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1 Minimum Action Distance

In this section, we describe the notion of Minimum Action Distance, and we derive useful ways of
computing this measure on finite MDPs and continuous or large MDPs.

We start by introducing some notation.

Definition 1 The Minimum Action Distance (MAD) dMAD : S2 → R+ is defined as the minimum
number of decision steps to transition between any pair of states (si, sj) ∈ S2.

We can observe that the MAD is an asymmetric distance function [Mennucci, 2013] and must satisfy
the following properties:

• dMAD ≥ 0 and ∀s ∈ S, dMAD(s, s) = 0.

• dMAD(si, sj) = dMAD(sj , si) = 0 implies si = sj .

• dMAD(si, sj) ≤ dMAD(si, sk) + dMAD(sk, sj) ∀(si, sj , sk) ∈ S3.

1.1 Learning Minimum Action Distance from Adjacency Matrix

In discrete and finite MDPs we can compute the state-transition graph G = (V,E) of an MDP. In this
section, we will revise how to learn the minimum action distance from the graph adjacency matrix.

A state-transition graph G = (V,E) of an MDP M = ⟨S,A,P, r⟩ is a graph with nodes representing
the states in the MDP and the edges representing state adjacency in the MDP. More precisely, V = S ,
e (si, sj) ∈ E iff ∃a P (si, a, sj) > 0. An adjacency matrix represents a graph with a square matrix
of size |S| × |S| with (i, j)-value being 1 if e (si, sj) ∈ E and 0 otherwise.

AG
ij =

{
0 si = sj or e(si, sj) /∈ E
1 e(si, sj) ∈ E

i, j = 1, . . . , |S|. (1)

Having access to the adjacency matrix AG we can simply compute the minimum action distance by
using the Floyd-Warshall algorithm [Floyd, 1962, Roy, 1959, Warshall, 1962].

The Floyd-Warshall algorithm compares all possible paths through the graph between each pair of
vertices. It is able to do this with Θ

(
|V |3

)
comparisons in a graph, even though there may be up to

Ω
(
|V |2

)
edges in the graph, and every combination of edges is tested. It does so by incrementally

improving an estimate on the shortest path between two vertices until the estimate is optimal.

This dynamic programming procedure relies on having access to the edge weights, which in the case
of MAD reduces to having access to the adjacency matrix AG of ai,j = 1 when si, sj are connected
by an edge.
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Thanks to this we can define the shortest path on the AG by just first computing the base cases:

d(si, sj) =

{
0 si = sj
1 ai,j = 1
∞ ai,j = 0 and si ̸= sj

i, j = 1, . . . , |S|, (2)

and subsequently computing the recursive case leveraging the triangle inequality property:

d(si, sj) = min(d(si, sj), d(si, sk) + d(sk, sj)) ∀(si, sj , sk) ∈ S3. (3)

Note that in case we do not have access to the adjacency matrix AG this can be retrieved by interacting
with the environment by visiting all the one-step transitions (s, s′).

1.2 Symmetric embeddings

The Minimum Action Distance between states is a priori unknown and is not directly observable
in continuous and/or noisy state spaces where we cannot simply enumerate the states and construct
the adjacency matrix of the MDP. Instead, we will approximate it using the distances between states
observed on trajectories. We introduce the notion of Trajectory Distance (TD) as follows:

Definition 2 (Trajectory Distance) Given any trajectory τ = {s0, ..., sn} ∼ M collected in an MDP
M and given any pair of states along the trajectory (si, sj) ∈ τ such that 0 ≤ i ≤ j ≤ n, we define
dTD(si, sj | τ) as

dTD(si, sj | τ) = (j − i), (4)

i.e. the number of decision steps required to reach sj from si on trajectory τ .

We can observe that given any state trajectory τ = {s0, ..., sn}, choosing any pair of states (si, sj) ∈
τ with 0 ≤ i ≤ j ≤ n, their distance along the trajectory represents an upper bound of the MAD.

dMAD(si, sj) ≤ dTD(si, sj | τ). (5)

Given a dataset of trajectories D collected by any unknown behavior policy, we can retrieve the MAD
dMAD by solving the following constrained optimization problem:

min
θ

∑
τ∈D

∑
(si,sj)∈τ

(dθ(si, sj)− dTD(si, sj | τ))2,

s.t. dθ(si, sj) ≤ dTD(si, sj | τ) ∀(si, sj) ∈ S2
D

(6)

As a first step we can leverage the triangle inequality to simplify the constrain in 6 and reduce the
dependency on the quality of the trajectories in the dataset D.

min
θ

∑
τ∈D

∑
(si,sj)∈τ

(dθ(si, sj)− dTD(si, sj | τ))2,

s.t. dθ(s, s
′) ≤ dTD(s, s′ | τ) ∀τ ∈ D,∀(s, s′) ∈ τ,

dθ(si, sj) ≤ dθ(si, sk) + dθ(sk, sj), ∀(si, sj , sk) ∈ S3
D

(7)

where (s, s′) ∈ τ refers to a one-step transition (i.e. dTD(s, s′|τ) = 1) in the trajectory τ ∈ D while
(si, sj , sk) ∈ S3

D indicates all the combinations of 3 states contained in the trajectory dataset SD.

Note that the first constraint in 7 imposes an upper bound on one-step transitions, i.e. it says that two
states (s, s′) at distance one along a trajectory dTD(s, s′|τ) = 1 are either the same state s = s′ or
they must satisfy dMAD = 1. This allows us to approximate the MAD without having to identify
whether two states along a trajectory are the same state or not.

Note that the second constraint in 7 corresponds to the triangle inequality, which thus is a property
that holds for the MAD. Moreover, this second constraint implies that we have to calculate it for all
the combinations of 3 states contained in SD which can become intractable for large state spaces.
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To address this issue we proposed an alternative formulation based on embedding the MAD in a
parametric embedding space ϕθ : S → Rdim where a chosen distance metric that respects the triangle
inequality (e.g. any norm || · ||p) can be used to enforce the triangle inequality constraint.

The goal is to learn a parametric state embedding ϕθ : S → Rdim such that the distance d between
any pair of embedded states approximates the Minimum Action Distance.

Steccanella and Jonsson [2022] used this formulation to favour symmetric embeddings, where
they use norms as distance functions, e.g. the L1 norm d(z, y) = ||z − y||1. If we use symmetric
embeddings we will have that for any pair of states (si, sj) ∈ S,

d(ϕθ(si), ϕθ(sj)) ≈ min(dMAD(si, sj), dMAD(sj , si)). (8)

The problem of learning this embedding can then be formulated as a constrained optimization
problem:

min
θ

∑
τ∈D

∑
(si,sj)∈τ

(∥ϕθ(si)− ϕθ(sj)∥p − dTD(si, sj | τ))2,

s.t. ∥ϕθ(s)− ϕθ(s
′)∥p ≤ dTD(s, s′ | τ) ∀τ ∈ D,∀(s, s′) ∈ τ.

(9)

Intuitively, the objective is to make the embedded distance between pairs of states as close as
possible to the observed trajectory distance while respecting the upper bound constraints. Without
constraints, the objective is minimized when the embedding matches the expected Trajectory Distance
E [dTD] between all pairs of states observed on trajectories in the dataset D. In contrast, constraining
the solution to match the minimum TD with the upper-bound constraints ∥ϕθ(s)− ϕθ(s

′)∥p ≤
dTD(s, s′ | τ) allows us to approximate the MAD. The precision of this approximation depends on
the quality of the given trajectories.

To make the constrained optimization problem tractable, we can relax the hard constraints in (9) and
convert them into a penalty term to retrieve a simple unconstrained formulation. Moreover, we rely
on sampling (si, sj , dTD(si, sj | τ)) and (s, s′, dTD(s, s′ | τ)) from the dataset of trajectories D
making this formulation amenable for gradient descent and to fit within the optimization scheme of
neural networks.

L = E(si,sj ,dTD(si,sj |τ))∼D

[
(∥ϕθ(si)− ϕθ(sj)∥p − dTD(si, sj | τ))2

]
+ C, (10)

where C is our penalty term defined as

C = E(s,s′,dTD(s,s′|τ))∼D

[
max

(
0, ∥ϕθ(s)− ϕθ(s

′)∥p − dTD(s, s′ | τ)
)2

]
. (11)

The penalty term C introduces a quadratic penalization of the objective for violating the upper-bound
constraints ∥ϕθ(s)− ϕθ(s

′)∥p <= dTD(s, s′ | τ), while the term γdTD(si,sj |τ) ∈ (0, 1] prioritizes
small trajectory distances (i.e. distances between states that are close along a trajectory). Intuitively,
this makes sense since there is more uncertainty regarding the MAD of pairs of states that are further
apart on a trajectory.

1.3 Asymmetric embeddings

In the previous section, we have seen how it is possible to define the MAD embedding problem with
the use of norms || · ||p. While the formulation is useful to understand how it is possible to remove
the triangle inequality constraint in 7 the Minimum Action Distance is naturally asymmetric and we
would like embedding that preserves this asymmetry.
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A norm is a function ∥ · ∥ : X → R satisfying, ∀x, y ∈ X , α ∈ R+:

• N1 (Pos. def.). ∥x∥ > 0, unless x = 0.
• N2 (Pos. homo.). α∥x∥ = ∥αx∥, for α ≥ 0.
• N3 (Subadditivity). ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
• N4 (Symmetry). ∥x∥ = ∥ − x∥.

An asymmetric semi-norm satisfies N2, N3 but not necessarily N1, N4.

A convex function f : X → R is a function satisfying C1 : ∀x, y ∈ X , α ∈ [0, 1] : f(αx + (1 −
α)y) ≤ αf(x) + (1 − α)f(y). The commonly used ReLU activation, relu(x) = max(0, x), is
convex.

Is easy to observe that any N2 and any N3 function is convex and thus that any asymmetric
semi-norm is convex.

Motivated by this relationship between convex functions and norms,Pitis et al. [2020] introduced
Wide Norms, a parametric distance that models symmetric and asymmetric norms.

A Wide Norm is any combination of symmetric/asymmetric semi-norms. They are based on the
Mahalanobis norm of x ∈ Rdim, parametrized by W ∈ Rm×n, defined as ||x||W = ||Wx||2.

Asymmetric Wide Norms are defined as:

||x|WN = ||Wrelu(x :: −x)||2 where Wi ∈ Rmi×n with mi ≤ n.

We can then use the parametrized Wide Norm distance to constrain the triangular inequality on the
embedding space:

L = E(si,sj ,dTD(si,sj |τ))∼D
[
(||ϕθ(si)− ϕθ(sj)|WN − dTD(si, sj | τ))2

]
+ C, (12)

where C is our penalty term defined as

C = E(s,s′,dTD(s,s′|τ))∼D

[
max (0, ||ϕθ(s)− ϕθ(s

′)|WN − dTD(s, s′ | τ))2
]
. (13)

2 Learning the Transition Model

In the previous section, we showed how to learn a state representation that encodes a distance
metric between states. This distance allows us to measure how far we are from the goal state,
i.e. d(ϕθ(st), ϕθ(sgoal)). However, on its own, the distance metric does not directly give us a policy
for reaching the desired goal state.

In this section we propose a method to learn a transition model of actions, that combined with our
state representation allows us to plan directly in the embedded space and derive policies to reach any
given goal state. Given a dataset of trajectories T and a state embedding ϕθ(s), we seek a parametric
transition model ρζ(ϕθ(s), a) such that for any triple (s, a, s′) ∈ T , ρζ(ϕθ(s), a) ≈ ϕθ(s

′).

We propose to learn this model simply by minimizing the squared error as:

min
ζ

D∑
t

t∑
s,a,s′

[
(ρζ(ϕθ(s), a)− ϕθ(s

′))2
]
. (14)

3 Empirical Evaluation

We report all the empirical evaluations in the attached video. The empirical evaluation demonstrates
that symmetric norms such as the L1 norm || · ||1 are unable to approximate the MAD in asymmetric
environments converging to min(dMAD(si, sj), dMAD(sj , si)) while WideNorms approximate the
asymmetric dMAD correctly. We release the software to reproduce the results at the following
repository: https://github.com/lorenzosteccanella/SRL under the branch "NIPS-GCRL-Workshop"
and some notebooks that ease the understanding of the code under the branch "main".
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