. We observed that during PPO training, the KL divergence and
value prediction errors tend to increase suddenly, as discussed in Section 4.4.

Table 6: The main results of continual alignment on TL; DR dataset. For PPO (In order)∗, we directly
finetune the RM1 on the novel data to obtain RM2, without using MAS regularization; and we directly
train the policy model Mπ1

against RM2 to obtain Mπ2
. For the Iterated RLHF†(PPO), we retrain the

RM2 and policy model Mπ2
on the combination of the Task-1 and Task-2 corpus. Methods in italics

are trained against the continually learned (by MAS) reward models. Details of the implementation
can be found in Appendix G.

Method Task-1 (Mπ1
) Task-2 (Mπ2

) Final eval (Mπ2
)

rPMS1 (↑) rouge (↑) AT (↓) rPMS2 (↑) rouge (↑) SFR (↓) rPMS (↑) rouge (↑)
Human 2.958 − − 2.805 − − 2.903 −
ChatGPT 3.298 0.197 − 3.189 0.191 − 3.242 0.193

SFT (In order) 1.499 ±0.130 0.248 ±0.006 − 1.543 ±0.067 0.237 ±0.007 − 1.498 ±0.051 0.237 ±0.009
SFT (multi-tasks) 1.524 ±0.041 0.254 ±0.011 − 1.536 ±0.092 0.234 ±0.009 − 1.505 ±0.011 0.236 ±0.008
PPO (In order)∗ 2.629 ±0.183 0.196 ±0.050 0.052 ±0.044 2.546 ±0.201 0.151 ±0.022 0.144 ±0.024 2.502 ±0.242 0.186 ±0.016
Iterated RLHF† 2.629 ±0.183 0.196 ±0.050 0.052 ±0.044 2.732 ±0.163 0.211 ±0.011 0.061 ±0.018 2.666 ±0.124 0.200 ±0.010

PPO 2.629 ±0.183 0.196 ±0.050 0.052 ±0.044 2.687 ±0.126 0.184 ±0.017 0.080 ±0.017 2.612 ±0.191 0.188 ±0.013
PPO+OnlineL2 Reg 2.758 ±0.121 0.206 ±0.042 0.042 ±0.042 2.701 ±0.205 0.180 ±0.012 0.062 ±0.013 2.700 ±0.114 0.196 ±0.011
PPO+EWC (Kirkpatrick et al., 2017) 2.833 ±0.122 0.201 ±0.043 0.047 ±0.039 2.823 ±0.192 0.175 ±0.022 0.040 ±0.015 2.801 ±0.202 0.196 ±0.023
PPO+MAS (Aljundi et al., 2018) 2.712 ±0.132 0.211 ±0.051 0.034 ±0.037 2.726 ±0.189 0.157 ±0.021 0.039 ±0.020 2.714 ±0.167 0.179 ±0.011
PPO+LwF (Li & Hoiem, 2018) 2.822 ±0.126 0.197 ±0.051 0.048 ±0.050 2.832 ±0.179 0.169 ±0.036 0.030 ±0.019 2.824 ±0.192 0.179 ±0.019
PPO+TFCL (Aljundi et al., 2019) 2.867 ±0.109 0.202 ±0.039 0.043 ±0.046 2.864 ±0.169 0.169 ±0.020 0.054 ±0.022 2.842 ±0.211 0.178 ±0.014
PC (Kaplanis et al., 2019) 2.692 ±0.117 0.209 ±0.048 0.036 ±0.055 2.723 ±0.195 0.165 ±0.019 0.047 ±0.017 2.703 ±0.191 0.187 ±0.016
HN-PPO (Schöpf et al., 2022) 2.859 ±0.105 0.212 ±0.034 0.036 ±0.042 2.868 ±0.132 0.171 ±0.017 0.028 ±0.029 2.846 ±0.177 0.201 ±0.011
NLPO (Ramamurthy et al., 2022) 2.784 ±0.102 0.185 ±0.041 0.060 ±0.050 2.796 ±0.116 0.172 ±0.021 0.012 ±0.012 2.799 ±0.146 0.181 ±0.022

CPPO (Heuristic) 3.020 ±0.137 0.213 ±0.024 0.035 ±0.023 2.978 ±0.113 0.174 ±0.019 -0.164 ±0.009 3.099 ±0.153 0.179 ±0.016
CPPO (Learn) 3.180 ±0.154 0.220 ±0.040 0.028 ±0.042 3.085 ±0.134 0.164 ±0.024 -0.161 ±0.008 3.207 ±0.113 0.179 ±0.008

4.3 ABLATION STUDY

We conduct an ablation study on our proposed CPPO method. To analyze the effect of the balance
weights, we conduct experiments by setting either α(x) or β(x) to 1. To analyze the effect of the
knowledge retention penalty, we set β(x) ≡ 0. The training curves of different weights are shown in
Figure 3, and the evaluation results are presented in Table 7. We observe that the training process
becomes unstable when setting β(x) to 0. When setting α(x) to 1 reduces the rPMS, the noisy
samples are learned together with normal samples without distinction, hence the reward increase is
slower than CPPO. When setting β(x) to 1 increases the SFR, the overfitting samples, high-variance
samples, and noisy samples are consolidated the in the knowledge retention process, hence the final
reward value is lower than CPPO. The above experiments indicate that the sample-wise balance
weights are helpful for both policy learning and knowledge retention.
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Table 7: Ablation study. PPO is a special case of CPPO (∗α ≡ 1,β ≡ 0).

Method Task-1 Task-2
rPMS1 (↑) rouge (↑) AT (↓) rPMS2 (↑) rouge (↑) SFR (↓)

CPPO / Heuristic 3.020 ±0.137 0.213 ±0.024 0.035 ±0.023 2.978 ±0.113 0.174 ±0.019 -0.164 ±0.009
CPPO / Learn 3.180 ±0.154 0.220 ±0.040 0.028 ±0.042 3.085 ±0.134 0.164 ±0.024 -0.161 ±0.008
PPO / α ≡ 1, β ≡ 0 2.629 ±0.183 0.196 ±0.050 0.052 ±0.044 2.687 ±0.126 0.184 ±0.017 0.080 ±0.017

CPPO / α ≡ 1 2.837 ±0.124 0.196 ±0.029 0.047 ±0.041 2.745 ±0.121 0.169 ±0.020 -0.031 ±0.010
CPPO / β ≡ 1 2.476 ±0.117 0.185 ±0.021 0.063 ±0.025 2.520 ±0.119 0.186 ±0.017 0.051 ±0.009
CPPO / β ≡ 0 2.012 ±0.186 0.209 ±0.022 0.038 ±0.045 2.436 ±0.141 0.174 ±0.021 0.142 ±0.015
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Figure 3: The curves of different weights in task-1. The knowledge retention weights penalty can
improve the training stability of the PPO algorithm. However, setting β(x) ≡ 1 slows down the
increase of the reward compared with CPPO. On the other hand, the policy learning weights α(x)
can boost the increase of the reward compared with α(x) ≡ 1.

4.4 STABILITY ANALYSIS

In this section, we analyze the stability of the CPPO, PPO, and PPO with the knowledge retention
penalty. Previous work (Bai et al., 2022a) argues that small models are more prone to be unstable
in PPO training. However, we find that CPPO can learn stably without the need for invalid-action
masking(Ramamurthy et al., 2022), even with small models. As shown in Figure 4, the vanilla PPO
performers unstably on the new data distribution. PPO with a knowledge retention penalty is more
stable than PPO, but policy learning is slow. CPPO gets fast convergence on reward score and shows
stable performance on the KL divergence and value prediction. This is because the sample-wise
learning strategy of CPPO restricts the learning of noisy samples.
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Figure 4: Training process of Task-2. The PPO algorithm is unstable at 7k steps and is unable to
continuously increase the reward score.

4.5 HUMAN EVALUATION ON REDDIT TL;DR

We train two gpt2-xl models using CPPO and PPO, respectively, and compare their summaries with
those generated by humans and ChatGPT using a Likert scale(Likert, 1932). The results are shown in
Table 8. During the human evaluation, we observe that ChatGPT tends to generate longer summaries
than humans and our models, but its performance remains stable across the test samples.

Although humans provide the best summaries, they still made mistakes, such as obfuscating important
details. Our model achieves comparable performance with ChatGPT but still makes mistakes that the
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small model often makes, such as repeating words and sentences. Due to the training inefficiency and
instability, the performance of gpt2-xl trained by PPO is not satisfactory.

5 RELATED WORK

5.1 REINFORCEMENT LEARNING FROM HUMAN OR AI FEEDBACKS

Table 8: Human evaluation on 100 posts
from the Reddit TL;DR.

Method Likert score Improve p-value

PPO 4.370±1.180 - -
CPPO 4.730±1.231 8.23% 0.037

ChatGPT 4.760±1.011 8.92% 0.013
Human 4.900±1.034 12.13% 0.001

Learning from human preferences has been studied in
the game field (Bradley Knox & Stone, 2008) and has
recently been introduced into the NLP domain, such
as dialogue systems (Li et al., 2023; Zhao et al., 2023;
2024). Previous work (Stiennon et al., 2020) utilizes
the PPO algorithm to fine-tune a language model (LM)
for summarization and demonstrates that RLHF can
improve the LM’s generalization ability, which serves
as the technology prototype for InstructGPT (Ouyang
et al., 2022) and ChatGPT. Learning LMs from feedback can be divided into two categories: human
or AI feedback. Recent works such as HH-RLHF (Bai et al., 2022a) and InstructGPT (Ouyang et al.,
2022) collect human preferences to train a reward model and learn a policy through it. ILF (Scheurer
et al., 2023) proposes to learn from natural language feedback, which provides more information per
human evaluation. Since human annotation can be expensive, learning from AI feedback (RLAIF)
(Bai et al., 2022b; Perez et al., 2022; Ganguli et al., 2022) is proposed, but current methods are only
effective for reducing harmless outputs, while helpful outputs still require human feedback.

5.2 CONTINUAL LEARNING

Within the realm of continual learning, several noteworthy methodologies emerge, encompass-
ing the regularization-based approach, replay-based techniques, optimization-based strategies,
representation-based methodologies, and architecture-based innovations (Wang et al., 2023).

The Regularization-Based Approach (Kirkpatrick et al., 2017; Aljundi et al., 2018; Chaudhry et al.,
2018; Li & Hoiem, 2018; Castro et al., 2018) orchestrates the introduction of explicit regularization
terms, thereby striving to strike a harmonious balance between the acquisition of new skills and the
retention of past knowledge. The Replay-Based Approach aims to preserve and reuse past experiences
to enhance model performance, which includes experience replay(Lin, 1992), generative replay or
pseudo-rehearsal (Sun et al., 2020) and feature replay(Liu et al., 2020). The Optimization-Based
Approach navigates the terrain of continual learning through explicit design and manipulation of
optimization programs. This includes techniques such as gradient projection(Lopez-Paz & Ranzato,
2017), and meta-learning(Javed & White, 2019). The Representation-Based Approach leverages the
strengths of self-supervised learning (SSL)(Gallardo et al., 2021) and large-scale pre-training(Mehta
et al., 2022) to enhance the quality of representations at both the initialization and continual learning
stages. The Architecture-Based Approach addresses inter-task interference by fashioning task-specific
parameters. This approach can be dissected into three distinct paradigms: parameter allocation(Serra
et al., 2018), model decomposition(Ebrahimi et al., 2020), and modular networks(Rusu et al., 2016).

6 CONCLUSION

In this work, we propose CPPO, which utilizes learning weights to balance policy learning and
knowledge retention, with the aim of improving the PPO algorithm for continual learning from
human preferences. CPPO is a task-agnostic and model-agnostic method that does not significantly
increase the time and space complexity of PPO. We evaluate CPPO on both the DIL task and three
non-continual tasks and show that it outperforms strong continual learning baselines when continually
aligning with human preferences. Additionally, CPPO improves the learning efficiency and training
stability of PPO. Our experiments demonstrate the potential of our approach for efficient and stable
continual learning from human preferences, which can have applications in various domains and
tasks.
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A NOTATIONS

All of the notations used in this paper and their corresponding meanings are listed in Table 9.

Table 9: Notations used in this paper, italic font denotes the CPPO-specific symbols
Notations Corresponding Meanings
i(1, ..., I) generation of the i-th token
t(1, ..., T ) t-th task of CL
x a rollout sample
xi i-th token of sample x
si state-i: prompt + x1:i−1

θ parameters of policy learned in task-t
πt policy learned in task-t
Pπt(x) generation probability of x under πt

J(θ) total objective of PPO or CPPO
LCLIP clipped policy learning objective
LV F squared-error value loss
V (si) value estimation by critic
λ / γ reward / value discount coefficients
Ai advantage score of token xi

R(x) reward model score of x
ri(θ) the probability ratio
ϵ clip hyperparameter
clip(·, 1± ϵ) clip by 1± ϵ
c coefficient of LV F

N samples number per rollout batch

k the threhold of times of standard variance
LKR knowledge retention penalty
α(x) weight of policy learning
β(x) weight of knowledge retention
ub,lb the upper bound and lower bound of weights
µ[Pπθ

] expectation of Pπθ
(x)

µ[R] expectation of R(x)
σ[Pπθ

] standard variance of Pπθ
(x)

σ[R] standard variance of R(x)
ϕ (|ϕ|=2N ) parameters for weight learning
Lcoef (ϕ) objective of weight learning

B THE THEORETICAL ANALYSIS OF CPPO

The theoretical objective in Eq. 4 is an intuitive implementation of our basic idea. Based on it, we
derive a more practical objective in Eq. 6. Next, we will elaborate the relationship between the two
and explain how we were inspired by Eq. 4 and designed Eq. 6.

Eq. 6 is a generalized version of Eq. 4.

Let ID1
(x) and ID2

(x) denote the indicator functions of the sets of D1 and D2, respectively. In Eq.
6, α(x) and β(x) can be any non-negative real-valued functions defined on the rollout set. We claim
that in Eq. 4, α(x) and β(x) are specialized as α(x) = ID1

(x), β(x) = ID2
(x). Next, we provide

the derivation step by step.

By introducing the actor-critic version, the clipped ratio, the objective Eq. 4. can be written as
the objective Eq. 5.

1. We utilize notations ID1
(x) and ID2

(x) to rewrite the Eq.4 as maxθ Ex∼πθ
ID1

(x) ·R(x)−
Ex∼πt−1

ID2
(x) ·DKL(Pπθ

(x) ∥ Pπt−1(x)).

2. Then we introduce the importance sampling like PPO, the above objective can be written as
maxθ Ex∼πt−1

ID1
(x) · Pπθ

(x)

Pπt−1
(x)R(x)− Ex∼πt−1

ID2
(x) ·DKL(Pπθ

(x) ∥ Pπt−1(x)).

3. In the PPO method, the objective is to maximize the expectation of the advantage function
instead of the reward value. By introducing the advantage function instead of the reward, the
above objective can be written as maxθ Ex∼πt−1

ID1
(x) · Pπθ

(x)

Pπt−1
(x)A(x)−Ex∼πt−1

ID2
(x) ·

DKL(Pπθ
(x) ∥ Pπt−1(x)).
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4. By introducing the knowledge retention penalty, the above objective is written as:
maxθ Ex∼πt−1

ID1
(x) · Pπθ

(x)

Pπt−1
(x)A(x)− Ex∼πt−1

ID2
(x) · LKR(x).

5. In the CL task, the new policy πt is generally initialized by the old policy πt−1. In CPPO,
we treat the πt−1 and πt as the reference model and policy model respectively. Then, we
consider the actor-critic version, the clipped ratio, and the entropy bonus used in PPO[32],
the above objective can be written as J(θ)

′
= LID1 ·CLIP+ID2 ·KR+V F (θ).

From the objective Eq. 5 to the objective Eq. 6.

Comparing J(θ)
′

with J(θ) = Lα·CLIP+β·KR+V F (θ) in Eq. 6, α(x) and β(x) are specialized as
ID1

(x) and ID2
(x). Hence, the objective Eq. 5 can be treated as a special case of Eq. 6.

C CASE STUDY OF SUMMARY TASK

Table 10 presents a case where CPPO improves the performance on task-1 (r/relationships) after
learning task-2 (r/others).

Table 10: Example responses of Reddit TL;DR.

The original POST (the domain is r/relationships):
TITLE: [20F] My [22M] SO never wants to spend time with me.
POST: My boyfriend and I have been together off & on for three years. We’ve had our fair share of issues, but I
love him and I think he loves me.
We work opposite shifts, and it really cuts into our time together. Majorly. On the few days we both have off,
every other weekend, he chooses to hang out with his friends. He works with his friends on the same schedule,
and they are over every single day.
I always feel like I have to force him to do anything with me and I’m getting tired of it. I always complain to
him that it would be nice if we could spend time together. But, he just says in over reacting. And that I can hang
out with him and his friends. The thing is, we haven’t spent a day together just him and I in over a year. I like
his friends but I just want a day where we can be together just us. I’m sick of being ignored for his friends, or
video games and I don’t know what to do.
TL;DR:
The summary after learning task-1 (r/relationships):
CPPO (rPMS: 1.75): My SO never wants to spend time with me. He works with his friends on the same
schedule, and they are over every single day. I always feel like I have to force him to do anything with me and
I’m getting tired of it.
The summary after learning task-2 (r/others):
CPPO (rPMS: 1.82): My boyfriend prioritizes friends over time with me. Opposite work schedules strain time
together. I’m tired of urging for attention. Seeking advice for reconnection.
PPO(In order) (rPMS: 1.44): The boyfriend has been with his boyfriend for three years and doesn’t want to
spend time with his boyfriend anymore. The boyfriend’s boyfriend has been with him for three years and
doesn’t want to spend time with him anymore.
PPO (rPMS:1.65): The boyfriend and I have been dating for three years and I love him but he is not interested
in going out with his girlfriend.

After learning the task-2, the model generates an accurate and concise summary. It more clearly
conveys the main issue and emotions in the post, along with the desire for advice. And it also gets a
higher rPMS (1.82 v.s. 1.75).

From the three summaries after learning task-2, it can be observed that PPO(In order) seems to
exhibit a more noticeable knowledge forgetting, with a seeming lack of understanding of the concept
"boyfriend." This is due to the frequent occurrence of "boyfriend" in task-1 (r/relationships) and its
almost absence in task-2 (r/others), resulting in a case of catastrophic forgetting. The PPO model
still manages to convey the main essence of the text, but it overlooks some crucial details, such as
"opposite work schedule" and "prioritizes friends over time with me", hence PPO lags behind CPPO
in terms of rPMS value.
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D BASELINES

Supervise fine-tuning (SFT) directly learns the human-labeled summary through the cross-entropy
loss.

Online L2Reg penalizes the updating of model parameters through a L2 loss Lt
2(θ) =

∑
i(θ

i
t−θit−1)

2.
This regularization term mitigates the forgetting issue by applying a penalty for every parameter
change.

EWC (Kirkpatrick et al., 2017) uses fisher information to measure the parameter importance to old
tasks, then slows down the update of the important parameters by L2 regularization.

MAS (Aljundi et al., 2018) computes the importance of the parameters of a neural network in an
unsupervised and online manner to restrict the updating of parameters in the next task.

LwF (Li & Hoiem, 2018) is a knowledge-distillation-based method, which computes a smoothed
version of the current responses for the new examples at the beginning of each task, minimizing their
drift during training.

TFCL (Aljundi et al., 2019) proposes to timely update the importance weights of the parameter
regularization by detecting plateaus in the loss surface.

PC (Kaplanis et al., 2019) is inspired by the biologically plausible synaptic model and proposes to
consolidate memory directly at the behavioral level by knowledge distillation, aiming to mitigate
catastrophic forgetting in the reinforcement learning context.

HN-PPO (Schöpf et al., 2022) Hypernetwork-PPO is a continual model-free RL method employing
a hyper network to learn multiple policies in a continual manner by using PPO.

NLPO (Ramamurthy et al., 2022) NLPO learns to mask out less relevant tokens in-context as it trains
via top-p sampling, which restricts tokens to the smallest possible set whose cumulative probability is
greater than the probability parameter p (Holtzman et al., 2018).

E DISCUSSION

E.1 HYPERPARAMETER SENSITIVE ANALYSIS

Due to the introduction of additional hyperparameters by CPPO, we conducted a sensitivity analysis
of CPPO’s hyperparameters. We conduct sensitivity analysis on five hyperparameters, including
the threhold of times of standard variance k, the upper bound ub and lower bound lb of weights,
the learning rate weights-lr of CPPO Heuristic, and the multiplier τ . As shown in Table 11, the
analysis of experimental results shows that our method is insensitive to the introduction of extra
hyperparameters.

Table 11: Hyperparameter sensitivity analysis of CPPO Heuristic and CPPO Learn.
Hyper-Parameters Task-1 Task-2
k / ub / lb Method rPMS1 (↑) rouge (↑) AT (↓) rPMS2 (↑) rouge (↑) SFR (↓)
0.85 / 2.5 / 0.5 Heuristic 3.020 ±0.137 0.213 ±0.024 0.035 ±0.023 2.978 ±0.113 0.174 ±0.019 -0.164 ±0.009

k: 0.85 -> 0.5 Heuristic 3.011 ±0.141 0.209 ±0.026 0.036 ±0.025 2.97 ±0.121 0.171 ±0.018 -0.162 ±0.011
k: 0.85 -> 1.0 Heuristic 3.017 ±0.132 0.214 ±0.025 0.031 ±0.031 2.891 ±0.117 0.170 ±0.021 -0.151 ±0.010
ub: 2.5 -> 1.5 Heuristic 2.982 ±0.124 0.205 ±0.031 0.040 ±0.042 2.809 ±0.124 0.173 ±0.023 -0.165 ±0.008
ub: 2.5 -> 3.0 Heuristic 3.012 ±0.123 0.205 ±0.042 0.040 ±0.051 2.941 ±0.115 0.171 ±0.029 -0.166 ±0.013
lb: 0.5 -> 0.1 Heuristic 3.011 ±0.162 0.221 ±0.051 0.024 ±0.041 2.809 ±0.115 0.167 ±0.019 -0.162 ±0.011
lb: 0.5 -> 0.0 Heuristic 2.997 ±0.152 0.219 ±0.031 0.026 ±0.040 2.941 ±0.141 0.179 ±0.016 -0.161 ±0.010

weights-lr / τ Method rPMS1 (↑) rouge (↑) AT (↓) rPMS2 (↑) rouge (↑) SFR (↓)
0.01 / 0.1 Learn 3.180 ±0.154 0.220 ±0.040 0.028 ±0.042 3.085 ±0.134 0.164 ±0.024 -0.161 ±0.008

weights-lr: 0.01 -> 0.1 Learn 3.122 ±0.162 0.201 ±0.041 0.044 ±0.041 2.824 ±0.141 0.171 ±0.024 -0.155 ±0.012
weights-lr: 0.01 -> 0.5 Learn 3.141 ±0.131 0.209 ±0.053 0.036 ±0.052 2.934 ±0.125 0.170 ±0.022 -0.162 ±0.016
τ : 0.1 -> 0.01 Learn 3.042 ±0.137 0.211 ±0.046 0.034 ±0.054 2.89 ±0.151 0.168 ±0.026 -0.161 ±0.020
τ : 0.1 -> 0.5 Learn 3.087 ±0.151 0.212 ±0.040 0.033 ±0.062 2.892 ±0.118 0.174 ±0.032 -0.161 ±0.014
τ : 0.1 -> 1.0 Learn 3.072 ±0.148 0.209 ±0.039 0.036 ±0.051 2.967 ±0.129 0.172 ±0.021 -0.169 ±0.008
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E.2 COMPLEXITY ANALYSIS

In this section, we compare CPPO (learnable weights) with PPO in terms of time and memory
occupation. The steps of CPPO are similar to PPO, except for the step of learning balance weights.
By considering the time of the rollout step as our reference, we demonstrate that the time required to
learn the weights is negligible compared to the overall training process of CPPO and PPO. Figure
5 illustrates the time required for learning balance weights and the time for making rollouts during
the training of gpt2-s and gpt2-xl. For gpt2-s training, the ratio between the time spent on learning
balance weights (approximately 8s) and the time taken for rollout steps (around 400s) is 1/50. This
ratio decreases to 1/200 when training gpt2-xl, due to the fact that the time for learning balance
weights remains the same, while the time for making rollouts increases to 1600s. Hence, our method
does not significantly increase the time complexity of PPO, especially for training large language
models.
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Figure 5: Time of learning weights and time of making rollout.

For memory occupation, we record the GPU memory allocation, GPU utilization, and the process
memory in the training process of PPO and CPPO. Figure 6 illustrates the comparison of the
above metrics between PPO and CPPO. CPPO, which learns the balance weights and calculates the
knowledge retention loss, leads to higher allocation of GPU memory and process memory compared
to PPO. Nevertheless, the improvements in GPU memory and process memory are not particularly
substantial.
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Figure 6: GPU utilization and memory allocation when the algorithm runs for 15+ hours. Compared
to the PPO method, our CPPO does not significantly utilize extra memory.

F TASKS FOR STATIC LEARNING

We compare PPO and CPPO on 3 static learning tasks, including random walks, sentiment text
generation, and summary on CNN Daily Mail.

F.1 RANDOM WALKS

The task(Chen et al., 2021) involves finding the shortest path on a directed graph. The reward is
based on how optimal the path is compared to the shortest possible (bounded in [0, 1]). Paths are
represented as strings of letters, with each letter corresponding to a node in the graph. For CPPO or
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PPO, a language model was fine-tuned to predict the next token in a sequence of returns-to-go (sum
of future rewards), states, and actions.

F.2 SENTIMENT TEXT GENERATION

This task focuses on generating positive movie reviews by fine-tuning a pre-trained model on the
IMDB dataset using a sentiment reward function. We consider the IMDB(Maas et al., 2011) dataset
for the task of generating text with positive sentiment. The dataset consists of 25k training, 5k
validation and 5k test examples of movie review text with sentiment labels of positive and negative.
We utilize a sentiment classifier (Sanh et al., 2019) trained on pairs of text and labels as a reward
model, which provides sentiment scores indicating how positive a given piece of text is.

F.3 SUMMARY ON CNN DAILY MAIL

The dataset for this task comprises 287k training examples, 13k validation examples, and 11k test
examples. We utilize meteor(Banerjee & Lavie, 2005) as the reward function. T5 is chosen as the
base language model due to its pre-training in a unified text-to-text framework and its ability to handle
zero-shot capabilities.

F.4 EVALUATION ON NON-CONTINUAL LEARNING TASKS

We compare the performance of PPO and CPPO on three static learning tasks, including ran-
domwalks(Chen et al., 2021), sentiment text generation (Ramamurthy et al., 2022) on IMDB(Huang
et al., 2021), and summarization on CNN Daily Mail (Hermann et al., 2015). As in the continual learn-
ing setting, we initialize our model with a pre-trained model and compute the knowledge retention
penalty using both the policy model and the pre-trained model. Experimental results demonstrate that
CPPO outperforms PPO in static learning settings. We observe the instability of PPO on the sentiment
text generation task, while CPPO can learn stably. As shown in Figure 7, CPPO outperforms the
PPO algorithm on all three tasks, which is attributed to CPPO’s ability to enhance the learning of
high-performance, high-variance, and overfitting samples while slowing down the learning of noisy
samples.
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Figure 7: Evaluation results on the test data during different training steps. a) The optimality scores in
[0, 1], as compared to the shortest path. b) Positive sentiment scores provided by the distilbert trained
on the IMDB dataset. c) METEOR (Metric for Evaluation of Translation with Explicit ORdering).

G DETAILS OF IMPLEMENTATION

The algorithm of CPPO is presented in Algorithm 1. Step 3 is for learning an RM continually; step 7
is for computing balance weights; step 9 is for calculating CPPO loss; other steps are the same as the
PPO algorithm. Our implementation is based on the open source library trlx6. The experiments on
the SHP dataset are conducted in 4 Nvidia A100 GPUs with 80 GB of RAM, other experiments are
conducted in 2 Nvidia Tesla V100 GPUs with 32 GB of RAM. To conserve GPU memory, we utilize
CPU-Offload and Mixed-Precision techniques. We provide all hyperparameters used in both the PPO
and CPPO algorithms in Table 12.

6https://github.com/CarperAI/trlx
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Algorithm 1: CPPO
input :SFT model MSFT , critic model C, reward model RM , ppo epoches N , ppo steps S, query

streams Qt(t = 1, 2, ..., T ).
output :Aligend model M

′
T .

1 Initialize actor M0 ←MSFT ;
2 for t = 1,2,...,T do
3 update RM on new feedback by MAS;
4 for epoch = 1,2,...,N do
5 make actor Mt−1 generate response Ot−1 on prompts Qt ;
6 compute generation probability Pπt−1(x) of Mt−1 on Ot−1, reward R(x) of response Ot−1 by

RM , state value evaluation vt−1 by critic C and advantage At−1(x);
7 compute a set of balance weights {(α(x), β(x))|x ∈ Ot−1} ;
8 for step = 1,2,...,S do
9 compute the CPPO loss by Equation (5) ;

10 update model Mt by Adam optimizer ;
11 end
12 end
13 end

Table 12: Hyperparameters of different tasks. Italic font denotes the CPPO-specific hyperparameters.
For all tasks, we utilize the default PPO hyperparameters released by trlx.

CNN Random walks IMDB Reddit
seq-length 612 10 1024 550
total-steps 17200 10000 4000 25600
batch-size 12 100 128 8
model (huggingface) google/flan-t5-small CarperAI/randomwalks lvwerra/gpt2-imdb gpt2
num-layers-unfrozen 2 -1 2 8
optimizer adamw adamw adamw adamw
lr 1.00E-05 3.00E-04 1.00E-04 5.00E-06
betas [0.9, 0.999] [0.9, 0.95] [0.9, 0.95] [0.9, 0.999]
eps 1.00E-08 1.00E-08 1.00E-08 1.00E-08
weight-decay 1.00E-06 1.00E-06 1.00E-06 1.00E-06
lr scheduler cosine-annealing cosine-annealing cosine-annealing cosine-annealing
T-max 17200 10000 4000 25600
eta-min 1.00E-06 3.00E-04 1.00E-04 5.00E-06
num-rollouts 512 128 128 512
chunk-size 12 128 128 32
ppo-epochs 4 4 4 4
init-kl-coef 0.05 0.05 0.05 0.1
target 6 6 6 6
horizon 10000 10000 10000 10000
gamma 0.99 1 1 1
lam 0.95 0.95 0.95 0.95
cliprange 0.2 0.2 0.2 0.2
cliprange-value 0.2 0.2 0.2 0.2
vf-coef 1 1.2 1 0.2
scale-reward False False False False
cliprange-reward 10 1 10 10
max-new-tokens 100 9 40 50
top-k 50 - - -
top-p 0.95 - - -

k 0.85 0.85 0.85 0.85
reg-coef 0.1 0.1 0.1 0.1
ub 2.5 2.5 2.5 2.5
lb 0.5 0.2 0.5 0.5
weights-lr 0.01 0.01 0.01 0.01
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Figure 8: Cross-domain evaluation of 18 reward models. The i-th row represents the RM trained on
domain i, the j-th column represents the RM tested on domain j, and the value indicates the accuracy
degradation value, namely, Accjtest −Accitest.

H EVALUATION OF STANFORD HUMAN PREFERENCES BENCHMARK

We have established a novel continual RLHF benchmark using the Stanford Human Preferences
Dataset (SHP) (Ethayarajh et al., 2022). We assess CPPO and baselines on this benchmark within the
context of a 3-task sequence setting.

H.1 DOMAIN INCREMENTAL LEARNING SETTING

The policy is required to continuously learn from three segments of the SHP dataset. The SHP
dataset comprises 18 domains, which we divide into 3 parts based on the maximal errors of the
out-of-distribution (OOD) generalization(Shen et al., 2021). We employ the SteamSHP-flan-t5-xl
model (Ethayarajh et al., 2022), developed by Stanford, as the reference preference model (rPM) for
assessing responses to SHP prompts. The SteamSHP-flan-t5-xl model7 is trained on the combination
of the SHP (all domains) and the HH-RLHF(Bai et al., 2022a) human preference data.

To create more challenging DIL tasks, we individually trained 18 reward models (based on Llama-7b)
on 18 domains of SHP data and evaluated each reward model on the test set of the 18 domains,
resulting in an accuracy difference matrix of size 18x18 as shown in Figure 8. In this matrix, the
row coordinates represent the training domains, and the column coordinates represent the evaluation
domains. The elements in the matrix represent the relative decrease in performance on the evaluation
domain compared to the training domain (both evaluated on test sets from various domains). Based
on this accuracy difference matrix, we divided the 18 domains into 3 groups (each has 6 domains).
This division ensures that there will be a significant performance decrease, i.e., the largest error
of OOD generalization, when evaluated on domains from different groups. For example, the RM
trained in the first group (from "explainlikeimfive" to "changemyview") has large errors in the third
group (from "legaladivce" to "vet"). Refer to Table 13 for the distribution of samples across various
domains.

7https://huggingface.co/stanfordnlp/SteamSHP-flan-t5-xl
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Table 13: Number of posts in the SHP dataset by subreddit.

Task ID subreddit train valid test total % of All
ALL 348718 18436 18409 385563 100.00%

Task 1

explainlikeimfive 19592 1014 1070 21676 5.62%
askanthropology 3910 203 268 4381 1.14%
askcarguys 3227 159 117 3503 0.91%
asksciencefiction 29382 1576 1987 32945 8.54%
asksocialscience 2706 147 188 3041 0.79%
changemyview 38173 1637 1836 41646 10.80%

Task 2

askacademia 31450 2095 1708 35253 9.14%
askculinary 45710 2094 2563 50367 13.06%
askengineers 57096 3154 2638 62888 16.31%
askphilosophy 10307 608 677 11592 3.01%
askphysics 7364 409 587 8360 2.17%
askscience 13316 899 977 15192 3.94%

Task 3

legaladvice 21170 1106 1011 23287 6.04%
askbaking 44007 2096 1544 47647 12.36%
askdocs 6449 315 455 7219 1.87%
askhistorians 3264 113 164 3541 0.92%
askhr 8295 641 395 9331 2.42%
askvet 3300 170 224 3694 0.96%

H.2 EVALUATION METRIC FOR CONTINUAL LEARNING

Overall performance is commonly assessed using average accuracy (AA)(Chaudhry et al., 2018;
Lopez-Paz & Ranzato, 2017) and average incremental accuracy (AIA) (Douillard et al., 2020; Hou
et al., 2019). In our evaluation framework, accuracy is replaced by the reference Preference Score,
which ranges from 0 to 1. Let ak,j ∈ [0, 1] represent the reference Preference Score evaluated on the
test set of the j-th task after incremental learning of the k-th task (j ≤ k). The two metrics at the
$k$-th task are then defined as:

AAk =
1

k

k∑
j=1

ak,j , (8)

AIAk =
1

k

k∑
i=1

AAi, (9)

where AA signifies the current overall performance, and AIA additionally captures the historical
fluctuations.

Memory stability can be evaluated through forgetting measure (FM)(Chaudhry et al., 2018) and
backward transfer (BWT) (Lopez-Paz & Ranzato, 2017). Regarding the former, the forgetting of a
task is computed as the difference between its best performance achieved in the past and its current
performance:

fj,k = max
i∈{1,...,k−1}

(ai,j − ak,j), ∀j < k. (10)

FM at the k-th task is the average forgetting of all old tasks:

FMk =
1

k − 1

k−1∑
j=1

fj,k. (11)

Regarding the latter, BWT assesses the collective impact of learning the k-th task on all previous
tasks:

BWTk =
1

k − 1

k−1∑
j=1

(ak,j − aj,j), (12)

H.3 EVALUATION RESULTS

We utilize the Llama-7B as the backbone of the policy model and reward model. When training the
reward model, we fine-tune the all of parameters. When training the RLHF model, we only fine-tune
the top 8 layers.
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The experiments are run for 3 random seeds, the final results are shown in Table 14. We found
that using reward and policy models based on Llama-7B, as opposed to training with gpt2-xl as the
backbone, significantly improves the training stability. It is related to larger reward models being less
susceptible to reward attacks(Gao et al., 2022).

From Table 14, we observe that the Iterated RLHF method has a significant effect in preventing
forgetting. Since it re-trains the reward model and policy model from scratch at each task, resulting
in higher memory and computational complexity. CPPO, compared to PPO, shows a noticeable
improvement in overall performance, and it outperforms PPO in the Memory stability metric. This
indicates that CPPO can effectively learning varying human preferences.

Table 14: Performance on DIL setting. The range of SteamSHP score is [0, 1].
Task 1 Task 2 Task 3 Overall performance Memory stabilityMethod SteamSHP (↑) SteamSHP (↑) SteamSHP (↑) AA (↑) AIA (↑) BWT (↑) FM (↓)

SFT (In order) 0.806 ±0.0101 0.836 ±0.0103 0.853 ±0.0103 0.832 ±0.0061 0.837 ±0.0039 -0.022 ±0.0094 0.022 ±0.0094
SFT (multi-tasks) 0.831 ±0.0266 0.847 ±0.0145 0.858 ±0.0114 0.845 ±0.0147 0.844 ±0.0082 -0.006 ±0.0183 0.009±0.0160

Iterated RLHF 0.869 ±0.0583 0.88 ±0.0490 0.887 ±0.0421 0.879 ±0.0488 0.874 ±0.0433 -0.0004 ±0.0186 0.003 ±0.0162
PPO 0.853 ±0.0573 0.879 ±0.0428 0.889 ±0.0369 0.874 ±0.0433 0.877 ±0.0378 -0.017 ±0.0351 0.020 ±0.0327

CPPO (Heuristic) 0.864 ±0.0557 0.89 ±0.0448 0.894 ±0.0350 0.883 ±0.0429 0.887 ±0.0391 -0.015 ±0.0321 0.018 ±0.0300
CPPO (Learn) 0.872 ±0.0544 0.898 ±0.0450 0.899 ±0.0342 0.89 ±0.0424 0.894 ±0.0389 -0.013 ±0.0298 0.016 ±0.0281

I LIMITATION: THE RISK OF OVER-OPTIMIZATION
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Figure 9: Overoptimize against the reward
model. After training 100k steps, the RM
score (RMS) on the test data has a high bias
compared with the rPMS.

We have observed that both PPO and CPPO have the
potential risk of achieving high rewards while generat-
ing poor summaries. This issue is depicted in Figure 9,
where the policy model tends to overoptimize against
the RM when trained for 100k steps (390 epochs). Over
time, the policy becomes excessively focused on max-
imizing rewards without adequately considering the
quality of the generated summaries. To address the risk
of optimization, various strategies can be employed.
One approach is to train an additional RM to evaluate
the policy during training. This allows for evaluating
the policy’s performance using an external objective
metric, providing a more robust measure of the sum-
mary quality. Another strategy is to implement early
stopping, where the training process is halted based on
the quality of the generated summaries or other exter-
nal metrics. Instead of solely focusing on maximizing
rewards, we prioritize the quality of the generated sum-
maries. Training is halted when the summary quality
reaches a certain threshold or shows no further improvement. This approach ensures that the generated
summaries not only maximize rewards but also maintain a high level of quality.

Recent research (Gao et al., 2022) has noted an interesting observation regarding larger policy models.
It has been found that as the size of the policy models increases, they become less susceptible
to over-optimization against the RM. This suggests that scaling up the model size can potentially
alleviate the over-optimization issue by introducing more complexity and capacity into the policy
model, making it harder for the model to excessively optimize solely for rewards without considering
the summary quality.

In summary, mitigating the risk of over-optimization in PPO and CPPO can be achieved through
strategies such as training additional reward models, implementing early stopping, and considering
larger policy models. These measures aim to strike a balance between achieving high rewards and
generating high-quality summaries, ensuring that the models generalize well and produce reliable
results even on unseen data.
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J BROADER IMPACT

The broader impact of our proposed CPPO method is significant for both researchers and practitioners
in the field of NLP. By addressing the limitations of existing RLHF-based LMs, we enable the
continual alignment of these models with human preferences, opening up new possibilities for their
widespread adoption and deployment.

One important implication of our work is the reduction of time and computational costs associated
with retraining LMs. In many real-world scenarios, complete retraining is impractical due to resource
constraints and data privacy. By introducing sample-wise weights and enhancing policy learning
while retaining valuable past experiences, CPPO offers a more efficient and practical alternative. This
efficiency allows practitioners to keep LMs up-to-date with evolving human preferences without
incurring the substantial overhead of retraining, making them more accessible and applicable across a
range of applications.

The practical implications of our work extend beyond research and development. Industries that
heavily rely on LMs, such as customer service, virtual assistants, and content generation, stand to
benefit from the continual alignment provided by CPPO. The improved performance and adaptability
of LMs enable more personalized and effective interactions with users, enhancing user satisfaction and
overall user experience. Additionally, CPPO’s ability to align with human preferences consistently
enables the development of more inclusive and fair AI systems that better understand and respect
diverse user needs and values.

In summary, our CPPO method has broad implications for the NLP community and beyond. By
addressing the challenges associated with RLHF-based LMs, our approach offers a practical and
efficient solution for continually aligning with human preferences while reducing retraining costs
and preserving data privacy. These advancements promote the wider adoption and responsible use of
LMs in various domains, leading to more personalized, inclusive, and trustworthy AI systems.
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