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Abstract
Reward models are a standard tool to score re-
sponses from LLMs. Reward models are built
to rank responses to a fixed prompt sampled
from a single model, for example to choose the
best of n sampled responses. In this paper, we
study whether scores from response-level reward
models lifted to score a model’s suitability for a
prompt, prior to seeing responses from that model.
Specifically, we show that it is straightforward to
predict the expected reward that an LLM would
earn from the reward model under repeated sam-
pling. Further, we show that these expected re-
ward predictions are precise and discriminative
enough to support an application to a model rout-
ing protocol that routes prompts to models at in-
ference time to maximize reward while control-
ling computational cost. We demonstrate the per-
formance of this routing procedure on the open-
perfectblend dataset, using a model pool com-
posed of Llama3.1-Instruct 8B/70B, Gemma2-IT
9B/27B, and Gemma1-IT 7B models. Our simple
expected reward prediction–based routing (ERP)
outperforms baselines that route prompts to mod-
els with the best average performance within each
prompt’s category, and explains the success of
more complex routing protocols that implicitly
estimate an expected reward. Our approach has
the added advantage of being trivially extensible
as new models are added to the pool.

1. Introduction
Reward models are commonly used in large language model
(LLM) alignment, sampling, and evaluation (see, e.g. Chris-
tiano et al., 2017; Stiennon et al., 2020; Gao et al., 2023;
Wang et al., 2024a). A reward model is a function that takes
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a prompt x and a response y and returns a score r(x, y)
quantifying how good the response is for the prompt. No-
tice that this makes no reference to language models—the
reward is a property of text, not of a generative model. In
this paper, we are interested in understanding how good a
model is for a given prompt. More precisely, we are inter-
ested in lifting a reward function on responses to a reward
function on models.

The aim here can be understood as producing a LLM-level
reward function that predicts a priori how well a random
sample from the LLM can be expected to perform in re-
sponse to the prompt x. Such a priori predictions would
be useful for a number of inference time operations, such
as model routing and prompt modification. Moreover, ob-
taining model-level rewards from response-level rewards
would be especially convenient since there has already been
enormous research and development effort put into creating
high quality response-level rewards (Lambert et al., 2024).
In this paper, we formalize the a priori reward of a language
model π as EY∼π(y|x)[r(x, Y )], the expected value of the
response level reward of a random sample drawn from the
LLM. The key question is whether it is possible to predict
this quantity.

It is not clear that predicting the expected reward a priori
is actually possible, for at least two reasons. First, there
is no guarantee that the generating LLM is well-behaved
enough for its prompt-specific behavior to be easily pre-
dicted. There are two potentially unpredictable elements:
(1) the sensitivity of the model to specifics of the prompt,
and (2) the distribution of responses that a non-deterministic
model can give to a prompt. If either aspect of the gener-
ating model is not well-behaved, it may not be practical
to predict EY∼P (y|x)Y [r(x, Y )], which summarizes a large
range of behavior of the model. Secondly, the large major-
ity of reward models used in practice are trained to encode
the relative quality of two responses to the same prompt.
That is, theoretically reward models only guarantee that
r(x, y1)− r(x, y0) is a meaningful quantity for all pairs of
responses y0, y1, but allow an arbitrary prompt-dependent
value to be added to each reward (which cancels out when
we take the difference). A model’s expected reward for
a given prompt depends on this arbitrary value, and thus
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need not be learnable even in principle.1 Thus, to the extent
that prompt-wise expected reward is predictable, we would
expect it to be a consequence of the implementation of the
reward model as a fine-tuned pretrained language model.

For these reasons, the scope of our contribution is primarily
empirical. The main finding of this paper is that it is in
fact possible to predict the expected reward with high fi-
delity using realistic language models and reward functions.
Moreover, we find that this prediction is possible even using
an astonishingly simple model: a linear probe trained on
an off-the-shelf embedding representation of the prompt
(Figure 1(a)). Finally, we demonstrate that this predictive
power is not merely an artifact of identifying universally
“good” or “bad” prompts: we show that predicted expected
reward can be used to discriminate between models that
would provide better or worse responses to the specific
prompt. Specifically, we demonstrate this with an applica-
tion to model routing. In the model routing application, we
take in a prompt x and decide which model it should be
optimally served to. We find that using lifted rewards leads
to large improvements over any fixed model, particularly in
applications where querying each model has variable cost
(Figure 1(b)).

2. Preliminaries
2.1. Language Models

In this paper, we view a large language model π as a kernel
that maps prompts x to probability distributions π(Y | x)
over responses y. Our interest is in predicting aspects of the
response a priori. Formally, this is equivalent to character-
izing (properties of) the probability distribution π(Y | x)
from the prompt. In particular, we will be interested in learn-
ing functions of the form ERπ(x) := EY∼π(Y |x)[r(x, Y )].

2.2. Reward Modeling

A central problem in generative language model evaluation
is scoring open-ended outputs that vary on a large number of
dimensions that are meaningful to humans. Pre-specifying
these dimensions and scoring responses along each would
be onerous, especially for hard-to-define concepts like “help-
fulness”. Reward models avoid this problem by inferring an
overall notion of “goodness” that is revealed by preference
data. Preference data has the form (x, y−, y+), where x is
the input prompt, y+ and y− are the preferred and dispre-
ferred candidate responses. A reward model translates this
preference-level data into a response-wise score r(x, y), so
that for a given prompt, r(x, y) > r(x, y′) implies that y is
more likely to be preferred to y′ by raters that generated the
preference data.

1Formally, the expected value is not identified under the
Bradley-Terry model.

The standard approach to reward modeling is to do this
translation by maximizing the Bradley-Terry log-likelihood.

r∗(x, y) = argmax
r

Ex∼pX (x)[log σ(r(x, y+)− r(x, y−))]

(1)

A useful reward score r(x, y) is a complex function of x
and y, requiring semantic understanding of the prompt and
the appropriateness of the response. For this reason, reward
models are usually obtained by fine-tuning a large language
model, which bake in the requisite semantic understanding
(see, e.g., Wang et al., 2024a, for a review).

Initially, reward models were trained on narrow preference
datasets in the context of specific tasks, to target relatively
narrow notions of “goodness”, such as harmfulness and
helpfulness in assistant conversations (Bai et al., 2022),
or the usefulness of a summary in summarization tasks
(Stiennon et al., 2020). However, increasingly, general
purpose reward models are being trained that can mea-
sure “goodness” on a variety of downstream tasks. Re-
ward models of this type are compared on the RewardBench
benchmark Lambert et al. (2024), and high-performing gen-
eral purpose reward models appear on the RewardBench
leaderboard (https://huggingface.co/spaces/
allenai/reward-bench).

2.3. Experimental Setup

The aim of this paper is to understand whether, and how, the
expected reward of language model π for reward function r
can be predicted from a prompt.

Prompt Dataset. To explore the predictability of expected
rewards, we use a diverse dataset of prompts for which
we expect there to be variability in the quality of model
responses, both within models (i.e., for a given model, the
model will give better responses to some prompts than other
prompts, in expectation) and between models (i.e., for a
given prompt, some models will give better responses than
other models, in expectation).

Specifically, we use the open-perfectblend dataset (Labonne,
2024), which is an open source near-replication of the mix-
ture of datasets introduced in Xu et al. (2024). The dataset
was initially designed as a diverse supervised fine-tuning
training set, with prompts from datasets focused on general
chat capabilities, instruction following, math reasoning, and
code reasoning (see documentation for Labonne (2024) for
full details).

For our experiments, we sample 1000 prompts at ran-
dom from each of the 4 mentioned categories in open-
perfectblend for a total of 4000 prompts. The general chat
data in open-perfectblend is formatted as multi-turn con-
versations, but here we focus on reward for single-turn re-
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Train Test

Prompt
“What is the capital of France?”

LLM

Response 1
“Paris is the capital.”

Reward = 1.0

Response 2
“The capital is Berlin.”

Reward = 0.2

Response 3
“France has no capital.”

Reward = 0.0

Expected Reward
Mean = 0.4 (Ground Truth)

Prompt Embedding
(3.2,−1.1, 0.7)

Linear Model

Predict

(a) (b)

Figure 1. (Left) Expected reward prediction workflow. We train a linear model on an embedding of the prompt to predict the expected
reward that the model would earn responding to the prompt. (Right) Expected reward prediction (ERP) can be used to route queries
to the best, cost-effective model for that query. The Pareto frontier (blue) shows that an ERP-based routing policy dominates baselines
that don’t discriminate between models in the context of each prompt, regardless of cost sensitivity. Additional regret-cost tradeoff plots
for other RMs can be found in Figure 5.

sponses, so we truncate to the first user query in the chat
conversation.

Large Language Models. We study expected reward pre-
dictability across several LLM sizes in open weight model
families. We focus on the following instruction-tuned gener-
ating models: Llama 3.1-IT (8B, 70B) (Dubey et al., 2024),
Gemma 2-IT (9B, 27B) (Team et al., 2024b), Gemma 1-IT
(7B) (Team et al., 2024a). When sampling from each model,
we use standard autoregressive temperature sampling, where
we sample one token at a time, conditional on all that came
before. For all models, we set the temperature to 1.0.

Reward Models. We study the predictability of the ex-
pected scores from three reward models: OpenAssistant-
RM2, GRM-2B-RM3 (Yang et al., 2024), InternLM-RM4

(Cai et al., 2024). These reward models were all trained
using the Bradley-Terry objective to encode complex, aggre-
gate human preferences, performed well on RewardBench
for their respective sizes, and were chosen to be small due
to computational restrictions.

2.4. Related Work

Distributional Property Prediction. The key idea in this
paper is to predict a priori a distributional property of an
LLM output (namely, the expected reward) from the prompt

2https://huggingface.co/OpenAssistant/
reward-model-deberta-v3-large-v2

3https://huggingface.co/Ray2333/
GRM-Gemma-2B-rewardmodel-ft

4https://huggingface.co/internlm/
internlm2-7b-reward

alone. The idea of predicting distributional aspects has also
occurred in some other contexts. For example, Kossen et al.
(2024) train linear probes to predict the entropy of the output
distribution in the context of hallucination detection. Wang
et al. (2024b) also train a predictor for the expected reward
as a function of the prompt as a component of a modified
RLHF algorithm. In contrast to the present paper, they do
not attempt to quantify the quality of this predictive model.

Model Routing Methods. Model routing has been an
active area of research for cost-effective use of LLMs. Ap-
proaches include preference model–based routing (Ong
et al., 2024), to which we made a comparison above; and
cascade-based routing, were models are sequentially queried
until an acceptable answer is found, as judged by a scoring
model (Chen et al., 2023) or a self-verification mechanism
(Madaan et al., 2023). Other approaches close to ours also
use predictions of model-wise response quality (Nguyen
et al., 2024; Liu et al., 2024), but focus on cases where
responses can be judged in terms of binary accuracy. The
most similar work to ours that indirectly performs reward
prediction is the Zooter method proposed by Lu et al. (2023),
which trains a router to predict the winning model’s distribu-
tion (i.e., response with highest reward). The output logits
of this network can be interpreted as a form of reward predic-
tion. Our work shows that the direct prediction of expected
reward at the model level is equally effective, more scal-
able, and a likely explanation for the effectiveness of reward
prediction-based routers such as Zooter.
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Figure 2. Expected reward is predictable both within and between prompt classes, across model families and sizes. Each point shows the
predicted and empirical expected reward for a prompt from the test split of the open-perfectblend dataset. Points are colored by their
category. Predictive power is measured by R2; roughly, the variance explained by the predictions. Additional reward plots for other RMs
can be found in Figure 6.

3. Predictability of the Expected Reward
To begin, we report on our experiments studying the pre-
dictability of expected reward across generating models and
reward models. The key finding is that, in practice, expected
rewards can be predicted with remarkable precision using a
linear model built on top of an external embedding of the
prompt. That is, the a priori prediction problem is indeed
solvable, and, moreover, the prediction can be done with a
simple linear model.

Task Setup. Given a prompt x, a language model
π(Y | x), and a reward model r, our goal is to predict the ex-
pected reward that would be assigned to responses sampled
from the model,

ERπ(x) := EY∼π(Y |x)[r(x, Y )]. (2)

Here, our goal is to train a model that directly predicts
ERπ(x) from x, without the need to take repeated samples
at inference time.

To set up the learning problem, we build datasets Dπ =

{(xi, ÊRπ(xi))}Ni=1 by brute force. For each prompt x ∈
X , we sample K responses {y(k)i }Kk=1 from the language
model, compute the reward r(xi, y

(k)
i ) for each response,

and then record the empirical mean reward ÊRπ(xi) =
1
K

∑K
k=1 r(xi, y

(k)
i ) as the target. For all experiments here,

we use K = 32. The learning task is to predict label
ÊRπ(xi) from the prompt xi.

We split these datasets into training and test sets in a 50/50
manner stratified across prompt categories. Namely, in each
category, we delegate half the prompts to the training set
and the remaining half to the test set.

Linear Models. We train models to predict the empiri-
cal mean reward ÊRπ(x) from each prompt x with linear
models that take the a fixed-length vector representation, or

Model Name Aggregate Coding Math Instruction Following General Chat

llama3.1-70b 0.54 0.41 0.19 0.25 0.42
llama3.1-8b 0.46 0.26 0.24 0.23 0.39
gemma2-27b 0.48 0.37 0.30 0.27 0.45
gemma2-9b 0.47 0.34 0.31 0.25 0.46
gemma1-7b 0.59 0.50 0.34 0.25 0.49

Table 1. R2 of expected reward prediction within each open-
perfectblend category of prompts using OpenAssistant-RM. For
most categories, and for most models, the predictor explains varia-
tion in rewards, even after conditioning on the question category,
suggesting that expected rewards give a finer-grained view of
model capabilities. Additional tables with R2 values for other
RMs can be found in Table 2.

embedding v(x) of the prompt x as input. We use ridge-
regularized linear models that solve

argmin
θ

EX∼pX (X)[(θ
⊤v(X)− ÊRπ(X))2] + β∥θ∥22 (3)

For the embedding representation v(x), we use gte-large-
en-v1.5, an off-the-shelf pre-trained embedding model with
embedding dimension 1024 (Zhang et al., 2024). We chose
this embedding model due to being lightweight at under 0.5
billion parameters and its strong performance (rank 33) on
the MTEB leaderboard (Muennighoff et al., 2022). We set
β = 1 to optimize R2 performance and prevent overfitting.

Results. In Figure 2, we summarize the predictive per-
formance of linear reward prediction models on open-
perfectblend, both in aggregate and within prompt cate-
gories5. The results show that expected rewards from our
chosen reward models are indeed predictable, and linear
predictions from embeddings can capture a substantial frac-
tion of the variation in held-out test data, both within and
between prompt categories in open-perfectblend.

Notably, for most categories, the predictions and targets
have relatively well-behaved distributions, and predictive

5We do not use category information in any way at training
time, we only split the test set by category for displaying results.
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performance is not easily explained away, for example, by
obvious artifacts in the data like a large fraction of refusals
to answer. The predictability here suggests that even within
specific categories, variation in each model’s capabilities (at
least as measured by the reward models) across fine-grained
prompt classes is easily linearly represented in terms of the
general-purpose prompt embedding.

There are some exceptions to this pattern in the predictions
of GRM-2B-RM rewards. Specifically R2 values within
the math category are low for all models except Llama-
3.1 70B, and are similarly low in the instruction following
category for the Llama-3.1 models. Nonetheless, aggregate
reward remains highly predictable, because the GRM-2B-
RM groups scores for these categories relatively tightly in
the full range of scores.

Discussion. As we have emphasized, the predictability of
expected reward at all is somewhat surprising. One possible
explanation is that modern reward models are finetuned from
pre-trained language models on datasets where there are
typically many prompts and only a relatively small number
of responses to each prompt, which may bias the model to
using a single reward scale to facilitate generalizing across
prompts. Another possibility is that some responses, such as
refusals to answer, are assigned low rewards in training data
regardless of prompt, creating common structure between
prompts that the reward models can exploit. However, this
is speculation, and the phenomenon deserves more precise
investigation. It would be useful to better understand the
classes of reward models for which we can expect expected
reward prediction to be effective, and to perhaps consider
training strategies that actively encourage this property in
reward scores.

4. Applications to Model Routing
We have now established that prompt-level expected rewards
from our two reward models have systematic predictable
structure within each model. Here, we show that these
predictions are sufficiently precise to support practical com-
parisons between models. To do this, we use the predictable
structure in prompt-level expectations to design a simple but
effective proof-of-concept model routing algorithm. The
success of this algorithm is evidence that predicted expected
rewards go beyond classifying generally “good” or “bad”
prompts, but actually lift response-level scores to model-
level scores that can be used to discriminate between them.

4.1. Model Routing Setup

Task Definition. Suppose we have a pool of M models,
Π := {πi}Mi=1. When we receive a prompt query x, we can
choose a model to which to route the prompt, and return the
response from that model. The goal is to choose a model

that can generate a high-quality response cheaply.

Formally, for a given prompt x, model i can generate a
response Yi for a computational cost c(i, x, Yi), earning a
reward r(x, Yi). We aim to learn a routing protocol that
maps prompts to models to maximize the expected reward
while also maintaining a low computational cost. That is,
we want a router ρ : X 7→ {0, 1, · · · ,M − 1} satisfying the
constrained optimization problem

argmax
ρ

Ex∼pX (x)EY∼πρ(x)(Y |x)[r(x, Y )],

subject to Ex∼pX (x)Ey∼πρ(x)(Y |x)[c(ρ(x), x, Y )] ≤ C,
(4)

where pX is a uniform distribution over a space of prompts
X , and C is the computational budget.

For simplicity, we focus on the case where the cost function
c(i, x, y) only depends on the model i and is proportional to
the number of parameters in model. This is a reasonable first
order approximation, though there are of course substan-
tial subtleties related to expected generation length, details
of model architectures, the relative expense of FLOPS vs.
memory, and so forth.

Routing Evaluations. We evaluate router quality by the
regret it incurs relative to an optimal (oracle) policy for
assigning prompts to models. For a given prompt x, the
regret of (deterministic) policy ρ is

R(m,x) := max
i∈Π

EY∼πi(Y |x)[r(x, Y )]− EY∼πρ(x)(Y |x)[r(x, Y )].

(5)

Preference-Based Model Routing. Model routing has
been approached before in Ong et al. (2024) as a preference
learning problem, where the data have the form (x, p+, p−),
where x is the prompt, p+ is the winning model with the
higher reward, and p− is the losing model with the lower
reward. It is assumed that this pairwise comparison data
exists for all pairs of models in P . A preference model
is then trained on the preference data, using an objective
similar to (1), which maps prompts to a score for each model
that can be used to rank the models and route the prompt at
inference time.

Expected Reward Prediction (ERP)-Based Routing.
Here, we propose a straightforward alternative that lever-
ages the predictability of expected rewards. For each model
in Π, we train a linear predictor using Equation (3) to pre-
dict expected rewards. In the simplest policy, we then just
route each prompt x to the model with the highest predicted
expected reward for that prompt.

However, routing to the highest reward prediction doesn’t
incorporate the budget constraint in Equation (4). To ac-
count for cost, we introduce a parameter λ controlling the
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relative importance of cost and response-level reward and
define the cost-adjusted policy as

ρλ =max
ρ′

Ex∼pX (x)EY∼πρ′(x)(Y |x)[r(x, Y )

− λ(c(ρ′(x), x, Y )− C)].
(6)

This expected reward prediction routing method has some
intrinsic advantages. Of particular note is that the expected
reward prediction models can be trained on each model
separately, rather than requiring pairwise comparisons be-
tween samples from different models. This means that if
new models are added to the model pool, one only needs to
train a single prediction model for each new model, rather
than training a new preference model that requires pairwise
comparisons between each model in the old and new sets.
In general, data requirements for this method only scale
as the number of models, whereas data requirements for
direct preference modeling methods scale as the square of
the number of models.

This simplicity is not free. It essentially requires that the
expected reward suffices to characterize the overall perfor-
mance of the model. This might not be true, for example, if
one of the LLMs produced low quality samples with high
probability, but extremely high quality samples with low
probability—in this case, the expected reward would be high
even though the typical response is poor. However, if LLMs
tend to produce samples with somewhat similar rewards,
then the expected reward is a reasonable way of summariz-
ing the overall distribution of outputs. The following result
gives a particular formalization of this idea:
Proposition 4.1. Let π0(r(x, Y ) | x) and π1(r(x, Y ) | x)
be the distributions of rewards under models π0, π1 respec-
tively. Suppose these distributions are both σ2-subgaussian.
Then, if Y0 ∼ π0 and Y1 ∼ π1, we have

Pr(r(x, Y1) > r(x, Y0)) ≥ 1− e−
(ERπ1 (x)−ERπ0 (x))2

4σ2

Proof. Observe that r(x, Y1)− r(x, Y0) is 2σ-subgaussian.
The result follows immediately.

In words, this says that the difference in expected rewards
relates directly to the win rate of model π1 vs π0 on the
prompt x. Thus, in the particular case where the reward
distributions are relatively concentrated, routing the model
with highest expected reward is a good approximation for
routing to the model with the highest overall win rate.

4.2. Warmup: Pairwise ERP vs Preference-Based Win
Prediction

Consider the binary classification task of predicting, for
each prompt, which of the two models will generate a better

response, according to each of our reward models. We take
the binary label to be 1[r(x, Y1) > r(x, Y0)], where we
produce these labels by using generations from each model.
Figure 3 shows the AUROC for the ERP-based binary pre-
dictor computed by thresholding σ

(
ÊRπ1

(x)− ÊRπ0
(x)

)
across both reward models on the open-perfectblend test
data. We show results for two reward models and each pair
of LLMs. The main observation is that the AUROCs are
high, meaning we can predict prompt-wise model prefer-
ences from the predicted expected rewards.

As a point of comparison, Figure 3 also shows the AUROC
for binary predictors trained directly on pairwise reward
comparison data for each pair of models, using logistic re-
gression on the same input representation v(x). Notice that
the values are no better than the expected reward prediction
routing. That is, ERP routing, based only on single-model
rewards, matches the pairwise classifier’s performance.

4.3. Routing Experiment

We now present our main experimental results for the model
routing application. In this experiment, we route each
prompt in our open-perfectblend test split according to a
routing policy based on expected reward prediction (ERP)
as well as several baseline policies. Across a range of values
for the reward-cost exchange-rate parameter λ, we show that
the ERP-based policy improves on the baselines in terms of
regret and cost.

Variability in model performance. We first establish that
there is enough variability in model performance across cat-
egories to warrant prompt-wise routing. Figure 4 shows that
within most open-perfectblend categories, for each reward
model, there is diversity across the models that provide the
best response to each prompt among the five models in our
pool. Notably, GRM-2B-RM’s scores are rather lopsided
in some categories, a fact that we will return to in our re-
sults. However, broadly, this winner diversity establishes
that, even within prompt categories, there is an opportunity
to improve served responses by routing each prompt to a
predicted best model. In addition, as in the pairwise compar-
ison above, predicted win rates, according to ERP, closely
mirror ground truth.

Routing policy and baselines. Our test policies are:

• ERP-based. Directly predict the cost-adjusted reward
for each model, and choose the model that maximizes it.
When the cost function only depends on the model—as in
our experiments—the policy is

ρλ(x) = argmax
i∈Π

ÊRπi
(x)− λc(i). (7)

• Zooter. Collectively predicts the softmax distribution
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Figure 3. Comparison of our expected reward predictor (ERP) to logistic regression when predicting pairwise model wins using
OpenAssistant-RM. AUCs of each win prediction method are nearly identical, but ERP only requires one predictor per model, in-
stead of a separate logistic regression model for each model pair. Additional AUROC figures for other RMs are available in Figure 7.

Figure 4. ERP comparisons accurately predict win rates within each category. Notably, no single model dominates across all categories,
and ERP captures model-wise differences. Additional win rate figures for ERP using other RMs can be found in Figure 8.

for the best response. That is, given a prompt x and re-
ward score for each model’s response {ri}Mi=1, Zooter
learns a network Z that maps x to an M -dimensional
probability distribution {pi}Mi=1 trained to minimize the
KL-divergence with respect to the ground-truth winning
response distribution softmax(r1, r2, · · · , rM ). Through
the logits of Z , Zooter can be interpreted as reward pre-
diction based routers. ERP, in turn, can be seen as a sim-
plified and more scalable version of Zooter that directly
regresses reward for each individual model as opposed to
a single collective prediction across models.

• Same model. Route every prompt to a fixed model.

• Random permutation. Randomly reorders the model
routing predictions of our expected reward predictor. Re-
moves the conditioning on prompt x but preserves the
predicted best model distribution of our expected reward
predictor and hence the incurred cost as well.

• Purely random. Route prompts to random models.

• Per-category best (oracle). Route each prompt in a cate-
gory to the model that had the best average cost-adjusted
reward in that category in the training set. Requires oracle
knowledge of the prompt categories at inference time.

Notably, we omit a preference-based router because a 5-
class preference model would be significantly more complex

to train than the ERP-based policy, and because performance
was comparable to direct win prediction in our pairwise
experiment. Extending the ERP-based policy to five models,
on the other hand, uses the same components that we used
in the pairwise setting, with no additional training.

Results. We evaluate each routing policy based on its
ability to trade off prompt-averaged cost and regret effec-
tively. In Figure 1(b) and Figure 5, we plot the Pareto
frontier induced by different exchange-rate values λ, for
the OpenAssistant-RM, GRM-2B-RM, and InternLM-RM
rewards, respectively. For all reward models, the ERP and
Zooter routers are able to establish a Pareto frontier that
contains all non-oracle baselines. The comparison to the
per-category best oracle (black diamonds), which has access
to oracle prompt category labels at test time, is also com-
pelling. Even without category labels, ERP and Zooter are
able to provide similar cost-performance tradeoffs across all
three reward models. For OpenAssistant-RM and InternLM-
RM, ERP dominates the oracle, while for GRM-2B-RM, the
oracle breaks the Pareto front at one point, earning slightly
lower regret at a higher cost at one point. In part, this reflects
the fact that for this reward model, within some categories,
most wins went to a single model, so routing all queries in
those categories to a single model is nearly optimal.

Given the similarity in effectiveness and increased simplicity
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of ERP in relation to Zooter, we may reasonably infer the
success of Zooter is inherently from the predictability of
expected reward. In addition, the scalability of ERP with
respect to the number of models is more favorable since
only responses and rewards from a new model are needed
to add it to an ERP router.

5. Discussion and Limitations
The main result of this paper is to demonstrate a useful prop-
erty of LLMs and reward models: the per-prompt expected
reward for a given model is readily predictable, and can
serve to lift reward functions on responses to be reward func-
tions on models. When expected rewards are predictable,
downstream tasks that might otherwise require preference-
level comparison data can be achieved effectively by pre-
dicting model-level reward distributions in isolation. While
we explored model routing as the primary application in
this paper, many other inference-time applications could
be possible, including, for example, hot-swapping system
prompts.
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A. Additional Figures

Figure 5. Regret-cost tradeoff curves using GRM-2B-RM and InternLM-RM.

Figure 6. Predicted vs. actual reward on our test split of the open-perfectblend dataset for the GRM-2B (top row) and InternLM (bottom
row) reward models for our set of five generating models (columns).
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Model Name Aggregate Coding Math Instruction Following General Chat

GRM-2B-RM
llama3.1-70b 0.37 0.55 0.18 0.11 0.30
llama3.1-8b 0.45 0.60 -0.21 0.09 0.24
gemma2-27b 0.39 0.61 0.01 0.19 0.29
gemma2-9b 0.37 0.59 0.03 0.16 0.28
gemma1-7b 0.29 0.51 0.01 0.12 0.27

InternLM-RM
llama3.1-70b 0.32 0.36 0.12 -0.14 0.15
llama3.1-8b 0.22 0.26 0.09 -0.03 0.18
gemma2-27b 0.22 0.19 0.04 0.02 0.25
gemma2-9b 0.23 0.17 0.02 0.01 0.21
gemma1-7b 0.44 0.23 0.09 0.06 0.24

Table 2. R2 of expected reward prediction within each open-perfectblend category of prompts using GRM-2B-RM and InternLM-RM.

(a) AUROC scores using GRM-2B-RM.

(b) AUROC scores using InternLM-RM.

Figure 7. Comparison of our expected reward predictor (ERP) to logistic regression when predicting pairwise model wins.
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Figure 8. Ground truth and predicted win rates (among 5 LLMs) within each open-perfectblend category, according to GRM-2B-RM and
InternLM-RM.
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