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Abstract 

Lymph node assessment for metastasis is a common, time-consuming, and potentially error 

prone pathologist task. Past studies have proposed deep learning (DL) algorithms designed 

to automate this task. However, none have explicitly evaluated the generalizability of these 

algorithms to lymph nodes in breast cancer patients who have received post-neoadjuvant 

systemic therapy (NAT).  

In this study, we create a large, 1027-slide dataset containing exclusively post-NAT breast 

cancer patients with detailed pathologist labels. We develop an interpretable DL pipeline to 

carry out two tasks: firstly, to classify slides as positive or negative for metastases, and 

secondly, to create a detailed, patch-level heatmap for probability of metastasis. We 

evaluate this pipeline with and without post-NAT treatment effect in training data, and 

investigate its performance relative to both slide- and patch-level tasks. We find that the 

presence of post-NAT treatment effect training data is relevant for both tasks, with particular 

benefits in pipeline specificity.  

With the post-NAT testing cohort, we found that our final pipeline obtained 0.986 area under 

the receiver operating characteristic curve (AUC) for slide-level classification, and 70.9% 

specificity when calibrating for 100% sensitivity. We additionally perform an interpretability 

study on the outputs of our pipeline, and find that the patch-level heatmap was successful in 

efficiently guiding pathologists towards detecting and correcting erroneous predictions that 

were made with an uncalibrated network. 

Introduction 

With recent advances in scanning, storage, and computational capabilities, fully digitized 

pipelines for analysis of whole-slide histopathologic images (WSIs) have become feasible, 

encouraging interest in their deployment to the clinic. Artificial intelligence (AI) plays a crucial 

role in automating these analytical processes, particularly in routine and labor-intensive 

tasks. One such task is the assessment of lymph nodes by pathologists to exclude 

metastatic spread in surgical lymph node specimens. This is integral to cancer staging using 

criteria such as the tumor, node, metastasis (TNM) staging system. However, the complexity 

of this procedure can render it laborious, time-consuming, and error-prone, especially when 

considering cases with minimal metastatic deposits or when the cancer cells have 

morphologic features overlapping with lymphocytes or histiocytes, particularly without 

stromal desmoplasia. Promoted by the availability of large, densely annotated public WSI 

repositories, many computer-aided WSI analysis methods have been proposed for reducing 

pathologist workload, expediting turnaround time, and acting as a second reader 1–3. 

In patients who have received neoadjuvant systemic therapy (NAT), the response to 

treatment in the axillary lymph nodes – specifically based on the number of involved nodes 

and size of metastatic deposits – is an important determinant of survival post-NAT. This 

information can be used in conjunction with other quantitative metrics derived from resected 

breast tissue to evaluate the residual cancer burden (RCB) 4. Although the RCB has been 

shown to provide useful prognostic information 5 and has been recommended internationally 

since 2018,  routine clinical practice resists adopting the metric due to how laborious it is to 

evaluate 6. Although many published papers review the use of AI models to detect LN 

Jo
urn

al 
Pre-

pro
of

https://paperpile.com/c/yDhF7e/XIC9+ym7g+2DS5
https://paperpile.com/c/yDhF7e/l6TK
https://paperpile.com/c/yDhF7e/F55Z
https://paperpile.com/c/yDhF7e/g1Ql


 

 

metastasis in breast cancer 2,7,8, most of these have either focused on the well-known 

CAMELYON datasets 9, where none of the patients received chemotherapy prior to 

resection, or have used large internal datasets where the number of post-NAT cases is not 

specified 10. In the latter study, the authors obtained very strong results despite utilizing only 

a slide level label; however, they did not explicitly evaluate the distribution shift between 

chemo-naive and post-NAT patients. Notably, they found that twelve WSIs (four false 

negatives and eight false positives) contained tissue alterations resulting from NAT during 

their assessment of prediction errors. Other studies have explored generalizability towards 

separate cancer types 3,11, or axillary lymph nodes 12 but have not explored the impact of 

alterations attributed to therapy response such as lymphocytic depleted area, fibrosis, and 

sheets of foamy histiocytes – characteristics termed as “treatment effects”. These features 

are not commonly found in chemo-naive patients, and therefore may confound models 

trained solely on this patient group. False positive results due to such effects have been 

mentioned in several studies 10,12,13 but there has been no large-scale assessment of AI 

model accuracy for lymph node metastases detection in the neoadjuvant setting. To address 

this gap and investigate the generalizability of DL algorithms to post-NAT patients, we 

created a large internal dataset we term Post-NAT Lymph Nodes (Post-NAT-LN). This 

dataset is comparable in size to the CAMELYON Challenge dataset, and contains detailed 

pathologist annotations for metastatic deposits, normal lymph node tissue, and post-NAT 

treatment effects. 

For breast cancer, nodal staging involves investigating the presence of macrometastasis 

(>2mm diameter), micrometastasis (>0.2mm and <2mm diameter) and isolated tumor cells 

(ITCs) (<0.2mm diameter). The clinical relevance of ITCs is debated 14–17, but Wong et al. 

suggests that ITCs may be more clinically relevant in the post-NAT setting 14. Proper 

detection of ITCs is also key when determining RCB, where their presence may greatly 

affect the size of the tumor bed in the lymph node. For these reasons, our Post-NAT-LN 

training and testing datasets include WSIs that only contain ITCs, and these are labeled as 

positive cases.  

To perform automated metastasis detection on the CAMELYON and Post-NAT-LN datasets, 

we formulate a deep learning (DL) pipeline that jointly outputs a prediction of metastasis 

presence on a slide-level, and an interpretable detailed heatmap of tumor presence. The 

former output provides a second reader to evaluate the WSI, and the latter has the potential 

to enhance pathologist interpretability and streamline the initial read of the slide. We take the 

publicly released CAMELYON challenge dataset 9 as a chemo-naive dataset, and Post-NAT-

LN as a post-NAT dataset to evaluate the relevance of treatment effect regions for slide-level 

prediction accuracy and patch-level heatmap quality. We also explore the effect of training a 

model with and without post-NAT treatment effect regions on the overall generalizability of 

the pipeline.  

Finally, we evaluate the benefits of an interpretable, two-stage tumor detection pipeline. A 

pathologist will be asked to view the top ten patches with the highest tumor probability 

values output by the patch-level heatmap and evaluate the accuracy of the slide-level 

prediction based on the contents of these ten patches. We use this study to show the 

importance of having accurate and detailed heatmaps for pathologist interpretability and for 

minimizing errors in slide-level classification. 
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To summarize our contributions, we: 

1. Perform the first investigation on the importance of post-NAT data for generalizability 

of DL networks. 

2. Probe the trade-offs when using post-NAT data to train networks on the tasks of 

creating a heatmap of suspicious regions and obtaining a slide-level classification for 

presence of metastasis in lymph nodes. 

3. Demonstrate the importance of accurate heatmaps for minimizing prediction errors 

and improving interpretability by simulating a pathologist workflow. 

Our proposed two-stage pipeline could significantly benefit pathologist workflows by directing 

prioritization to analytically complex or ambiguous slides, increasing sensitivity to small 

metastatic deposits, and speeding up analysis via heatmap guidance. The findings of this 

study could also elucidate the significance of having post-NAT patient data in training 

datasets when developing DL networks. Thus, we hope to inform future work investigating 

the creation and clinical deployment of DL algorithms for detecting metastasis in lymph 

nodes. Code used to train and evaluate our pipeline will be released at 

https://github.com/martellab-sri/lymph-node-metastases-detection.  

Methods and Materials 

Due to the computational complexity associated with passing an entire WSI through an AI 

model, we employed the commonly-used multiple instance learning (MIL) deep learning 

paradigm in this work. MIL involves first breaking a WSI into smaller image patches and 

feeding them through a pre-trained and frozen feature extractor. This compresses the 

information present inside each patch into a “feature vector” which can be acted on using 

MIL methods to aggregate into a slide level prediction. Contrary to standard practice which 

uses feature extractors trained to classify natural images 18,19, or extractors that are trained 

using self-supervised methods 20,21, our two-stage pipeline first trains a feature extractor to 

predict patch-level tumor presence and uses the extracted patch features to create a 

detailed tumor probability heatmap. Then, patch features are combined using MIL 

aggregation techniques to yield a slide-level prediction for presence of metastasis. A 

workflow for the overall method can be found in Figure 1. 

Datasets 

CAMELYON 

The Cancer Metastasis in Lymph Nodes Challenge (CAMELYON) dataset is a large, publicly 

available dataset containing sentinel lymph nodes resected from chemo-naive BrCa patients 
9. The slides were stained using routine Haematoxylin and Eosin (H&E) stain and several 

brands of slide scanners were used to digitize the images (20x magnification,0.23 - 0.25 

μm/pixel). We combined datasets from both CAMELYON16 and CAMELYON17, and used 

the CAMELYON16 test dataset as our test set. Overall, the dataset consists of 377 patients 

and 898 WSIs, which was split on patient-level with 769 slides (292 positive, 477 negative) in 

the training set, and 129 (49 positive, 80 negative) in the testing set.  
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The CAMELYON16 training dataset was exhaustively annotated for metastatic deposits (all 

tumor areas are fully annotated), and any WSIs containing only ITCs were removed. The 

CAMELYON17 dataset provided detailed annotations for a subset of 50 WSIs in the training 

set, which were exhaustively annotated for micrometastases and macrometastases, but not 

ITCs. The CAMELYON17 dataset included slides that only contain ITCs. All slides were also 

labeled on the slide-level as either positive or negative for the presence of cancer, and there 

are no slides that only contain ITCs in the test set.  

Post-NAT-LN 

This dataset was collected at the Sunnybrook Health Sciences Centre, Toronto, Canada, 

with approval of the institutional Ethics Board (REB #2335). All patients were diagnosed with 

invasive breast cancer and had undergone NAT prior to either mastectomy or breast 

conservative surgery with either sentinel or axillary lymph node excision between 2015 and 

2018. Patients treated with NAT had chemotherapy and those with HER2 positive tumors 

received trastuzumab as well. None of the patients in this cohort had been treated with 

neoadjuvant checkpoint inhibitors or endocrine therapies. Histologic types, hormone receptor 

and HER2 status of the patients in this cohort are displayed in Table 1. All H&E-stained 

slides of resected lymph nodes were identified according to the grossing section in the 

pathology report. All slides were collected and reviewed to record the lymph node status 

based on any significant findings (either tumor deposit or post NAT tissue alteration with or 

without residual tumor). In clinical practice, immunohistochemical (IHC) stains (cytokeratins) 

were used to identify tumor cells that were difficult to characterize on routine H&E slides 

especially in cases with ITCs. However, the Post-NAT-LN dataset only contains routine H&E 

slides, and thus all algorithms trained in our study did not see IHC stains. 

 

All lymph node slides with positive findings were scanned in the Department of Diagnostic 

and Molecular Pathology at 40× magnification (0.25μm/pixel) using an Aperio AT Turbo 

1757 scanner (Leica Biosystems Inc., Buffalo Grove, Illinois). At least one representative 

slide with a negative lymph node per patient was scanned when available. In the case of 

multiple levels, only one representative slide was scanned. The dataset is similar to the size 

of CAMELYON, consisting of 293 patients and 1027 WSIs, split on the patient-level with 905 

slides (494 positive, 411 negative) in the training set, and 122 (67 positive, 55 negative) in 

the testing set. Over all lymph nodes present in the training set, 126 contain 

micrometastases, 410 contain macrometastases, and 83 contain ITCs. On the testing set, 16 

contain micrometastases, 49 contain macrometastases, and 13 contain ITCs. The WSI 

dataset was annotated by a surgical pathology fellow (DB) under the supervision of an 

experienced breast pathologist (SN-M) using the Sedeen Viewer 22.  

 

Only one tissue section per patient was non-exhaustively annotated for metastatic deposits.  

Macrometastasis was defined as a tumor greater than 2mm (annotated using a red polygon), 

micrometastasis was defined as a tumor between 0.2 and 2mm (annotated using a dark 

green polygon), ITCs were defined as tumors < 0.2mm or < 200 scattered tumor cells 

(annotated using a light green polygon). According to the treatment effect, in the case of a 

complete pathologic response in the lymph node, the tumor bed was identified by the 

presence of oedematous stroma with inflammatory cells, histiocytic infiltration, and stromal 

fibrosis without any viable tumor cells (annotated using a blue polygon or rectangular box). 

In the case of a negative lymph node with no evidence of a tumor deposit or treatment 
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response, a yellow rectangular bounding box was drawn around one representative half in 

the case of one bisected lymph node (size > 5mm) or on each negative lymph node in the 

case of multiple, tiny negative lymph nodes on one slide (< 5mm).  

 

All slides were also annotated on the slide-level for being positive (contains either 

macrometastasis, micrometastasis, or ITCs) or negative (no tumor deposit or complete 

pathologic response after NAT). Lymph node images that only contain ITCs were labeled as 

positive cases due to their potential diagnostic relevance in post-NAT conditions.  

 

The training set was rescanned at a reduced magnification of 20x (0.46μm/pixel) using a 

Hamamatsu scanner in order to assess the generalizability of our method to cross-scanner 

domain shift. The rescanned test dataset was reduced from 122 WSIs to 115 due to an 

inability to find or properly rescan 7 slides.  

MSK 

A subset of the test dataset used in Campanella et al. 10 was publicly released with axillary 

lymph nodes resected from a mix of chemo-naive and post-NAT patients. Slides were 

scanned at a lower resolution of 20x magnification (0.50 μm/pixel) using Leica Biosystems 

AT2 digital slide scanners. We used this dataset as a completely unseen and out-of-

distribution test set to evaluate our networks. The proportion of patients that had and had not 

received NAT was not publicly released. The dataset consists of 78 patients and 130 WSIs 

(36 positive, 94 negative). The WSIs were annotated on the slide-level for being positive or 

negative for cancer. This dataset does not provide detailed annotations for metastatic 

deposits, and potentially contains slides that only contain ITCs. These purely ITC cases 

were also labeled as positive.  

Labeled Patch Extraction 

Using the detailed annotations provided in the Post-NAT-LN and CAMELYON datasets, we 

extracted labeled patches to explicitly train the feature extractor. Due to the annotations 

differing between datasets, we adjusted the extraction strategy based on the dataset. Firstly, 

we created a foreground tissue mask by thresholding the image saturation greater than 1.1x 

the mean saturation, effectively selecting regions in the image containing color. All patches 

were extracted at 20x magnification (0.5 microns per pixel) and with a size of 224x224 

pixels. We ensured that the test data is not used in the training stage and that the 

stratification is performed at the patient level.  

 

In all except 13 slides, the CAMELYON16 dataset was exhaustively annotated for 

metastases by pathologists. In these fully annotated slides, positive patches were extracted 

which overlap with >50% of pathologist positive annotations with a stride of 56px (0.25 times 

patch size). In exhaustively annotated positive slides, we also extracted negative patches 

that have 100% overlap with negative annotations, or 0% overlap with positive annotations, 

all with a stride of 448px. In negative slides which do not contain annotations, negative 

patches were also extracted with a stride of 448px. From the non-exhaustively annotated 

CAMELYON17 dataset, we extracted positive patches with >50% overlap with positive 

annotations at a stride of 56px. We also extracted negative patches with 100% overlap with 

negative annotations. We then extracted negative patches from negative slides using a 
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stride of 448px. The CAMELYON16 and CAMELYON17 patches were combined to yield a 

general “CAMELYON” dataset.  

 

The internal Post-NAT-LN dataset is also not exhaustively annotated. Thus, to obtain 

positive patches from positive slides, we extracted patches with >20% overlap with positive 

annotations (red, dark green, or light green) at a stride of 112px. We only extracted negative 

patches from positive slides if they had 100% overlap with the provided negative annotations 

at a stride of 112px. The dataset also contains annotations for full lymph nodes that are 

negative (yellow bounding box) and we extracted negative patches from these regions at 

100% overlap with annotations and 112px stride, regardless of whether the full slide was 

positive or negative. Finally, we used annotations of treatment effect regions attributed to 

NAT (blue polygon) to extract negative patches containing treatment effects with 100% 

annotation overlap at 112px stride.  

 

The stride of patch extraction and overlap with pathologist annotations were chosen 

depending on the dataset to ensure that the final patch datasets, CAMELYON and Post-

NAT-LN, are approximately the same size and balanced between positive and negative 

patches. The overall sizes of patch datasets are shown in Table 2. Train and test splits were 

generated on the patient-level. To avoid data leakage of the test slides, the patches used to 

train and evaluate feature extractors were drawn solely from slides found in the slide-level 

training datasets.  

Data Splits 

To evaluate the relevance of including post-NAT treatment effect features in training 

datasets, we created two data splits for both the WSI-level classification task and the patch-

level classification task. For both tasks, the first split consists of only the CAMELYON 

dataset. This split contains only chemo-naive patients, and hence, we refer to this data split 

as the “chemo-naive” split. The second data split consists of both the CAMELYON and Post-

NAT-LN datasets, and forms the “post-NAT” split. We can assess differences in performance 

between networks trained on these two splits to investigate the importance of post-NAT data 

for both the patch-level task and the slide-level task.  

 

Concretely, we investigated performance in four scenarios: 

A. Patch features from chemo-naive feature extractor used to train the chemo-

naive MIL network. This scenario represents the results of training and evaluating 

our full pipeline on chemo-naive patients (i.e., developed entirely with CAMELYON 

datasets). Relative to the post-NAT test set, this is trained using out-of-distribution 

(OOD) data on both slide- and patch-levels. 

B. Patch features from chemo-naive feature extractor used to train the post-NAT 

MIL network. This scenario could be practically encountered when slide-level labels 

are available from post-NAT patients, but not detailed annotations. The feature 

extractors are first trained using the chemo-naive patch dataset. Then, the trained 

extractor is used to extract patch features to train MIL methods on the post-NAT data 

split. Relative to the post-NAT test set, this train set is OOD only on the patch-level.  

C. Patch features from post-NAT feature extractor used to train the chemo-naive 

MIL network. This scenario could arise when a feature extractor trained on data from 

a separate institution is used to extract features to train an MIL algorithm on an 
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internally labeled dataset of chemo-naive patients (e.g., if another institution with a 

labeled dataset applied our pretrained feature extractor). Relative to the post-NAT 

test set, this train data is OOD only on the slide-level.  

D. Patch features from post-NAT feature extractor used to train the post-NAT MIL 

network. This scenario occurs when both slide-level and patch-level annotations are 

available for post-NAT patients. Relative to the post-NAT test set, this data split is in-

distribution for both slide- and patch-level tasks.  

Feature Extractor 

Feature extractors are DL networks that summarize key discriminative information inside a 

patch as a multidimensional set of numbers known as a feature vector. The most common 

networks used are Convolutional Neural Networks (CNNs) that are typically trained on 

natural images 23. For this study, we take advantage of the detailed annotations that are 

available in both CAMELYON and Post-NAT-LN datasets to train highly clinically relevant 

feature extractors. 

Training 

Supervised patch-level feature extractors were trained using the extracted patch dataset 

splits on a simple patch-level classification task. The chemo-naive feature extractor was 

trained on the ‘tumor’ versus ‘no tumor’ binary classification task. The post-NAT feature 

extractor was trained to perform three-class classification between “tumor,” “negative,” and 

“treatment effect” classes.  

 

For each data split, five feature extractors were trained by performing 5-fold cross validation 

on training patches, with train/validation patches split on patient-level. The feature extractors 

are ResNet50 24 CNNs that were pre-trained using self-supervised contrastive learning on 

histopathology data 25. During training, image patches were randomly augmented using 

random vertical and horizontal flipping, random 90 degree rotations, jittering in 

Haematoxylin-Eosin-DAB (HED) colorspace1, and color jittering. We also performed initial 

experiments without HED jittering and pre-training, which greatly reduced performance and 

robustness to artifacts. Further information on these experiments can be found in 

Supplementary Tables 5-9. Finally, due to excessive class imbalance between positive and 

negative classes relative to the treatment effect class, the post-NAT feature extractor dataset 

was balanced when training each cross validation fold by randomly duplicating patches 

belonging to the treatment effect class. 

Inference 

After training, patch-level features were separately extracted for the chemo-naive split and 

post-NAT split using all five feature extractors per split. Features were extracted for all slide 

datasets (Post-NAT-LN, CAMELYON, MSK). Patches used to extract features have similar 

magnification (20x) and size (224px) as the labeled patch datasets. The stride for extracting 

patches for feature extraction is 224px (no overlap). 

                                                 
1 We would like to acknowledge Jonathan Mazurski for the original implementation of this module. 
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Heatmap Creation 

We created interpretable heatmaps using the trained feature extractors as an auxiliary 

output to our pipeline. These heatmaps were generated by averaging the tumor probability 

output from each of the five feature extractors trained per data split. Heatmap creation 

occurs jointly with extracting patch-level features and consequently, does not greatly slow 

the overall pipeline. For the post-NAT data split, we were also able to generate “treatment 

effect” heatmaps using the predicted probability that patches belong to the treatment effect 

class.  

MIL Aggregators 

In this work, we investigated the usage of five common MIL aggregation techniques trained 

on top of extracted supervised features. To combine information from all five feature 

extractors trained on cross validation folds, we simply concatenated the feature vectors 

before performing aggregation.  

 

The first two more traditional MIL aggregation methods are max-pooling on the patch-level 

tumor probabilities, and max-pooling on the extracted patch features. In previous literature, 

these methods have been described as “instance-level” max-pooling and “embedding-level” 

max-pooling respectively 26. Instance-level max-pool involves taking the highest patch 

probability output by the feature extractor and using it as the slide prediction. This simulates 

how previous works perform slide-level classification using supervised feature extractors. 

Contrarily, embedding-level max-pool passes all extracted patch-level feature vectors 

through an additional linear network, taking the highest probability instance as the slide-level 

probability. This extracted slide-level probability is compared against the slide label, and the 

training signal is propagated to update the weights of the linear network. 

 

We also investigated attention-based MIL pooling 26. This method looks to train the MIL 

pooling method more explicitly by learning the relative importance of the extracted patch 

features. Concretely, the attention aggregation method is performed using a weighted 

average of all the patch features. The weights, or attention placed on each patch, are 

computed through training a fully-connected network. The weighted average feature vector 

is passed through a final linear layer to obtain the slide-level probability. Gated attention was 

proposed alongside standard attention to improve expressivity of the learned patch 

importances. This method adds an additional gating mechanism to the original attention 

network. 

 

The final method we explored is Clustering-constrained Attention Multiple Instance Learning 

(CLAM) 18. This method further refines attention-based methods by using the learned 

attention values to cluster patches highly relevant to the slide-level classification and 

separate them from irrelevant patches.  

 

All MIL models were trained on the weakly-labeled slide-level ‘tumor’ versus ‘no tumor’ 

binary classification task. Four separate sets of MIL networks were trained for each Scenario 

A-D (Methods and Materials - Data Splits). For each Scenario, five MIL models were trained 

by performing 5-fold cross validation on training WSIs, with the training and validation sets 

split on the patient-level. The final ensemble slide-level prediction was obtained by averaging 

the prediction probability output from the MIL model trained on each fold.  
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Notably, while using multiple 5-fold cross validation stages was more costly to train, model 

ensembling is known to improve robustness 27. Furthermore, performing inference was fast 

when implemented efficiently, with the full pipeline taking approximately 3 minutes per slide.  

Implementation details 

Our code was implemented using PyTorch2, and implementations of MIL aggregators were 

adapted from the original CLAM repository3. Feature extractors were ResNet50 models 

pretrained using self-supervised contrastive methods4 . The trained model with the highest 

performance on validation sets (in both MIL aggregator and feature extractor training) was 

evaluated on the test set to obtain final reported performance.  

 

For supervised feature extractor training, we used the AdamW 28 optimizer with a learning 

rate of 0.001, weight decay of 0.01, and CrossEntropy loss. Accounting for the size of each 

labeled patch dataset, we trained for 20 epochs with the chemo-naive feature extractor, and 

6 epochs for the post-NAT feature extractor (as it is approximately 3x larger). In both cases, 

the training time was 12 hours per fold with a batch size of 256 on a single A100-SXM4-

80GB GPU.  

 

For weakly-supervised MIL aggregator training, we used the Adam 29 optimizer with a 

learning rate of 0.0002, weight decay of 1e-5, and CrossEntropy loss. We trained 

aggregators for 50 epochs, taking approximately 3 hours per fold on a single A100-SXM4-

80GB GPU.  

Experiments and Results 

We performed experiments to evaluate feature extractors trained on chemo-naive and post-

NAT splits, and MIL aggregators trained for Scenarios A-D. Results will be reported on the 

CAMELYON, Post-NAT-LN, MSK, and rescanned Post-NAT-LN test sets. Since exhaustive 

detailed annotations were not available for Post-NAT-LN and MSK, we investigated feature 

extractor performance using instance-level max-pool results as surrogate measures. These 

experiments did not train an aggregator, but directly performed max-pool on patch-level 

probabilities instead. Thus, they were more directly related to feature extractor quality. MIL 

aggregators trained in Scenarios A-D were assessed on the slide-level binary classification 

task on all test datasets. Broadly, performance was assessed on slide-level tasks via 

accuracy and AUC metrics on predicted slide-level probabilities.  

 

5-fold cross validation splits (for slide-level training and patch-level training) were kept 

consistent across experiments. Thus, the reported statistical significance was computed by 

using an unpaired nonparametric Mann-Whitney U test on the metrics obtained when 

independently evaluating models trained per fold on test sets. Final reported results come 

from ensembling models trained in each fold.  

                                                 
2 https://pytorch.org/ 
3 https://github.com/mahmoodlab/CLAM 
4 https://github.com/ozanciga/self-supervised-histopathology 
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Instance-Level Max-pool and Interpretable Heatmaps 

Instance-level max-pooling is highly susceptible to false positive predictions. Therefore, we 

report two values for accuracy; first using a 0.5 probability threshold (i.e., positive slide 

probability >0.5 and vice versa for a negative slide) and then using an “adaptive” threshold. 

To obtain the adaptive threshold, we varied the threshold value for each test set and 

selected the value that gave the highest accuracy. The former threshold could be considered 

more “fair,” as it maintains the same probability threshold used to originally train the network, 

while the latter provides a better picture of the overall capabilities of the network in 

distinguishing positive and negative slides. Table 3 reports the results of instance-level max-

pool aggregation on the slide-level classification task. Figures 2 and 3 display exemplar 

tumor probability heatmaps output by feature extraction using chemo-naive and post-NAT 

feature extractors. We additionally visualized probability maps of treatment effect regions for 

the post-NAT feature extractor.  

 

It is difficult to fully quantify heatmap performance on the internal dataset, as slides were not 

exhaustively annotated. Thus, instance-level max-pool results–which are more directly 

related to heatmap quality–were used as a surrogate measure to quantitatively assess 

heatmap quality. While the chemo-naive feature extractor obtained better results on the 

chemo-naive test set, we found the post-NAT feature extractor performed better on all of the 

test sets that included post-NAT patients. Additionally, on the Post-NAT-LN test set, we 

found that when using a 0.5 classification threshold, the chemo-naive feature extractor 

classified every slide as positive (0.549 accuracy; Table 3), indicating that major calibration 

errors were introduced via the max-pool aggregation. The post-NAT feature extractor 

performed much better on this surrogate measure, obtaining a significantly better accuracy 

(0.713 accuracy, p<0.01).  

 

Figure 2 shows a qualitative comparison between heatmaps generated from chemo-naive 

feature extractors versus post-NAT feature extractors on a slide belonging to the Post-NAT-

LN test set. The outlined regions containing post-NAT treatment effects confounded the 

chemo-naive network, resulting in a large number of false positive predictions. Post-NAT 

feature extractor heatmaps also appear qualitatively better in treatment effect regions. Figure 

3a-c displays the heatmaps for the false negative slide-level prediction containing a 

micrometastasis. The post-NAT feature extractor heatmap contains a single red (highly 

suspicious) patch directly localized on the micrometastasis missed by the slide-level 

prediction. The chemo-naive feature extractor heatmap also predicts the micrometastasis as 

suspicious, but also severely overpredicts the surrounding regions containing treatment 

effect as positive. This overcrowded heatmap is likely to detract from pathologist 

interpretability, though future work will need to assess this in a more quantitative manner.  

Embedding-Level MIL 

We summarize results by reporting the best embedding-level MIL method per Scenario 

based on AUC. The full results separated by MIL method can be found in Supplementary 

Tables 1-4. Again, to maintain a fair assessment, the probability threshold remains at 0.5 for 

computing slide-level accuracy. We additionally report the specificity of the network when 

calibrating the prediction threshold to achieve 100% sensitivity (“Spec100”). This metric has 
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been used in previous works to investigate the number of slides that could potentially be 

excluded from pathologist assessment in clinical workflows 10. 

In-Domain Test Sets 

We evaluate the pipeline against the (unseen, but) in-domain test sets for Post-NAT-LN and 

CAMELYON. Table 4 displays the results for these experiments. We found our pipeline 

trained with post-NAT data performed significantly better on slide-level classification 

compared to the pipeline trained on fully chemo-naive data for the Post-NAT-LN dataset 

(0.986 AUC for Scenario D vs. 0.955 AUC for Scenario A, p<0.01; Table 4). We note that the 

loss in performance is largely recuperated when we include slides from post-NAT patients, 

even when using a feature extractor trained on chemo-naive patients (0.986 AUC for 

Scenario B; Table 4). The pipeline trained using post-NAT patients in both feature extractor 

and slide-level aggregator datasets was tied for the highest AUC on the Post-NAT-LN test 

set, and obtained the highest accuracy (0.986 AUC and 0.943 accuracy for Scenario D; 

Table 4).  

 

Additionally, we found that the pipeline that was fully trained on the chemo-naive 

CAMELYON dataset obtained 0.994 AUC (Scenario A; Table 4) when tested on the 

CAMELYON test set. This classification AUC is equivalent to the challenge-winning 

algorithm of the CAMELYON16 challenge, which used feature engineering on probability 

heatmaps to yield a slide-level classification 2,30.  

 

When performing error analysis on the improperly classified WSIs in the Post-NAT-LN test 

set using the fully post-NAT pipeline (Scenario D), we found that 5 false negative predictions 

contained only ITCs (out of a total of 12 in the test set), and one false negative contained a 

micrometastasis. This demonstrates the high level of difficulty associated with catching ITCs 

in patch- or slide-level outputs. The inclusion of ITCs in the Post-NAT-LN test set stands as 

an advantage of our dataset, especially in the post-NAT setting where they may be more 

relevant 14. When we removed slides with only ITCs from the test set in order to compare our 

results more directly with the reported results from the CAMELYON16 challenge, we 

obtained a classification accuracy of 0.982 (one false positive and one false negative).  

 

Additional analysis on the seven improperly classified WSIs from the pipeline trained in 

Scenario D reveals that three WSIs were taken from a ER+/HER2- patient, two came from 

the same ER-/HER2+ patient, and two came from triple negative patients. Since the full 

Post-NAT-LN testing cohort only contained four triple negative patients (seven triple negative 

WSIs), it is possible that the pipeline may be susceptible to misclassifying patients from this 

biological subtype. However, the misclassified slides were very difficult cases, with one 

containing a small micrometastasis and the other only containing ITCs. Thus, further work 

may be required to determine if this susceptibility exists or if the pipeline’s incorrect 

classification was due to tumor size.  

Out-of-Domain Test Sets 

As an evaluation of the pipeline against cross-scanner imaging protocols and cross-

institutional shift, we evaluate the overall pipeline against the Post-NAT-LN test set, 

rescanned using a Hamamatsu scanner, and the MSK test set. Both datasets are scanned 

at 20x magnification, meaning the rescanned Post-NAT-LN test set constitutes a scanner 
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domain shift relative to training data, and MSK constitutes a scanner, patient, and institution 

shift. The rescanned Post-NAT-LN dataset was reduced from 122 WSIs to 115 due to an 

inability to find or properly rescan 7 slides. Supplementary Figure 1 shows examples of 

rescanned regions and corresponding heatmaps. Table 5 displays the results of these 

experiments. 

 

When the full pipeline was trained using post-NAT slides, we found it reasonably robust in all 

metrics on the rescanned Post-NAT-LN test set (1.01% drop in AUC, 0.42% drop in 

accuracy, 12.13% drop in Spec100; Table 5). Conversely, the networks trained on purely 

chemo-naive slides had more severe degradations in AUC (2.93% drop) and Spec100 (90.5% 

drop). The network fully trained using post-NAT data performed the best in all metrics on the 

rescanned dataset (0.976 AUC, 0.939 accuracy, 0.623 Spec100 for Scenario D; Table 5). 

This demonstrates that, when trained on post-NAT data, the overall pipeline is robust to 

changes in scanner type and shifts in magnification (from 40x to 20x).  

 

On the MSK test set, we found a small decrease in AUC for the pipeline trained with post-

NAT data compared to the pipeline trained with only chemo-naive data (0.921 AUC for 

Scenario D vs. 0.938 AUC for Scenario A, p<0.05;  Table 5). This was coupled with large 

improvements to classification accuracy (0.938 accuracy vs. 0.838 accuracy, p<0.05; Table 

5). Having the pipeline trained with post-NAT data in the feature extractor or for the slide-

level aggregator (Scenarios B, C, D) broadly improved the balance between classification 

AUC and accuracy.  

Interpretability Study 

We performed a simple experiment to evaluate the benefits of the pathologist-interpretable 

heatmap as an auxiliary model output. We provided a pathologist (DB) with a slide-level 

prediction (based on a 0.5 prediction threshold) and the patches in the slide with the top 10 

highest heatmap probabilities. We asked the pathologist if they agreed or disagreed with the 

slide-level prediction based on the contents of the top 10 most suspicious patches. If they 

disagreed with the prediction, we also asked them to describe why. We provided the 

pathologist with the slides that were incorrectly classified by the embedding-level MIL 

network from Scenario D (fully post-NAT), along with 3 true positive and 3 true negative 

predictions by the network in the Post-NAT-LN test set. As mentioned, this network 

misclassified six positive slides, five of which contained only ITCs and one containing a 

micrometastasis, and it also misclassified a negative slide. We selected this network 

because it provided the best tradeoff between heatmap quality and slide-level prediction 

performance (Table 4; Figures 2, 3). 

 

Figure 4a shows an example of this workflow for a false negative slide-level prediction, 

which contained a small micrometastasis that was successfully detected by the pathologist. 

Figure 4b shows an example for a true positive prediction on a slide containing only a single 

ITC, which was also detected by the pathologist. Figure 4c shows an example where the 

only false positive was corrected due to the pathologist detecting that the model was 

confounded by skin and benign sweat glands. Overall, the pathologist was able to correctly 

identify four out of six false negative predictions and as well as the single false positive 

prediction. The only false negative slide containing a micrometastasis (Figure 4a) was 

corrected by the pathologist, meaning that when removing ITCs, the full interpretable 
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workflow with a pathologist viewing the top 10 heatmap regions did not misclassify a single 

slide in the Post-NAT-LN test set. They also correctly identified the three true positives and 

negatives in all cases but one negative case where they were unsure and required additional 

context. Notably, DB was also involved with the original annotation process for these slides, 

though there was a multi-year washout period to ensure minimal bias. 

Discussion 

In this study, we created Post-NAT-LN, a large WSI dataset consisting of post-NAT breast 

cancer patients and performed the first explicit evaluation of whether DL methods trained 

solely on chemo-naive patients are generalizable to this patient group. We additionally 

proposed a two-stage pipeline to address the question of whether feature extractors 

supervised on a highly related task can be used in conjunction with weakly labeled MIL 

methods. We assessed whether this simple amendment could create a pipeline that is both 

highly sensitive on patch-level, and able to learn the best aggregation method on the patch-

level based on the training dataset.  

Previous studies performing MIL that only require “weak” slide-level labels have been 

proposed 18,19,21,26. When applied to histopathology, these studies generally use feature 

extractors that are trained to classify natural images 18,19, or extractors that are trained using 

self-supervised methods 20,21. While these feature extractors have the key benefit of not 

requiring costly detailed annotations from pathologists, we found that efforts to extract 

sensitive and interpretable heatmaps are met with variable success. Specifically, the 

heatmaps output from these weakly supervised networks have no guarantee of having high 

sensitivity or detection capability, especially under domain shift and for smaller datasets, 

which limits their potential for clinical adoption.  

There have also been methods that instead propose to use dense labels and fully 

supervised feature extractors to perform cancer detection tasks 11,12,30. These studies use 

detailed patch-level labels to train networks which are expensive to create. However, these 

methods remain the gold standard for metastasis detection 20. Manual feature engineering is 

typically used to obtain slide-level predictions from a fully trained feature extractor. For 

example, 11 uses the presence of > 2 connected tumor predicted patches to determine the 

slide-level class, but this approach makes it impossible to detect very small micrometastases 

or isolated tumor cells. Thus, rather than performing manual feature engineering, we used 

our proposed pipeline to investigate whether a simple data-driven approach can be used to 

aggregate patch-level features to a slide-level prediction.  

The overall pipeline achieves strong, robust results for metastasis detection. We 

found that our proposed pipeline using MIL methods and supervised feature extractors 

performed equally well compared to methods that use feature engineering on patch-level 

heatmaps. This can be seen from the results of testing our pipeline trained with purely 

chemo-naive data (Scenario A) on the CAMELYON test set. Our pipeline was able to 

recreate the performance of the winning algorithm of the CAMELYON16 challenge which 

used feature engineering to obtain its slide-level classification 2,30. We found that our pipeline 

also achieved generally strong classification performance on in-domain test data, while 

being robust to large cross-scanner and cross-institutional domain shifts. 
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Post-NAT data benefits slide-level prediction calibration and sensitivity. We found that 

including post-NAT data in training the feature extractor and slide-level MIL network was 

beneficial to performance when applied to test sets containing post-NAT patients (MSK, 

Post-NAT-LN). Our pipeline trained with fully chemo-naive data (Scenario A) had 

significantly better AUC but significantly worse accuracy than our network trained with post-

NAT data (Scenario D) on the MSK test set. This may imply that, in the absence of a 

predefined threshold, the fully chemo-naive network was better at sorting between positive 

and negative slides (high AUC), but the overall prediction distribution was shifted (low 

accuracy). We also note that, regardless of which feature extractor was used, introducing 

post-NAT slides to train MIL aggregators broadly improved specificity of the pipeline at 100% 

sensitivity for test sets containing post-NAT patients. In other words, Spec100 is higher for 

both Scenario B relative to A and for D relative to C. 

 

Specifically on the internal Post-NAT-LN test set, we found training a slide-level MIL 

aggregator with post-NAT slides more important than training a patch-level feature extractor 

with post-NAT patches. The improvement gained from introducing post-NAT slides (Scenario 

B vs. A) was greater than when introducing post-NAT patches (Scenario C vs. A). We found 

that this discrepancy remained even after evaluating on the rescanned dataset. The ability 

for a MIL model to generalize despite being built on a feature extractor trained on OOD data 

is well documented in previous works that use feature extractors trained on natural images 
18. Given the lower amount of labeling effort necessary to produce a slide-level label, future 

works specifically interested in slide-level classification may find relatively better return on 

investment from obtaining more weakly labeled slides than annotating more patches.  

 

Using post-NAT data greatly improves the quality of interpretable heatmaps. We found 

through qualitative assessment of Figures 2 and 3 along with the surrogate quantitative 

measures from instance-level max-pool results in Table 3 that post-NAT data improves the 

quality of interpretable heatmaps. The improvement of heatmap quality from the post-NAT 

feature extractor could potentially be attributed to the introduction of the treatment effect 

class. Figures 2d and 2h display example heatmaps generated by the post-NAT feature 

extractor. For the slide from the Post-NAT-LN test set, high values in the treatment effect 

heatmap are highly localized to the pathologist annotation (in cyan). For the slide from the 

chemo-naive CAMELYON test set, the treatment effect heatmap is completely empty. This 

could indicate that the introduction of the treatment effect class is driving the improvement of 

specificity in post-NAT feature extractor heatmaps. The generation of a heatmap showing 

treatment effects may also be a useful addition to the workflow as there is some evidence 

that the detection of treatment effect in axillary lymph nodes after neoadjuvant chemotherapy 

identifies a subset of patients with an outcome intermediate between that of completely 

node-negative and node-positive patients 31.  

 

Results on instance-level max-pool were reported using both “fair” thresholds (0.5) and 

“best” thresholds (chosen to maximize classification accuracy on the test set) because 

determining new classification thresholds to suit the test dataset is a nontrivial task, and an 

active research area 32. We leave the assessment of the best threshold to future work on 

deploying the algorithm. One example way to perform this type of model “calibration” is to 

simply set the decision threshold based on model predictions on a small labeled set of local 

deployment data.  
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High quality heatmaps benefit interpretability and expedite error correction on the 

slide-level. Our initial study on the benefits of interpretability is a simple example for how an 

accurate heatmap may improve pathologist workflows. Our results show that the pathologist 

was quickly able to detect errors in slide-level classification using the heatmap output from 

the post-NAT feature extractor. Further studies will be needed to determine the efficacy of 

our interpretable pipeline in a clinical context, but these initial results suggest that accurate 

heatmaps make it possible for pathologists to assess the reliability of the slide-level 

prediction. 

 

One limitation of this study is the exploratory nature of our experiments on interpretability. In 

a clinical assessment, it is unreasonable for a pathologist to only view isolated patches. 

Thus, future work may instead integrate this workflow into a WSI viewing software by 

providing the top 10 patch locations that have the highest predicted tumor class probability in 

the slide. This would allow a pathologist to obtain more surrounding context to inform their 

assessment. The true benefits of the overall pipeline cannot be discerned without bringing 

the pathologist into the loop. In other words, future work must involve quantifying the benefits 

of this algorithm in user studies to determine the importance of slide-level classification 

versus heatmap quality. By doing so, we could better probe if the interpretable algorithm 

reduces pathologist errors, speeds up workflows, and potentially increases the acceptability 

of the algorithm.  

 

In this work, we solely investigated breast cancer patients. Although our data included 

annotations for metastatic carcinoma and examples of altered histology due to NAT, we did 

not explicitly annotate cases with other findings such as benign epithelial inclusions, non-

mammary epithelial, or other malignancies and non-neoplastic, clinically significant findings 

(i.e. granulomas). This work investigated lymph node histology from NAT with the aim of 

creating a simple decision and guidance tool for pathologists. Future work may point toward 

enriching the pipeline with the ability to detect these potentially relevant findings.  

 

Another limitation of our dataset formulation is that cases with invasive lobular carcinoma 

(ILC) are underrepresented. In the CAMELYON dataset, only 12% of the cases were 

patients with ILC. In our institution, patients with ILC rarely receive NAT, hence Post-NAT-LN 

did not contain any ILC cases. Jarkman et al. 12 showed that a model trained on 

CAMELYON data struggled to detect ILC in a second dataset (AIDA 33). We similarly found 

that the network struggled with ILC cases in the MSK dataset, and particularly in cases with 

low nuclear grade. These difficult cases could be associated with the relatively low Spec100 

values obtained on the MSK test set. Future work may need to incorporate greater numbers 

of ILC cases to improve performance on this patient subgroup.  

 

The full, proposed method could be added to clinical workflows by performing inference on 

incoming patients overnight and having slide-level predictions and heatmaps ready for 

pathologists to view in the morning. The slide-level tumor probability output can help 

pathologists with prioritization, guiding focus to complex slides, or simply act as a second 

opinion to ensure slides are not improperly classified. The interpretable heatmap can guide 

pathologists to key regions of interest in a WSI, speed up the overall workflow, reduce false 

negative predictions for micrometastasis or ITCs, and promote confidence in the algorithm. 

Overall, this work has the potential to greatly benefit routine metastatic assessment in lymph 
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nodes by streamlining workflows, freeing pathologists to focus on other critical tasks and 

mitigating false negative predictions.  
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Figure Legends 

Figure 1: Overall workflow for methodology.  

 

Figure 2: Heatmaps generated by chemo-naive and post-NAT feature extractors and 

overlaid on WSI regions. a)-d) Example from Post-NAT-LN test set showing improved 

specificity (reduced false positives) for the post-NAT feature extractor in treatment effect 

regions. a) Pathologist annotation overlaid on original image, green outlines 

micrometastases (non-exhaustively), cyan outlines the treatment effect region. b) Heatmap 

produced by chemo-naive feature extractor. c) Heatmap produced by post-NAT feature 

extractor. d) Heatmap output from post-NAT feature extractor for the third “treatment effect” 

class. e)-h) Example from CAMELYON test set displaying heatmap quality and proper lack 

of predicted treatment effect by the post-NAT model. e) Original slide region. f) Heatmap 

produced by chemo-naive feature extractor. g) Heatmap produced by post-NAT feature 

extractor. h) Heatmap of treatment effect class produced by post-NAT feature extractor. 

 

Figure 3: Heatmaps generated by chemo-naive and post-NAT feature extractors and 

overlaid on WSI regions displaying high specificity for two cases with very minimal 

metastatic deposits. a)-c) Case containing a single micrometastasis. a) Original slide region. 

b) Heatmap produced by chemo-naive feature extractor. c) Heatmap produced by post-NAT 

feature extractor with zoomed in view of detected micrometastasis in a single patch. d)-f) 

Case containing ITCs. d) Original slide region. e) Heatmap produced by chemo-naive 

feature extractor. f) Heatmap produced by post-NAT feature extractor with zoomed in view of 

detected ITCs. 

 

Figure 4: Top 10 patches based on predicted tumor probability output from the post-NAT 

feature extractor for pathologist interpretability study. a) Slide-level false negative case that 

was caught and corrected by the pathologist during the interpretability study (yellow arrow 

indicates detected micrometastasis). b) Slide-level true positive case that was accurately 

confirmed by the pathologist during the interpretability study (yellow arrows indicate detected 

ITCs). c) Slide-level false positive case containing benign skin and sweat glands that was 

caught and corrected by the pathologist during the interpretability study.  Jo
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 Total Train Test 

 Hormone Receptor and HER2 Status 

 Pos. Low 
Pos. 

Neg. N/A Pos. Low 
Pos. 

Neg. N/A Pos. Low 
Pos. 

Neg. N/A 

ER 170 11 98 14 142 9 89 13 28 2 9 1 

PR 89 39 149 16 77 31 131 14 12 8 18 2 

HER2 108 N/A 168 17 92 N/A 146 15 16 N/A 22 2 

 Patient Subtypes 

 ER+/ 
HER2
- 

ER+/ 
HER2
+ 

ER-/ 
HER2
- 

N/A ER+/ 
HER2
- 

ER+/ 
HER2
+ 

ER-/ 
HER2
- 

N/A ER+/ 
HER2
- 

ER+/ 
HER2
+ 

ER-/ 
HER2
- 

N/A 

 106 73 62 52 88 62 58 45 18 11 4 7 

 Nuclear Grade 

 1 2 3 N/A 1 2 3 N/A 1 2 3 N/A 

 25 161 84 23 16 145 74 18 9 16 10 5 

 

Table 1: Post-NAT-LN patient cohort characteristics including estrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth factor receptor (HER2) status, 

biological subtypes described by ER and HER2 status, and nuclear grade. Total number of 

patients and patients separated into train and test splits are shown. Tumors were graded on 

primary residual tumor post treatment when available. In cases where there was no residual 

invasive carcinoma in the breast, grade was retrieved from biopsy or assigned based on 

lymph node metastasis.  
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Dataset Total patches 
(Npos/Nneg/Ntreatment) 

Training patches 
(Npos/Nneg/Ntreatment) 

Testing patches 
(Npos/Nneg/Ntreatment) 

CAMELYON 2,750,858 2,106,577 644,281 

1,571,062 1,179,796 0 1,197,515 909,062 0 373,547 270,734 0 

Post-NAT-LN 2,717,106 1,893,400 823,706 

811,058 1,414,872 491,176 554,625 1,104,337 234,438 256,433 310,535 256,738 

 

Table 2: Labeled patch dataset extracted with number of patches in each annotation class. 

Npos = positive for tumor, Nneg = no tumor or treatment effect, Ntreatment = post-NAT treatment 

effects present.   
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 CAMEYLON Test Post-NAT-LN Test MSK Test 

Extractor 
Split 

AUC ACC 
(adapt.) 

ACC 
(fair) 

AUC ACC 
(adapt.) 

ACC 
(fair) 

AUC ACC 
(adapt.) 

ACC 
(fair) 

Chemo-
naive 

0.976 0.969 0.380 0.947 0.893 0.549 0.886 0.885 0.277 

Post-NAT 0.946 0.946 0.380 0.963 0.910 0.713 0.900 0.915 0.292 

 

Table 3: Instance-level max-pool AUC, accuracy with adaptive threshold (maximizes 

accuracy on test set), and accuracy with fair threshold (0.5) on three test sets reported for 

each feature extractor.    
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   CAMEYLON Test Post-NAT-LN Test 

Scen
ario 

Extractor 
Split 

Slide Split Best 
MIL 

AUC ACC Spec100 Best 
MIL 

AUC ACC Spec100 

A Chemo-naive Chemo-naive Gated  0.994 0.969 0.838 Max. 0.955 0.910 0.400 

B Chemo-naive Post-NAT CLAM  0.994 0.977 0.850 Max. 0.986 0.926 0.782 

C Post-NAT Chemo-naive Attn. 0.992 0.953 0.838 Attn. 0.972 0.910 0.473 

D Post-NAT Post-NAT CLAM  0.988 0.946 0.75 Gated  0.986 0.943 0.709 

 

Table 4: Embedding-level AUC, accuracy with 0.5 threshold, and specificity at 100% 

sensitivity (Spec100) metrics for best MIL aggregation method for two test sets reported for 

Scenarios A-D. Attn. = Attention-based aggregation; Gated = Gated attention; Max. = 

Maxpool aggregation; ACC = Accuracy.   
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   Rescanned Post-NAT-LN Test MSK Test 

Scenario Extractor 
Split 

Slide 
Split 

Best 
MIL 

AUC ACC Spec100 Best 
MIL 

AUC ACC Spec100 

A Chemo-
naive 

Chemo-
naive 

CLAM 0.927 0.922 0.038 Attn. 0.938 0.838 0.266 

B Chemo-
naive 

Post-
NAT 

Gated 0.971 0.930 0.566 Attn. 0.921 0.908 0.340 

C Post-
NAT 

Chemo-
naive 

Attn. 0.953 0.913 0.038 CLAM  0.919 0.946 0.064 

D Post-
NAT 

Post-
NAT 

Gated 0.976 0.939 0.623 CLAM  0.921 0.938 0.170 

 

Table 5: Embedding-level AUC, accuracy with 0.5 threshold, and specificity at 100% 

sensitivity (Spec100) metrics for best MIL aggregation method for two OOD test sets reported 

for Scenarios A-D. Attn. = Attention-based aggregation; Gated = Gated attention; ACC = 

Accuracy.  
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