

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IMPROVING ACTIVE-LEARNING EVALUATION, WITH APPLICATIONS TO PROTEIN-PROPERTY PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

We highlight that current evaluations of active-learning methods often fail to reflect important aspects of real-world applications, giving an incomplete picture of how methods can behave in practice. Most notably, evaluation problems are commonly constructed from heavily curated datasets, limiting their ability to rigorously stress-test data acquisition: even the worst acquirable data in these datasets is often reasonably useful with respect to the task at hand. To address this we introduce Active Learning on Protein Sequences (ALPS), a set of problems constructed to test key challenges that active-learning methods need to handle in real-world settings. We use ALPS to assess a number of previously successful methods, revealing a number of interesting behaviours and methodological issues. The ALPS codebase serves to support straightforward extensions of our evaluations in future work.

1 INTRODUCTION

Active learning involves seeking the best data for training a model; typically this means adaptively choosing inputs to acquire labels for (Atlas et al, 1989; Settles, 2012). Empirical evaluations have helped show the benefit of intelligent data acquisition, with several successful demonstrations in recent years (Bickford Smith et al, 2023; 2024; Hübotter et al, 2024; 2025; Melo et al, 2024; Osband et al, 2023). But we argue that existing evaluations often fail to reflect key challenges in practical applications, limiting our ability to gauge how methods will really perform beyond academic studies.

The principal issue we highlight is the use of heavily curated datasets in the construction of active-learning problems. It is common for example to use standard academic datasets from computer vision (Bengar et al, 2021; Chan et al, 2021; Lüth et al, 2023; Mittal et al, 2019; 2023; Siméoni et al, 2020) and natural-language processing (Ein-Dor et al, 2020; Maekawa et al, 2022; Margatina et al, 2022; Seo et al, 2022; Yuan et al, 2020), with typical curation steps including ensuring a roughly equal number of examples per class and removing unrepresentative examples. By using these curated data sources in place of the messy ones often used in the real world, existing evaluations give us a false sense of the active-learning methods we are assessing. If all acquirable data has already been filtered to be at least moderately useful for the task at hand, there is an artificial limit on how badly any method can perform, harming our ability to detect weaknesses in methods. On top of this, even if evaluations emphasise the cost of acquiring labels, they crucially hide the cost of implicit curation steps, leading us to overestimate the real-world performance achievable for a given cost.

We therefore believe there is a critical need to complement existing active-learning problems with new ones that reflect underrepresented challenges. We suggest a promising context within which to design new problems is protein-property prediction, namely the task of mapping from a protein’s sequence of amino acids to some measure of its behaviour (Lesk, 2019). One reason for this is the scope for concrete impact: better protein-property prediction could enable advances in practical pursuits like protein engineering as well as foundational research in biology (Notin et al, 2023; 2024). Another is that labelling protein sequences usually requires costly lab experiments, meaning there is much less labelled data available than in domains like computer vision and natural-language processing, and there is an ongoing pressing need for acquiring informative new labels. Meanwhile the labelled data that *is* currently available, thanks to past investments in experimental data-gathering (Bryant et al, 2021; Faure et al, 2022; 2024; Johnston et al, 2024; Poelwijk et al, 2019; Pokusaeva et al, 2019; Wu et al, 2016), is sufficient to construct useful problems for foundational methods development. We thus have a basis for iteratively working towards larger quantities of high-quality labelled data.

054 Capitalising on this opportunity, we introduce Active Learning on Protein Sequences (ALPS), a set of
 055 problems derived from existing protein datasets. In five core problems we do as little as possible to
 056 constrain the data that can be acquired, with two of the problems having near-exhaustive coverage
 057 of a region of the input space. Nine additional problems extend from these core problems to pose
 058 further challenges for active-learning methods, including working with skewed label distributions,
 059 acquiring data under experimental restrictions, and dealing with large quantities of redundant inputs.

060 Putting ALPS to use, we experimentally investigate the performance of a number of active-learning
 061 methods that have seen success in existing evaluations. We find that ALPS reveals failure cases in
 062 these methods that have been underrepresented in past work, including miscalibration of predictive
 063 uncertainty, sensitivity to class imbalance, and unreliable scaling with increasing acquisition batch
 064 size. Given this, our work brings to light not only key issues in the design of active-learning
 065 evaluations but also priorities for future method development, with a particular need for more
 066 robust data acquisition. To accelerate progress along these lines, we provide an open codebase
 067 (anonymous.4open.science/r/alps-95A3) designed for flexible experimentation.

069 2 EVALUATING ACTIVE LEARNING

071 Our aim in this work is to improve the way we evaluate active-learning methods. We begin by
 072 establishing a clear sense of our brief as evaluators, with a focus on expected downstream utility.

073 **Setup** Active learning can be broadly defined as the process of training a predictive model on data
 074 acquired by an adaptive policy, whose decisions depend on the model being trained (Atlas et al, 1989;
 075 MacKay, 1992). These decisions can take many forms, including choosing state transitions to observe
 076 in an environment (Mehta et al, 2022) or a subset of examples from a labelled dataset (Mindermann
 077 et al, 2022), but the most commonly studied setting—and the one we focus on here—is choosing
 078 unlabelled inputs to acquire labels for (Settles, 2012). Specifically we consider pool-based active
 079 learning (Lewis & Gale, 1994) of a model, $p_\phi(y|x)$, that maps inputs $x \in \mathcal{X}$ to labels $y \in \mathcal{Y}$: we
 080 have access to a pool of n unlabelled inputs, $\mathcal{X}_{\text{pool}} \subseteq \mathcal{X}$, but we can only afford to acquire $m < n$
 081 labels due to the cost of labeling, which we assume follows some distribution $y \sim p_{\text{train}}(y|x)$.

082 Pool-based active learning is typically broken down into a sequence of steps, $t \in (1, 2, \dots, T)$, where
 083 each step comprises three substeps. First, the data-acquisition algorithm selects a batch of b query
 084 inputs, $\mathbf{x}_t = (x_{t,i})_{i=1}^b$, where $x_{t,i} \in \mathcal{X}_{\text{pool}}$, often by maximising an acquisition function that estimates
 085 some notion of data utility. Second, the algorithm obtains labels, \mathbf{y}_t , where $y_{t,i} \sim p_{\text{train}}(y_{t,i}|x_{t,i})$,
 086 and adds $(\mathbf{x}_t, \mathbf{y}_t)$ to the training dataset, $\mathcal{D}_{\text{train}}$. Third, the model, $p_\phi(y|x)$, is updated on $\mathcal{D}_{\text{train}}$.

087 **Goal** Evaluating active-learning methods requires a clear sense of what we want to achieve with
 088 them. A technically precise way to describe this is in terms of downstream utility or loss (von Neu-
 089 mann & Morgenstern, 1947). In machine learning we often evaluate trained predictive models, $f_n =$
 090 $f(\cdot; x_{1:n}, y_{1:n})$, using a form of frequentist risk (Berger, 1985), $R = \mathbb{E}_{p_{\text{eval}}(x_*, y_*)}[\ell(x_*, y_*, f_n(x_*))]$,
 091 where p_{eval} denotes a reference system used as a source of ground truth and ℓ denotes a loss function.
 092 Standard evaluation metrics can be understood as estimators of the risk for particular choices of loss
 093 function (e.g. the misclassification rate arises from the zero-one loss). Reduced risk is therefore a
 094 concrete and well-established notion of what we could gain from intelligent data acquisition.

095 **Problem design** As well as making it clear what we should measure in evaluations, writing down
 096 this formal goal highlights the many factors that control the dependence between an active-learning
 097 method and its performance, factors that we need to consider when designing problems. Among
 098 these are the predictive task, $\mathcal{X} \times \mathcal{Y}$; the loss, ℓ ; the pool, $\mathcal{X}_{\text{pool}}$; the label source, p_{train} ; the reference
 099 system, p_{eval} ; the machine-learning method, f ; and the costs and budgets for compute and labels.

101 3 SHORTFALLS IN EXISTING EVALUATIONS

103 Next we discuss how existing active-learning problems do not allow us to fulfil our brief as evaluators.
 104 In particular we highlight issues that arise from using curated data and neglecting task adaptation.

105 **Using curated data** A striking pattern across the literature is the use of standard academic datasets
 106 as a basis for constructing active-learning problems. We estimate (Appendix A) that 37% of recent
 107 active-learning evaluations use standard vision datasets (e.g. Caltech101, CIFAR-10, ImageNet,

108 MNIST), 9% use standard text datasets (e.g. 20 News-
 109 groups, CiteSeer, CORA, PubMed, Reuters), and 9% use
 110 standard UCI (Dua & Graff, 2017) datasets (e.g. Adult,
 111 Ionosphere, Iris, Wine). These datasets are often heavily
 112 preprocessed to allow easier model training, for exam-
 113 ple by ensuring a roughly equal number of examples
 114 per class and filtering out examples considered unrepre-
 115 sentative, irrelevant, or ambiguous (Aitchison, 2021;
 116 Krizhevsky, 2009; Russakovska et al, 2014).

117 This represents a major shortfall in existing evaluations.
 118 If all the acquirable data has already been vetted for
 119 quality, then the difference between the best data and
 120 the worst data is small, limiting our ability to properly
 121 stress-test methods and leading us to overestimate pos-
 122 sible real-world performance. For example, while BALD
 123 (Houlsby et al, 2011) has been shown to target obscure
 124 data (Bickford Smith et al, 2023), with potentially disas-
 125 trous consequences for working with the uncurated data
 126 pools often encountered in practice (Ardila et al, 2020;
 127 Mahajan et al, 2018; Raffel et al, 2020), this failure mode
 128 is masked in evaluations based on curated data.

129 A top priority for new evaluations is therefore to use less heavily curated data. One way this might
 130 manifest is through the unlabelled pool: rather than only containing inputs that are likely to lead to
 131 useful labels (with respect to model performance), we should consider messier pools that include
 132 inputs that are unlikely to be useful, perhaps even comprising all inputs that could be labelled.

133 **Neglecting task adaptation** Another key shortfall in current evaluations is failing to assess methods'
 134 abilities to adapt learning towards a particular task. In real-world applications we cannot expect our
 135 pool of unlabelled data to be tailored to the task of interest. For instance, we might want to predict
 136 whether a protein has a desired level of binding affinity with a target molecule, but the proportion of
 137 proteins in our pool that achieve this level might be very small and dependent on which molecule
 138 we are targeting. Yet existing evaluations tend to have a straightforward relationship between the
 139 active-learning problem and the source dataset from which it is constructed, such that all inputs relate
 140 to the task of interest, for example by exclusively belonging to the classes that occur at test time.

141 Given that a key motivation for active learning is the need to enhance a model for a particular task
 142 (Baumann et al, 2024; Bickford Smith et al, 2023; Hübotter et al, 2024; 2025; Osband et al, 2023;
 143 Tamkin et al, 2022), this common failure to consider task adaptation in evaluations is problematic.
 144 Like the use of curated data, it hinders our ability to rigorously test active-learning methods. A
 145 method with no notion of the task of interest is suboptimal in the general case, but the extent to which
 146 that manifests in evaluations will be limited if all acquirable data is relevant to the task at hand.

147 An additional requirement for new evaluations should therefore be to test how well active-learning
 148 methods can be tailored towards different tasks. Out of the many ways to implement this, perhaps the
 149 simplest is to use unlabelled pools within which not all inputs directly relate to the task of interest.

150 4 PROTEIN-PROPERTY PREDICTION

153 With a sense of the challenges we want to reflect in our evaluations, we turn to the question of how
 154 to implement them. We argue that the domain of protein-property prediction provides a compelling
 155 setting for this, due to its potential applied impact and the protein data at our disposal.

156 **Task** In protein-property prediction we take as input a sequence, $x \in \mathcal{A}^L$, where \mathcal{A} is a set of amino
 157 acids and L denotes length, and produce as output a prediction of a property (or property vector),
 158 $y \in \mathcal{Y}$, that describes the protein's behaviour in a system (Lesk, 2019). Properties we might want to
 159 predict include the protein's solubility, its stability under changing conditions (e.g. temperature), or
 160 its binding affinity with a target of interest (e.g. a small molecule). Prediction of $y \in \mathbb{R}$ is sometimes
 161 reframed as classification by splitting the real line into bins: we can for example use a single threshold,
 162 such as the property value of a reference protein, to produce binary classification (Notin et al, 2023).

163 **Figure 1** Current evaluations of active
 164 learning rely heavily on standard vision, text
 165 and UCI datasets. Percentages here were es-
 166 timated by taking recent papers from AIS-
 167 TATS, ICML, NeurIPS and UAI, filtering
 168 by active-learning keywords, randomly sub-
 169 sampling, manually discarding false positives
 170 (giving 81 papers), then listing the datasets
 171 used in empirical evaluations.

162 **Applications** Protein-property prediction can unlock great value both in direct practical applications
 163 and in foundational research (Notin et al, 2023; 2024). In protein engineering (e.g. in the context of
 164 drug design), predictions can be used within optimisation objectives or constraints (Yang et al, 2018),
 165 perhaps to ensure any chosen protein satisfies a particular solubility requirement. In basic research,
 166 predictions can be used to characterise phenomena like epistasis (Olson et al, 2014), where changes
 167 at multiple locations in a protein sequence have an interacting effect on the protein’s behaviour.

168 **Data** Recent years have seen significant efforts to experimentally characterise protein behaviour,
 169 yielding a notable increase in the amount of available data (Chevalier et al, 2017; Tsuboyama et al,
 170 2023). Commonly a reference protein (often a naturally occurring “wild-type” protein) and a number
 171 of variant proteins (with amino-acid sequences mutated from that of the reference protein) are
 172 synthesised and observed in some system, leading to a behaviour measurement for each of the
 173 proteins (Faure et al, 2024; Fowler & Fields, 2014; Kinney & McCandlish, 2019).

174 This source of data has four characteristics that are particularly relevant to our work. First, labels
 175 are expensive (Wittmann et al, 2022), justifying the use of careful data acquisition. Second, while
 176 there is now sufficient data available to construct interesting active-learning problems, there is still a
 177 pressing need for more data, and the space of possible new data is so vast that data-gathering needs to
 178 be targeted (e.g. with respect to promising candidates in protein design). Third, experimental datasets
 179 are typically not curated to the same extent as those often used in foundational machine-learning
 180 research (Wu et al, 2016; Johnston et al, 2024; Bryant et al, 2021; Notin et al, 2023; Pokusaeva et al,
 181 2019). Fourth, labels are typically acquired in parallel; labelling proteins in batches of 96 is common,
 182 for example (Johnston et al, 2024; Pokusaeva et al, 2019; Yang et al, 2025).

183 We identify six existing datasets that we believe are particularly promising as a basis for constructing
 184 our new active-learning problems: AAV2 (Bryant et al, 2021), GB1 (Wu et al, 2016), GRB2 (Faure
 185 et al, 2024), His3 (Pokusaeva et al, 2019), mKate2 (Poelwijk et al, 2019), and TrpB (Johnston et al,
 186 2024). Each dataset is named after a reference protein and contains measurements of the effect of
 187 mutating the reference protein, where the measurements correspond to the abundance—or, in the case
 188 of mKate2, the fluorescence intensity—of the protein variant after it is synthesised and subjected to a
 189 particular set of conditions. The datasets vary with respect to how the protein variants were selected:
 190 two datasets, TrpB and GB1, near-exhaustively enumerate m -amino-acid mutations for $m \leq 4$; the
 191 others cover greater degrees of mutation but are not close to being exhaustive.

192 5 ACTIVE LEARNING ON PROTEIN SEQUENCES

195 We now introduce Active Learning on Protein Sequences (ALPS), a set of new problems designed to
 196 help address the shortfalls identified in Section 3, building on the datasets discussed in Section 4.

197 5.1 THE ALPS PROBLEMS

199 **Uncurated data** Our discussion in Section 3 stressed that the use of curated datasets can undermine
 200 evaluations by reducing the sensitivity of predictive performance to how data is acquired. We therefore
 201 start by designing five core problems, ALPS-Core-[AAV2, GB1, GRB2, mKate2, TrpB], in which we
 202 do as little as possible to constrain the data that can be acquired and simply aim to learn effective
 203 predictions for the whole dataset by setting $\mathcal{X}_{\text{pool}} = \mathcal{X}_{\text{test}}$. In real-world terms this translates to a
 204 scenario where we want to learn about the whole space of experimentally testable proteins and we can
 205 acquire a label for any protein in that space. As many common active-learning methods are designed
 206 for classification instead of regression, we binarise the labels using a wild-type protein’s label as
 207 a threshold. These core problems are already a significant departure from the curated setups often
 208 used in existing active-learning evaluations: curation of the source data is minimal; two problems,
 209 ALPS-Core-GB1 and ALPS-Core-TrpB, near-exhaustively covering a region of input space.

210 Next we extend from these core problems to test the ability of active-learning methods to deal with
 211 skewed label distributions, which can be a practical challenge when working with uncurated data. We
 212 do this using ALPS-Unbalanced-TrpB-[2, 5, 12, 17, 23], five variants of ALPS-Core-TrpB with
 213 different degrees of class imbalance (ratio of class 0 to class 1) induced by varying the threshold used
 214 for binarising the labels. The different thresholds give rise to different decision boundaries.

216 **Task adaptation** In Section 3 we argued for the importance of testing active-learning methods’ ability to target a particular task when acquiring data. To this end, we introduce ALPS-Redundant-His3, 217 which poses a scenario where the unlabelled pool contains a large number of redundant inputs that do 218 not relate to the task of interest and cannot be labelled as class 0 or 1. More specifically we construct 219 $\mathcal{X}_{\text{pool}}$ to contain inputs from classes 0 and 1 as well as inputs that belong to neither, while $\mathcal{X}_{\text{test}}$ has 220 classes 0 and 1. If a redundant input is selected during acquisition, it is assigned to a third “neither” 221 class; at test time the model only sees inputs from classes 0 and 1. Success on this problem requires 222 identifying inputs that directly relate to the task of interest, namely classifying classes 0 and 1. 223

224 On top of this we design three more problems, ALPS-Restricted-[GB1, GRB2, TrpB], that test an 225 active-learning method’s ability to gather data to aid predictions on inputs that we cannot acquire 226 labels for, perhaps due to restrictions on what experiments can be run. Here $\mathcal{X}_{\text{pool}}$ contains only the 227 inputs within m mutations of the reference, while $\mathcal{X}_{\text{test}}$ contains only inputs with $m + 1$ mutations. 228

229 5.2 CODEBASE

230 We provide an open codebase implementing ALPS at anonymous.4open.science/r/alps-95A3. 231 This codebase is rich with features that allow a wide range of experimentation with little effort. In 232 particular, choices such as the type of embedding, acquisition strategy, and prediction head are all 233 designed to be modular to allow easy isolated testing of different methodological components. 234

235 **Embeddings** A key best practice in active learning is to capitalise on unlabelled data by using 236 semi-supervised models, with a simple and generally applicable approach being to combine a fixed, 237 unsupervised-pretrained encoder with a trainable, supervised prediction head (Bickford Smith et al, 238 2024). To support this we provide code for computing protein embeddings using 22 different 239 pretrained encoders: 14 from the ESM family (Rives et al, 2021) and 8 from the ProtTrans family 240 (Elnaggar et al, 2022). We additionally provide precomputed embeddings produced using the most 241 advanced of these encoders, ESM3 (Hayes et al, 2025), for all of the ALPS problems. Notably 242 the outputs of these encoders live in continuous spaces, which means we can use general-purpose 243 prediction heads rather than models specialised to protein-property prediction. 244

245 **Prediction heads** We provide code for a range of models (and corresponding learning algorithms): 246 linear models; random forests; deterministic neural networks (with regularised maximum-likelihood 247 training); Bayesian neural networks (with Laplace approximation, mean-field variational inference 248 and Monte Carlo dropout); and Gaussian-process models (with variational inference). 249

250 **Acquisition methods** We implement 12 data-acquisition methods in the ALPS codebase. Six 251 use various measures of model uncertainty as a basis for acquisition: two fall within a Bayesian 252 formulation (Rainforth et al, 2024), namely EPIG (Bickford Smith et al, 2023; 2024) and BALD 253 (Houlsby et al, 2011), and the four others are predictive entropy (Settles & Craven, 2008), predictive 254 margin (Scheffer et al, 2001), variation ratio (Gal, 2016) and mean standard deviation (Kendall et al, 255 2015). Four methods are based on notions of input- or feature-space coverage—greedy k centres 256 (Sener & Savarese, 2018), k means (Pourahmadi et al, 2021), ProbCover (Yehuda et al, 2022) and 257 TypiClust (Hacohen et al, 2022)—as well as BADGE (Ash et al, 2020) and BAIT (Ash et al, 2021). 258 All uncertainty-based acquisition functions can be used for batch acquisition using the stochastic 259 approach introduced by Kirsch et al (2023): the acquisition function is used to compute a distribution 260 over batches of pool indices, then acquisition simply involves sampling from that distribution. 261

262 6 EXPERIMENTS

263 We now investigate how some popular active-learning methods deal with the ALPS problems. Given 264 the vast array of possible setups that could be tested, this investigation is inevitably not exhaustive; its 265 purpose is simply to demonstrate some of the insights that ALPS enables. 266

267 6.1 SETUP

268 **Model** We primarily use an ESM3 encoder combined with a random-forest prediction head— 269 random forests have supported effective data acquisition in past work (Bickford Smith et al, 2023; 2024; Kirsch, 2023; Kossen et al, 2021)—but also report some results with simpler biophysical 270 (Georgiev, 2009) and onehot encoders, as well as linear and neural-network prediction heads. 271

Encoder	Pred. head	Acq. method	NLL (250-500)	NLL (500-1000)	NLL (1000-2000)	Acc. (250-500)	Acc. (500-1000)	Acc. (1000-2000)
ESM3	Linear model	Entropy	0.067	0.065	<u>0.056</u>	0.984	<u>0.987</u>	<u>0.991</u>
		Random	0.077	<u>0.069</u>	<u>0.060</u>	0.976	<u>0.977</u>	<u>0.979</u>
		TypiClust	0.076	<u>0.067</u>	<u>0.061</u>	0.976	<u>0.977</u>	<u>0.978</u>
	Neural network	BALD	0.103	0.084	<u>0.060</u>	0.980	0.987	<u>0.991</u>
		EPIG	0.104	<u>0.086</u>	<u>0.052</u>	<u>0.983</u>	0.987	0.992
		Random	0.123	0.108	<u>0.089</u>	0.974	0.976	0.978
		TypiClust	0.132	0.109	<u>0.089</u>	0.970	0.971	0.976
	Random forest	BALD	0.309	0.320	<u>0.324</u>	0.981	0.984	0.987
		EPIG	0.104	0.111	<u>0.114</u>	0.980	0.982	0.985
		Random	0.125	0.117	<u>0.110</u>	0.976	0.976	0.977
		TypiClust	0.119	0.105	<u>0.096</u>	0.976	0.977	0.977
Georgiev	Linear model	Entropy	0.143	0.127	<u>0.105</u>	0.981	0.982	0.983
		Random	0.106	0.096	<u>0.079</u>	0.974	0.974	0.976
		TypiClust	0.114	0.113	<u>0.105</u>	0.975	0.974	0.974
	Neural network	BALD	<u>0.118</u>	<u>0.075</u>	<u>0.054</u>	<u>0.981</u>	0.986	<u>0.991</u>
		EPIG	<u>0.135</u>	<u>0.124</u>	<u>0.076</u>	0.982	0.986	0.990
		TypiClust	0.121	0.108	<u>0.098</u>	0.972	0.975	0.975
	Random forest	BALD	0.157	0.159	<u>0.153</u>	0.981	0.985	0.989
		EPIG	0.100	0.093	<u>0.085</u>	0.981	0.985	0.989
		Random	0.132	0.108	<u>0.082</u>	0.976	0.976	0.977
		TypiClust	0.183	0.151	<u>0.114</u>	0.976	0.976	0.977
Onehot	Linear model	Entropy	0.152	0.129	<u>0.107</u>	0.980	0.981	0.981
		Random	0.106	0.096	<u>0.079</u>	0.974	0.974	0.976
		TypiClust	0.103	0.093	<u>0.073</u>	0.973	0.973	0.976
	Neural network	BALD	<u>0.100</u>	<u>0.073</u>	0.041	<u>0.982</u>	<u>0.987</u>	<u>0.991</u>
		EPIG	<u>0.129</u>	<u>0.108</u>	<u>0.065</u>	<u>0.982</u>	<u>0.985</u>	<u>0.990</u>
		TypiClust	0.134	0.113	<u>0.084</u>	0.975	0.976	0.978
	Random forest	BALD	0.162	0.153	<u>0.139</u>	0.980	0.984	0.990
		EPIG	0.101	0.090	<u>0.079</u>	0.977	0.981	0.987
		Random	0.207	0.211	<u>0.142</u>	0.976	0.976	0.976
		TypiClust	0.208	0.210	<u>0.138</u>	0.976	0.976	0.976

Table 1 Our experiments focus on a particular model (ESM3 encoder with random-forest prediction head) and information-theoretic data acquisition (BALD and EPIG), but we report extra results here and elsewhere in Section 6 for additional context. Here we show test metrics for ALPS–Core–GB1 averaged over acquisition steps, across 250–2000 labels in three step ranges. Bold indicates best performance for a particular step range, underlined are not statistically significant compared to the best (by one-sided Welch’s t-test).

Data acquisition We focus our investigations on information-theoretic approaches to data acquisition, namely BALD (Houlsby et al, 2011) and EPIG (Bickford Smith et al, 2023), given their principled foundation and their success in recent work (Bickford Smith et al, 2023; 2024; Hübotter et al, 2024; 2025; Melo et al, 2024; Osband et al, 2023), but also because we believe they highlight a number of interesting behaviours. To provide additional context to our results, we also include TypiClust (Hacohen et al, 2022), a coverage-based method, along with uniform-random acquisition.

Test metrics We measure performance using classification accuracy (higher is better) and expected negative log likelihood (NLL; lower is better) on labelled test sets. These metrics correspond to estimators of frequentist risk (Section 2) under different losses: one minus accuracy corresponds to a zero-one loss on point predictions; NLL corresponds to a log loss on probabilistic predictions.

Active-learning loop We initialise the training dataset by uniform-randomly sampling two examples from each class, then we run the loop described in Section 2 until the training-label budget is used up. We run this whole process with each acquisition method at least five times with different random seeds. We report test metrics (mean \pm standard error) as a function of the size of the training dataset.

6.2 UNCURATED DATA HELPS STRESS-TEST DATA ACQUISITION

We start by focusing on the ALPS–Core problems, in which we want to learn about the whole space of experimentally testable proteins and we can acquire a label for any protein in that space. While these represent uncurated datasets, they still arguably represent less challenging problems than some of those we consider later, as we do not need the active learning scheme to perform task adaptation, with the pool already representing the target distribution for our evaluations.

Our results show BALD and EPIG notably differing across all five problems (Figure 2). Unlike in past work (Bickford Smith et al, 2023; 2024), here we see BALD often outperforming EPIG in terms of accuracy. Interestingly, though, this does not translate into lower NLL, where BALD performs poorly and far worse than random. This likely represents a calibration issue: given the high accuracies often achieved, it seems likely that BALD is often overconfident in some of its incorrect predictions. The benefits of EPIG compared to random are also diminished when considering NLL instead of accuracy, but not to the same catastrophic degree as BALD. The root cause of these calibration issues is not immediately clear, but provides an interesting avenue for future investigation. One hypothesis is that

Figure 2 Across the five ALPS-Core problems, the performance of information-theoretic data acquisition differs substantially depending on the quantity being targeted. BALD, which targets information in the parameters of the model being trained, consistently performs well in terms of classification accuracy but poorly as measured by negative log likelihood (NLL). EPIG, which focuses on the model’s predictions, does not achieve such high accuracy in most cases but is stronger in terms of NLL, although not always better than random acquisition.

it could be connected to the statistical bias that active learning introduces (Farquhar et al, 2021), with the class ratio of actively acquired datapoints unlikely to match the original dataset.

A broader point is that success under one test metric need not translate to success under another: here we see NLL would never lead us to favour BALD but accuracy would in most cases. This highlights the need for care in choosing test metrics: neither accuracy nor NLL is “true” in an absolute sense; they simply correspond to different underlying loss functions (Section 6.1).

6.3 SENSITIVITY TO CLASS IMBALANCE VARIES BETWEEN ACQUISITION METHODS

Figure 3 The ALPS-Unbalanced problems demonstrate the effect of class imbalance on the performance of BALD and EPIG acquisition. BALD performs worse than random in many cases, while EPIG fails in one case.

Next we turn to the ALPS-Unbalanced problems. Figure 3 shows the differences in performance of EPIG and BALD relative to random as a function of the degree of class imbalance (ratio of class 0 to class 1). While there is not much of a clear trend in behaviour in terms of accuracy, we see a significant drop off in BALD’s NLL performance for large imbalance ratios, whereas EPIG tends to outperform random at large levels of imbalance. As in Section 6.2, this thus highlights potential failure cases that have been underrepresented in previous active learning evaluations.

6.4 ACCOUNTING FOR THE TASK OF INTEREST IS KEY FOR HANDLING REDUNDANT INPUTS

Our next focus is the ALPS-Redundant-His3 problem, in which the unlabelled pool contains a large number of redundant inputs that do not relate to the task of interest. The relative performance of EPIG on this problem shows the value of an acquisition method that explicitly accounts for the predictive task that we want to apply our model to (Figure 4). Even after acquiring 2,000 labels, BALD and random acquisition, which do not use any notion of the input distribution we wish to make predictions for, fail to reach the level of predictive performance that EPIG achieves after acquiring a handful of labels. This example thus highlights the need for active learning, and careful selection of acquisition strategies, in cases where significant task adaptation is required.

Figure 4 The ALPS-Redundant-His3 problem demonstrates the need for data acquisition to be targeted towards the task that we care about. EPIG acquisition, which is targeted in this way, enables fast convergence to strong performance that BALD and random acquisition cannot match even after many label acquisitions.

Figure 5 EPIG can successfully gather data relevant for predictions on inputs that cannot be labelled (ALPS-Restricted-GRB2), but it can also fail (ALPS-Restricted-GB1 and ALPS-Restricted-TrpB), underperforming random acquisition. Meanwhile BALD, lacking a notion of target inputs, tends to fail.

410 6.5 RESTRICTED ACQUISITION POSES A PARTICULARLY DIFFICULT CHALLENGE

411 Now we explore the particularly challenging ALPS-**Restricted** problems, which test the ability of
 412 active-learning methods to gather data to support predictions on inputs for which we cannot acquire
 413 labels directly due to limitations in the available labelling mechanism (e.g. some proteins might not
 414 be synthesisable within a given lab). **Figure 5** again shows catastrophic failures for BALD in terms of
 415 NLL on all problems, with it now also failing to outperform random in terms of accuracy on two of
 416 the three problems as well. Results for EPIG appear to be quite mixed, beating random in terms of
 417 accuracy on two problems, but only in one case for NLL. It also shows an interesting behaviour in
 418 NLL where the initial performance appears strong in all cases, but then later degrades in two of them,
 419 with the NLL actually rising with increasing numbers of labels, albeit not to the extent seen by BALD.
 420 This poor performance of EPIG is perhaps surprising—as EPIG is in theory set up to accommodate
 421 these kind of transductive problems—and provides another interesting avenue for investigation.

423 6.6 STOCHASTIC BATCH ACQUISITION HAS MIXED EFFECTS ON PREDICTIVE PERFORMANCE

424 Next we investigate the effect of switching from acquiring one label at a time to acquiring batches
 425 of labels. For this we return to ALPS-Core-GB1 and ALPS-Core-TrpB, and consider batch sizes of
 426 16, 50 and 100. Batch acquisition is often dictated by the labelling mechanism at hand and can pose
 427 methodological challenges (Kirsch et al, 2019), but the results in **Figure 6** also show it can sometimes
 428 have a protective effect against deficiencies in the acquisition function we use. In **Figure 2** we saw that
 429 BALD underperformed random acquisition in terms of NLL, and here we see that its shortfall reduces
 430 at increasing batch sizes. This can be understood as a consequence of the stochastic-acquisition

Figure 6 Acquiring data in bigger batches leads to worse accuracy for both BALD and EPIG, but also leads to better NLL for BALD, suggesting improved calibration of the model’s predictive confidence.

scheme used (Kirsch et al, 2023): as the batch size increases, we get closer to acquiring uniformly at random, which performs better than BALD-based single-label acquisition in these problems. Notably this behaviour can also have an adverse effect on performance in cases where the acquisition function is providing a good signal of data utility; the EPIG results in Figure 6 provide some evidence for this.

6.7 THE EFFECTIVENESS OF ACTIVE LEARNING DEPENDS ON THE MODEL BEING TRAINED

Figure 7 The performance of an acquisition function (here we divide the test metric by the value achieved by random acquisition) can vary significantly between model configurations.

Finally we shift our focus to the configuration of the model being trained through active learning. So far we have used a combination of an ESM3 deep encoder and a random forest prediction head. Recent work suggests that this should be a good default configuration (Bickford Smith et al, 2024), but also that models based on simpler biophysical (Georgiev, 2009) and onehot encoders can perform competitively (Yang et al, 2025). We therefore return to ALPS-Core-GB1 to investigate these alternative encoders, and also consider using a logistic-regression model instead of a random forest for the prediction head (this linear model is not stochastic and cannot be used with BALD and EPIG, so we use predictive entropy for that model instead). We find that a given acquisition function can perform well for one model and poorly for another (Figure 7). This underlines the need for evaluations to be conducted with the models that would be used in practical applications: we cannot assume results for one model class will transfer to another.

7 CONCLUSION

We have argued that deficiencies in existing active-learning evaluations, particularly the use of curated datasets as a starting point, can lead to a misrepresentation of methods’ performance. To help address this, we have introduced ALPS, a set of new active-learning problems based on protein-property prediction and designed to pose challenges we believe are important for real-world deployment of active learning yet underrepresented in previous benchmarking. Our evaluations of some popular active-learning methods on ALPS have already raised a number of interesting new potential issues that future work might look to address, such as miscalibration of predictive uncertainty, sensitivity to class imbalance and unreliable scaling with increasing acquisition batch size. We hope that ALPS will not only provide a useful new testbed for active-learning researchers, but also inspire both more careful consideration of real-world issues around how methods are evaluated—and provide a stepping stone towards greater uptake of active learning in biochemistry.

486 REFERENCES
487

488 Abramson, Adler, Dunger, Evans, Green, Pritzel, Ronneberger, Willmore, Ballard, Bambrick, et al
489 (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. *Nature*.
490

491 Aggarwal, Popescu, & Hudelot (2020). Active learning for imbalanced datasets. *Proceedings of the*
492 *IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*.
493

494 Aitchison (2021). A statistical theory of cold posteriors in deep neural networks. *International*
495 *Conference on Learning Representations*.
496

497 AlQuraishi (2019). AlphaFold at CASP13. *Bioinformatics*.
498

499 Ardila, Branson, Davis, Kohler, Meyer, Henretty, Morais, Saunders, Tyers, & Weber (2020). Common
500 Voice: a massively-multilingual speech corpus. *Language Resources and Evaluation Conference*.
501

502 Ash, Goel, Krishnamurthy, & Kakade (2021). Gone fishing: neural active learning with Fisher
503 embeddings. *Conference on Neural Information Processing Systems*.
504

505 Ash, Zhang, Krishnamurthy, Langford, & Agarwal (2020). Deep batch active learning by diverse,
506 uncertain gradient lower bounds. *International Conference on Learning Representations*.
507

508 Atlas, Cohn, & Ladner (1989). Training connectionist networks with queries and selective sampling.
509 *Conference on Neural Information Processing Systems*.
510

511 Bahri, Jiang, Schuster, & Rostamizadeh (2022). Is margin all you need? an extensive empirical study
512 of active learning on tabular data. *arXiv preprint arXiv:2210.03822*.
513

514 Baumann, Klasson, Li, Solin, & Trapp (2024). Probabilistic active few-shot learning in vision-
515 language models. *Workshop on “Responsibly Building the Next Generation of Multimodal Founda-*
516 *tional Models”, Conference on Neural Information Processing Systems*.
517

518 Beck, Sivasubramanian, Dani, Ramakrishnan, & Iyer (2021). Effective evaluation of deep active
519 learning on image classification tasks. *arXiv*.
520

521 Bengar, van de Weijer, Twardowski, & Raducanu (2021). Reducing label effort: self-supervised
522 meets active learning. *Workshop on “Interactive Labeling and Data Augmentation for Vision”*,
523 *International Conference on Computer Vision*.
524

525 Berger (1985). *Statistical Decision Theory and Bayesian Analysis*. Springer.
526

527 Bickford Smith, Foster, & Rainforth (2024). Making better use of unlabelled data in Bayesian active
528 learning. *International Conference on Artificial Intelligence and Statistics*.
529

530 Bickford Smith, Kirsch, Farquhar, Gal, Foster, & Rainforth (2023). Prediction-oriented Bayesian
531 active learning. *International Conference on Artificial Intelligence and Statistics*.
532

533 Bryant, Bashir, Sinai, Jain, Ogden, Riley, Church, Colwell, & Kelsic (2021). Deep diversification of
534 an AAV capsid protein by machine learning. *Nature Biotechnology*.
535

536 Chan, Li, & Oymak (2021). On the marginal benefit of active learning: does self-supervision eat its
537 cake? *International Conference on Acoustics, Speech and Signal Processing*.
538

539 Chevalier, Silva, Rocklin, Hicks, Vergara, Murapa, Bernard, Zhang, Lam, Yao, Bahl, Miyashita,
540 Goreshnik, Fuller, Koday, Jenkins, Colvin, Carter, Bohn, Bryan, Fernández-Velasco, Stewart,
541 Dong, Huang, Jin, Wilson, Fuller, & Baker (2017). Massively parallel de novo protein design for
542 targeted therapeutics. *Nature*.
543

544 Citovsky, DeSalvo, Gentile, Karydas, Rajagopalan, Rostamizadeh, & Kumar (2021). Batch active
545 learning at scale. *Advances in Neural Information Processing Systems*.
546

547 Dallago, Mou, Johnston, Wittmann, Bhattacharya, Goldman, Madani, & Yang (2021). FLIP: bench-
548 mark tasks in fitness landscape inference for proteins. *Conference on Neural Information Process-*
549 *ing Systems*.
550

540 Dua & Graff (2017). UCI Machine Learning Repository. archive.ics.uci.edu/ml.
 541

542 Ein-Dor, Halfon, Gera, Shnarch, Dankin, Choshen, Danilevsky, Aharonov, Katz, & Slonim (2020).
 543 Active learning for BERT: an empirical study. *Conference on Empirical Methods in Natural
 544 Language Processing*.

545 Elnaggar, Heinzinger, Dallago, Rihawi, Wang, Jones, Gibbs, Feher, Angerer, Steinegger, Bhowmik,
 546 & Rost (2022). ProtTrans: toward understanding the language of life through self-supervised
 547 learning. *Transactions on Pattern Analysis and Machine Intelligence*.

548 Evans, O'Neill, Pritzel, Antropova, Senior, Green, Žídek, Bates, Blackwell, Yim, et al (2021). Protein
 549 complex prediction with alphafold-multimer. *biorxiv*.

550 Farquhar, Gal, & Rainforth (2021). On statistical bias in active learning: how and when to fix it.
 551 *International Conference on Learning Representations*.

552 Faure, Domingo, Schmiedel, Hidalgo-Carcedo, Diss, & Lehner (2022). Mapping the energetic and
 553 allosteric landscapes of protein binding domains. *Nature*.

554 Faure & Lehner (2024). MoCHI: neural networks to fit interpretable models and quantify energies,
 555 energetic couplings, epistasis, and allostery from deep mutational scanning data. *Genome Biology*.

556 Faure, Martí-Aranda, Hidalgo-Carcedo, Beltran, Schmiedel, & Lehner (2024). The genetic architec-
 557 ture of protein stability. *Nature*.

558 Fowler & Fields (2014). Deep mutational scanning: a new style of protein science. *Nature Methods*.

559 Frazer, Notin, Dias, Gomez, Min, Brock, Gal, & Marks (2021). Disease variant prediction with deep
 560 generative models of evolutionary data. *Nature*.

561 Gal (2016). *Uncertainty in deep learning*. PhD thesis, University of Cambridge.

562 Gal & Ghahramani (2016). Dropout as a Bayesian approximation: representing model uncertainty in
 563 deep learning. *International Conference on Machine Learning*.

564 Gao, Zhang, Yu, Arik, Davis, & Pfister (2020). Consistency-based semi-supervised active learning:
 565 towards minimizing labeling cost. *European Conference on Computer Vision*.

566 Georgiev (2009). Interpretable numerical descriptors of amino acid space. *Journal of Computational
 567 Biology*.

568 Gorantla, Kubincová, Suutari, Cossins, & Mey (2024). Benchmarking active learning protocols for
 569 ligand-binding affinity prediction. *Journal of Chemical Information and Modeling*.

570 Gruver, Stanton, Frey, Rudner, Hotzel, Lafrance-Vanasse, Rajpal, Cho, & Wilson (2023). Protein
 571 design with guided discrete diffusion. *Advances in Neural Information Processing Systems*.

572 Gupte, Aklilu, Nirschl, & Yeung-Levy (2024). Revisiting active learning in the era of vision
 573 foundation models. *arXiv preprint arXiv:2401.14555*.

574 Hacohen, Dekel, & Weinshall (2022). Active learning on a budget: opposite strategies suit high and
 575 low budgets. *International Conference on Machine Learning*.

576 Hayes, Rao, Akin, Sofroniew, Oktay, Lin, Verkuil, Tran, Deaton, Wiggert, Badkundri, Shafkat, Gong,
 577 Derry, Molina, Thomas, Khan, Mishra, Kim, Bartie, Nemeth, Hsu, Sercu, Candido, & Rives (2025).
 578 Simulating 500 million years of evolution with a language model. *Science*.

579 Houlsby, Huszár, Ghahramani, & Lengyel (2011). Bayesian active learning for classification and
 580 preference learning. *arXiv*.

581 Hu, Guo, Cordy, Xie, Ma, Papadakis, & Traon, L. (2021). Towards exploring the limitations of active
 582 learning: An empirical study. In *IEEE/ACM International Conference on Automated Software
 583 Engineering (ASE)*.

584

594 Hübotter, Bongni, Hakimi, & Krause (2025). Efficiently learning at test-time: active fine-tuning of
 595 LLMs. *International Conference on Learning Representations*.

596

597 Hübotter, Sukhija, Treven, As, & Krause (2024). Transductive active learning: theory and applications.
 598 *Conference on Neural Information Processing Systems*.

599 Huseljic, Herde, Nagel, Rauch, Strimaitis, & Sick (2024). The interplay of uncertainty modeling
 600 and deep active learning: An empirical analysis in image classification. *Transactions on Machine
 601 Learning Research*.

602

603 Ji, Kaestner, Wirth, & Wressnegger (2023). Randomness is the root of all evil: more reliable
 604 evaluation of deep active learning. *Winter Conference on Applications of Computer Vision*.

605 Johnston, Almhjell, Watkins-Dulaney, Liu, Porter, Yang, & Arnold (2024). A combinatorially
 606 complete epistatic fitness landscape in an enzyme active site. *Proceedings of the National Academy
 607 of Sciences*.

608

609 Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Žídek, Potapenko,
 610 et al (2021). Highly accurate protein structure prediction with alphafold. *Nature*.

611 Kendall, Badrinarayanan, & Cipolla (2015). Bayesian SegNet: model uncertainty in deep convolutional
 612 encoder-decoder architectures for scene understanding. *arXiv*.

613

614 Khan, Cowen-Rivers, Grosnit, Deik, Robert, Greiff, Smorodina, Rawat, Akbar, Dreczkowski, et al
 615 (2023). Toward real-world automated antibody design with combinatorial bayesian optimization.
 616 *Cell Reports Methods*.

617

618 Kim, Park, Kim, & Chun (2021). Task-aware variational adversarial active learning. *Conference on
 Computer Vision and Pattern Recognition*.

619

620 Kinney & McCandlish (2019). Massively parallel assays and quantitative sequence-function relation-
 621 ships. *Annual Review of Genomics and Human Genetics*.

622

623 Kirsch (2023). Black-box batch active learning for regression. *Transactions on Machine Learning
 Research*.

624

625 Kirsch, Farquhar, Atighehchian, Jesson, Branchaud-Charron, & Gal (2023). Stochastic batch
 626 acquisition: a simple baseline for deep active learning. *Transactions on Machine Learning
 Research*.

627

628 Kirsch, van Amersfoort, & Gal (2019). BatchBALD: efficient and diverse batch acquisition for deep
 629 Bayesian active learning. *Conference on Neural Information Processing Systems*.

630

631 Kossen, Farquhar, Gal, & Rainforth (2021). Active testing: sample-efficient model evaluation.
 632 *International Conference on Machine Learning*.

633

634 Krishnan, Ahuja, Sinha, Subedar, Tickoo, & Iyer (2021a). Robust contrastive active learning with
 635 feature-guided query strategies. *arXiv*.

636

637 Krishnan, Sinha, Ahuja, Subedar, Tickoo, & Iyer (2021b). Mitigating sampling bias and improving
 638 robustness in active learning. *arXiv preprint arXiv:2109.06321*.

639

640 Krizhevsky (2009). Learning multiple layers of features from tiny images. Master's thesis, University
 641 of Toronto.

642

643 Kryshtafovych, Schwede, Topf, Fidelis, & Moult (2019). Critical assessment of methods of protein
 644 structure prediction (CASP)—round XIII. *Proteins: Structure, Function, and Bioinformatics*.

645

646 Kucera, Oliver, Chen, & Borgwardt (2024). ProteinShake: building datasets and benchmarks for
 647 deep learning on protein structures. *Conference on Neural Information Processing Systems*.

648

649 Lesk (2019). *Introduction to Bioinformatics*. Oxford University Press.

650

651 Lewis & Gale (1994). A sequential algorithm for training text classifiers. *ACM-SIGIR Conference on
 652 Research and Development in Information Retrieval*.

648 Li, Chen, Liu, He, & Xu (2022). An empirical study on the efficacy of deep active learning for image
 649 classification. *arXiv preprint arXiv:2212.03088*.

650

651 Lin, Akin, Rao, Hie, Zhu, Lu, Smetanin, Verkuil, Kabeli, Shmueli, dos Santos Costa, Fazel-Zarandi,
 652 Sercu, Candido, & Rives (2023). Evolutionary-scale prediction of atomic-level protein structure
 653 with a language model. *Science*.

654 Lüth, Bungert, Klein, & Jaeger (2023). Navigating the pitfalls of active learning evaluation: a
 655 systematic framework for meaningful performance assessment. *Conference on Neural Information
 656 Processing Systems*.

657

658 MacKay (1992). Information-based objective functions for active data selection. *Neural Computation*.

659

660 Maekawa, Zhang, Kim, Rahman, & Hruschka (2022). Low-resource interactive active labeling for
 661 fine-tuning language models. *Conference on Empirical Methods in Natural Language Processing*.

662

663 Mahajan, Girshick, Ramanathan, He, Paluri, Li, Bharambe, & van der Maaten (2018). Exploring the
 664 limits of weakly supervised pretraining. *European Conference on Computer Vision*.

665

666 Margatina, Barrault, & Aletras (2022). On the importance of effectively adapting pretrained language
 667 models for active learning. *Annual Meeting of the Association for Computational Linguistics*.

668

669 Mehta, Paria, Schneider, Ermon, & Neiswanger (2022). An experimental design perspective on
 670 model-based reinforcement learning. *International Conference on Learning Representations*.

671

672 Meier, Rao, Verkuil, Liu, Sercu, & Rives (2021). Language models enable zero-shot prediction of the
 673 effects of mutations on protein function. *Conference on Neural Information Processing Systems*.

674

675 Melo, Tigas, Abate, & Gal (2024). Deep Bayesian active learning for preference modeling in large
 676 language models. *Conference on Neural Information Processing Systems*.

677

678 Mindermann, Brauner, Razzak, Sharma, Kirsch, Xu, Höltgen, Gomez, Morisot, Farquhar, & Gal
 679 (2022). Prioritized training on points that are learnable, worth learning, and not yet learnt.
International Conference on Machine Learning.

680

681 Mittal, Niemeijer, Schäfer, & Brox (2023). Best practices in active learning for semantic segmentation.
arXiv.

682

683 Mittal, Tatarchenko, Çiçek, & Brox (2019). Parting with illusions about deep active learning. *arXiv*.

684

685 Munjal, Hayat, Hayat, Sourati, & Khan (2022). Towards robust and reproducible active learning
 686 using neural networks. *Conference on Computer Vision and Pattern Recognition*.

687

688 Ning, Zhao, Li, & Huang (2022). Active learning for open-set annotation. In *Proceedings of the
 689 IEEE/CVF Conference on Computer Vision and Pattern Recognition*.

690

691 Notin, Kollasch, Ritter, van Niekerk, Paul, Spinner, Rollins, Shaw, Orenbuch, Weitzman, Frazer,
 692 Dias, Franceschi, Gal, & Marks (2023). ProteinGym: large-scale benchmarks for protein design
 693 and fitness prediction. *Conference on Neural Information Processing Systems*.

694

695 Notin, Rollins, Gal, Sander, & Marks (2024). Machine learning for functional protein design. *Nature
 696 Biotechnology*.

697

698 Olson, Wu, & Sun (2014). A comprehensive biophysical description of pairwise epistasis throughout
 699 an entire protein domain. *Current Biology*.

700

701 Osband, Asghari, Van Roy, McAleese, Aslanides, & Irving (2023). Fine-tuning language models via
 702 epistemic neural networks. *International Conference on Machine Learning*.

703

704 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf,
 705 Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, & Chintala (2019). PyTorch:
 706 an imperative style, high-performance deep learning library. *Conference on Neural Information
 707 Processing Systems*.

702 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg,
 703 Vanderplas, Passos, Cournapeau, Brucher, Perrot, & Duchesnay (2011). Scikit-learn: Machine
 704 learning in Python. *Journal of Machine Learning Research*.

705 Poelwijk, Socolich, & Ranganathan (2019). Learning the pattern of epistasis linking genotype and
 706 phenotype in a protein. *Nature Communications*.

708 Pokusaeva, Usmanova, Putintseva, Espinar, Sarkisyan, Mishin, Bogatyreva, Ivankov, Akopyan,
 709 Avvakumov, Povolotskaya, Filion, Carey, & Kondrashov (2019). An experimental assay of the
 710 interactions of amino acids from orthologous sequences shaping a complex fitness landscape. *PLoS
 711 Genetics*.

712 Pourahmadi, Nooralinejad, & Pirsavash (2021). A simple baseline for low-budget active learning.
 713 *arXiv*.

714 Raffel, Shazeer, Roberts, Lee, Narang, Matena, Zhou, Li, & Liu (2020). Exploring the limits of
 715 transfer learning with a unified text-to-text transformer. *Journal of Machine Learning Research*.

717 Rainforth, Foster, Ivanova, & Bickford Smith (2024). Modern Bayesian experimental design.
 718 *Statistical Science*.

720 Rao, Bhattacharya, Thomas, Duan, Chen, Canny, Abbeel, & Song (2019). Evaluating protein transfer
 721 learning with TAPE. *Conference on Neural Information Processing Systems*.

722 Rauch, Aßenmacher, Huseljic, Wirth, Bischl, & Sick (2023). Activeglae: A benchmark for deep active
 723 learning with transformers. *Joint European Conference on Machine Learning and Knowledge
 724 Discovery in Databases*.

725 Riesselman, Ingraham, & Marks (2018). Deep generative models of genetic variation capture the
 726 effects of mutations. *Nature Methods*.

728 Rives, Meier, Sercu, Goyal, Lin, Liu, Guo, Ott, Zitnick, Ma, & Fergus (2021). Biological structure and
 729 function emerge from scaling unsupervised learning to 250 million protein sequences. *Proceedings
 730 of the National Academy of Sciences*.

731 Romero, Krause, & Arnold (2013). Navigating the protein fitness landscape with Gaussian processes.
 732 *Proceedings of the National Academy of Sciences*.

734 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, & Fei-Fei
 735 (2014). ImageNet large scale visual recognition challenge. *International Journal of Computer
 736 Vision*.

737 Scheffer, Decomain, & Wrobel (2001). Active hidden Markov models for information extraction.
 738 *International Symposium on Intelligent Data Analysis*.

740 Sener & Savarese (2018). Active learning for convolutional neural networks: a core-set approach.
 741 *International Conference on Learning Representations*.

742 Seo, Kim, Ahn, & Lee (2022). Active learning on pre-trained language model with task-independent
 743 triplet loss. *AAAI Conference on Artificial Intelligence*.

745 Settles (2012). *Active Learning*. Morgan and Claypool.

746 Settles & Craven (2008). An analysis of active learning strategies for sequence labeling tasks.
 747 *Conference on Empirical Methods in Natural Language Processing*.

749 Siméoni, Budnik, Avrithis, & Gravier (2020). Rethinking deep active learning: using unlabeled data
 750 at model training. *International Conference on Pattern Recognition*.

751 Stanton, Maddox, Gruver, Maffettone, Delaney, Greenside, & Wilson (2022). Accelerating bayesian
 752 optimization for biological sequence design with denoising autoencoders. *International Conference
 753 on Machine Learning*.

755 Tamkin, Nguyen, Deshpande, Mu, & Goodman (2022). Active learning helps pretrained models
 learn the intended task. *Conference on Neural Information Processing Systems*.

756 Tsimpourlas, Petoumenos, Xu, Cummins, Hazelwood, Rajan, & Leather (2022). Benchpress: A deep
 757 active benchmark generator. *Proceedings of the International Conference on Parallel Architectures*
 758 and *Compilation Techniques*.

759 Tsuboyama, Dauparas, Chen, Laine, Behbahani, Weinstein, Mangan, Ovchinnikov, & Rocklin (2023).
 760 Mega-scale experimental analysis of protein folding stability in biology and design. *Nature*.

762 von Neumann & Morgenstern (1947). *Theory of Games and Economic Behavior*. Princeton University
 763 Press.

764 Werner, Burchert, Stubbemann, & Schmidt-Thieme (2024). A cross-domain benchmark for active
 765 learning. *Conference on Neural Information Processing Systems*.

767 Wittmann, Johnston, Almhjell, & Arnold (2022). evSeq: cost-effective amplicon sequencing of every
 768 variant in a protein library. *ACS Synthetic Biology*.

769 Wu, Dai, Olson, Lloyd-Smith, & Sun (2016). Adaptation in protein fitness landscapes is facilitated
 770 by indirect paths. *eLife*.

772 Xu, Zhang, Lu, Zhu, Zhang, Chang, Liu, & Tang (2022). PEER: a comprehensive and multi-task
 773 benchmark for protein sequence understanding. *Conference on Neural Information Processing*
 774 *Systems*.

775 Yang, Lal, Bowden, Astudillo, Hameedi, Kaur, Hill, Yue, & Arnold (2025). Active learning-assisted
 776 directed evolution. *Nature Communications*.

778 Yang, Wu, & Arnold (2018). Machine-learning-guided directed evolution for protein engineering.
 779 *Nature Methods*.

780 Yehuda, Dekel, Hacohen, & Weinshall (2022). Active learning through a covering lens. *Conference*
 781 *on Neural Information Processing Systems*.

783 Yi, Seo, Park, & Choi (2022). PT4AL: Using self-supervised pretext tasks for active learning.
 784 *European Conference on Computer Vision*.

785 Yuan, Lin, & Boyd-Graber (2020). Cold-start active learning through self-supervised language
 786 modeling. *Conference on Empirical Methods in Natural Language Processing*.

788 Zhan, Liu, Li, & Chan (2021). A comparative survey: Benchmarking for pool-based active learning.
 789 In *IJCAI*.

790 Zhan, Wang, Huang, Xiong, Dou, & Chan (2022). A comparative survey of deep active learning.
 791 *arXiv*.

793 Zhang, Chen, Canal, Mußmann, Das, Bhatt, Zhu, Bilmes, Du, Jamieson, & Nowak (2024). Label-
 794 Bench: a comprehensive framework for benchmarking adaptive label-efficient learning. *arXiv*.

795 Zhou, Renduchintala, Li, Wang, Mehdad, & Ghoshal (2021). Towards understanding the behaviors
 796 of optimal deep active learning algorithms. In *International Conference on Artificial Intelligence*
 797 and *Statistics*.

799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 A DATASETS USED IN EXISTING ACTIVE-LEARNING EVALUATIONS
811812 From all papers published at AISTATS, ICML, NeurIPS and UAI in the past 10 years, we selected
813 all papers with the word “active” in the title or abstract, giving an initial list of 441 papers. We then
814 stepped through a shuffled version of this paper list, annotating each paper according to six queries:
815816 Q1. Is the paper on active learning, based on its abstract and keywords?
817 Q2. Is the paper on reinforcement learning, based on its title, abstract and keywords?
818 Q3. What computer-vision datasets, if any, are used in the empirical evaluation?
819 Q4. What natural-language-processing datasets, if any, are used in the empirical evaluation?
820 Q5. What synthetic datasets, if any, are used in the empirical evaluation?
821 Q6. What other datasets, if any, are used in the empirical evaluation?
822823 Our stopping limit was either 200 papers or four hours of annotation time; we hit the latter first,
824 covering 103 papers within the time. We included all papers for which the answer to Q1 was “yes”
825 and the answer to Q2 was “no”.
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **B ADDITIONAL RELATED WORK**
865866 **Active learning evaluations** Active-learning methods are often assessed with established machine-
867 learning datasets that include modifications to their composition to highlight specific methodological
868 contributions, such as adding redundancies or class imbalances, or joining datasets (Bickford Smith
869 et al, 2023; Citovsky et al, 2021; Lüth et al, 2023). Benchmarks developed specifically for assessing
870 active-learning methods or assessing machine-learning models using active learning include Active-
871 GLAE (natural-language tasks for transformers; Rauch et al, 2023), CDALBench (combining
872 text, vision, and tabular data; Werner et al, 2024), computer-vision tasks (Ji et al, 2023), BenchPress
873 (code generation; Tsimpourlas et al, 2022) and Realistic-AL (Lüth et al, 2023). The last of these is
874 arguably the closest to our work: the authors identify five “pitfalls” when applying active learning in
875 the real world and compare their work against a number of existing efforts (Beck et al, 2021; Bengar
876 et al, 2021; Chan et al, 2021; Gao et al, 2020; Kim et al, 2021; Krishnan et al, 2021a; Mittal et al,
877 2019; Munjal et al, 2022; Yi et al, 2022; Zhan et al, 2022). However, whereas Realistic-AL focuses
878 its analysis on large, labelled computer-vision datasets (eg, CIFAR-10 and MIO-TCD)—as do the
879 studies they compare against—our ALPS problems shift the focus to the domain of protein-property
880 prediction. In this focus on a scientific application, our work aligns with that of Gorantla et al (2024),
881 who applied several active-learning methods to binding-affinity-prediction tasks.
882883 **Protein-property prediction** Predicting the structure and the function of a protein from its sequence
884 is an important challenge in biochemistry, and its principled assessment (e.g., CASP; Kryshtafovych
885 et al, 2019) has facilitated significant progress by machine learning in the field (AlQuraishi, 2019;
886 Jumper et al, 2021; Evans et al, 2021; Abramson et al, 2024). Over recent years, benchmarking
887 property prediction has seen many efforts curating publicly available datasets and tasks (Dallago et al,
888 2021; Frazer et al, 2021; Kucera et al, 2024; Notin et al, 2023; Rao et al, 2019; Riesselman et al, 2018;
889 Xu et al, 2022). Notable property-prediction benchmarks include FLIP (Dallago et al, 2021), PEER
890 (Xu et al, 2022), ProteinGym (Notin et al, 2023) and ProteinShake (Kucera et al, 2024). These efforts
891 have generally been tailored to assess (static) machine-learning models’ predictive performance
892 (zero-shot predictions of mutation effects in clinical and deep-mutational-scanning assays). Thus,
893 none of the previous protein-property benchmarks have assessed active-learning methods for their
894 usability or elucidated algorithmic properties and shortfalls. The use of probabilistic models and
895 Bayesian-optimisation algorithms to optimise one or multiple protein properties has been considered
896 in (Romero et al, 2013; Stanton et al, 2022; Gruver et al, 2023; Khan et al, 2023). Finally, Yang
897 et al (2025) optimised protein properties using active learning (effectively performing batch Bayesian
898 optimisation) but did not focus on evaluation design in its own right.
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Identifier	Validation-set cost	Hyperparameter	Modality	Acquisition	References
Realistic-AL	✓	✓	image	batch	Lüth et al (2023)
ActiveGLAE	✓	✓	text	batch	Rauch et al (2023)
LabelBench	✓	✓	image	batch	Zhang et al (2024)
CDALBench	✓	✓	text, image, tabular	single,batch	Werner et al (2024)
Reliable deep AL	✗	✓	image	batch	Ji et al (2023)
BenchPress*	✗	✗	code generation		Tsimpourlas et al (2022)
DISTIL	✗	✗	image	batch	Beck et al (2021)
Reducing label effort	✗	✗	image	batch	Bengar et al (2021)
Marginal benefit of AL	✗	✗	image		Chan et al (2021)
Consistency-based semi-supervised AL	✗	✗	image	batch	Gao et al (2020)
TA-VAAL	✗	(✓)	image	batch	Kim et al (2021)
SCAL	✗	✗	image	batch	Krishnan et al (2021b)
Parting with illusions	✗	✗	image	batch	Mittal et al (2019)
Robust & reproducible AL	✓	✓	image	batch	Munjal et al (2022)
PT4AL	✗	✗	image	single,batch	Yi et al (2022)
DeepAL+	✗	✗	image	batch	Zhan et al (2022)
Revisiting AL, Vision Foundation	No*	No*	image	batch	Gupte et al (2024)
BADGE	✗	✓	image, openml	batch	Ash et al (2020)
Interplay of UM and deep AL	✓	✓	image, synth	batch	Huseljic et al (2024)
Open-Set annotation, LfOSA	✗	✗	image	batch	Ning et al (2022)
AL for imbalanced datasets	Yes*	✓	image	batch	Aggarwal et al (2020)
Limitations of AL	✗	✗	image, text	batch	Hu et al (2021)
optimal AL	✗	✗	image, text	batch	Zhou et al (2021)
Benchmarking pool-based AL	✗	✗	tabular, synth	single, batch	Zhan et al (2021)
Efficacy of deep AL for image	✗	✗	image	batch	Li et al (2022)
Margin all you need?	✗	✗	tabular	batch	Bahri et al (2022)
Ours	✓	✓	biochemistry	single,batch	

Table 2 Comparison of related Active Learning benchmarks with emphasis on the inclusion of validation set cost, hyperparameter-tuning, and covered modalities. Noteable exceptions: BenchPress is a code generation framework and not strictly an AL benchmark. Special cases (marked with *) include ([Gupte et al, 2024](#)), which acknowledge the issues but do not discuss solutions in their benchmark, and ([Aggarwal et al, 2020](#)), which considers 10-fold cross-validation.

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972 C ALPS DETAILS

973 C.1 SOURCE DATA

1001 **Figure 8** Overview of the label and property distributions for all source datasets that are the basis for the ALPS
1002 problems. The number of mutations (as properties of the sequence) was used to curate the ALPS-Restricted
1003 tasks, whereas the labels have been used to curate class balances for ALPS-Unbalanced. See Table 3 for
1004 references and measured effects.

Dataset	Effect of Interest	Description (number sites mutated) (unique positions)	N	References	License
GB1	Epistasis (indiv.)	combinatorially complete binding (0-4) (4)	149,361	Wu et al (2016); Yang et al (2025)	CC-BY 4.0 International
TrpB	Epistasis (indiv.)	combinatorially complete enzyme (0-4) (4)	159,129	Johnston et al (2024); Yang et al (2025)	CC-BY 4.0 International
GRB2-SH3	Allostery (design)	allosteric abundance+binding library, (0-20) (34)	71,233	Faure et al (2024)	MIT
AAV2	Viability (design)	engineered viral capsid (0-29) (varying lengths)	39,172	Dallago et al (2021); Bryant et al (2021)	MIT
mKate2	Epistasis (general)	bridging two genotypes (eqFP) (0-13)	8,192	Poelwijk et al (2019); Faure & Lehner (2024)	CC-BY 4.0 International
His3	Epistasis (general)	12 WT s with high-order mutants (NA)	956,648	Pokusaeva et al (2019); Notin et al (2023)	CC-BY 4.0 International

1011 **Table 3** ALPS source data overview, displaying investigated effect (from the original source), number of
1012 samples in the data, and license. For AAV2, a subset of random mutagenesis deselecting model-dependent designs
1013 was used.

1014 C.2 PROBLEMS

1017 Generally, we define a task in the ALPS benchmark based on the label set, or any property vector
1018 which can be derived from the input sequence, see Figure 8. We specifically consider the Hamming
1019 distance relative to the reference (wild-type) sequence. To further specify the task, we can curate the
1020 label vector and the property vector by sub-selecting either or both. This allows us to easily add new
1021 tasks if required, based on the label-set or input properties.

1022 C.2.1 CORE TASK

1024 A broad test bed for the label acquisition strategies is the datasets in their raw, uncurated form. These
1025 datasets allow us to test the hypothesis whether active learning applies in uncurated, imbalanced
experiment settings. We consider 20% of all samples distinct from pool/training for testing, to reflect

Figure 9 Overview of the label distributions. For each task and source data the input property mutation m count as density (left) and likelihood of observing the positive label (right). Mutations for His3 have been taken from the source set with respect to one reference sequence ("Scer").

standard AL setups. We also consider a fully uncurated setup, the pool set consists of all input-label pairs available, and the task is to predict the labels on the complete dataset [Appendix D.1](#). For this specific case, $\mathcal{X}_{\text{pool}} = \mathcal{X}_{\text{test}}$ and any input, label pair, which we acquire from the pool is present in the test set; translating into $\mathcal{X}_{\text{train}} \subset \mathcal{X}_{\text{test}}$. This task (in either configuration) does not apply to His3, since binarization requires considerable post-processing steps, which can be found in the original reference [Pokusaeva et al \(2019\)](#).

C.2.2 UNBALANCED TASK

We investigate whether a change in threshold affects algorithm performance, apart from the reference inputs used to measure improvement against, initially motivated by protein engineering practices. Our task follows the previously described uncurated, imbalanced (Core) setup where $\mathcal{X}_{\text{train}} \subseteq \mathcal{X}_{\text{pool}} = \mathcal{X}_{\text{test}}$. To obtain varying degrees of label imbalance, we compute five constant threshold values equidistant between the median label and previous (WT) reference values [Figure 9b](#). We do so by

Source Task	transform	AAV2	GB1	GRB2-SH3	mKate2	His3	TrpB
uncurate	binarize (ref.)	Core	Core	Core	Core	see Pokusaeva et al (2019)	Core
imbalance	binarize (const.)	Unbalanced	Unbalanced	Unbalanced	Unbalanced	—	Unbalanced
constraint/transfer	subselect property	Restricted	Restricted	Restricted	Restricted	—	Restricted
redundancies	binarize & assign UNK	—	—	—	—	Redundant	—

1080
1081
1082
1083
1084
1085
Table 4 Overview of the problems and what task they are addressing (index), what transformation is applied
1086 to the source labels (columns) to obtain the problem (cells). We report results for individual problems (black)
1087 and if task definitions apply (in general) and can be derived with the provided code-base they are indicated in
1088 gray. For example, it is possible to define Restricted task(s) for any input sequence if there are more than two
1089 distinct set of mutations with enough samples to account for the acquisition budget. However, not all distinct
1090 sets of mutations with which a restricted task can be defined present plausible (practical) scenarios. Across all
1091 tasks His3 presents an exception, as the unprocessed measurements cannot be used for the Core task, and due
1092 to the nature of the source data has to be treated with care Pokusaeva et al (2019), see Appendix C.2.4.

1093

1094
1095
1096

discretizing with constant values, for TrpB specifically $t \in [-4, -3.5, -3, -2.75, -2.5]$ in $\log y$ labels (see alps/config/compute_protein_task/data/trpb.yaml).

1097

1098
1099

C.2.3 RESTRICTED TASK

1100

1101

We split the dataset into a disjoint pool- and test-set, to test whether active label acquisition is beneficial when an out-of-domain test/target set is given. The objective is to predict labels from inputs with k number of mutations relative to the reference. Given Hamming distance HD of the string inputs x , let $\mathcal{X}_{\text{test}} = \{x \in \mathcal{X} \mid HD(x, x_{\text{ref}}) = k\}$ and $\mathcal{X}_{\text{pool}} = \{x \in \mathcal{X} \mid HD(x, x_{\text{ref}}) < k\}$. The pool from which training labels are acquired has $< k$ mutations. The test set with which we assess performance has k mutations. This subsequently yields different label distributions between pool and test Figure 9c. To obtain the run configurations via the described experimental specifications, we set the GB1, TrpB tasks like so

1109

1110
1111
1112
1113
1114
1115

```
- labels: binary_wt
  curated: True
  subset_by: k_mutations
  subset_classes:
    - [0, 1, 2, 3]
    - [4]
```

1116

1117
1118
1119
1120

This task reflects an experimental measurement campaign, where over multiple rounds more mutations are introduced to the inputs and a proposal model is used to predict the next set of variants, describing a transfer learning setting of the predictive models. Alternatively, this task can be formulated by selecting other label or inputs sets, for example discretizing labels into multiple quantiles and assigning pool and test to different quantile classes.

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134 C.2.4 REDUNDANT TASK
1135

1136 The task we specify encompasses a $\mathcal{X}_{\text{pool}}$ of largely uninformative labels and a labelled (zero-one)
1137 minority set. The setting under which labels have been obtained (His3) reflects redundancy in the
1138 pool due to multiple references when measuring observations. Specifically, labels have been obtained
1139 for different experimental setups (libraries). Therefore, discretizing with respect to one reference
1140 becomes impossible across all data in the source set. Given that inputs in His3 are associated with
1141 multiple wild-types, measured under different experimental conditions, we binarize one library
1142 with one reference input (the one it has been compiled with) and assign a third class to all other
1143 observations (the remaining 11 libraries). We refer to this third class as "neither" in the manuscript.
1144 Our pool consists of $\approx 86.8\%$ uninformative (third class) samples, and the labeled classes are
1145 $\approx 12.4\%$ negative and $\approx 0.7\%$ positive labels. The starting training pool contains two labels for
1146 each of the three classes. The pool contains all three classes, while test contains two classes only.
1147 To replicate the experiment setup within the benchmark suite requires to first discretize with three
1148 classes, and then to subselect the test classes of interest.

1148 See `alps/config/compute_protein_tasks/data/his3.yaml` which targets
1149 `alps/src/data/tasks/pg.py`. To obtain the run configurations via the experimental
1150 specifications, we use

```
1151 - data_item:
1152   id: HIS3-ALL
1153   wildtype_sequence: EALGAVRGVKRGSGFAPLDEALSRAVVDL
1154   positions: []
1155   data_dir: ${directories.data}/his/S_all_scaled_info_v2.csv
1156   curated: True
1157   subset_by: labels
1158   labels: ternary_wt
1159   subset_classes:
1160     - [0, 1, 2]
1161     - [0, 1]
1162   target_id: HIS3-S1
```

1163 C.2.5 BATCHED TASK
1164

1165 The underlying tasks are the Core (uncurated) setups, see Appendix C.2.1, however the acquisition
1166 algorithms are run with `batch_size>1` (as specified).

1168 C.3 ENCODINGS

1180 **Figure 10** Encoding of the protein sequence inputs. We encode a reference sequence, consisting of single-letter
1181 amino acid codes, into a continuous vector of fixed length. Pretrained encoder models take the full sequence
1182 length (for all datasets) and encode it to the model's number of dimensions, see Table 5. The onehot and
1183 georgiev encodings can be limited to encode only the mutated positions (GB1, TrpB), segments including
1184 mutations (mKate2, His3), and full-length sequences (GRB2-SH3, AAV2).

1185 The inputs are string sequences (amino acid sequences) either as the residues of the mutated positions
1186 (GB1, TrpB) or the sequence of complete length (GRB2, AAV2, His3), which we encode to a real-
1187 valued matrix. To select the best performing protein language model (PLM) we evaluate a set of 22

1188 PLMs available through huggingface, [Table 5](#). As simple baselines, we consider simple onehot and
 1189 georgiev encodings of the amino acid sequences [Georgiev \(2009\)](#).
 1190

Name	#dimensions	#layers	#params	Memory	Dataset	Reference
esm1_t6_43M_UR50S	768	6	43M	0.17GB	Uniref50/S 2018_0	Rives et al (2021)
esm1_t12_85M_UR50S	768	12	85M	0.34GB	Uniref50/S 2018_0	Rives et al (2021)
esm1_t34_670M_UR50D	1280	34	670M	2.7GB	Uniref50/D 2018_0	Rives et al (2021)
esm1_t34_670M_UR50S	1280	34	670M	2.7GB	Uniref50/S 2018_0	Rives et al (2021)
esm1_t34_670M_UR100	1280	34	670M	2.7GB	Uniref100 2018_0	Rives et al (2021)
esm1b_t33_650M_UR50S	1280	33	650M	2.6GB	Uniref50/S 2018_0	Rives et al (2021)
esm1v_t33_650M_UR90S_[1-5]	1280	33	650M	2.6GB	Uniref90/S 2020_0	Meier et al (2021)
esm2_t6_8M_UR50D	320	6	8M	0.03GB	Uniref50/D 2021_0	Lin et al (2023)
esm2_t12_35M_UR50D	480	12	35M	0.14GB	Uniref50/D 2021_0	Lin et al (2023)
esm2_t30_150M_UR50D	640	30	150M	0.6GB	Uniref50/D 2021_0	Lin et al (2023)
esm2_t33_650M_UR50D	1280	33	650M	2.6GB	Uniref50/D 2021_0	Lin et al (2023)
esm2_t36_3B_UR50D	2560	36	3B	12GB	Uniref50/D 2021_0	Lin et al (2023)
esm2_t48_15B_UR50D	5120	48	15B	60GB	Uniref50/D 2021_0	Lin et al (2023)
esm3_sm_open_v1	1536	48	1.4B	5.6GB	custom	Hayes et al (2025)
prot_albert	4096	12	224M	0.9GB	Uniref100	Elnaggar et al (2022)
prot_bert	1024	30	420M	1.7GB	Uniref100	Elnaggar et al (2022)
prot_bert_bfd	1024	30	420M	1.7GB	BFD100	Elnaggar et al (2022)
prot_xlnet	1024	30	409M	1.6GB	Uniref100	Elnaggar et al (2022)
prot_t5_xl_uniref50	1024	24	3B	12GB	Uniref50	Elnaggar et al (2022)
prot_t5_xl_bfd	1024	24	3B	12GB	BFD100	Elnaggar et al (2022)
prot_t5_xxL_uniref50	1024	24	11B	44GB	Uniref50	Elnaggar et al (2022)
prot_t5_xxL_bfd	1024	24	11B	44GB	BFD100	Elnaggar et al (2022)

1209 **Table 5** Overview of all pretrained encoders available in ALPS.
 1210

1212 C.4 LABEL PREPROCESSING

1214 **Binary classification** Given a reference threshold, listed *WT* reference sequence value (unless
 1215 indicated otherwise), we assign positive classes if function values are equal or greater than that
 1216 reference value.

1217 Exact specifications for reference sequence `wildtype_sequence` (in sets of sequences `seq_id`) and
 1218 labels (`label_id`) can be found in the respective `alps/config/compute_protein_tasks/data/`
 1219 `{aav,allo,eqfp,gb1,grb2,his3,trpb}.yaml`. The *WT* reference binary classification is
 1220 `labels: binary_wt`.

1221 Binary classes can also be assigned by **constant** values, see `labels: binary_const`, which has
 1222 been applied to compute ALPS-Unbalanced.

1223 C.5 METRICS

1225 **Accuracy** Given N input-label pairs, $(x_*^i, y_*^i)_{i=1}^N$, we compute

$$1227 \text{accuracy} := \frac{1}{N} \sum_{i=1}^N \mathbb{I}(\arg \max_{y'_*} p_\phi(y'_* | x_*^i) = y_*^i). \quad (1)$$

1230 **Expected negative log likelihood** We compute

$$1232 \text{NLL} := -\frac{1}{N} \sum_{i=1}^N \log p_\phi(y'_* = y_*^i | x_*^i). \quad (2)$$

1235 **F1 score** We compute the F1 score from the true positive count (TP) and false positive count (FP)
 1236 as

$$1238 f_1 := \frac{2\text{TP}}{(2\text{TP} + \text{FP} + \text{FN})}. \quad (3)$$

1241 **AUROC** We use the Scikit-learn ([Pedregosa et al, 2011](#)) implementation to calculate AUROC
 (macro (unweighted) aggregate with McElsh correction). For the binary-label case, we compute

1242
 1243
 1244
$$\text{ROC-AUC} := \frac{1}{2} \left(1 + \frac{\text{AUC}(\text{FPR}, \text{TPR}) - \frac{1}{2} \max(\text{FPR})^2}{\max(\text{FPR}) - \frac{1}{2} \max(\text{FPR})^2} \right). \quad (4)$$

 1245
 1246

1247 C.6 ALGORITHMS
 1248

1249 C.6.1 PREDICTION HEADS
 1250

1251 **Logistic regression** is as implemented in scikit-learn (`sklearn.linear_model.LogisticRegression`)
 1252 (`max_iter=10000`) with l_2 penalty, optimized regularization parameter C , given a validation sample.
 1253 For each model fit, we determine the optimal regularizer $\in [0.001, 0.01, 1, 100, 1000]$ as minimizing
 1254 \mathcal{L}_{NLL} on the validation set.
 1255

1256 **Random forest** is as implemented in scikit-learn (`sklearn.ensemble.RandomForestClassifier`)
 1257 with default parameters (`n_estimators=100` using the gini criterion).
 1258

1259 **Neural network with MC dropout** implemented in PyTorch, three layer fully connected ar-
 1260 chitecture (sizes 128, 128, 128) with dropout-rate of 0.1 (10%), following [Gal & Ghahramani
 1261 \(2016\) `https://github.com/yarinag/DropoutUncertaintyExps`](#). Training is done minimiz-
 1262 ing \mathcal{L}_{NLL} loss (unless stated otherwise) with early stopping (patience is 5.000 steps) on a validation
 1263 set (size 1.000 samples). Optimizer is (PyTorch’s) SGD optimizer with learning-rate $\gamma = 0.01$ and
 1264 weight decay $\lambda = 0.0001$ [Paszke et al \(2019\)](#).
 1265

1266 C.6.2 ACQUISITION
 1267

1268 **EPIG** as implemented in [Bickford Smith et al \(2023\)](#) (available at `https://github.com/fbickfordsmith/epig` under MIT license) with `n_target_samples=100` *without* nested MC
 1269 computed from scores in batches of 1000.
 1270

1271 **BALD** as implemented in [Kirsch et al \(2019\)](#) (available at `https://github.com/BlackHC/batchbald_redux/` under Apache-2.0 license) computing scores in batches of 1000.
 1272

1273 **Random** Random acquisition is `numpy` (v1.26.0) random (Generator) `choice` (without replace-
 1274 ment) with `size=batch_size`.
 1275

1276 **TypiClust** follows the implementation in [Hacohen et al \(2022\)](#) as provided in the repository
 1277 (`https://github.com/avihu111/TypiClust/`) (MIT license) with `n_neighbors=20`. A batch
 1278 size of 50 is used, unless stated otherwise.
 1279

1280 **BADGE** follows the implementation in [Ash et al \(2020\)](#) from the repository (`https://github.com/JordanAsh/badge/`) and is applied to neural network predictors with MC-dropout, unless
 1281 indicated otherwise. Due to run-time of the underlying models a batch-size of 50 is used, unless
 1282 indicated otherwise.
 1283

1284 **BAIT** follows the implementation in [Ash et al \(2021\)](#) and is used with neural network prediction
 1285 heads and a batch-size of 50, unless indicated otherwise.
 1286

1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 **D ADDITIONAL RESULTS**
12971298 **D.1 POOL EQUAL TO TEST**
1299

1313 **Figure 11** Core task performance with test-set as all samples (including training). Generally, we find an
1314 increase in test performance for all acquisitions BALD, EPIG, and random (cf. Fig 1) and a decreased standard
1315 error across seeds (7 seeds reported). The order of performance stays the same, i.e. BALD outperforming EPIG
1316 in 4 out of 5 core tasks, and EPIG outperforming BALD on all Core tasks for the expected NLL loss.

1317 **D.2 ADDITIONAL CLASSIFIER**
1318

1319 We include a fully connected neural network (three layers) with MC dropout (rate 10%) [Gal &](#)
1320 [Ghahramani \(2016\)](#) as a deep learning classifier. As this significantly increases the compute time per
1321 step, we set the batch size to 50 and report results on two core datasets GB1, TrpB.
1322

1331 **Figure 12** Performance of the neural network (NN) model with MC dropout (ESM3 encoding) on two Core
1332 tasks (GB1, TrpB) using batch acquisition (BALD, EPIG, TypiClust) in batches of 50 (8 seeds). Compared to the
1333 random forest (RF) performance on the same datasets, we ultimately observe very high accuracy and comparable
1334 NLL values. However, with a NN, both BALD and EPIG require more labels to obtain the same performance,
1335 i.e. up to 400 labels the test accuracy is below 90, which is significantly lower than for ESM3+RF on the same
1336 pool and test set also using batch acquisition [Figure 13](#).
1337

1346 **Figure 13** Performance of random forest prediction (ESM3 encoding) using batched acquisition (BALD,
1347 EPIG) with batch-size 50 (8 seeds).
1348
1349

Figure 14 Relative performance over random (ratio) comparing neural network prediction head with MC dropout against random-forest regressor on ESM3 on one Core task (GB1) using batched acquisition (BALD, EPIG, TypiClust) with batch-size 50 (8 seeds).

D.3 F1-SCORE METRIC

Core tasks presented with the F1-score metric.

Figure 15 Performance (F1 score on the test set) of a random-forest classifier on ESM3 over number of acquired labels (x-axis). We observe higher test performance of active acquisition (EPIG, BALD) over random (light green) except for curated set (mKate2).

Figure 16 Performance (mean F1 score on test computed over all acquired samples with std.err.) over different imbalance ratios (x-axis) (zero to one proportion) obtained from varying threshold discretization (six seeds).

Figure 18 Test performance (F1 score) on two-class test set, with three class pool/training set. Prediction-oriented active learning shows significant gains over random acquisition.

1404

1405

1406

1407

1408

1409

1410

1411

1412

Figure 17 Performance (test F1 score) with ESM3 encoded inputs for training on pool distinct from the test set on seven seeds. Training inputs are up to $HD = (k - 1)$ from a reference, and test/target set is $HD = k$, with $k = 4$ for GB1, TrpB, and $k = 16$ for GRB2-SH3.

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Figure 19 Expected performance (empirical mean F1 score across steps, with standard error across 8 seeds) over different batch-sizes (x-axis).

Figure 20 Test performance (F1 score) relative to random performance (ratio) for all models (three encoders with two classifiers) over number of acquired samples.

Figure 21 Test performance (F1 score) for all models (three encodings with two classifiers) over number of acquired samples.

1458
1459

D.4 AUROC METRIC

1460

All experimental results presented with the AUROC metric.

1461

1462

1463

Figure 22 Performance (AUROC) of a random-forest classifier on ESM3 on the test set over number of acquisitions. We observe higher test performance of active acquisition (EPIG) over random (light green) except for AAV2 (8 seeds).

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

Figure 23 Performance of test AUROC (random-forest on ESM3, mean over run with std.err.) given different imbalance-ratios (zero-to-one) by varying threshold discretization (six seeds).

1496

Figure 24 Performance (AUROC) with random-forest on ESM3 encoded inputs for training on pool distinct from the test set. Training inputs are up to $HD = (k - 1)$ from a reference, and test/target set is $HD = k$, with $k = 4$ for GB1, TrpB, and $k = 16$ for GRB2-SH3 (8 seeds).

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522

1523 **Figure 25** Expected performance (empirical mean over test metric across steps, with standard error (8 seeds)
1524 over different batch-sizes.

1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541

1542 **Figure 26** Relative performance (test AUROC to random ratio) for all models (three encoders with two
1543 classifiers) over the number of acquired samples.

1544
1545
1546
1547
1548
1549
1550
1551

1552 **Figure 27** Test performance (AUROC) for all models (three encoders with two classifiers) over the number of
1553 acquired samples.

1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566 D.5 BADGE AND BAIT
1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1602 **Figure 28** Test accuracy of BADGE and BAIT relative to TypiClust on the ALPS-Core problems.

Figure 29 Test expected NLL of BADGE and BAIT relative to TypiClust on the ALPS-Core problems.

1674 D.6 RUN TIMES
1675
1676

1677	Dataset	Prediction head	Method	Median	Minimum	Maximum
1678	AAV	Random forest	BALD	10	10	10
1679			EPIG	8	6	12
1680			TypiClust	231	226	279
1681			Random	5	4	7
1682		Neural network	BADGE	86	77	104
1683			BAIT	75	67	89
1684			TypiClust	304	298	352
1685			Random	70	62	94
1686	GB1	Random forest	BALD	21	15	32
1687			EPIG	30	19	30
1688			TypiClust	263	166	265
1689			Random	7	7	7
1690		Neural network	BADGE	123	107	3519
1691			BAIT	117	112	487
1692			TypiClust	354	252	356
1693			Random	115	94	127
1694	GRB2	Random forest	BALD	15	8	18
1695			EPIG	15	10	19
1696			TypiClust	242	168	248
1697			Random	8	7	9
1698		Neural network	BADGE	85	81	106
1699			BAIT	84	81	102
1700			TypiClust	312	243	318
1701			Random	87	74	95
1702	TrpB	Random forest	BALD	16	15	28
1703			EPIG	21	16	28
1704			TypiClust	263	170	345
1705			Random	6	5	10
1706		Neural network	BADGE	137	112	2954
1707			BAIT	132	115	1091
1708			TypiClust	361	316	467
1709			Random	134	115	151
1710	mKate2	Random forest	BALD	5	5	6
1711			EPIG	5	4	6
1712			TypiClust	117	75	119
1713			Random	4	4	6
1714		Neural network	BADGE	78	72	97
1715			BAIT	65	62	80
1716			TypiClust	164	134	171
1717			Random	76	72	81

1719 **Table 6** Per-step (acquisition plus training) run times (in seconds) on the ALPS-Core problems.
1720
1721
1722
1723
1724
1725
1726
1727

1728 D.7 PLOTS WITH FULL VERTICAL-AXIS RANGES
17291730 Some of the active-learning plots in Section 6 use vertical axes with reduced ranges so that the gaps
1731 between curves are easier to see. Here we present corresponding plots with full ranges.
17321745 **Figure 30** Figure 2 with full vertical-axis ranges.
17461748 **Figure 31** Figure 4 with full vertical-axis ranges.
17491754 **Figure 32** Figure 5 with full vertical-axis ranges.
1755

Figure 33 Figure 7 with full vertical-axis ranges.

1836 **E** LABEL NOISE
18371838 Here we provide some information regarding label noise in the ALPS problems, drawing from the
1839 papers introducing the original experimental datasets that we use to construct ALPS. We recommend
1840 referring to the full papers to better contextualise the content we quote.
18411842 **AAV2** Bryant et al (2021) noted label noise “caused by low plasmid counts for specific variants”;
1843 discussed dealing with the noise by filtering based on plasmid count and by binarising measurements;
1844 and reported high correlations between experimental replicates (their Supplementary Figure 2).
18451846 **GB1** Wu et al (2016) noted label noise for “10,639 missing variants (i.e. 6.6% of the sequence
1847 space) that had fewer than 10 sequencing read counts in the input library”; discussed dealing with the
1848 noise by filtering based on read count and imputing missing labels; and reported “high reproducibility
1849 in the data” and “fitness measurements... highly consistent with our previous study”.
18501851 **GRB2** Faure et al (2024) said they “obtained triplicate abundance measurements for 129,320 variants,
1852 which is 0.0007% of the sequence space” and the “measurements were highly reproducible”.
18531854 **His3** Pokusaeva et al (2019) said they “measured fitness for a total of 4,018,105 genotypes (875,151
1855 unique amino acid sequences) with high accuracy” while noting that “For one segment, 9, the accuracy
1856 of our experiment was low”; they supported their judgements with an “accuracy analysis”.
18571858 **mkate2** Poelwijk et al (2019) used sequence barcoding and a Poisson noise model to “correct
1859 for mis-sorting events and unobserved spurious mutations that can introduce errors in assigning
1860 phenotypes”, leading to “removal of 2% of counts, after which final enrichments were calculated”.
18611862 **TrpB** Johnston et al (2024) reported that their “fitness values of overlapping subsets of the 3- and
1863 4- site libraries were highly correlated” and that “Analysis of the nearly one million unique codon
1864 combinations sampled showed that synonymous mutations had minimal impact on fitness”, indicating
1865 their measurements of protein fitness had a good level of internal consistency.
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889