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Abstract—We propose DTM, a novel difference-based tem-
poral module to leverage historical information in category-
level 6DoF pose tracking tasks. It can be easily integrated
with various category-level 6DoF pose tracking models which
use RGBD data as input. This module extracts temporal
features through a KNN-based difference calculation strategy
from both, pixels and 3D points. We evaluate this module on
two pose estimation datasets, NOCS-REAL275 and MoVi-E
by integrating our module with two state-of-the-art 6D pose
tracking models. The result shows that DTM can significantly
increase the accuracy and robustness of category-level 6DoF
trackers.
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I. INTRODUCTION

Object pose prediction is essential in Augmented Reality
(AR) [1], autonomous driving [2, 3], SLAM (Simultaneous
Localization and Mapping) [4] and robotics application [5,
6]. We are motivated by AR applications where robust,
accurate and instant pose predictions of a target object in
video are needed to enhance human-computer interaction.
Robustness is essential but challenging when the quality of
the input frame sequence is low due to hand-held capture
with mobile devices. The pose and appearance of target
objects will experience rapid change. Making stable and
real-time pose estimations is key for 6DoF pose tracking in
AR applications which we address by using frame history.

In pose tracking, a model will predict the relative pose
transformation between the current frame and the next
frame. Traditionally, the pose of objects relative to the
camera can be recovered by using hand-crafted features [7–
9] and solving an optimization problem. As pose tracking
is used in more complex environments, visual variations
increase including illumination changes, motion blur, scene
clusters and occlusions, Wang et al. [10] propose the incor-
poration of deep learning techniques into the 6DoF category-
level pose tracking. They follow the idea of [11], proposing
a keypoint-based method to track objects. They decomposed
the 3D pose tracking problem into 3D keypoints detection
and 6D pose estimation problem. By generating ordered
keypoints, the model recovers the transformation through
least squares optimization [12]. Due to the reliance on
keypoints generation, the model requires clear views of the

target object, while the capability to handle interference is
limited and historical features are ignored. As a result, the
robustness of the tracking model during interference is low.

The majority of current pose tracking methods only
consider two frames, the current frame and the previous
frame without paying attention to the temporal history. But
the history of frames contains rich temporal and spatial
features that can benefit the pose prediction. The object
may be temporarily occluded, or blurred because of external
interference which will cause feature loss. However, the
motion pattern extracted from the history may reduce errors
by bridging the temporal occlusions. History has been deeply
explored in 2D computer vision [13–16]. In 2D computer
vision, temporal modelling is commonly used to process
sequential data inaction recognition [17]. Attention [18–20]
and difference [21] techniques have been deeply exploited
in 2D. However, there is still a need for an effective method
in 3D to incorporate temporal information.

In this paper, we propose DTM, a novel method to ag-
gregate history into state-of-the-art 6D pose trackers. DTM
is based on difference calculations between current and
historical frames. Considering the input of the 6D tracker
can be either 3D points [22] or RGBD [10], we assume
that one point’s features are similar to the features of K
closest spatial neighbours. We propose a difference calcula-
tions between various point sets to accomplish cross-frame
feature aggregation based on KNN. Our module will learn
to produce weights for each frame in the history sequence.
These weights represent the per-channel importance of each
point’s feature. Then we globally and locally aggregate the
historical features into the current frame. Our module is a
plug-in module that can be easily used on any category-level
6D tracker that takes RGBD or 3D point clouds as input.

In this work, we propose DTM, a temporal module based
on cross-frame difference calculation considering both pixels
and points. The experiments on NOCS-REAL275 [23] and
the challenging benchmark MoVi-E [24] show that baseline
state-of-the-art 6DoF pose tracking networks [10, 22] gain
significant improvements from DTM, particularly in the
scenes with occlusions.



II. RELATED WORKS

In category-level pose estimation tasks, the 3D CAD
model is not available during either training or testing. As
a result, the model doesn’t have specific prior knowledge
of the target object. Sahin et al. [25] define the main chal-
lenges of category-level 6D pose estimation problems to deal
with intra-class variations and distribution shifts. The first
refinement-based category-level method using deep learning
is proposed by Wang et al. [23]. They propose a novel way to
represent the instance in object coordinates, which is called
NOCS (Normalized Object Coordinate Space). NOCS is a
unit cube that aligns with the object’s center in 3D space.
By normalizing the object in NOCS, the category-specific
features can be easily extracted regardless of shape.

Instead of estimating the pose using a single frame, pose
tracking methods infer the relative pose between two consec-
utive frames. Wang et al. [10] address the tracking problem
using keypoints. Due to the difficulty of annotating keypoints
in videos, 6-Pack predicts the keypoints with respect to the
input point cloud in an unsupervised manner by minimizing
the multi-view consistency error. 6-Pack takes RGBD data
as input and fuses the features of pixels and points by
conducting Densefusion [26]. Because 6-Pack is a salient
method that uses both point and pixel features, we select
it as one of the baseline models. Other methods [27, 28]
define the vertices of the 3D bounding box as keypoints.
Given the current and previous 2D image frames along
with the center and keypoints heatmap of the previous
frame, a neural network is used to generate a heatmap to
find the center and keypoints of the object in the current
frame. In order to investigate our model’s performance on
points-only methods, we also add DTM to CAPTRA [22],
a regression-based tracker that takes both rigid and articu-
lated objects into account and treats the tracking problem
as a 9DoF regression problem. CAPTRA adopts the idea
of NOCS [23] and proposes a pose-canonicalized space.
The pose-canonicalized space uses the object’s pose in the
previous frame to normalize the current frame’s object and
regress the pose of the object in this canonicalized space
directly.

6D pose detection estimates the pose between camera
and object in each frame individually. Pose tracking is
less error prone in processing real-time video sequences
because it is more effective to predict the relative pose
between two consecutive frames. However, tracking based
only on the latest two frames and ignoring the history
can make the model unstable with noisy inputs. Temporal
modelling is commonly adopted in tasks that process se-
quential data. In 2D computer vision tasks, Wang et al. [17]
propose TDN (Temporal Difference Networks) for action
recognition in video, which incorporates short-term and
long-term motion captures. Similar to our method, TDN
is based on a temporal difference operator. Cui et al. [29]

propose TF-Blender (Temporal Feature Blender) for video
object detection. The proposed model considers the temporal
feature integration problem as a combination of feature
relation and adjustment. For category-level 6D pose tracking
tasks, BundleTrack proposed by Wen et al. [30] stores
unordered reference frames into a pose graph and conducts
a maximum overlap optimization to refine the initial pose.
By extending the idea of the pose graph, Wen et al. propose
BundleSDF [31], a 6DoF tracking model combined with 3D
reconstruction through learning a Neural Object Field. Wen
et al. also present FoundationPose [32] to bridge category-
level and instance-level methods where the stored frames
in the memory are used to learn the Neural Object Field
as in BundleSDF [31]. Based on the learned Neural Object
Field or the ground truth CAD model, FoundationPose will
generate several refined pose hypotheses and use a pose
ranking network to find the hypothesis that aligns best with
the input RGBD image. BundleTrack [30], BundleSDF [31]
and FoundationPose [32] store the history as separate frames
for 3D reconstruction or pose refinement, which is not a
continuous sequence. The proposed method in this paper
works on the temporal history which is orthogonal to their
approach. For instance-level models, TP-AE [33] proposed
by Zheng et al. uses a temporal sequence of frames to learn
the trajectory of an object in order to estimate a prior pose
based on the continuous history. The setup of the temporal
sequence in TP-AE [33] is similar to DTM. Unlike our
DTM, TP-AE is an instance-level method that requires a
CAD object model.

III. PROBLEM DEFINITION

In a category-level 6DoF tracking model, the initial pose
of the object is given with respect to the camera coordinate
system in the first frame, p0 ∈ SE(3), p0 = [R0 | t0]
together with a video sequence (I0, I1, I2, ..., It). The prob-
lem can be depicted as tracking the continuous pose pi
of the object in each frame fi given the pose in the
previous frame pi−1, which is the relative transformation
between Ii and Ii−1, ∆pi. Thus, pt can be computed
through the accumulated multiplication of ∆p, that is pt =
∆pt · ∆pt−1 · ∆pt−2 · ∆pt−3 · ∆pt−4 · · · p0. Given the
RGBD image Ii, the tracking task can be expressed as
pt = F (It, It−1, It−2, It−3, · · ·, I0, Ct−1, Ct−2, Ct−3, · ·
·, C0, p0 | θ), where θ is the tracking model’s parameters
and Ci is the corresponding point cloud of image Ii.

In order to estimate ∆p between two frames in or-
dinal 6D tracking models, the model needs to take the
current frame and previous frame as input, which is
∆pt = H(It, Ct, It−1, Ct−1 | θ). For real-time track-
ing, we propose to use a sliding window (history se-
quence) to store and update past frames sequentially. The
length of the sliding window M is L, where Mt =
(It−1, Ct−1, It−2, Ct−2, It−3, Ct−3...It−L, Ct−L). There-
fore, the tracking model with the temporal information can



be expressed as ∆pt = H(It, Ct,Mt | θ). DTM can
be integrated with off-the-shelf learning-based 6DoF pose
tracking models in our design.

IV. APPROACH

DTM explores the relations between the current frame
[It|Ct] and the frames in the history sequence Mt as shown
in Fig. 1 c). It outputs the refined features f t

′
of the current

frame [It|Ct].
In 2D video detection the RGB difference [34–36] and

features difference [37–39] have been deeply explored. The
difference in 2D can be directly calculated because pixels
and features are spatially related. In 3D tasks, the chal-
lenge is to combine RGB values and points. We propose
a bidirectional feature-wise difference measurement method
based on Euclidean distance (Sec. IV-A). The purpose of
the differences is to learn a feature-wise weight for the
previous frames indicating the importance of each dimension
of the feature. Based on the weights, the current frame’s
features are refined with the last frame’s features. By doing
so, the model can extract significant features from the history
and suppresses those features that can affect the model’s
performance negatively.

The local difference module calculates the difference be-
tween every two consecutive frames in the history sequence
Mt and learns feature-wise weights. The iterative update
between two consecutive frames in the history sequence Mt

will start from the oldest frame’s feature f t−L. Suppose the
update function of local difference is Slocal(), which satisfies

f t−L+i = Slocal(f
t−L+i, f t−L+i−1) (1)

where t is the index of current frame and i means the
ith frame in the history sequence. L is the length of the
sequence. f i are the features after refinement. The function
Slocal takes the refined features of frame f t−L+i−1 and the
features of frame f t−L+i as input to generate the refined
feature of frames f t−L+i. This formula will be iteratively
applied to all the frames in the history sequence until it
updates the current frame’s features producing the refined
features of the current frame f t. In the local difference
module, the weight will accumulate from the first frame in
the history sequence. However, it will diminish the effect of
early frames in the history sequence. In order to solve this
problem, we further design a global difference module that
can benefit from the features of each frame equally.

The global difference module will calculate the difference
between each frame in M t and f t and accumulate the
weighted features together to update the current frame’s
feature. Suppose the global difference function is Sglobal

that treats the relation between all the frames equally. Then
we have

f̃ t = Sglobal(f t−1, f t−2 · · · f t−L) (2)

Local difference and global difference module outputs will
be combined to generate the final refined feature of the
current frame (see Sec. IV-B and Sec. IV-C for more details).

A. KNN-based Difference Calculation
We calculate the difference between the unordered point-

sets of the frames based on KNN. Inspired by Ffb6d [40], we
propose a KNN-based bidirectional difference calculation
and fusion method shown in c) of Fig. 1. Our extension
of the method of Ffb6d [40] fuses the image I and point
cloud C in a bidirectional manner.

The correspondence between each pixel in the image and
the 3D point is known because the points are calculated by
back-projecting the pixels using the intrinsic matrix of the
camera [41]. We depict this correspondence as a mapping
X (), that is Ci = X (Ii), where Ci is the ith point in the
point cloud C and Ii is the ith pixel of the corresponding
RGB image.

Given the point sets Ca, Cb and RGB pixels Ia, Ib of two
scenes a and b, the Euclidean distances of points between
scene a and b are calculated as ∥X (Iai ) − X (Ibj )∥ and
∥Ca

i −Cb
j∥ assuming a static camera. The KNN-based pixels

difference of K nearest point neighbours Ga
i of Iai selected

in the scene b can be described as

Ga
i = fa,rgb

i −MaxPool(Wi · K(X (Iai ), f
b,rgb)) (3)

where fa,rgb
i are the features of ith pixel in scene a, f b,rgb

are the features of the pixels in scene b. The KNN (K
nearest neighbors) function K() takes a point Ca

i and the
feature map as inputs, and returns the K selected features
for point Ca

i in scene a to the pixel in scene b according
to the back-projection X (). Additionally, we also apply a
distance dependent weight (Wij) on the selected features,
which can be expressed as

Wij = SoftMax(−∥X (Iai )− Cb
j∥) (4)

For simplicity, we use Wi to denote a set
{Wi0,Wi1, ...,WiN}, where N is the total number of
points. Assuming the points with closer distance share
more similar features, the weight Wi ensures the model
assigns high priority to close points. The reason that we use
maxpooling is to emphasize the largest difference in each
dimension of a feature. Considering the point Ca

i in the
scene a has feature fa,points

i and the features of points in
scene b are f b,points, then the KNN-based points difference
P b
i of the ith point in scene a can be described as

P a
i = fa,points

i −MaxPool(Wi · K(Ca
i , f

b,points)). (5)

After deriving the pixels difference Ga
i and points difference

P a
i of the ith point in scene a, we now consider fusing the

two differences.
The bidirectional differences fusion of the ith point in

scene a is as follows

Ua
i = Ga

i ⊕MaxPool(Wi · K(Ca
i , P

a)), and (6)



Figure 1. DTM consists of two main components, a) Global Difference and b) Local Difference. Given the features of the current frame f t and the
history sequence f t−L ∼ f t−1, the feature update process (c) Local Feature Update and e) Global Feature Update) relies on KNN-based difference
calculation (d) KNN-based Difference Calculation) to compute the difference between two frames considering their RGB images and point clouds. A
relation module B will be applied to this difference to learn feature-wise weights to map the feature of the previous frame.

Oa
i = P a

i ⊕MaxPool(Wi · K(Ca
i , G

a)) (7)

where ⊕ is the concatenation along the feature dimension.
Ua
i is the feature-wise concatenation between Ga

i and the K
nearest neighbors points difference from P a calculated in the
previous section. The distance-based weight and maxpooling
are also applied to the selected features. The concatenation
along the feature dimension between point difference P a

i

and the K closest pixels differences Ga
i is also calculated.

Then, Ua
i and Oa

i are concatenated to generate the difference
representation of ith point in scene a, that is Da,b

i = Ua
i ⊕

Oa
i , where Da,b

i is the difference representation of point i
in scene a considering both pixels and points differences
between scenes a and b.

B. Local Difference

Given the pixel features fa,rgb and points features
fa,points of frame a with the features for the history frames
in the history sequence f j,rgb, f j,points, j ∈ Mt, the

procedure of local difference calculation is shown in Fig. 1
b) and c), where D is the difference calculation in Sec. IV-A.
The update process starts from the earliest frame It−L in M.
For two consecutive frames ([It|Ct], [It−1|Ct−1]), we use
a relation module B to learn the feature-wise weight from
Dt−1,t in Sec. IV-A, which is the difference representation of
scene t−1 fusing both pixels and points differences between
t− 1 and t. The relation module is constructed by an MLP
with three layers. The update between the features of two
consecutive frames can be expressed as

f t
i = SoftMax(f t

i +AvgPool(K(Ct
i , B(Dt−1,t

i ) ×⃝f t−1
i )))

(8)
where ×⃝ is the feature-wise multiplication. f t

i is the refined
feature of f t

i obtained through the local difference module.
The update process will be done across all the frames in M
and finally accumulated to the current frame. For the first
frame in M, f t−L = f t−L. In Eq. 8, we also use the Soft-
Max function to normalize the refined features. According to



Eq. 8, the refined features of the local difference module will
accumulate the weighted features from previous frames in
the history sequence. Not applying normalization will result
in large values.

C. Global Difference

Similar to the local difference, the global difference
module also needs to conduct an update process between two
frames. But in the global difference, the update is directly
between the features of each frame in M and the features
of the current frame. The process is shown in a) and c) of
Fig. 1. Given the feature of the current frame f t and the
features of frames in the history sequence, f t−j , j ≤ L.
The updated current frame can be expressed as

f̃ t =

L∑
j=0

AvgPool(K(Ct, B(Dt−j,t) ×⃝f t−j)) + f t (9)

where Dt−j,t is the learned difference representation be-
tween each frame in the history sequence and the current
frame. f t−i is the refined feature from the local difference
module in Sec. IV-B .

As shown in Fig. 1, the features of the local difference
f t and global difference f̃ t will be concatenated and fed to
an MLP for the output of the final refined feature. The final
aggregation is

f t
′

= Mlp(f̃ t ⊕ f t ⊕ f t) (10)

The refined feature f t
′

of f t will be used for downstream
pose prediction.

D. History Sequence Updates

Another critical task in DTM is the management of the
history sequence M. We follow a first-in-first-out strategy.
The current refined frame will be added to the history
sequence once the pose prediction of the current frame
is completed and the oldest frame will be deleted from
the sequence. The transformation between camera space to
object space of the added frame will be recorded. We align
the pose of frames in the history sequence with the current
frame by transforming all of them using the latest frame’s
pose in the history sequence to the object space, where the
object space is a fixed reference frame. Under this scheme,
the history sequence can work with the temporal model in
a real-time manner.

E. Integration with other Learning-based 6DoF Pose Track-
ing Models

DTM can be integrated in various off-the-shelf category-
level 6DoF pose tracking networks to refine the current
features by using temporal information. Typically, learning-
based pose tracking or estimation networks contain an
encoder to extract RGB and points features. Then, the
downstream components will use these features to estimate

the pose. DTM can be added as a mid-layer after the encoder
to refine the extracted features from the encoder with the
history features. We use 6-Pack [10] and CAPTRA [22] as
baseline models.

V. EXPERIMENTS

A. Datasets

We evaluate DTM in two datasets, NOCS-REAL275 [23]
and MoVi-E [24]. NOCS-REAL275 [23] is commonly used
for 6DoF pose estimation. It has two parts, synthetic and
real data. The synthetic data has no continuity across more
than 2 frames and hence it is not suitable for the training of
our temporal model. Thus, our training and evaluation are
only using the real data of NOCS-REAL275. This is also
why the presented evaluation results of the baseline methods
in Table I are worse than those in the respective papers.

The MoVi dataset [24] is a synthetic dataset series with
increasing complexity from A to F. Although the length of
the videos is short (24 frames per video), in each video, the
pose of the object is continuous. Hence, DTM can fully use
the dataset. We select two asymmetric categories (Shoe and
Bag) and one symmetric category (Bottle, Can and Cup).
The MoVi dataset classifies Bottle, Can and Cup as a single
category.

B. Metrics

We follow NOCS [23] and use 5 metrics to evaluate the
models.

• 5◦5cm : The percentage of predicted relative pose with
rotation error less or equal to 5◦ and translation error
less or equal to 5cm.

• 10◦10cm : The percentage of predicted relative pose
with rotation error less or equal to 10◦ and translation
error less or equal to 10cm.

• mIoU (Mean Intersection over Union): The average
percentage of the 3D intersection between the predicted
3D bounding box and the 3D bounding box.

• Rotation Error (Rerror) : The average error of rotation
in degree.

• Translation Error (Terror) : The average error of trans-
lation in centimetres.

C. Results

Evaluation Results on the real data of NOCS-
REAL275 dataset: Table I list the results on the testing
set of the NOCS-REAL275 dataset [23]. For 10◦10cm,
our model with a 6-Pack backbone outperforms 6-Pack by
itself in all categories except the laptop. Especially, the
percentage of rotation error and translation below 10◦ and
10 centimetres is twice the percentage of 6-Pack in the
bottle category. Although our translation error is slightly
higher than 6-Pack (0.85), the rotation error (21.43) is half
of 6-Pack (44.36). Based on these metrics, DTM refines
the features to generate a more robust trajectory with less



Table I
COMPARISON ON THE REAL DATA PART OF NOCS-REAL275 DATASET.

5◦5cm ↑ 10◦10cm ↑ mIoU ↑ Rerror ↓ Terror ↓ Serror ↓

6-Pack
[10]

Bottle 4.5 7.81 32.30 54.76 15.72 #

Bowl 11.79 14.60 36.99 53.30 4.43 #

Camera 2.19 5.80 37.18 53.30 7.40 #

Can 9.55 17.0 44.11 28.26 8.82 #

Laptop 27.48 68.67 68.05 8.59 3.29 #

Mug 2.80 7.8 54.60 67.95 6.84 #

Overall 9.71 20.28 45.53 44.36 7.75 #

6-Pack
w Ours

Bottle 6.60 14.2 31.79 13.24 18.39 #

Bowl 6.9 16.45 50.14 24.46 7.26 #

Camera 4.8 9.45 35.25 30.75 6.44 #

Can 10.0 28.74 48.94 12.44 14.89 #

Laptop 36.80 60.45 65.88 9.90 2.25 #

Mug 4.27 10.35 60.68 37.80 2.78 #

Overall 11.56 23.27 48.78 21.43 8.6 #

CAPTRA
[22]

Bottle 36.13 47.90 28.28 22.07 4.9 1.45
Bowl 29.8 38.64 26.87 31.35 5.3 1.55

Camera 0.2 1.08 3.19 72.38 5.4 2.09
Can 32.47 33.35 19.32 38.54 33.00 90.39

Laptop 67.64 87.33 59.95 12.7 0.5 0.05
Mug 1.37 20.01 34.35 77.86 1.7 1.10

Overall 27.82 38.05 28.66 42.48 8.46 16.10

CAPTRA
w Ours

Bottle 39.26 39.23 22.82 16.81 7.1 2.05
Bowl 27.54 33.77 24.67 24.79 2.9 1.17

Camera 0.41 2.53 9.52 79.44 3.9 1.77
Can 30.91 31.98 18.70 53.98 77.28 211.47

Laptop 60.46 94.49 65.39 4.58 0.2 0.01
Mug 31.61 62.15 34.57 14.18 1.5 0.10

Overall 31.69 44.02 29.27 32.29 15.48 36.09

rotation and translation error. DTM’s average mIoU over all
categories is higher than 6-Pack by itself, because 6-Pack
uses the ground truth 3D bounding box as the size of objects
instead of regressing it.

We also use CAPTRA as the backbone to test our model’s
performance. The 5◦5cm and 10◦10cm are better than 6-
Pack due to the smaller rotation error and translation error.
The overall mIoU is worse than 6-Pack because 6-Pack
uses the ground truth 3D bounding box as the scale of
the object in each frame while CAPTRA predicts the scale
in each frame. The mIoU of CAPTRA will be affected
by the scale error. The overall results of our model are
better than CAPTRA by itself except the translation error
and scale error. The reason why the four metrics (Rerror,
Terror, 5◦5cm and 10◦10cm) are high in one category is
that this category has many accurate estimations as well as
many erroneous estimations, which means the distribution of
Rerror and Terror has a high variance. These two metrics
are mainly affected by the performance in the category of
Can. The Can category has high translation and scale errors
in both our model and the baseline CAPTRA. However,
the translation error and scale error are much higher than
the baseline, where the translation error is 77.28 and the
scale error is 211.47. For the Mug category, our model’s
5◦5cm (31.61) is much better than CAPTRA (1.37). 1.37%
for 5◦5cm means CAPTRA cannot maintain a low rotation
and translation error, while our model can handle it well.
Also, in the Mug category, the 10◦10cm (62.15) is three
times larger than that of the baseline CAPTRA (20.01).

In summary, DTM mostly improves the performance of
baseline models in the real data of NOCS-275. However, the
real data in NOCS-275 has a limited scope of the scenes and

Table II
COMPARISON WITH THE BASELINE METHODS ON MOVI-E.

5◦5cm ↑ 10◦10cm ↑ mIoU ↑ Rerror ↓ Terror ↓ Serror ↓

6-Pack
[10]

Shoe 12.02 25.37 55.74 26 9.18 #

Bottle, Can and Cup 21.94 37.69 55.85 19.84 5.66 #

Bag 20.29 36.21 60.93 24.64 5.86 #

Overall 18.08 33.09 57.32 23.49 6.89 #

6-Pack
w Ours

Shoe 43.18 63.25 65.09 11.94 0.51 #

Bottle, Can and Cup 33.33 53.18 64.20 17.75 5.49 #

Bag 35.59 53.39 69.14 17.23 4.5 #

Overall 37.36 56.6 66.14 13.87 3.5 #

CAPTRA
[22]

Shoe 23.89 52.30 35.12 20.11 1.29 1.92
Bottle, Can and Cup 17.23 47.70 30.06 23.55 2.16 1.75

Bag 10.77 28.97 28.11 27.52 2.23 2.91
Overall 17.29 42.99 31.09 23.72 1.8 2.1

CAPTRA
w Ours

Shoe 27.8 58.44 28.30 19.80 1.89 1.84
Bottle, Can and Cup 26.12 49.32 29.45 29.94 2.9 1.3

Bag 19.13 45 26.56 28.25 2.5 3.9
Overall 24.35 50.92 28.10 25.99 2.4 2.3

the number of sample is low. Hence, we utilize MoVi-E to
work with more challenging scenarios with multiple moving
objects, more occlusions due to clutter and more varied and
dynamic motion patterns.

Evaluation Results on the MoVi-E dataset: Table II
contains the results of our model compared with the baseline
methods on the testing set of MoVi-E. DTM outperforms
the baseline in all metrics in MoVi-E. There is a large
gap in the metric of 5◦5cm and 10◦10cm. For the shoe
category, the 5◦5cm and 10◦10cm (43.18 and 63.25) are
almost three times the percentage of the baseline (12.02 and
25.37). Specially, the translation error of the shoe category
is 0.51 while the baseline is 9.18, which is about 10cm error
less than the baseline. For the symmetric category, Bottle,
Can and Cup, the metrics are a bit worse than the other two
categories but the 5◦5cm, 10◦10cm and mIoU are about 10
percentage higher than the baseline.

For the baseline CAPTRA, our model’s overall 5◦5cm
and 10◦10cm are better than the baseline. For the symmetric
category (Bottle, Can and Cup) and the bag categories, the
10◦10cm is 45%, which is 21 percentage points higher than
the baseline CAPTRA. Although the mIoU, Rerror, Terror

and Serror are worse than the baseline CAPTRA, their gaps
are minor, where the largest one is the mIoU of the Shoe
category. Our model’s mIoU (28.30%) is about 7 percentage
points lower than the baseline model. Other metrics are
almost the same but slightly worse, which are about 2 to
3 percentage points lower than the baseline CAPTRA.

Fig. 2 shows the examples of DTM integrated with the
baseline CAPTRA and 6-Pack. The green bounding box is
the ground truth and the red bounding box is the predicted
bounding box. The visualized results include two scenes
where the target object is partially visible. DTM helps the
model to align the bounding box better with the ground truth,
i.e., DTM is more robust when the vision of the object is
limited.

The processing time of TDM is 94ms in CAPTRA and
75ms in 6-Pack with a length 4 history sequence. The longer
run-time in CAPTRA is due to the larger number of points
sampled in CAPTRA than in 6-Pack.



Figure 2. Qualitative results of DTM and the two baseline methods.

D. Ablation Study

Length of History Sequence (Sliding Window): The
length of the history sequence may affect the essential
features gathered from history frames. We evaluate DTM
with the backbone of 6-Pack in the MoVi-E dataset shown
in Fig. 3

Figure 3. The performance of DTM with increasing length of history
sequence using the shoe as the target object in MoVi-E with the 6-Pack
baseline. (a) are all metrics from the MoVi-E dataset and (b) shows
comparisons between 5◦5cm and 10◦10cm to compare DTM with the
baseline 6-Pack (dashed line).

For (a) of Fig. 3, when the length of the history se-
quence is 6 and 7, the 5◦5cm and 10◦10cm reach a peak.
However, the variation of performance with the window
length indicates that the optimal length depends on the
motion sequence in the video sequences. We also studied
the influence of the window length on the performance of
our model in the NOCS-REAL275 which were minor due
to the scenes in NOCS-REAL275 dataset being more static
and less challenging than MoVi-E. Due to the GPU limit,
we are not able to investigate very long history sequences.

Normalization in Local Difference Module: We also
evaluate the performance of our model with and without the
softmax normalization in the local difference module.

Table III
DTM TRAINED ON LAPTOP CATEGORY WITH AND WITHOUT

NORMALIZATION. (6-PACK AS BASELINE, TEMPORAL HISTORY LENGTH
IS 4 FRAMES).

5◦5cm ↑ 10degree◦10cm ↑ mIoU ↑ Rerror ↓ Terror ↓
Ours 36.80 60.45 65.88 9.9 2.25

Ours w/o Normalization 20.75 36.68 36.92 19.88 3.7

The results in Table III show the normalization step in the
local difference module can help to improve the performance
by normalizing the difference features iteratively gathered
from the first frame in the history sequence to the current
frame.

VI. CONCLUSION

We presented DTM, a difference-based temporal module
for category-level 6DoF pose tracking models in AR ap-
plications. DTM refines the features of points and pixels
by leveraging temporal differences. The difference is calcu-
lated based on KNN between the pixels and points of two
frames. Our module acts as a mid-layer between the feature
encoder and other downstream components. We integrate our
module with two state-of-the-art category 6DoF trackers and
evaluate their performance on two challenging benchmarks.
DTM increases the accuracy and robustness over the baseline
models. In the future, we want to research the integration of
DTM also in pose tracking methods based on posegraphs.
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