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ABSTRACT

We highlight that current evaluations of active-learning methods often fail to reflect
important aspects of real-world applications, giving an incomplete picture of how
methods can behave in practice. Most notably, evaluation problems are commonly
constructed from heavily curated datasets, limiting their ability to rigorously stress-
test data acquisition: even the worst acquirable data in these datasets is often
reasonably useful with respect to the task at hand. To address this we introduce
Active Learning on Protein Sequences (ALPS), a set of problems constructed to test
key challenges that active-learning methods need to handle in real-world settings.
We use ALPS to assess a number of previously successful methods, revealing a
number of interesting behaviours and methodological issues. The ALPS codebase
serves to support straightforward extensions of our evaluations in future work.

1 INTRODUCTION

Active learning involves seeking the best data for training a model; typically this means adaptively
choosing inputs to acquire labels for (Atlas et al, 1989; Settles, 2012). Empirical evaluations have
helped show the benefit of intelligent data acquisition, with several successful demonstrations in
recent years (Bickford Smith et al, 2023; 2024; Hübotter et al, 2024; 2025; Melo et al, 2024; Osband
et al, 2023). But we argue that existing evaluations often fail to reflect key challenges in practical
applications, limiting our ability to gauge how methods will really perform beyond academic studies.

The principal issue we highlight is the use of heavily curated datasets in the construction of active-
learning problems. It is common for example to use standard academic datasets from computer vision
(Bengar et al, 2021; Chan et al, 2021; Lüth et al, 2023; Mittal et al, 2019; 2023; Siméoni et al, 2020)
and natural-language processing (Ein-Dor et al, 2020; Maekawa et al, 2022; Margatina et al, 2022;
Seo et al, 2022; Yuan et al, 2020), with typical curation steps including ensuring a roughly equal
number of examples per class and removing unrepresentative examples. By using these curated data
sources in place of the messy ones often used in the real world, existing evaluations give us a false
sense of the active-learning methods we are assessing. If all acquirable data has already been filtered
to be at least moderately useful for the task at hand, there is an artificial limit on how badly any
method can perform, harming our ability to detect weaknesses in methods. On top of this, even if
evaluations emphasise the cost of acquiring labels, they crucially hide the cost of implicit curation
steps, leading us to overestimate the real-world performance achievable for a given cost.

We therefore believe there is a critical need to complement existing active-learning problems with new
ones that reflect underrepresented challenges. We suggest a promising context within which to design
new problems is protein-property prediction, namely the task of mapping from a protein’s sequence
of amino acids to some measure of its behaviour (Lesk, 2019). One reason for this is the scope for
concrete impact: better protein-property prediction could enable advances in practical pursuits like
protein engineering as well as foundational research in biology (Notin et al, 2023; 2024). Another is
that labelling protein sequences usually requires costly lab experiments, meaning there is much less
labelled data available than in domains like computer vision and natural-language processing, and
there is an ongoing pressing need for acquiring informative new labels. Meanwhile the labelled data
that is currently available, thanks to past investments in experimental data-gathering (Bryant et al,
2021; Faure et al, 2022; 2024; Johnston et al, 2024; Poelwijk et al, 2019; Pokusaeva et al, 2019; Wu
et al, 2016), is sufficient to construct useful problems for foundational methods development. We
thus have a basis for iteratively working towards larger quantities of high-quality labelled data.
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Capitalising on this opportunity, we introduce Active Learning on Protein Sequences (ALPS), a set of
problems derived from existing protein datasets. In five core problems we do as little as possible to
constrain the data that can be acquired, with two of the problems having near-exhaustive coverage
of a region of the input space. Nine additional problems extend from these core problems to pose
further challenges for active-learning methods, including working with skewed label distributions,
acquiring data under experimental restrictions, and dealing with large quantities of redundant inputs.

Putting ALPS to use, we experimentally investigate the performance of a number of active-learning
methods that have seen success in existing evaluations. We find that ALPS reveals failure cases in
these methods that have been underrepresented in past work, including miscalibration of predictive
uncertainty, sensitivity to class imbalance, and unreliable scaling with increasing acquisition batch
size. Given this, our work brings to light not only key issues in the design of active-learning
evaluations but also priorities for future method development, with a particular need for more
robust data acquisition. To accelerate progress along these lines, we provide an open codebase
(anonymous.4open.science/r/alps-95A3) designed for flexible experimentation.

2 EVALUATING ACTIVE LEARNING

Our aim in this work is to improve the way we evaluate active-learning methods. We begin by
establishing a clear sense of our brief as evaluators, with a focus on expected downstream utility.

Setup Active learning can be broadly defined as the process of training a predictive model on data
acquired by an adaptive policy, whose decisions depend on the model being trained (Atlas et al, 1989;
MacKay, 1992). These decisions can take many forms, including choosing state transitions to observe
in an environment (Mehta et al, 2022) or a subset of examples from a labelled dataset (Mindermann
et al, 2022), but the most commonly studied setting—and the one we focus on here—is choosing
unlabelled inputs to acquire labels for (Settles, 2012). Specifically we consider pool-based active
learning (Lewis & Gale, 1994) of a model, pϕ(y|x), that maps inputs x ∈ X to labels y ∈ Y: we
have access to a pool of n unlabelled inputs, Xpool ⊆ X , but we can only afford to acquire m < n
labels due to the cost of labeling, which we assume follows some distribution y ∼ ptrain(y|x).
Pool-based active learning is typically broken down into a sequence of steps, t ∈ (1, 2, . . . , T ), where
each step comprises three substeps. First, the data-acquisition algorithm selects a batch of b query
inputs, xt = (xt,i)

b
i=1, where xt,i ∈ Xpool, often by maximising an acquisition function that estimates

some notion of data utility. Second, the algorithm obtains labels, yt, where yt,i ∼ ptrain(yt,i|xt,i),
and adds (xt,yt) to the training dataset, Dtrain. Third, the model, pϕ(y|x), is updated on Dtrain.

Goal Evaluating active-learning methods requires a clear sense of what we want to achieve with
them. A technically precise way to describe this is in terms of downstream utility or loss (von Neu-
mann & Morgenstern, 1947). In machine learning we often evaluate trained predictive models, fn =
f(·;x1:n, y1:n), using a form of frequentist risk (Berger, 1985), R = Epeval(x∗,y∗)[ℓ(x∗, y∗, fn(x∗))],
where peval denotes a reference system used as a source of ground truth and ℓ denotes a loss function.
Standard evaluation metrics can be understood as estimators of the risk for particular choices of loss
function (e.g. the misclassification rate arises from the zero-one loss). Reduced risk is therefore a
concrete and well-established notion of what we could gain from intelligent data acquisition.

Problem design As well as making it clear what we should measure in evaluations, writing down
this formal goal highlights the many factors that control the dependence between an active-learning
method and its performance, factors that we need to consider when designing problems. Among
these are the predictive task, X ×Y ; the loss, ℓ; the pool, Xpool; the label source, ptrain; the reference
system, peval; the machine-learning method, f ; and the costs and budgets for compute and labels.

3 SHORTFALLS IN EXISTING EVALUATIONS

Next we discuss how existing active-learning problems do not allow us to fulfil our brief as evaluators.
In particular we highlight issues that arise from using curated data and neglecting task adaptation.

Using curated data A striking pattern across the literature is the use of standard academic datasets
as a basis for constructing active-learning problems. We estimate (Appendix A) that 37% of recent
active-learning evaluations use standard vision datasets (e.g. Caltech101, CIFAR-10, ImageNet,

2

https://anonymous.4open.science/r/alps-95A3


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

CIF
AR-1

0

M
N

IS
T

CIF
AR-1

00

FM
N

IS
T

SVH
N

Cite
See

r

CO
RA

Reu
te

rs

PubM
ed

Coauth
or CS

All
U

CI
0

5

10

15

20

P
er

ce
n

ta
g

e
o

f
p

a
p

er
s

(%
)

Figure 1 Current evaluations of active
learning rely heavily on standard vision, text
and UCI datasets. Percentages here were es-
timated by taking recent papers from AIS-
TATS, ICML, NeurIPS and UAI, filtering
by active-learning keywords, randomly sub-
sampling, manually discarding false positives
(giving 81 papers), then listing the datasets
used in empirical evaluations.

MNIST), 9% use standard text datasets (e.g. 20 News-
groups, CiteSeer, CORA, PubMed, Reuters), and 9% use
standard UCI (Dua & Graff, 2017) datasets (e.g. Adult,
Ionosphere, Iris, Wine). These datasets are often heavily
preprocessed to allow easier model training, for exam-
ple by ensuring a roughly equal number of examples
per class and filtering out examples considered unrep-
resentative, irrelevant, or ambiguous (Aitchison, 2021;
Krizhevsky, 2009; Russakovsky et al, 2014).

This represents a major shortfall in existing evaluations.
If all the acquirable data has already been vetted for
quality, then the difference between the best data and
the worst data is small, limiting our ability to properly
stress-test methods and leading us to overestimate pos-
sible real-world performance. For example, while BALD
(Houlsby et al, 2011) has been shown to target obscure
data (Bickford Smith et al, 2023), with potentially disas-
trous consequences for working with the uncurated data
pools often encountered in practice (Ardila et al, 2020;
Mahajan et al, 2018; Raffel et al, 2020), this failure mode
is masked in evaluations based on curated data.

A top priority for new evaluations is therefore to use less heavily curated data. One way this might
manifest is through the unlabelled pool: rather than only containing inputs that are likely to lead to
useful labels (with respect to model performance), we should consider messier pools that include
inputs that are unlikely to be useful, perhaps even comprising all inputs that could be labelled.

Neglecting task adaptation Another key shortfall in current evaluations is failing to assess methods’
abilities to adapt learning towards a particular task. In real-world applications we cannot expect our
pool of unlabelled data to be tailored to the task of interest. For instance, we might want to predict
whether a protein has a desired level of binding affinity with a target molecule, but the proportion of
proteins in our pool that achieve this level might be very small and dependent on which molecule
we are targeting. Yet existing evaluations tend to have a straightforward relationship between the
active-learning problem and the source dataset from which it is constructed, such that all inputs relate
to the task of interest, for example by exclusively belonging to the classes that occur at test time.

Given that a key motivation for active learning is the need to enhance a model for a particular task
(Baumann et al, 2024; Bickford Smith et al, 2023; Hübotter et al, 2024; 2025; Osband et al, 2023;
Tamkin et al, 2022), this common failure to consider task adaptation in evaluations is problematic.
Like the use of curated data, it hinders our ability to rigorously test active-learning methods. A
method with no notion of the task of interest is suboptimal in the general case, but the extent to which
that manifests in evaluations will be limited if all acquirable data is relevant to the task at hand.

An additional requirement for new evaluations should therefore be to test how well active-learning
methods can be tailored towards different tasks. Out of the many ways to implement this, perhaps the
simplest is to use unlabelled pools within which not all inputs directly relate to the task of interest.

4 PROTEIN-PROPERTY PREDICTION

With a sense of the challenges we want to reflect in our evaluations, we turn to the question of how
to implement them. We argue that the domain of protein-property prediction provides a compelling
setting for this, due to its potential applied impact and the protein data at our disposal.

Task In protein-property prediction we take as input a sequence, x ∈ AL, where A is a set of amino
acids and L denotes length, and produce as output a prediction of a property (or property vector),
y ∈ Y , that describes the protein’s behaviour in a system (Lesk, 2019). Properties we might want to
predict include the protein’s solubility, its stability under changing conditions (e.g. temperature), or
its binding affinity with a target of interest (e.g. a small molecule). Prediction of y ∈ R is sometimes
reframed as classification by splitting the real line into bins: we can for example use a single threshold,
such as the property value of a reference protein, to produce binary classification (Notin et al, 2023).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Applications Protein-property prediction can unlock great value both in direct practical applications
and in foundational research (Notin et al, 2023; 2024). In protein engineering (e.g. in the context of
drug design), predictions can be used within optimisation objectives or constraints (Yang et al, 2018),
perhaps to ensure any chosen protein satisfies a particular solubility requirement. In basic research,
predictions can be used to characterise phenomena like epistasis (Olson et al, 2014), where changes
at multiple locations in a protein sequence have an interacting effect on the protein’s behaviour.

Data Recent years have seen significant efforts to experimentally characterise protein behaviour,
yielding a notable increase in the amount of available data (Chevalier et al, 2017; Tsuboyama et al,
2023). Commonly a reference protein (often a naturally occurring “wild-type” protein) and a number
of variant proteins (with amino-acid sequences mutated from that of the reference protein) are
synthesised and observed in some system, leading to a behaviour measurement for each of the
proteins (Faure et al, 2024; Fowler & Fields, 2014; Kinney & McCandlish, 2019).

This source of data has four characteristics that are particularly relevant to our work. First, labels
are expensive (Wittmann et al, 2022), justifying the use of careful data acquisition. Second, while
there is now sufficient data available to construct interesting active-learning problems, there is still a
pressing need for more data, and the space of possible new data is so vast that data-gathering needs to
be targeted (e.g. with respect to promising candidates in protein design). Third, experimental datasets
are typically not curated to the same extent as those often used in foundational machine-learning
research (Wu et al, 2016; Johnston et al, 2024; Bryant et al, 2021; Notin et al, 2023; Pokusaeva et al,
2019). Fourth, labels are typically acquired in parallel; labelling proteins in batches of 96 is common,
for example (Johnston et al, 2024; Pokusaeva et al, 2019; Yang et al, 2025).

We identify six existing datasets that we believe are particularly promising as a basis for constructing
our new active-learning problems: AAV2 (Bryant et al, 2021), GB1 (Wu et al, 2016), GRB2 (Faure
et al, 2024), His3 (Pokusaeva et al, 2019), mKate2 (Poelwijk et al, 2019), and TrpB (Johnston et al,
2024). Each dataset is named after a reference protein and contains measurements of the effect of
mutating the reference protein, where the measurements correspond to the abundance—or, in the case
of mKate2, the fluorescence intensity—of the protein variant after it is synthesised and subjected to a
particular set of conditions. The datasets vary with respect to how the protein variants were selected:
two datasets, TrpB and GB1, near-exhaustively enumerate m-amino-acid mutations for m ≤ 4; the
others cover greater degrees of mutation but are not close to being exhaustive.

5 ACTIVE LEARNING ON PROTEIN SEQUENCES

We now introduce Active Learning on Protein Sequences (ALPS), a set of new problems designed to
help address the shortfalls identified in Section 3, building on the datasets discussed in Section 4.

5.1 THE ALPS PROBLEMS

Uncurated data Our discussion in Section 3 stressed that the use of curated datasets can undermine
evaluations by reducing the sensitivity of predictive performance to how data is acquired. We therefore
start by designing five core problems, ALPS-Core-[AAV2,GB1,GRB2,mKate2,TrpB], in which we
do as little as possible to constrain the data that can be acquired and simply aim to learn effective
predictions for the whole dataset by setting Xpool = Xtest. In real-world terms this translates to a
scenario where we want to learn about the whole space of experimentally testable proteins and we can
acquire a label for any protein in that space. As many common active-learning methods are designed
for classification instead of regression, we binarise the labels using a wild-type protein’s label as
a threshold. These core problems are already a significant departure from the curated setups often
used in existing active-learning evaluations: curation of the source data is minimal; two problems,
ALPS-Core-GB1 and ALPS-Core-TrpB, near-exhaustively covering a region of input space.

Next we extend from these core problems to test the ability of active-learning methods to deal with
skewed label distributions, which can be a practical challenge when working with uncurated data. We
do this using ALPS-Unbalanced-TrpB-[2,5,12,17,23], five variants of ALPS-Core-TrpB with
different degrees of class imbalance (ratio of class 0 to class 1) induced by varying the threshold used
for binarising the labels. The different thresholds give rise to different decision boundaries.
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Task adaptation In Section 3 we argued for the importance of testing active-learning methods’ abil-
ity to target a particular task when acquiring data. To this end, we introduce ALPS-Redundant-His3,
which poses a scenario where the unlabelled pool contains a large number of redundant inputs that do
not relate to the task of interest and cannot be labelled as class 0 or 1. More specifically we construct
Xpool to contain inputs from classes 0 and 1 as well as inputs that belong to neither, while Xtest has
classes 0 and 1. If a redundant input is selected during acquisition, it is assigned to a third “neither”
class; at test time the model only sees inputs from classes 0 and 1. Success on this problem requires
identifying inputs that directly relate to the task of interest, namely classifying classes 0 and 1.

On top of this we design three more problems, ALPS-Restricted-[GB1,GRB2,TrpB], that test an
active-learning method’s ability to gather data to aid predictions on inputs that we cannot acquire
labels for, perhaps due to restrictions on what experiments can be run. Here Xpool contains only the
inputs within m mutations of the reference, while Xtest contains only inputs with m+ 1 mutations.

5.2 CODEBASE

We provide an open codebase implementing ALPS at anonymous.4open.science/r/alps-95A3.
This codebase is rich with features that allow a wide range of experimentation with little effort. In
particular, choices such as the type of embedding, acquisition strategy, and prediction head are all
designed to be modular to allow easy isolated testing of different methodological components.

Embeddings A key best practice in active learning is to capitalise on unlabelled data by using
semi-supervised models, with a simple and generally applicable approach being to combine a fixed,
unsupervised-pretrained encoder with a trainable, supervised prediction head (Bickford Smith et al,
2024). To support this we provide code for computing protein embeddings using 22 different
pretrained encoders: 14 from the ESM family (Rives et al, 2021) and 8 from the ProtTrans family
(Elnaggar et al, 2022). We additionally provide precomputed embeddings produced using the most
advanced of these encoders, ESM3 (Hayes et al, 2025), for all of the ALPS problems. Notably
the outputs of these encoders live in continuous spaces, which means we can use general-purpose
prediction heads rather than models specialised to protein-property prediction.

Prediction heads We provide code for a range of models (and corresponding learning algorithms):
linear models; random forests; deterministic neural networks (with regularised maximum-likelihood
training); Bayesian neural networks (with Laplace approximation, mean-field variational inference
and Monte Carlo dropout); and Gaussian-process models (with variational inference).

Acquisition methods We implement 12 data-acquisition methods in the ALPS codebase. Six
use various measures of model uncertainty as a basis for acquisition: two fall within a Bayesian
formulation (Rainforth et al, 2024), namely EPIG (Bickford Smith et al, 2023; 2024) and BALD
(Houlsby et al, 2011), and the four others are predictive entropy (Settles & Craven, 2008), predictive
margin (Scheffer et al, 2001), variation ratio (Gal, 2016) and mean standard deviation (Kendall et al,
2015). Four methods are based on notions of input- or feature-space coverage—greedy k centres
(Sener & Savarese, 2018), k means (Pourahmadi et al, 2021), ProbCover (Yehuda et al, 2022) and
TypiClust (Hacohen et al, 2022)—as well as BADGE (Ash et al, 2020) and BAIT (Ash et al, 2021).
All uncertainty-based acquisition functions can be used for batch acquisition using the stochastic
approach introduced by Kirsch et al (2023): the acquisition function is used to compute a distribution
over batches of pool indices, then acquisition simply involves sampling from that distribution.

6 EXPERIMENTS

We now investigate how some popular active-learning methods deal with the ALPS problems. Given
the vast array of possible setups that could be tested, this investigation is inevitably not exhaustive; its
purpose is simply to demonstrate some of the insights that ALPS enables.

6.1 SETUP

Model We primarily use an ESM3 encoder combined with a random-forest prediction head—
random forests have supported effective data acquisition in past work (Bickford Smith et al, 2023;
2024; Kirsch, 2023; Kossen et al, 2021)—but also report some results with simpler biophysical
(Georgiev, 2009) and onehot encoders, as well as linear and neural-network prediction heads.
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Encoder Pred. head Acq. method NLL (250-500) NLL (500-1000) NLL (1000-2000) Acc. (250-500) Acc. (500-1000) Acc. (1000-2000)

ESM3 Linear model Entropy 0.067 0.065 0.056 0.984 0.987 0.991
Random 0.077 0.069 0.060 0.976 0.977 0.979
TypiClust 0.076 0.067 0.061 0.976 0.977 0.978

Neural network BALD 0.103 0.084 0.060 0.980 0.987 0.991
EPIG 0.104 0.086 0.052 0.983 0.987 0.992
Random 0.123 0.108 0.089 0.974 0.976 0.978
TypiClust 0.132 0.109 0.089 0.970 0.971 0.976

Random forest BALD 0.309 0.320 0.324 0.981 0.984 0.987
EPIG 0.104 0.111 0.114 0.980 0.982 0.985
Random 0.125 0.117 0.110 0.976 0.976 0.977
TypiClust 0.119 0.105 0.096 0.976 0.977 0.977

Georgiev Linear model Entropy 0.143 0.127 0.105 0.981 0.982 0.983
Random 0.106 0.096 0.079 0.974 0.974 0.976
TypiClust 0.114 0.113 0.105 0.975 0.974 0.974

Neural network BALD 0.118 0.075 0.054 0.981 0.986 0.991
EPIG 0.135 0.124 0.076 0.982 0.986 0.990
TypiClust 0.121 0.108 0.098 0.972 0.975 0.975

Random forest BALD 0.157 0.159 0.153 0.981 0.985 0.989
EPIG 0.100 0.093 0.085 0.981 0.985 0.989
Random 0.132 0.108 0.082 0.976 0.976 0.977
TypiClust 0.183 0.151 0.114 0.976 0.976 0.977

Onehot Linear model Entropy 0.152 0.129 0.107 0.980 0.981 0.981
Random 0.106 0.096 0.079 0.974 0.974 0.976
TypiClust 0.103 0.093 0.073 0.973 0.973 0.976

Neural network BALD 0.100 0.073 0.041 0.982 0.987 0.991
EPIG 0.129 0.108 0.065 0.982 0.985 0.990
TypiClust 0.134 0.113 0.084 0.975 0.976 0.978

Random forest BALD 0.162 0.153 0.139 0.980 0.984 0.990
EPIG 0.101 0.090 0.079 0.977 0.981 0.987
Random 0.207 0.211 0.142 0.976 0.976 0.976
TypiClust 0.208 0.210 0.138 0.976 0.976 0.976

Table 1 Our experiments focus on a particular model (ESM3 encoder with random-forest prediction head)
and information-theoretic data acquisition (BALD and EPIG), but we report extra results here and elsewhere
in Section 6 for additional context. Here we show test metrics for ALPS-Core-GB1 averaged over acquisition
steps, across 250-2000 labels in three step ranges. Bold indicates best performance for a particular step range,
underlined are not statistically significant compared to the best (by one-sided Welch’s t-test).

Data acquisition We focus our investigations on information-theoretic approaches to data acqui-
sition, namely BALD (Houlsby et al, 2011) and EPIG (Bickford Smith et al, 2023), given their
principled foundation and their success in recent work (Bickford Smith et al, 2023; 2024; Hübotter
et al, 2024; 2025; Melo et al, 2024; Osband et al, 2023), but also because we believe they highlight
a number of interesting behaviours. To provide additional context to our results, we also include
TypiClust (Hacohen et al, 2022), a coverage-based method, along with uniform-random acquisition.

Test metrics We measure performance using classification accuracy (higher is better) and expected
negative log likelihood (NLL; lower is better) on labelled test sets. These metrics correspond to
estimators of frequentist risk (Section 2) under different losses: one minus accuracy corresponds to a
zero-one loss on point predictions; NLL corresponds to a log loss on probabilistic predictions.

Active-learning loop We initialise the training dataset by uniform-randomly sampling two examples
from each class, then we run the loop described in Section 2 until the training-label budget is used up.
We run this whole process with each acquisition method at least five times with different random
seeds. We report test metrics (mean ± standard error) as a function of the size of the training dataset.

6.2 UNCURATED DATA HELPS STRESS-TEST DATA ACQUISITION

We start by focusing on the ALPS-Core problems, in which we want to learn about the whole space
of experimentally testable proteins and we can acquire a label for any protein in that space. While
these represent uncurated datasets, they still arguably represent less challenging problems than some
of those we consider later, as we do not need the active learning scheme to perform task adaptation,
with the pool already representing the target distribution for our evaluations.

Our results show BALD and EPIG notably differing across all five problems (Figure 2). Unlike in past
work (Bickford Smith et al, 2023; 2024), here we see BALD often outperforming EPIG in terms of
accuracy. Interestingly, though, this does not translate into lower NLL, where BALD performs poorly
and far worse than random. This likely represents a calibration issue: given the high accuracies often
achieved, it seems likely that BALD is often overconfident in some of its incorrect predictions. The
benefits of EPIG compared to random are also diminished when considering NLL instead of accuracy,
but not to the same catastrophic degree as BALD. The root cause of these calibration issues is not
immediately clear, but provides an interesting avenue for future investigation. One hypothesis is that
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Figure 2 Across the five ALPS-Core problems, the performance of information-theoretic data acquisition
differs substantially depending on the quantity being targeted. BALD, which targets information in the parameters
of the model being trained, consistently performs well in terms of classification accuracy but poorly as measured
by negative log likelihood (NLL). EPIG, which focuses on the model’s predictions, does not achieve such high
accuracy in most cases but is stronger in terms of NLL, although not always better than random acquisition.

it could be connected to the statistical bias that active learning introduces (Farquhar et al, 2021), with
the class ratio of actively acquired datapoints unlikely to match the original dataset.

A broader point is that success under one test metric need not translate to success under another: here
we see NLL would never lead us to favour BALD but accuracy would in most cases. This highlights
the need for care in choosing test metrics: neither accuracy nor NLL is “true” in an absolute sense;
they simply correspond to different underlying loss functions (Section 6.1).

6.3 SENSITIVITY TO CLASS IMBALANCE VARIES BETWEEN ACQUISITION METHODS
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Figure 3 The ALPS-Unbalanced problems demonstrate the effect of class imbalance on the performance of
BALD and EPIG acquisition. BALD performs worse than random in many cases, while EPIG fails in one case.

Next we turn to the ALPS-Unbalanced problems. Figure 3 shows the differences in performance
of EPIG and BALD relative to random as a function of the degree of class imbalance (ratio of class
0 to class 1). While there is not much of a clear trend in behaviour in terms of accuracy, we see a
significant drop off in BALD’s NLL performance for large imbalance ratios, whereas EPIG tends
to outperform random at large levels of imbalance. As in Section 6.2, this thus highlights potential
failure cases that have been underrepresented in previous active learning evaluations.

6.4 ACCOUNTING FOR THE TASK OF INTEREST IS KEY FOR HANDLING REDUNDANT INPUTS

Our next focus is the ALPS-Redundant-His3 problem, in which the unlabelled pool contains a large
number of redundant inputs that do not relate to the task of interest. The relative performance of EPIG
on this problem shows the value of an acquisition method that explicitly accounts for the predictive
task that we want to apply our model to (Figure 4). Even after acquiring 2,000 labels, BALD and
random acquisition, which do not use any notion of the input distribution we wish to make predictions
for, fail to reach the level of predictive performance that EPIG achieves after acquiring a handful of
labels. This example thus highlights the need for active learning, and careful selection of acquisition
strategies, in cases where significant task adaptation is required.
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Figure 4 The ALPS-Redundant-His3 problem demonstrates the need for data acquisition to be targeted
towards the task that we care about. EPIG acquisition, which is targeted in this way, enables fast convergence to
strong performance that BALD and random acquisition cannot match even after many label acquisitions.
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Figure 5 EPIG can successfully gather data relevant for predictions on inputs that cannot be labelled
(ALPS-Restricted-GRB2), but it can also fail (ALPS-Restricted-GB1 and ALPS-Restricted-TrpB), un-
derperforming random acquisition. Meanwhile BALD, lacking a notion of target inputs, tends to fail.

6.5 RESTRICTED ACQUISITION POSES A PARTICULARLY DIFFICULT CHALLENGE

Now we explore the particularly challenging ALPS-Restricted problems, which test the ability of
active-learning methods to gather data to support predictions on inputs for which we cannot acquire
labels directly due to limitations in the available labelling mechanism (e.g. some proteins might not
be synthesisable within a given lab). Figure 5 again shows catastrophic failures for BALD in terms of
NLL on all problems, with it now also failing to outperform random in terms of accuracy on two of
the three problems as well. Results for EPIG appear to be quite mixed, beating random in terms of
accuracy on two problems, but only in one case for NLL. It also shows an interesting behaviour in
NLL where the initial performance appears strong in all cases, but then later degrades in two of them,
with the NLL actually rising with increasing numbers of labels, albeit not to the extent seen by BALD.
This poor performance of EPIG is perhaps surprising—as EPIG is in theory set up to accommodate
these kind of transductive problems—and provides another interesting avenue for investigation.

6.6 STOCHASTIC BATCH ACQUISITION HAS MIXED EFFECTS ON PREDICTIVE PERFORMANCE

Next we investigate the effect of switching from acquiring one label at a time to acquiring batches
of labels. For this we return to ALPS-Core-GB1 and ALPS-Core-TrpB, and consider batch sizes of
16, 50 and 100. Batch acquisition is often dictated by the labelling mechanism at hand and can pose
methodological challenges (Kirsch et al, 2019), but the results in Figure 6 also show it can sometimes
have a protective effect against deficiencies in the acquisition function we use. In Figure 2 we saw that
BALD underperformed random acquisition in terms of NLL, and here we see that its shortfall reduces
at increasing batch sizes. This can be understood as a consequence of the stochastic-acquisition
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Figure 6 Acquiring data in bigger batches leads to worse accuracy for both BALD and EPIG, but also leads to
better NLL for BALD, suggesting improved calibration of the model’s predictive confidence.

scheme used (Kirsch et al, 2023): as the batch size increases, we get closer to acquiring uniformly at
random, which performs better than BALD-based single-label acquisition in these problems. Notably
this behaviour can also have an adverse effect on performance in cases where the acquisition function
is providing a good signal of data utility; the EPIG results in Figure 6 provide some evidence for this.

6.7 THE EFFECTIVENESS OF ACTIVE LEARNING DEPENDS ON THE MODEL BEING TRAINED

0 1000 2000
Number of labels

1.00

1.01

R
el

at
iv

e
m

ea
n

te
st

ac
c ALPS-Core-GB1

ESM3+RF+BALD

ESM3+RF+EPIG

Georgiev+RF+BALD

Georgiev+RF+EPIG

onehot+RF+BALD

onehot+RF+EPIG

0 1000 2000
Number of labels

ALPS-Core-GB1

ESM3+LR+entropy

Georgiev+LR+entropy

onehot+LR+entropy

0 1000 2000
Number of labels

1

2

3
R

el
at

iv
e

m
ea

n
te

st
N

L
L ALPS-Core-GB1

ESM3+RF+BALD

ESM3+RF+EPIG

Georgiev+RF+BALD

Georgiev+RF+EPIG

onehot+RF+BALD

onehot+RF+EPIG

0 1000 2000
Number of labels

ALPS-Core-GB1
ESM3+LR+entropy

Georgiev+LR+entropy

onehot+LR+entropy

Figure 7 The performance of an acquisition function (here we divide the test metric by the value achieved by
random acquisition) can vary significantly between model configurations.

Finally we shift our focus to the configuration of the model being trained through active learning.
So far we have used a combination of an ESM3 deep encoder and a random forest prediction
head. Recent work suggests that this should be a good default configuration (Bickford Smith et al,
2024), but also that models based on simpler biophysical (Georgiev, 2009) and onehot encoders can
perform competitively (Yang et al, 2025). We therefore return to ALPS-Core-GB1 to investigate
these alternative encoders, and also consider using a logistic-regression model instead of a random
forest for the prediction head (this linear model is not stochastic and cannot be used with BALD
and EPIG, so we use predictive entropy for that model instead). We find that a given acquisition
function can perform well for one model and poorly for another (Figure 7). This underlines the need
for evaluations to be conducted with the models that would be used in practical applications: we
cannot assume results for one model class will transfer to another.

7 CONCLUSION

We have argued that deficiencies in existing active-learning evaluations, particularly the use of curated
datasets as a starting point, can lead to a misrepresentation of methods’ performance. To help address
this, we have introduced ALPS, a set of new active-learning problems based on protein-property
prediction and designed to pose challenges we believe are important for real-world deployment of
active learning yet underrepresented in previous benchmarking. Our evaluations of some popular
active-learning methods on ALPS have already raised a number of interesting new potential issues
that future work might look to address, such as miscalibration of predictive uncertainty, sensitivity to
class imbalance and unreliable scaling with increasing acquisition batch size. We hope that ALPS
will not only provide a useful new testbed for active-learning researchers, but also inspire both more
careful consideration of real-world issues around how methods are evaluated—and provide a stepping
stone towards greater uptake of active learning in biochemistry.
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A DATASETS USED IN EXISTING ACTIVE-LEARNING EVALUATIONS

From all papers published at AISTATS, ICML, NeurIPS and UAI in the past 10 years, we selected
all papers with the word “active” in the title or abstract, giving an initial list of 441 papers. We then
stepped through a shuffled version of this paper list, annotating each paper according to six queries:

Q1. Is the paper on active learning, based on its abstract and keywords?

Q2. Is the paper on reinforcement learning, based on its title, abstract and keywords?

Q3. What computer-vision datasets, if any, are used in the empirical evaluation?

Q4. What natural-language-processing datasets, if any, are used in the empirical evaluation?

Q5. What synthetic datasets, if any, are used in the empirical evaluation?

Q6. What other datasets, if any, are used in the empirical evaluation?

Our stopping limit was either 200 papers or four hours of annotation time; we hit the latter first,
covering 103 papers within the time. We included all papers for which the answer to Q1 was “yes”
and the answer to Q2 was “no”.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B ADDITIONAL RELATED WORK

Active learning evaluations Active-learning methods are often assessed with established machine-
learning datasets that include modifications to their composition to highlight specific methodological
contributions, such as adding redundancies or class imbalances, or joining datasets (Bickford Smith
et al, 2023; Citovsky et al, 2021; Lüth et al, 2023). Benchmarks developed specifically for assessing
active-learning methods or assessing machine-learning models using active learning include Ac-
tiveGLAE (natural-language tasks for transformers; Rauch et al, 2023), CDALBench (combining
text, vision, and tabular data; Werner et al, 2024), computer-vision tasks (Ji et al, 2023), BenchPress
(code generation; Tsimpourlas et al, 2022) and Realistic-AL (Lüth et al, 2023). The last of these is
arguably the closest to our work: the authors identify five “pitfalls” when applying active learning in
the real world and compare their work against a number of existing efforts (Beck et al, 2021; Bengar
et al, 2021; Chan et al, 2021; Gao et al, 2020; Kim et al, 2021; Krishnan et al, 2021a; Mittal et al,
2019; Munjal et al, 2022; Yi et al, 2022; Zhan et al, 2022). However, whereas Realistic-AL focuses
its analysis on large, labelled computer-vision datasets (eg, CIFAR-10 and MIO-TCD)—as do the
studies they compare against—our ALPS problems shift the focus to the domain of protein-property
prediction. In this focus on a scientific application, our work aligns with that of Gorantla et al (2024),
who applied several active-learning methods to binding-affinity-prediction tasks.

Protein-property prediction Predicting the structure and the function of a protein from its sequence
is an important challenge in biochemistry, and its principled assessment (e.g., CASP; Kryshtafovych
et al, 2019) has facilitated significant progress by machine learning in the field (AlQuraishi, 2019;
Jumper et al, 2021; Evans et al, 2021; Abramson et al, 2024). Over recent years, benchmarking
property prediction has seen many efforts curating publicly available datasets and tasks (Dallago et al,
2021; Frazer et al, 2021; Kucera et al, 2024; Notin et al, 2023; Rao et al, 2019; Riesselman et al, 2018;
Xu et al, 2022). Notable property-prediction benchmarks include FLIP (Dallago et al, 2021), PEER
(Xu et al, 2022), ProteinGym (Notin et al, 2023) and ProteinShake (Kucera et al, 2024). These efforts
have generally been tailored to assess (static) machine-learning models’ predictive performance
(zero-shot predictions of mutation effects in clinical and deep-mutational-scanning assays). Thus,
none of the previous protein-property benchmarks have assessed active-learning methods for their
usability or elucidated algorithmic properties and shortfalls. The use of probabilistic models and
Bayesian-optimisation algorithms to optimise one or multiple protein properties has been considered
in (Romero et al, 2013; Stanton et al, 2022; Gruver et al, 2023; Khan et al, 2023). Finally, Yang
et al (2025) optimised protein properties using active learning (effectively performing batch Bayesian
optimisation) but did not focus on evaluation design in its own right.
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Identifier Validation-set cost Hyperparameter Modality Acquisition References
Realistic-AL ✓ ✓ image batch Lüth et al (2023)
ActiveGLAE ✓ ✓ text batch Rauch et al (2023)
LabelBench ✓ ✓ image batch Zhang et al (2024)
CDALBench ✓ ✓ text, image, tabular single,batch Werner et al (2024)
Reliable deep AL ✗ ✓ image batch Ji et al (2023)
BenchPress* ✗ ✗ code generation Tsimpourlas et al (2022)
DISTIL ✗ ✗ image batch Beck et al (2021)
Reducing label effort ✗ ✗ image batch Bengar et al (2021)
Marginal benefit of AL ✗ ✗ image Chan et al (2021)
Consistency-based semi-supervised AL ✗ ✗ image batch Gao et al (2020)
TA-VAAL ✗ (✓) image batch Kim et al (2021)
SCAL ✗ ✗ image batch Krishnan et al (2021b)
Parting with illusions ✗ ✗ image batch Mittal et al (2019)
Robust & reproducible AL ✓ ✓ image batch Munjal et al (2022)
PT4AL ✗ ✗ image single,batch Yi et al (2022)
DeepAL+ ✗ ✗ image batch Zhan et al (2022)
Revisiting AL, Vision Foundation No* No* image batch Gupte et al (2024)
BADGE ✗ ✓ image, openml batch Ash et al (2020)
Interplay of UM and deep AL ✓ ✓ image, synth batch Huseljic et al (2024)
Open-Set annotation, LfOSA ✗ ✗ image batch Ning et al (2022)
AL for imbalanced datasets Yes* ✓ image batch Aggarwal et al (2020)
Limitations of AL ✗ ✗ image, text batch Hu et al (2021)
optimal AL ✗ ✗ image, text batch Zhou et al (2021)
Benchmarking pool-based AL ✗ ✗ tabular, synth single, batch Zhan et al (2021)
Efficacy of deep AL for image ✗ ✗ image batch Li et al (2022)
Margin all you need? ✗ ✗ tabular batch Bahri et al (2022)
Ours ✓ ✓ biochemistry single,batch

Table 2 Comparison of related Active Learning benchmarks with emphasis on the inclusion of validation set
cost, hyperparameter-tuning, and covered modalities. Noteable exceptions: BenchPress is a code generation
framework and not strictly an AL benchmark. Special cases (marked with *) include (Gupte et al, 2024), which
acknowledge the issues but do not discuss solutions in their benchmark, and (Aggarwal et al, 2020), which
considers 10-fold cross-validation.
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C ALPS DETAILS

C.1 SOURCE DATA
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Figure 8 Overview of the label and property distributions for all source datasets that are the basis for the ALPS
problems. The number of mutations (as properties of the sequence) was used to curate the ALPS-Restricted
tasks, whereas the labels have been used to curate class balances for ALPS-Unbalanced. See Table 3 for
references and measured effects.

Dataset Effect of Interest Description (number sites mutated) (unique positions) N References License
GB1 Epistasis (indiv.) combinatorially complete binding (0-4) (4) 149,361 Wu et al (2016); Yang et al (2025) CC-BY 4.0 International
TrpB Epistasis (indiv.) combinatorially complete enzyme (0-4) (4) 159,129 Johnston et al (2024); Yang et al (2025) CC-BY 4.0 International
GRB2-SH3 Allostery (design) allosteric abundance+binding library, (0-20) (34) 71,233 Faure et al (2024) MIT
AAV2 Viability (design) engineered viral capsid (0-29) (varying lengths) 39,172 Dallago et al (2021); Bryant et al (2021) MIT
mKate2 Epistasis (general) bridging two genotypes (eqFP) (0-13) 8,192 Poelwijk et al (2019); Faure & Lehner (2024) CC-BY 4.0 International
His3 Epistasis (general) 12 WTs with high-order mutants (NA) 956,648 Pokusaeva et al (2019); Notin et al (2023) CC-BY 4.0 International

Table 3 ALPS source data overview, displaying investigated effect (from the original source), number of
samples in the data, and license. For AAV2, a subset of random mutagenesis deselecting model-dependent designs
was used.

C.2 PROBLEMS

Generally, we define a task in the ALPS benchmark based on the label set, or any property vector
which can be derived from the input sequence, see Figure 8. We specifically consider the Hamming
distance relative to the reference (wild-type) sequence. To further specify the task, we can curate the
label vector and the property vector by sub-selecting either or both. This allows us to easily add new
tasks if required, based on the label-set or input properties.

C.2.1 CORE TASK

A broad test bed for the label acquisition strategies is the datasets in their raw, uncurated form. These
datasets allow us to test the hypothesis whether active learning applies in uncurated, imbalanced
experiment settings. We consider 20% of all samples distinct from pool/training for testing, to reflect
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(a) Core task pool, test label-sets. Both label and input property distributions are the same between pool and
test sets.

(b) Unbalanced task pool, test label-sets. The label and input property distributions are the same between
pool and test sets.

(c) Restricted task pool, test label-sets. Both label and input property distributions change between pool
and test set.

(d) Redundant task pool, test label-sets. Input and label distributions are the same for pool and test set.

Figure 9 Overview of the label distributions. For each task and source data the input property mutation m
count as density (left) and likelihood of observing the positive label (right). Mutations for His3 have been taken
from the source set with respect to one reference sequence ("Scer").

standard AL setups. We also consider a fully uncurated setup, the pool set consists of all input-label
pairs available, and the task is to predict the labels on the complete dataset Appendix D.1. For this
specific case, Xpool = Xtest and any input, label pair, which we acquire from the pool is present in
the test set; translating into Xtrain ⊂ Xtest. This task (in either configuration) does not apply to His3,
since binarization requires considerable post-processing steps, which can be found in the original
reference Pokusaeva et al (2019).

C.2.2 UNBALANCED TASK

We investigate whether a change in threshold affects algorithm performance, apart from the reference
inputs used to measure improvement against, initially motivated by protein engineering practices. Our
task follows the previously described uncurated, imbalanced (Core) setup where Xtrain ⊆ Xpool =
Xtest. To obtain varying degrees of label imbalance, we compute five constant threshold values
equidistant between the median label and previous (WT) reference values Figure 9b. We do so by
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Task
Source

AAV2 GB1 GRB2-SH3 mKate2 His3 TrpB

transform

uncurate binarize (ref.) Core Core Core Core see Pokusaeva et al (2019) Core
imbalance binarize (const.) Unbalanced Unbalanced Unbalanced Unbalanced – Unbalanced
constraint/transfer subselect property Restricted Restricted Restricted Restricted – Restricted
redundancies binarize & assign UNK – – – – Redundant –

Table 4 Overview of the problems and what task they are addressing (index), what transformation is applied
to the source labels (columns) to obtain the problem (cells). We report results for individual problems (black)
and if task definitions apply (in general) and can be derived with the provided code-base they are indicated in
gray. For example, it is possible to define Restricted task(s) for any input sequence if there are more than two
distinct set of mutations with enough samples to account for the acquisition budget. However, not all distinct
sets of mutations with which a restricted task can be defined present plausible (practical) scenarios. Across all
tasks His3 presents an exception, as the unprocessed measurements cannot be used for the Core task, and due
to the nature of the source data has to be treated with care Pokusaeva et al (2019), see Appendix C.2.4.

discretizing with constant values, for TrpB specifically t ∈ [−4,−3.5,−3,−2.75,−2.5] in log y
labels (see alps/config/compute_protein_task/data/trpb.yaml).

- labels: binary_const
const_val: -4

C.2.3 RESTRICTED TASK

We split the dataset into a disjoint pool- and test-set, to test whether active label acquisition is
beneficial when an out-of-domain test/target set is given. The objective is to predict labels from
inputs with k number of mutations relative to the reference. Given Hamming distance HD of the
string inputs x, let Xtest = {x ∈ X | HD(x, xref) = k} and Xpool = {x ∈ X | HD(x, xref) < k}.
The pool from which training labels are acquired has < k mutations. The test set with which we
assess performance has k mutations. This subsequently yields different label distributions between
pool and test Figure 9c. To obtain the run configurations via the described experimental specifications,
we set the GB1,TrpB tasks like so

- labels: binary_wt
curated: True
subset_by: k_mutations
subset_classes:
- [0, 1, 2, 3]
- [4]

This task reflects an experimental measurement campaign, where over multiple rounds more mutations
are introduced to the inputs and a proposal model is used to predict the next set of variants, describing
a transfer learning setting of the predictive models. Alternatively, this task can be formulated
by selecting other label or inputs sets, for example discretizing labels into multiple quantiles and
assigning pool and test to different quantile classes.
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C.2.4 REDUNDANT TASK

The task we specify encompasses a Xpool of largely uninformative labels and a labelled (zero-one)
minority set. The setting under which labels have been obtained (His3) reflects redundancy in the
pool due to multiple references when measuring observations. Specifically, labels have been obtained
for different experimental setups (libraries). Therefore, discretizing with respect to one reference
becomes impossible across all data in the source set. Given that inputs in His3 are associated with
multiple wild-types, measured under different experimental conditions, we binarize one library
with one reference input (the one it has been compiled with) and assign a third class to all other
observations (the remaining 11 libraries). We refer to this third class as "neither" in the manuscript.
Our pool consists of ≈ 86.8% uninformative (third class) samples, and the labeled classes are
≈ 12.4% negative and ≈ 0.7% positive labels. The starting training pool contains two labels for
each of the three classes. The pool contains all three classes, while test contains two classes only.
To replicate the experiment setup within the benchmark suite requires to first discretize with three
classes, and then to subselect the test classes of interest.
See alps/config/compute_protein_tasks/data/his3.yaml which targets
alps/src/data/tasks/pg.py. To obtain the run configurations via the experimental
specifications, we use

- data_item:
id: HIS3-ALL
wildtype_sequence: EALGAVRGVKRFGSGFAPLDEALSRAVVDL
positions: []
data_dir: ${directories.data}/his/S_all_scaled_info_v2.csv

curated: True
subset_by: labels
labels: ternary_wt
subset_classes:
- [0, 1, 2]
- [0, 1]

target_id: HIS3-S1

C.2.5 BATCHED TASK

The underlying tasks are the Core (uncurated) setups, see Appendix C.2.1, however the acquisition
algorithms are run with batch_size>1 (as specified).

C.3 ENCODINGS

Figure 10 Encoding of the protein sequence inputs. We encode a reference sequence, consisting of single-letter
amino acid codes, into a continuous vector of fixed length. Pretrained encoder models take the full sequence
length (for all datasets) and encode it to the model’s number of dimensions, see Table 5. The onehot and
georgiev encodings can be limited to encode only the mutated positions (GB1,TrpB), segments including
mutations (mKate2,His3), and full-length sequences (GRB2-SH3,AAV2).

The inputs are string sequences (amino acid sequences) either as the residues of the mutated positions
(GB1,TrpB) or the sequence of complete length (GRB2,AAV2,His3), which we encode to a real-
valued matrix. To select the best performing protein language model (PLM) we evaluate a set of 22
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PLMs available through huggingface, Table 5. As simple baselines, we consider simple onehot and
georgiev encodings of the amino acid sequences Georgiev (2009).

Name #dimensions #layers #params Memory Dataset Reference

esm1_t6_43M_UR50S 768 6 43M 0.17GB Uniref50/S 2018_0 Rives et al (2021)
esm1_t12_85M_UR50S 768 12 85M 0.34GB Uniref50/S 2018_0 Rives et al (2021)
esm1_t34_670M_UR50D 1280 34 670M 2.7GB Uniref50/D 2018_0 Rives et al (2021)
esm1_t34_670M_UR50S 1280 34 670M 2.7GB Uniref50/S 2018_0 Rives et al (2021)
esm1_t34_670M_UR100 1280 34 670M 2.7GB Uniref100 2018_0 Rives et al (2021)
esm1b_t33_650M_UR50S 1280 33 650M 2.6GB Uniref50/S 2018_0 Rives et al (2021)
esm1v_t33_650M_UR90S_[1-5] 1280 33 650M 2.6GB Uniref90/S 2020_0 Meier et al (2021)
esm2_t6_8M_UR50D 320 6 8M 0.03GB Uniref50/D 2021_0 Lin et al (2023)
esm2_t12_35M_UR50D 480 12 35M 0.14GB Uniref50/D 2021_0 Lin et al (2023)
esm2_t30_150M_UR50D 640 30 150M 0.6GB Uniref50/D 2021_0 Lin et al (2023)
esm2_t33_650M_UR50D 1280 33 650M 2.6GB Uniref50/D 2021_0 Lin et al (2023)
esm2_t36_3B_UR50D 2560 36 3B 12GB Uniref50/D 2021_0 Lin et al (2023)
esm2_t48_15B_UR50D 5120 48 15B 60GB Uniref50/D 2021_0 Lin et al (2023)
esm3_sm_open_v1 1536 48 1.4B 5.6GB custom Hayes et al (2025)

prot_albert 4096 12 224M 0.9GB Uniref100 Elnaggar et al (2022)
prot_bert 1024 30 420M 1.7GB Uniref100 Elnaggar et al (2022)
prot_bert_bfd 1024 30 420M 1.7GB BFD100 Elnaggar et al (2022)
prot_xlnet 1024 30 409M 1.6GB Uniref100 Elnaggar et al (2022)
prot_t5_xl_uniref50 1024 24 3B 12GB Uniref50 Elnaggar et al (2022)
prot_t5_xl_bfd 1024 24 3B 12GB BFD100 Elnaggar et al (2022)
prot_t5_xxl_uniref50 1024 24 11B 44GB Uniref50 Elnaggar et al (2022)
prot_t5_xxl_bfd 1024 24 11B 44GB BFD100 Elnaggar et al (2022)

Table 5 Overview of all pretrained encoders available in ALPS.

C.4 LABEL PREPROCESSING

Binary classification Given a reference threshold, listed WT reference sequence value (unless
indicated otherwise), we assign positive classes if function values are equal or greater than that
reference value.
Exact specifications for reference sequence wildtype_sequence (in sets of sequences seq_id) and
labels (label_id) can be found in the respective alps/config/compute_protein_tasks/data/
{aav,allo,eqfp,gb1,grb2,his3,trpb}.yaml . The WT reference binary classification is
labels: binary_wt.
Binary classes can also be assigned by constant values, see labels: binary_const, which has
been applied to compute ALPS-Unbalanced.

C.5 METRICS

Accuracy Given N input-label pairs, (xi
∗, y

i
∗)

N
i=1, we compute

accuracy :=
1

N

N∑
i=1

I(argmax
y′
∗

pϕ(y
′
∗|xi

∗) = yi∗). (1)

Expected negative log likelihood We compute

NLL := − 1

N

N∑
i=1

log pϕ(y
′
∗ = yi∗|xi

∗). (2)

F1 score We compute the F1 score from the true positive count (TP) and false positive count (FP)
as

f1 :=
2TP

(2TP + FP + FN)
. (3)

AUROC We use the Scikit-learn (Pedregosa et al, 2011) implementation to calculate AUROC
(macro (unweighted) aggregate with McClish correction). For the binary-label case, we compute
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ROC-AUC :=
1

2

(
1 +

AUC(FPR,TPR)− 1
2 max(FPR)2

max(FPR)− 1
2 max(FPR)2

)
. (4)

C.6 ALGORITHMS

C.6.1 PREDICTION HEADS

Logistic regression is as implemented in scikit-learn (sklearn.linear_model.LogisticRegression)
(max_iter=10000) with l2 penalty, optimized regularization parameter C, given a validation sample.
For each model fit, we determine the optimal regularizer ∈ [0.001, 0.01, 1, 100, 1000] as minimizing
LNLL on the validation set.

Random forest is as implemented in scikit-learn (sklearn.ensemble.RandomForestClassifier)
with default parameters (n_estimators=100 using the gini criterion).

Neural network with MC dropout implemented in PyTorch, three layer fully connected ar-
chitecture (sizes 128, 128, 128) with dropout-rate of 0.1 (10%), following Gal & Ghahramani
(2016) https://github.com/yaringal/DropoutUncertaintyExps. Training is done minimiz-
ing LNLL loss (unless stated otherwise) with early stopping (patience is 5.000 steps) on a validation
set (size 1.000 samples). Optimizer is (PyTorch’s) SGD optimizer with learning-rate γ = 0.01 and
weight decay λ = 0.0001 Paszke et al (2019).

C.6.2 ACQUISITION

EPIG as implemented in Bickford Smith et al (2023) (available at https://github.com/
fbickfordsmith/epig under MIT license) with n_target_samples=100 without nested MC
computed from scores in batches of 1000.

BALD as implemented in Kirsch et al (2019) (available at https://github.com/BlackHC/
batchbald_redux/ under Apache-2.0 license) computing scores in batches of 1000.

Random Random acquisition is numpy (v1.26.0) random (Generator) choice (without replace-
ment) with size=batch_size.

TypiClust follows the implementation in Hacohen et al (2022) as provided in the repository
(https://github.com/avihu111/TypiClust/) (MIT license) with n_neighbors=20. A batch
size of 50 is used, unless stated otherwise.

BADGE follows the implementation in Ash et al (2020) from the repository (https://github.
com/JordanAsh/badge/) and is applied to neural network predictors with MC-dropout, unless
indicated otherwise. Due to run-time of the underlying models a batch-size of 50 is used, unless
indicated otherwise.

BAIT follows the implementation in Ash et al (2021) and is used with neural network prediction
heads and a batch-size of 50, unless indicated otherwise.
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D ADDITIONAL RESULTS

D.1 POOL EQUAL TO TEST
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Figure 11 Core task performance with test-set as all samples (including training). Generally, we find an
increase in test performance for all acquisitions BALD, EPIG, and random (cf. Fig 1) and a decreased standard
error across seeds (7 seeds reported). The order of performance stays the same, i.e. BALD outperforming EPIG
in 4 out of 5 core tasks, and EPIG outperforming BALD on all Core tasks for the expected NLL loss.

D.2 ADDITIONAL CLASSIFIER

We include a fully connected neural network (three layers) with MC dropout (rate 10%) Gal &
Ghahramani (2016) as a deep learning classifier. As this significantly increases the compute time per
step, we set the batch size to 50 and report results on two core datasets GB1,TrpB.
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Figure 12 Performance of the neural network (NN) model with MC dropout (ESM3 encoding) on two Core
tasks (GB1,TrpB) using batch acquisition (BALD, EPIG, TypiClust) in batches of 50 (8 seeds). Compared to the
random forest (RF) performance on the same datasets, we ultimately observe very high accuracy and comparable
NLL values. However, with a NN, both BALD and EPIG require more labels to obtain the same performance,
i.e. up to 400 labels the test accuracy is below 90, which is significantly lower than for ESM3+RF on the same
pool and test set also using batch acquisition Figure 13.
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Figure 13 Performance of random forest prediction (ESM3 encoding) using batched acquisition (BALD,
EPIG) with batch-size 50 (8 seeds).
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Figure 14 Relative performance over random (ratio) comparing neural network prediction head with MC
dropout against random-forest regressor on ESM3 on one Core task (GB1) using batched acquisition (BALD,
EPIG, TypiClust) with batch-size 50 (8 seeds).

D.3 F1-SCORE METRIC

Core tasks presented with the F1-score metric.
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Figure 15 Performance (F1 score on the test set) of a random-forest classifier on ESM3 over number of
acquired labels (x-axis). We observe higher test performance of active acquisition (EPIG, BALD) over random
(light green) except for curated set (mKate2).
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Figure 16 Performance (mean F1 score on test computed over all acquired samples with std.err.) over different
imbalance ratios (x-axis) (zero to one proportion) obtained from varying threshold discretization (six seeds).
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Figure 18 Test performance (F1 score) on two-class test set, with three class pool/training set. Prediction-
oriented active learning shows significant gains over random acquisition.
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Figure 17 Performance (test F1 score) with ESM3 encoded inputs for training on pool distinct from the test
set on seven seeds. sTraining inputs are up to HD = (k − 1) from a reference, and test/target set is HD = k,
with k = 4 for GB1, TrpB, and k = 16 for GRB2-SH3.
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Figure 19 Expected performance (empirical mean F1 score across steps, with standard error across 8 seeds)
over different batch-sizes (x-axis).
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Figure 20 Test performance (F1 score) relative to random performance (ratio) for all models (three encoders
with two classifiers) over number of acquired samples.
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Figure 21 Test performance (F1 score) for all models (three encodings with two classifiers) over number of
acquired samples.
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D.4 AUROC METRIC

All experimental results presented with the AUROC metric.
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Figure 22 Performance (AUROC) of a random-forest classifier on ESM3 on the test set over number of
acquisitions. We observe higher test performance of active acquisition (EPIG) over random (light green) except
for AAV2 (8 seeds).
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Figure 23 Performance of test AUROC (random-forest on ESM3, mean over run with std.err.) given different
imbalance-ratios (zero-to-one) by varying threshold discretization (six seeds).
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Figure 24 Performance (AUROC) with random-forest on ESM3 encoded inputs for training on pool distinct
from the test set. Training inputs are up to HD = (k− 1) from a reference, and test/target set is HD = k, with
k = 4 for GB1, TrpB, and k = 16 for GRB2-SH3 (8 seeds).
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Figure 25 Expected performance (empirical mean over test metric across steps, with standard error (8 seeds)
over different batch-sizes.
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Figure 26 Relative performance (test AUROC to random ratio) for all models (three encoders with two
classifiers) over the number of acquired samples.
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Figure 27 Test performance (AUROC) for all models (three encoders with two classifiers) over the number of
acquired samples.
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D.5 BADGE AND BAIT
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Figure 28 Test accuracy of BADGE and BAIT relative to TypiClust on the ALPS-Core problems.
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Figure 29 Test expected NLL of BADGE and BAIT relative to TypiClust on the ALPS-Core problems.
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D.6 RUN TIMES

Dataset Prediction head Method Median Minimum Maximum

AAV Random forest BALD 10 10 10
EPIG 8 6 12
TypiClust 231 226 279
Random 5 4 7

Neural network BADGE 86 77 104
BAIT 75 67 89
TypiClust 304 298 352
Random 70 62 94

GB1 Random forest BALD 21 15 32
EPIG 30 19 30
TypiClust 263 166 265
Random 7 7 7

Neural network BADGE 123 107 3519
BAIT 117 112 487
TypiClust 354 252 356
Random 115 94 127

GRB2 Random forest BALD 15 8 18
EPIG 15 10 19
TypiClust 242 168 248
Random 8 7 9

Neural network BADGE 85 81 106
BAIT 84 81 102
TypiClust 312 243 318
Random 87 74 95

TrpB Random forest BALD 16 15 28
EPIG 21 16 28
TypiClust 263 170 345
Random 6 5 10

Neural network BADGE 137 112 2954
BAIT 132 115 1091
TypiClust 361 316 467
Random 134 115 151

mKate2 Random forest BALD 5 5 6
EPIG 5 4 6
TypiClust 117 75 119
Random 4 4 6

Neural network BADGE 78 72 97
BAIT 65 62 80
TypiClust 164 134 171
Random 76 72 81

Table 6 Per-step (acquisition plus training) run times (in seconds) on the ALPS-Core problems.
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D.7 PLOTS WITH FULL VERTICAL-AXIS RANGES

Some of the active-learning plots in Section 6 use vertical axes with reduced ranges so that the gaps
between curves are easier to see. Here we present corresponding plots with full ranges.
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Figure 30 Figure 2 with full vertical-axis ranges.
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Figure 31 Figure 4 with full vertical-axis ranges.
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Figure 32 Figure 5 with full vertical-axis ranges.
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Figure 33 Figure 7 with full vertical-axis ranges.
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E LABEL NOISE

Here we provide some information regarding label noise in the ALPS problems, drawing from the
papers introducing the original experimental datasets that we use to construct ALPS. We recommend
referring to the full papers to better contextualise the content we quote.

AAV2 Bryant et al (2021) noted label noise “caused by low plasmid counts for specific variants”;
discussed dealing with the noise by filtering based on plasmid count and by binarising measurements;
and reported high correlations between experimental replicates (their Supplementary Figure 2).

GB1 Wu et al (2016) noted label noise for “10,639 missing variants (i.e. 6.6% of the sequence
space) that had fewer than 10 sequencing read counts in the input library”; discussed dealing with the
noise by filtering based on read count and imputing missing labels; and reported “high reproducibility
in the data” and “fitness measurements. . . highly consistent with our previous study”.

GRB2 Faure et al (2024) said they “obtained triplicate abundance measurements for 129,320 variants,
which is 0.0007% of the sequence space” and the “measurements were highly reproducible”.

His3 Pokusaeva et al (2019) said they “measured fitness for a total of 4,018,105 genotypes (875,151
unique amino acid sequences) with high accuracy” while noting that “For one segment, 9, the accuracy
of our experiment was low”; they supported their judgements with an “accuracy analysis”.

mKate2 Poelwijk et al (2019) used sequence barcoding and a Poisson noise model to “correct
for mis-sorting events and unobserved spurious mutations that can introduce errors in assigning
phenotypes”, leading to “removal of 2% of counts, after which final enrichments were calculated”.

TrpB Johnston et al (2024) reported that their “fitness values of overlapping subsets of the 3- and
4- site libraries were highly correlated” and that “Analysis of the nearly one million unique codon
combinations sampled showed that synonymous mutations had minimal impact on fitness”, indicating
their measurements of protein fitness had a good level of internal consistency.
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