
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMPROVING ACTIVE-LEARNING EVALUATION, WITH
APPLICATIONS TO PROTEIN-PROPERTY PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We highlight that current evaluations of active-learning methods often fail to reflect
important aspects of real-world applications, giving an incomplete picture of how
methods can behave in practice. Most notably, evaluation problems are commonly
constructed from heavily curated datasets, limiting their ability to rigorously stress-
test data acquisition: even the worst acquirable data in these datasets is often
reasonably useful with respect to the task at hand. To address this we introduce
Active Learning on Protein Sequences (ALPS), a set of problems constructed to test
key challenges that active-learning methods need to handle in real-world settings.
We use ALPS to assess a number of previously successful methods, revealing a
number of interesting behaviours and methodological issues. The ALPS codebase
serves to support straightforward extensions of our evaluations in future work.

1 INTRODUCTION

Active learning involves seeking the best data for training a model; typically this means adaptively
choosing inputs to acquire labels for (Atlas et al, 1989; Settles, 2012). Empirical evaluations have
helped show the benefit of intelligent data acquisition, with several successful demonstrations in
recent years (Bickford Smith et al, 2023; 2024; Hübotter et al, 2024; 2025; Melo et al, 2024; Osband
et al, 2023). But we argue that existing evaluations often fail to reflect key challenges in practical
applications, limiting our ability to gauge how methods will really perform beyond academic studies.

The principal issue we highlight is the use of heavily curated datasets in the construction of active-
learning problems. It is common for example to use standard academic datasets from computer vision
(Bengar et al, 2021; Chan et al, 2021; Lüth et al, 2023; Mittal et al, 2019; 2023; Siméoni et al, 2020)
and natural-language processing (Ein-Dor et al, 2020; Maekawa et al, 2022; Margatina et al, 2022;
Seo et al, 2022; Yuan et al, 2020), with typical curation steps including ensuring a roughly equal
number of examples per class and removing unrepresentative examples. By using these curated data
sources in place of the messy ones often used in the real world, existing evaluations give us a false
sense of the active-learning methods we are assessing. If all acquirable data has already been filtered
to be at least moderately useful for the task at hand, there is an artificial limit on how badly any
method can perform, harming our ability to detect weaknesses in methods. On top of this, even if
evaluations emphasise the cost of acquiring labels, they crucially hide the cost of implicit curation
steps, leading us to overestimate the real-world performance achievable for a given cost.

We therefore believe there is a critical need to complement existing active-learning problems with new
ones that reflect underrepresented challenges. We suggest a promising context within which to design
new problems is protein-property prediction, namely the task of mapping from a protein’s sequence
of amino acids to some measure of its behaviour (Lesk, 2019). One reason for this is the scope for
concrete impact: better protein-property prediction could enable advances in practical pursuits like
protein engineering as well as foundational research in biology (Notin et al, 2023; 2024). Another is
that labelling protein sequences usually requires costly lab experiments, meaning there is much less
labelled data available than in domains like computer vision and natural-language processing, and
there is an ongoing pressing need for acquiring informative new labels. Meanwhile the labelled data
that is currently available, thanks to past investments in experimental data-gathering (Bryant et al,
2021; Faure et al, 2022; 2024; Johnston et al, 2024; Poelwijk et al, 2019; Pokusaeva et al, 2019; Wu
et al, 2016), is sufficient to construct useful problems for foundational methods development. We
thus have a basis for iteratively working towards larger quantities of high-quality labelled data.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Capitalising on this opportunity, we introduce Active Learning on Protein Sequences (ALPS), a set of
problems derived from existing protein datasets. In five core problems we do as little as possible to
constrain the data that can be acquired, with two of the problems having near-exhaustive coverage
of a region of the input space. Nine additional problems extend from these core problems to pose
further challenges for active-learning methods, including working with skewed label distributions,
acquiring data under experimental restrictions, and dealing with large quantities of redundant inputs.

Putting ALPS to use, we experimentally investigate the performance of a number of active-learning
methods that have seen success in existing evaluations. We find that ALPS reveals failure cases in
these methods that have been underrepresented in past work, including miscalibration of predictive
uncertainty, sensitivity to class imbalance, and unreliable scaling with increasing acquisition batch
size. Given this, our work brings to light not only key issues in the design of active-learning
evaluations but also priorities for future method development, with a particular need for more
robust data acquisition. To accelerate progress along these lines, we provide an open codebase
(anonymous.4open.science/r/alps-95A3) designed for flexible experimentation.

2 EVALUATING ACTIVE LEARNING

Our aim in this work is to improve the way we evaluate active-learning methods. We begin by
establishing a clear sense of our brief as evaluators, with a focus on expected downstream utility.

Setup Active learning can be broadly defined as the process of training a predictive model on data
acquired by an adaptive policy, whose decisions depend on the model being trained (Atlas et al, 1989;
MacKay, 1992). These decisions can take many forms, including choosing state transitions to observe
in an environment (Mehta et al, 2022) or a subset of examples from a labelled dataset (Mindermann
et al, 2022), but the most commonly studied setting—and the one we focus on here—is choosing
unlabelled inputs to acquire labels for (Settles, 2012). Specifically we consider pool-based active
learning (Lewis & Gale, 1994) of a model, pϕ(y|x), that maps inputs x ∈ X to labels y ∈ Y: we
have access to a pool of n unlabelled inputs, Xpool ⊆ X , but we can only afford to acquire m < n
labels due to the cost of labeling, which we assume follows some distribution y ∼ ptrain(y|x).
Pool-based active learning is typically broken down into a sequence of steps, t ∈ (1, 2, . . . , T), where
each step comprises three substeps. First, the data-acquisition algorithm selects a batch of b query
inputs, xt = (xt,i)

b
i=1, where xt,i ∈ Xpool, often by maximising an acquisition function that estimates

some notion of data utility. Second, the algorithm obtains labels, yt, where yt,i ∼ ptrain(yt,i|xt,i),
and adds (xt,yt) to the training dataset, Dtrain. Third, the model, pϕ(y|x), is updated on Dtrain.

Goal Evaluating active-learning methods requires a clear sense of what we want to achieve with
them. A technically precise way to describe this is in terms of downstream utility or loss (von Neu-
mann & Morgenstern, 1947). In machine learning we often evaluate trained predictive models, fn =
f(·;x1:n, y1:n), using a form of frequentist risk (Berger, 1985), R = Epeval(x∗,y∗)[ℓ(x∗, y∗, fn(x∗))],
where peval denotes a reference system used as a source of ground truth and ℓ denotes a loss function.
Standard evaluation metrics can be understood as estimators of the risk for particular choices of loss
function (e.g. the misclassification rate arises from the zero-one loss). Reduced risk is therefore a
concrete and well-established notion of what we could gain from intelligent data acquisition.

Problem design As well as making it clear what we should measure in evaluations, writing down
this formal goal highlights the many factors that control the dependence between an active-learning
method and its performance, factors that we need to consider when designing problems. Among
these are the predictive task, X ×Y ; the loss, ℓ; the pool, Xpool; the label source, ptrain; the reference
system, peval; the machine-learning method, f ; and the costs and budgets for compute and labels.

3 SHORTFALLS IN EXISTING EVALUATIONS

Next we discuss how existing active-learning problems do not allow us to fulfil our brief as evaluators.
In particular we highlight issues that arise from using curated data and neglecting task adaptation.

Using curated data A striking pattern across the literature is the use of standard academic datasets
as a basis for constructing active-learning problems. We estimate (Appendix A) that 37% of recent
active-learning evaluations use standard vision datasets (e.g. Caltech101, CIFAR-10, ImageNet,

2

https://anonymous.4open.science/r/alps-95A3

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

CIF
AR-1

0

M
N

IS
T

CIF
AR-1

00

FM
N

IS
T

SVH
N

Cite
See

r

CO
RA

Reu
te

rs

PubM
ed

Coauth
or CS

All
U

CI
0

5

10

15

20

P
er

ce
n

ta
g

e
o

f
p

a
p

er
s

(%
)

Figure 1 Current evaluations of active
learning rely heavily on standard vision, text
and UCI datasets. Percentages here were es-
timated by taking recent papers from AIS-
TATS, ICML, NeurIPS and UAI, filtering
by active-learning keywords, randomly sub-
sampling, manually discarding false positives
(giving 81 papers), then listing the datasets
used in empirical evaluations.

MNIST), 9% use standard text datasets (e.g. 20 News-
groups, CiteSeer, CORA, PubMed, Reuters), and 9% use
standard UCI (Dua & Graff, 2017) datasets (e.g. Adult,
Ionosphere, Iris, Wine). These datasets are often heavily
preprocessed to allow easier model training, for exam-
ple by ensuring a roughly equal number of examples
per class and filtering out examples considered unrep-
resentative, irrelevant, or ambiguous (Aitchison, 2021;
Krizhevsky, 2009; Russakovsky et al, 2014).

This represents a major shortfall in existing evaluations.
If all the acquirable data has already been vetted for
quality, then the difference between the best data and
the worst data is small, limiting our ability to properly
stress-test methods and leading us to overestimate pos-
sible real-world performance. For example, while BALD
(Houlsby et al, 2011) has been shown to target obscure
data (Bickford Smith et al, 2023), with potentially disas-
trous consequences for working with the uncurated data
pools often encountered in practice (Ardila et al, 2020;
Mahajan et al, 2018; Raffel et al, 2020), this failure mode
is masked in evaluations based on curated data.

A top priority for new evaluations is therefore to use less heavily curated data. One way this might
manifest is through the unlabelled pool: rather than only containing inputs that are likely to lead to
useful labels (with respect to model performance), we should consider messier pools that include
inputs that are unlikely to be useful, perhaps even comprising all inputs that could be labelled.

Neglecting task adaptation Another key shortfall in current evaluations is failing to assess methods’
abilities to adapt learning towards a particular task. In real-world applications we cannot expect our
pool of unlabelled data to be tailored to the task of interest. For instance, we might want to predict
whether a protein has a desired level of binding affinity with a target molecule, but the proportion of
proteins in our pool that achieve this level might be very small and dependent on which molecule
we are targeting. Yet existing evaluations tend to have a straightforward relationship between the
active-learning problem and the source dataset from which it is constructed, such that all inputs relate
to the task of interest, for example by exclusively belonging to the classes that occur at test time.

Given that a key motivation for active learning is the need to enhance a model for a particular task
(Baumann et al, 2024; Bickford Smith et al, 2023; Hübotter et al, 2024; 2025; Osband et al, 2023;
Tamkin et al, 2022), this common failure to consider task adaptation in evaluations is problematic.
Like the use of curated data, it hinders our ability to rigorously test active-learning methods. A
method with no notion of the task of interest is suboptimal in the general case, but the extent to which
that manifests in evaluations will be limited if all acquirable data is relevant to the task at hand.

An additional requirement for new evaluations should therefore be to test how well active-learning
methods can be tailored towards different tasks. Out of the many ways to implement this, perhaps the
simplest is to use unlabelled pools within which not all inputs directly relate to the task of interest.

4 PROTEIN-PROPERTY PREDICTION

With a sense of the challenges we want to reflect in our evaluations, we turn to the question of how
to implement them. We argue that the domain of protein-property prediction provides a compelling
setting for this, due to its potential applied impact and the protein data at our disposal.

Task In protein-property prediction we take as input a sequence, x ∈ AL, where A is a set of amino
acids and L denotes length, and produce as output a prediction of a property (or property vector),
y ∈ Y , that describes the protein’s behaviour in a system (Lesk, 2019). Properties we might want to
predict include the protein’s solubility, its stability under changing conditions (e.g. temperature), or
its binding affinity with a target of interest (e.g. a small molecule). Prediction of y ∈ R is sometimes
reframed as classification by splitting the real line into bins: we can for example use a single threshold,
such as the property value of a reference protein, to produce binary classification (Notin et al, 2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Applications Protein-property prediction can unlock great value both in direct practical applications
and in foundational research (Notin et al, 2023; 2024). In protein engineering (e.g. in the context of
drug design), predictions can be used within optimisation objectives or constraints (Yang et al, 2018),
perhaps to ensure any chosen protein satisfies a particular solubility requirement. In basic research,
predictions can be used to characterise phenomena like epistasis (Olson et al, 2014), where changes
at multiple locations in a protein sequence have an interacting effect on the protein’s behaviour.

Data Recent years have seen significant efforts to experimentally characterise protein behaviour,
yielding a notable increase in the amount of available data (Chevalier et al, 2017; Tsuboyama et al,
2023). Commonly a reference protein (often a naturally occurring “wild-type” protein) and a number
of variant proteins (with amino-acid sequences mutated from that of the reference protein) are
synthesised and observed in some system, leading to a behaviour measurement for each of the
proteins (Faure et al, 2024; Fowler & Fields, 2014; Kinney & McCandlish, 2019).

This source of data has four characteristics that are particularly relevant to our work. First, labels
are expensive (Wittmann et al, 2022), justifying the use of careful data acquisition. Second, while
there is now sufficient data available to construct interesting active-learning problems, there is still a
pressing need for more data, and the space of possible new data is so vast that data-gathering needs to
be targeted (e.g. with respect to promising candidates in protein design). Third, experimental datasets
are typically not curated to the same extent as those often used in foundational machine-learning
research (Wu et al, 2016; Johnston et al, 2024; Bryant et al, 2021; Notin et al, 2023; Pokusaeva et al,
2019). Fourth, labels are typically acquired in parallel; labelling proteins in batches of 96 is common,
for example (Johnston et al, 2024; Pokusaeva et al, 2019; Yang et al, 2025).

We identify six existing datasets that we believe are particularly promising as a basis for constructing
our new active-learning problems: AAV2 (Bryant et al, 2021), GB1 (Wu et al, 2016), GRB2 (Faure
et al, 2024), His3 (Pokusaeva et al, 2019), mKate2 (Poelwijk et al, 2019), and TrpB (Johnston et al,
2024). Each dataset is named after a reference protein and contains measurements of the effect of
mutating the reference protein, where the measurements correspond to the abundance—or, in the case
of mKate2, the fluorescence intensity—of the protein variant after it is synthesised and subjected to a
particular set of conditions. The datasets vary with respect to how the protein variants were selected:
two datasets, TrpB and GB1, near-exhaustively enumerate m-amino-acid mutations for m ≤ 4; the
others cover greater degrees of mutation but are not close to being exhaustive.

5 ACTIVE LEARNING ON PROTEIN SEQUENCES

We now introduce Active Learning on Protein Sequences (ALPS), a set of new problems designed to
help address the shortfalls identified in Section 3, building on the datasets discussed in Section 4.

5.1 THE ALPS PROBLEMS

Uncurated data Our discussion in Section 3 stressed that the use of curated datasets can undermine
evaluations by reducing the sensitivity of predictive performance to how data is acquired. We therefore
start by designing five core problems, ALPS-Core-[AAV2,GB1,GRB2,mKate2,TrpB], in which we
do as little as possible to constrain the data that can be acquired and simply aim to learn effective
predictions for the whole dataset by setting Xpool = Xtest. In real-world terms this translates to a
scenario where we want to learn about the whole space of experimentally testable proteins and we can
acquire a label for any protein in that space. As many common active-learning methods are designed
for classification instead of regression, we binarise the labels using a wild-type protein’s label as
a threshold. These core problems are already a significant departure from the curated setups often
used in existing active-learning evaluations: curation of the source data is minimal; two problems,
ALPS-Core-GB1 and ALPS-Core-TrpB, near-exhaustively covering a region of input space.

Next we extend from these core problems to test the ability of active-learning methods to deal with
skewed label distributions, which can be a practical challenge when working with uncurated data. We
do this using ALPS-Unbalanced-TrpB-[2,5,12,17,23], five variants of ALPS-Core-TrpB with
different degrees of class imbalance (ratio of class 0 to class 1) induced by varying the threshold used
for binarising the labels. The different thresholds give rise to different decision boundaries.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Task adaptation In Section 3 we argued for the importance of testing active-learning methods’ abil-
ity to target a particular task when acquiring data. To this end, we introduce ALPS-Redundant-His3,
which poses a scenario where the unlabelled pool contains a large number of redundant inputs that do
not relate to the task of interest and cannot be labelled as class 0 or 1. More specifically we construct
Xpool to contain inputs from classes 0 and 1 as well as inputs that belong to neither, while Xtest has
classes 0 and 1. If a redundant input is selected during acquisition, it is assigned to a third “neither”
class; at test time the model only sees inputs from classes 0 and 1. Success on this problem requires
identifying inputs that directly relate to the task of interest, namely classifying classes 0 and 1.

On top of this we design three more problems, ALPS-Restricted-[GB1,GRB2,TrpB], that test an
active-learning method’s ability to gather data to aid predictions on inputs that we cannot acquire
labels for, perhaps due to restrictions on what experiments can be run. Here Xpool contains only the
inputs within m mutations of the reference, while Xtest contains only inputs with m+ 1 mutations.

5.2 CODEBASE

We provide an open codebase implementing ALPS at anonymous.4open.science/r/alps-95A3.
This codebase is rich with features that allow a wide range of experimentation with little effort. In
particular, choices such as the type of embedding, acquisition strategy, and prediction head are all
designed to be modular to allow easy isolated testing of different methodological components.

Embeddings A key best practice in active learning is to capitalise on unlabelled data by using
semi-supervised models, with a simple and generally applicable approach being to combine a fixed,
unsupervised-pretrained encoder with a trainable, supervised prediction head (Bickford Smith et al,
2024). To support this we provide code for computing protein embeddings using 22 different
pretrained encoders: 14 from the ESM family (Rives et al, 2021) and 8 from the ProtTrans family
(Elnaggar et al, 2022). We additionally provide precomputed embeddings produced using the most
advanced of these encoders, ESM3 (Hayes et al, 2025), for all of the ALPS problems. Notably
the outputs of these encoders live in continuous spaces, which means we can use general-purpose
prediction heads rather than models specialised to protein-property prediction.

Prediction heads We provide code for a range of models (and corresponding learning algorithms):
linear models; random forests; deterministic neural networks (with regularised maximum-likelihood
training); Bayesian neural networks (with Laplace approximation, mean-field variational inference
and Monte Carlo dropout); and Gaussian-process models (with variational inference).

Acquisition methods We implement 12 data-acquisition methods in the ALPS codebase. Six
use various measures of model uncertainty as a basis for acquisition: two fall within a Bayesian
formulation (Rainforth et al, 2024), namely EPIG (Bickford Smith et al, 2023; 2024) and BALD
(Houlsby et al, 2011), and the four others are predictive entropy (Settles & Craven, 2008), predictive
margin (Scheffer et al, 2001), variation ratio (Gal, 2016) and mean standard deviation (Kendall et al,
2015). Four methods are based on notions of input- or feature-space coverage—greedy k centres
(Sener & Savarese, 2018), k means (Pourahmadi et al, 2021), ProbCover (Yehuda et al, 2022) and
TypiClust (Hacohen et al, 2022)—as well as BADGE (Ash et al, 2020) and BAIT (Ash et al, 2021).
All uncertainty-based acquisition functions can be used for batch acquisition using the stochastic
approach introduced by Kirsch et al (2023): the acquisition function is used to compute a distribution
over batches of pool indices, then acquisition simply involves sampling from that distribution.

6 EXPERIMENTS

We now investigate how some popular active-learning methods deal with the ALPS problems. Given
the vast array of possible setups that could be tested, this investigation is inevitably not exhaustive; its
purpose is simply to demonstrate some of the insights that ALPS enables.

6.1 SETUP

Model We primarily use an ESM3 encoder combined with a random-forest prediction head—
random forests have supported effective data acquisition in past work (Bickford Smith et al, 2023;
2024; Kirsch, 2023; Kossen et al, 2021)—but also report some results with simpler biophysical
(Georgiev, 2009) and onehot encoders, as well as linear and neural-network prediction heads.

5

https://anonymous.4open.science/r/alps-95A3

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Encoder Pred. head Acq. method NLL (250-500) NLL (500-1000) NLL (1000-2000) Acc. (250-500) Acc. (500-1000) Acc. (1000-2000)

ESM3 Linear model Entropy 0.067 0.065 0.056 0.984 0.987 0.991
Random 0.077 0.069 0.060 0.976 0.977 0.979
TypiClust 0.076 0.067 0.061 0.976 0.977 0.978

Neural network BALD 0.103 0.084 0.060 0.980 0.987 0.991
EPIG 0.104 0.086 0.052 0.983 0.987 0.992
Random 0.123 0.108 0.089 0.974 0.976 0.978
TypiClust 0.132 0.109 0.089 0.970 0.971 0.976

Random forest BALD 0.309 0.320 0.324 0.981 0.984 0.987
EPIG 0.104 0.111 0.114 0.980 0.982 0.985
Random 0.125 0.117 0.110 0.976 0.976 0.977
TypiClust 0.119 0.105 0.096 0.976 0.977 0.977

Georgiev Linear model Entropy 0.143 0.127 0.105 0.981 0.982 0.983
Random 0.106 0.096 0.079 0.974 0.974 0.976
TypiClust 0.114 0.113 0.105 0.975 0.974 0.974

Neural network BALD 0.118 0.075 0.054 0.981 0.986 0.991
EPIG 0.135 0.124 0.076 0.982 0.986 0.990
TypiClust 0.121 0.108 0.098 0.972 0.975 0.975

Random forest BALD 0.157 0.159 0.153 0.981 0.985 0.989
EPIG 0.100 0.093 0.085 0.981 0.985 0.989
Random 0.132 0.108 0.082 0.976 0.976 0.977
TypiClust 0.183 0.151 0.114 0.976 0.976 0.977

Onehot Linear model Entropy 0.152 0.129 0.107 0.980 0.981 0.981
Random 0.106 0.096 0.079 0.974 0.974 0.976
TypiClust 0.103 0.093 0.073 0.973 0.973 0.976

Neural network BALD 0.100 0.073 0.041 0.982 0.987 0.991
EPIG 0.129 0.108 0.065 0.982 0.985 0.990
TypiClust 0.134 0.113 0.084 0.975 0.976 0.978

Random forest BALD 0.162 0.153 0.139 0.980 0.984 0.990
EPIG 0.101 0.090 0.079 0.977 0.981 0.987
Random 0.207 0.211 0.142 0.976 0.976 0.976
TypiClust 0.208 0.210 0.138 0.976 0.976 0.976

Table 1 Our experiments focus on a particular model (ESM3 encoder with random-forest prediction head)
and information-theoretic data acquisition (BALD and EPIG), but we report extra results here and elsewhere
in Section 6 for additional context. Here we show test metrics for ALPS-Core-GB1 averaged over acquisition
steps, across 250-2000 labels in three step ranges. Bold indicates best performance for a particular step range,
underlined are not statistically significant compared to the best (by one-sided Welch’s t-test).

Data acquisition We focus our investigations on information-theoretic approaches to data acqui-
sition, namely BALD (Houlsby et al, 2011) and EPIG (Bickford Smith et al, 2023), given their
principled foundation and their success in recent work (Bickford Smith et al, 2023; 2024; Hübotter
et al, 2024; 2025; Melo et al, 2024; Osband et al, 2023), but also because we believe they highlight
a number of interesting behaviours. To provide additional context to our results, we also include
TypiClust (Hacohen et al, 2022), a coverage-based method, along with uniform-random acquisition.

Test metrics We measure performance using classification accuracy (higher is better) and expected
negative log likelihood (NLL; lower is better) on labelled test sets. These metrics correspond to
estimators of frequentist risk (Section 2) under different losses: one minus accuracy corresponds to a
zero-one loss on point predictions; NLL corresponds to a log loss on probabilistic predictions.

Active-learning loop We initialise the training dataset by uniform-randomly sampling two examples
from each class, then we run the loop described in Section 2 until the training-label budget is used up.
We run this whole process with each acquisition method at least five times with different random
seeds. We report test metrics (mean ± standard error) as a function of the size of the training dataset.

6.2 UNCURATED DATA HELPS STRESS-TEST DATA ACQUISITION

We start by focusing on the ALPS-Core problems, in which we want to learn about the whole space
of experimentally testable proteins and we can acquire a label for any protein in that space. While
these represent uncurated datasets, they still arguably represent less challenging problems than some
of those we consider later, as we do not need the active learning scheme to perform task adaptation,
with the pool already representing the target distribution for our evaluations.

Our results show BALD and EPIG notably differing across all five problems (Figure 2). Unlike in past
work (Bickford Smith et al, 2023; 2024), here we see BALD often outperforming EPIG in terms of
accuracy. Interestingly, though, this does not translate into lower NLL, where BALD performs poorly
and far worse than random. This likely represents a calibration issue: given the high accuracies often
achieved, it seems likely that BALD is often overconfident in some of its incorrect predictions. The
benefits of EPIG compared to random are also diminished when considering NLL instead of accuracy,
but not to the same catastrophic degree as BALD. The root cause of these calibration issues is not
immediately clear, but provides an interesting avenue for future investigation. One hypothesis is that

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1000 2000
Number of labels

80

85

90

M
ea

n
te

st
ac

c
(%

)

ALPS-Core-AAV2

0 1000 2000
Number of labels

96

98

ALPS-Core-GB1

0 1000 2000
Number of labels

90

92

94
ALPS-Core-GRB2-SH3

0 1000 2000
Number of labels

80

90

ALPS-Core-mKate2

0 1000 2000
Number of labels

98

99

ALPS-Core-TrpB

BALD

EPIG

random

TypiClust

0 1000 2000
Number of labels

0.4

0.6

M
ea

n
te

st
N

L
L

ALPS-Core-AAV2

0 1000 2000
Number of labels

0.2

0.4
ALPS-Core-GB1

0 1000 2000
Number of labels

0.2

0.3

0.4

ALPS-Core-GRB2-SH3

0 1000 2000
Number of labels

0.2

0.4

0.6

ALPS-Core-mKate2

0 1000 2000
Number of labels

0.1

0.2

0.3
ALPS-Core-TrpB

BALD

EPIG

random

TypiClust

Figure 2 Across the five ALPS-Core problems, the performance of information-theoretic data acquisition
differs substantially depending on the quantity being targeted. BALD, which targets information in the parameters
of the model being trained, consistently performs well in terms of classification accuracy but poorly as measured
by negative log likelihood (NLL). EPIG, which focuses on the model’s predictions, does not achieve such high
accuracy in most cases but is stronger in terms of NLL, although not always better than random acquisition.

it could be connected to the statistical bias that active learning introduces (Farquhar et al, 2021), with
the class ratio of actively acquired datapoints unlikely to match the original dataset.

A broader point is that success under one test metric need not translate to success under another: here
we see NLL would never lead us to favour BALD but accuracy would in most cases. This highlights
the need for care in choosing test metrics: neither accuracy nor NLL is “true” in an absolute sense;
they simply correspond to different underlying loss functions (Section 6.1).

6.3 SENSITIVITY TO CLASS IMBALANCE VARIES BETWEEN ACQUISITION METHODS

2 5 12 17 23

Imbalance ratio (neg./pos.)

−0.06

−0.04

−0.02

0.00

D
iff

er
en

ce
in

m
ea

n
te

st
ac

c

ALPS-Unbalanced-TrpB-[2,5,12,17,23]

BALD

EPIG

TypiClust

random

2 5 12 17 23

Imbalance ratio (neg./pos.)

−0.10

−0.05

0.00

0.05

0.10

0.15

D
iff

er
en

ce
in

m
ea

n
te

st
N

L
L

ALPS-Unbalanced-TrpB-[2,5,12,17,23]

BALD

EPIG

TypiClust

random

Figure 3 The ALPS-Unbalanced problems demonstrate the effect of class imbalance on the performance of
BALD and EPIG acquisition. BALD performs worse than random in many cases, while EPIG fails in one case.

Next we turn to the ALPS-Unbalanced problems. Figure 3 shows the differences in performance
of EPIG and BALD relative to random as a function of the degree of class imbalance (ratio of class
0 to class 1). While there is not much of a clear trend in behaviour in terms of accuracy, we see a
significant drop off in BALD’s NLL performance for large imbalance ratios, whereas EPIG tends
to outperform random at large levels of imbalance. As in Section 6.2, this thus highlights potential
failure cases that have been underrepresented in previous active learning evaluations.

6.4 ACCOUNTING FOR THE TASK OF INTEREST IS KEY FOR HANDLING REDUNDANT INPUTS

Our next focus is the ALPS-Redundant-His3 problem, in which the unlabelled pool contains a large
number of redundant inputs that do not relate to the task of interest. The relative performance of EPIG
on this problem shows the value of an acquisition method that explicitly accounts for the predictive
task that we want to apply our model to (Figure 4). Even after acquiring 2,000 labels, BALD and
random acquisition, which do not use any notion of the input distribution we wish to make predictions
for, fail to reach the level of predictive performance that EPIG achieves after acquiring a handful of
labels. This example thus highlights the need for active learning, and careful selection of acquisition
strategies, in cases where significant task adaptation is required.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 500 1000
Number of labels

25

50

75

M
ea

n
te

st
ac

c
(%

)

ALPS-Redundant-HIS3-ALL

BALD

EPIG

random

TypiClust

0 500 1000
Number of labels

0.5

1.0

1.5

M
ea

n
te

st
N

L
L

ALPS-Redundant-HIS3-ALL

BALD

EPIG

random

TypiClust

Figure 4 The ALPS-Redundant-His3 problem demonstrates the need for data acquisition to be targeted
towards the task that we care about. EPIG acquisition, which is targeted in this way, enables fast convergence to
strong performance that BALD and random acquisition cannot match even after many label acquisitions.

0 1000 2000
Number of labels

96

98

M
ea

n
te

st
ac

c
(%

)

ALPS-Restricted-GB1

0 1000 2000
Number of labels

90

92

ALPS-Restricted-GRB2-SH3

0 1000 2000
Number of labels

97

98

99

ALPS-Restricted-TrpB

BALD

EPIG

random

TypiClust

0 1000 2000
Number of labels

0.1

0.2

0.3

M
ea

n
te

st
N

L
L

ALPS-Restricted-GB1

0 1000 2000
Number of labels

0.2

0.3

0.4

ALPS-Restricted-GRB2-SH3

0 1000 2000
Number of labels

0.0

0.2

ALPS-Restricted-TrpB

BALD

EPIG

random

TypiClust

Figure 5 EPIG can successfully gather data relevant for predictions on inputs that cannot be labelled
(ALPS-Restricted-GRB2), but it can also fail (ALPS-Restricted-GB1 and ALPS-Restricted-TrpB), un-
derperforming random acquisition. Meanwhile BALD, lacking a notion of target inputs, tends to fail.

6.5 RESTRICTED ACQUISITION POSES A PARTICULARLY DIFFICULT CHALLENGE

Now we explore the particularly challenging ALPS-Restricted problems, which test the ability of
active-learning methods to gather data to support predictions on inputs for which we cannot acquire
labels directly due to limitations in the available labelling mechanism (e.g. some proteins might not
be synthesisable within a given lab). Figure 5 again shows catastrophic failures for BALD in terms of
NLL on all problems, with it now also failing to outperform random in terms of accuracy on two of
the three problems as well. Results for EPIG appear to be quite mixed, beating random in terms of
accuracy on two problems, but only in one case for NLL. It also shows an interesting behaviour in
NLL where the initial performance appears strong in all cases, but then later degrades in two of them,
with the NLL actually rising with increasing numbers of labels, albeit not to the extent seen by BALD.
This poor performance of EPIG is perhaps surprising—as EPIG is in theory set up to accommodate
these kind of transductive problems—and provides another interesting avenue for investigation.

6.6 STOCHASTIC BATCH ACQUISITION HAS MIXED EFFECTS ON PREDICTIVE PERFORMANCE

Next we investigate the effect of switching from acquiring one label at a time to acquiring batches
of labels. For this we return to ALPS-Core-GB1 and ALPS-Core-TrpB, and consider batch sizes of
16, 50 and 100. Batch acquisition is often dictated by the labelling mechanism at hand and can pose
methodological challenges (Kirsch et al, 2019), but the results in Figure 6 also show it can sometimes
have a protective effect against deficiencies in the acquisition function we use. In Figure 2 we saw that
BALD underperformed random acquisition in terms of NLL, and here we see that its shortfall reduces
at increasing batch sizes. This can be understood as a consequence of the stochastic-acquisition

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 16 50 100

batch-size

−0.005

0.000

0.005

D
iff

er
en

ce
in

m
ea

n
te

st
ac

c ALPS-Core-GB1

1 16 50 100

batch-size

ALPS-Core-TrpB

BALD

EPIG

TypiClust

random

1 16 50 100

batch-size

0.0

0.1

0.2

D
iff

er
en

ce
in

m
ea

n
te

st
N

L
L ALPS-Core-GB1

1 16 50 100

batch-size

ALPS-Core-TrpB

BALD

EPIG

TypiClust

random

Figure 6 Acquiring data in bigger batches leads to worse accuracy for both BALD and EPIG, but also leads to
better NLL for BALD, suggesting improved calibration of the model’s predictive confidence.

scheme used (Kirsch et al, 2023): as the batch size increases, we get closer to acquiring uniformly at
random, which performs better than BALD-based single-label acquisition in these problems. Notably
this behaviour can also have an adverse effect on performance in cases where the acquisition function
is providing a good signal of data utility; the EPIG results in Figure 6 provide some evidence for this.

6.7 THE EFFECTIVENESS OF ACTIVE LEARNING DEPENDS ON THE MODEL BEING TRAINED

0 1000 2000
Number of labels

1.00

1.01

R
el

at
iv

e
m

ea
n

te
st

ac
c ALPS-Core-GB1

ESM3+RF+BALD

ESM3+RF+EPIG

Georgiev+RF+BALD

Georgiev+RF+EPIG

onehot+RF+BALD

onehot+RF+EPIG

0 1000 2000
Number of labels

ALPS-Core-GB1

ESM3+LR+entropy

Georgiev+LR+entropy

onehot+LR+entropy

0 1000 2000
Number of labels

1

2

3
R

el
at

iv
e

m
ea

n
te

st
N

L
L ALPS-Core-GB1

ESM3+RF+BALD

ESM3+RF+EPIG

Georgiev+RF+BALD

Georgiev+RF+EPIG

onehot+RF+BALD

onehot+RF+EPIG

0 1000 2000
Number of labels

ALPS-Core-GB1
ESM3+LR+entropy

Georgiev+LR+entropy

onehot+LR+entropy

Figure 7 The performance of an acquisition function (here we divide the test metric by the value achieved by
random acquisition) can vary significantly between model configurations.

Finally we shift our focus to the configuration of the model being trained through active learning.
So far we have used a combination of an ESM3 deep encoder and a random forest prediction
head. Recent work suggests that this should be a good default configuration (Bickford Smith et al,
2024), but also that models based on simpler biophysical (Georgiev, 2009) and onehot encoders can
perform competitively (Yang et al, 2025). We therefore return to ALPS-Core-GB1 to investigate
these alternative encoders, and also consider using a logistic-regression model instead of a random
forest for the prediction head (this linear model is not stochastic and cannot be used with BALD
and EPIG, so we use predictive entropy for that model instead). We find that a given acquisition
function can perform well for one model and poorly for another (Figure 7). This underlines the need
for evaluations to be conducted with the models that would be used in practical applications: we
cannot assume results for one model class will transfer to another.

7 CONCLUSION

We have argued that deficiencies in existing active-learning evaluations, particularly the use of curated
datasets as a starting point, can lead to a misrepresentation of methods’ performance. To help address
this, we have introduced ALPS, a set of new active-learning problems based on protein-property
prediction and designed to pose challenges we believe are important for real-world deployment of
active learning yet underrepresented in previous benchmarking. Our evaluations of some popular
active-learning methods on ALPS have already raised a number of interesting new potential issues
that future work might look to address, such as miscalibration of predictive uncertainty, sensitivity to
class imbalance and unreliable scaling with increasing acquisition batch size. We hope that ALPS
will not only provide a useful new testbed for active-learning researchers, but also inspire both more
careful consideration of real-world issues around how methods are evaluated—and provide a stepping
stone towards greater uptake of active learning in biochemistry.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Abramson, Adler, Dunger, Evans, Green, Pritzel, Ronneberger, Willmore, Ballard, Bambrick, et al
(2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature.

Aggarwal, Popescu, & Hudelot (2020). Active learning for imbalanced datasets. Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

Aitchison (2021). A statistical theory of cold posteriors in deep neural networks. International
Conference on Learning Representations.

AlQuraishi (2019). AlphaFold at CASP13. Bioinformatics.

Ardila, Branson, Davis, Kohler, Meyer, Henretty, Morais, Saunders, Tyers, & Weber (2020). Common
Voice: a massively-multilingual speech corpus. Language Resources and Evaluation Conference.

Ash, Goel, Krishnamurthy, & Kakade (2021). Gone fishing: neural active learning with Fisher
embeddings. Conference on Neural Information Processing Systems.

Ash, Zhang, Krishnamurthy, Langford, & Agarwal (2020). Deep batch active learning by diverse,
uncertain gradient lower bounds. International Conference on Learning Representations.

Atlas, Cohn, & Ladner (1989). Training connectionist networks with queries and selective sampling.
Conference on Neural Information Processing Systems.

Bahri, Jiang, Schuster, & Rostamizadeh (2022). Is margin all you need? an extensive empirical study
of active learning on tabular data. arXiv preprint arXiv:2210.03822.

Baumann, Klasson, Li, Solin, & Trapp (2024). Probabilistic active few-shot learning in vision-
language models. Workshop on “Responsibly Building the Next Generation of Multimodal Founda-
tional Models”, Conference on Neural Information Processing Systems.

Beck, Sivasubramanian, Dani, Ramakrishnan, & Iyer (2021). Effective evaluation of deep active
learning on image classification tasks. arXiv.

Bengar, van de Weijer, Twardowski, & Raducanu (2021). Reducing label effort: self-supervised
meets active learning. Workshop on “Interactive Labeling and Data Augmentation for Vision”,
International Conference on Computer Vision.

Berger (1985). Statistical Decision Theory and Bayesian Analysis. Springer.

Bickford Smith, Foster, & Rainforth (2024). Making better use of unlabelled data in Bayesian active
learning. International Conference on Artificial Intelligence and Statistics.

Bickford Smith, Kirsch, Farquhar, Gal, Foster, & Rainforth (2023). Prediction-oriented Bayesian
active learning. International Conference on Artificial Intelligence and Statistics.

Bryant, Bashir, Sinai, Jain, Ogden, Riley, Church, Colwell, & Kelsic (2021). Deep diversification of
an AAV capsid protein by machine learning. Nature Biotechnology.

Chan, Li, & Oymak (2021). On the marginal benefit of active learning: does self-supervision eat its
cake? International Conference on Acoustics, Speech and Signal Processing.

Chevalier, Silva, Rocklin, Hicks, Vergara, Murapa, Bernard, Zhang, Lam, Yao, Bahl, Miyashita,
Goreshnik, Fuller, Koday, Jenkins, Colvin, Carter, Bohn, Bryan, Fernández-Velasco, Stewart,
Dong, Huang, Jin, Wilson, Fuller, & Baker (2017). Massively parallel de novo protein design for
targeted therapeutics. Nature.

Citovsky, DeSalvo, Gentile, Karydas, Rajagopalan, Rostamizadeh, & Kumar (2021). Batch active
learning at scale. Advances in Neural Information Processing Systems.

Dallago, Mou, Johnston, Wittmann, Bhattacharya, Goldman, Madani, & Yang (2021). FLIP: bench-
mark tasks in fitness landscape inference for proteins. Conference on Neural Information Process-
ing Systems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dua & Graff (2017). UCI Machine Learning Repository. archive.ics.uci.edu/ml.

Ein-Dor, Halfon, Gera, Shnarch, Dankin, Choshen, Danilevsky, Aharonov, Katz, & Slonim (2020).
Active learning for BERT: an empirical study. Conference on Empirical Methods in Natural
Language Processing.

Elnaggar, Heinzinger, Dallago, Rihawi, Wang, Jones, Gibbs, Feher, Angerer, Steinegger, Bhowmik,
& Rost (2022). ProtTrans: toward understanding the language of life through self-supervised
learning. Transactions on Pattern Analysis and Machine Intelligence.

Evans, O’Neill, Pritzel, Antropova, Senior, Green, Žídek, Bates, Blackwell, Yim, et al (2021). Protein
complex prediction with alphafold-multimer. biorxiv.

Farquhar, Gal, & Rainforth (2021). On statistical bias in active learning: how and when to fix it.
International Conference on Learning Representations.

Faure, Domingo, Schmiedel, Hidalgo-Carcedo, Diss, & Lehner (2022). Mapping the energetic and
allosteric landscapes of protein binding domains. Nature.

Faure & Lehner (2024). MoCHI: neural networks to fit interpretable models and quantify energies,
energetic couplings, epistasis, and allostery from deep mutational scanning data. Genome Biology.

Faure, Martí-Aranda, Hidalgo-Carcedo, Beltran, Schmiedel, & Lehner (2024). The genetic architec-
ture of protein stability. Nature.

Fowler & Fields (2014). Deep mutational scanning: a new style of protein science. Nature Methods.

Frazer, Notin, Dias, Gomez, Min, Brock, Gal, & Marks (2021). Disease variant prediction with deep
generative models of evolutionary data. Nature.

Gal (2016). Uncertainty in deep learning. PhD thesis, University of Cambridge.

Gal & Ghahramani (2016). Dropout as a Bayesian approximation: representing model uncertainty in
deep learning. International Conference on Machine Learning.

Gao, Zhang, Yu, Arik, Davis, & Pfister (2020). Consistency-based semi-supervised active learning:
towards minimizing labeling cost. European Conference on Computer Vision.

Georgiev (2009). Interpretable numerical descriptors of amino acid space. Journal of Computational
Biology.

Gorantla, Kubincová, Suutari, Cossins, & Mey (2024). Benchmarking active learning protocols for
ligand-binding affinity prediction. Journal of Chemical Information and Modeling.

Gruver, Stanton, Frey, Rudner, Hotzel, Lafrance-Vanasse, Rajpal, Cho, & Wilson (2023). Protein
design with guided discrete diffusion. Advances in Neural Information Processing Systems.

Gupte, Aklilu, Nirschl, & Yeung-Levy (2024). Revisiting active learning in the era of vision
foundation models. arXiv preprint arXiv:2401.14555.

Hacohen, Dekel, & Weinshall (2022). Active learning on a budget: opposite strategies suit high and
low budgets. International Conference on Machine Learning.

Hayes, Rao, Akin, Sofroniew, Oktay, Lin, Verkuil, Tran, Deaton, Wiggert, Badkundri, Shafkat, Gong,
Derry, Molina, Thomas, Khan, Mishra, Kim, Bartie, Nemeth, Hsu, Sercu, Candido, & Rives (2025).
Simulating 500 million years of evolution with a language model. Science.

Houlsby, Huszár, Ghahramani, & Lengyel (2011). Bayesian active learning for classification and
preference learning. arXiv.

Hu, Guo, Cordy, Xie, Ma, Papadakis, & Traon, L. (2021). Towards exploring the limitations of active
learning: An empirical study. In IEEE/ACM International Conference on Automated Software
Engineering (ASE).

11

https://archive.ics.uci.edu/ml

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hübotter, Bongni, Hakimi, & Krause (2025). Efficiently learning at test-time: active fine-tuning of
LLMs. International Conference on Learning Representations.

Hübotter, Sukhija, Treven, As, & Krause (2024). Transductive active learning: theory and applications.
Conference on Neural Information Processing Systems.

Huseljic, Herde, Nagel, Rauch, Strimaitis, & Sick (2024). The interplay of uncertainty modeling
and deep active learning: An empirical analysis in image classification. Transactions on Machine
Learning Research.

Ji, Kaestner, Wirth, & Wressnegger (2023). Randomness is the root of all evil: more reliable
evaluation of deep active learning. Winter Conference on Applications of Computer Vision.

Johnston, Almhjell, Watkins-Dulaney, Liu, Porter, Yang, & Arnold (2024). A combinatorially
complete epistatic fitness landscape in an enzyme active site. Proceedings of the National Academy
of Sciences.

Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Žídek, Potapenko,
et al (2021). Highly accurate protein structure prediction with alphafold. Nature.

Kendall, Badrinarayanan, & Cipolla (2015). Bayesian SegNet: model uncertainty in deep convolu-
tional encoder-decoder architectures for scene understanding. arXiv.

Khan, Cowen-Rivers, Grosnit, Deik, Robert, Greiff, Smorodina, Rawat, Akbar, Dreczkowski, et al
(2023). Toward real-world automated antibody design with combinatorial bayesian optimization.
Cell Reports Methods.

Kim, Park, Kim, & Chun (2021). Task-aware variational adversarial active learning. Conference on
Computer Vision and Pattern Recognition.

Kinney & McCandlish (2019). Massively parallel assays and quantitative sequence-function relation-
ships. Annual Review of Genomics and Human Genetics.

Kirsch (2023). Black-box batch active learning for regression. Transactions on Machine Learning
Research.

Kirsch, Farquhar, Atighehchian, Jesson, Branchaud-Charron, & Gal (2023). Stochastic batch
acquisition: a simple baseline for deep active learning. Transactions on Machine Learning
Research.

Kirsch, van Amersfoort, & Gal (2019). BatchBALD: efficient and diverse batch acquisition for deep
Bayesian active learning. Conference on Neural Information Processing Systems.

Kossen, Farquhar, Gal, & Rainforth (2021). Active testing: sample-efficient model evaluation.
International Conference on Machine Learning.

Krishnan, Ahuja, Sinha, Subedar, Tickoo, & Iyer (2021a). Robust contrastive active learning with
feature-guided query strategies. arXiv.

Krishnan, Sinha, Ahuja, Subedar, Tickoo, & Iyer (2021b). Mitigating sampling bias and improving
robustness in active learning. arXiv preprint arXiv:2109.06321.

Krizhevsky (2009). Learning multiple layers of features from tiny images. Master’s thesis, University
of Toronto.

Kryshtafovych, Schwede, Topf, Fidelis, & Moult (2019). Critical assessment of methods of protein
structure prediction (CASP)—round XIII. Proteins: Structure, Function, and Bioinformatics.

Kucera, Oliver, Chen, & Borgwardt (2024). ProteinShake: building datasets and benchmarks for
deep learning on protein structures. Conference on Neural Information Processing Systems.

Lesk (2019). Introduction to Bioinformatics. Oxford University Press.

Lewis & Gale (1994). A sequential algorithm for training text classifiers. ACM-SIGIR Conference on
Research and Development in Information Retrieval.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Li, Chen, Liu, He, & Xu (2022). An empirical study on the efficacy of deep active learning for image
classification. arXiv preprint arXiv:2212.03088.

Lin, Akin, Rao, Hie, Zhu, Lu, Smetanin, Verkuil, Kabeli, Shmueli, dos Santos Costa, Fazel-Zarandi,
Sercu, Candido, & Rives (2023). Evolutionary-scale prediction of atomic-level protein structure
with a language model. Science.

Lüth, Bungert, Klein, & Jaeger (2023). Navigating the pitfalls of active learning evaluation: a
systematic framework for meaningful performance assessment. Conference on Neural Information
Processing Systems.

MacKay (1992). Information-based objective functions for active data selection. Neural Computation.

Maekawa, Zhang, Kim, Rahman, & Hruschka (2022). Low-resource interactive active labeling for
fine-tuning language models. Conference on Empirical Methods in Natural Language Processing.

Mahajan, Girshick, Ramanathan, He, Paluri, Li, Bharambe, & van der Maaten (2018). Exploring the
limits of weakly supervised pretraining. European Conference on Computer Vision.

Margatina, Barrault, & Aletras (2022). On the importance of effectively adapting pretrained language
models for active learning. Annual Meeting of the Association for Computational Linguistics.

Mehta, Paria, Schneider, Ermon, & Neiswanger (2022). An experimental design perspective on
model-based reinforcement learning. International Conference on Learning Representations.

Meier, Rao, Verkuil, Liu, Sercu, & Rives (2021). Language models enable zero-shot prediction of the
effects of mutations on protein function. Conference on Neural Information Processing Systems.

Melo, Tigas, Abate, & Gal (2024). Deep Bayesian active learning for preference modeling in large
language models. Conference on Neural Information Processing Systems.

Mindermann, Brauner, Razzak, Sharma, Kirsch, Xu, Höltgen, Gomez, Morisot, Farquhar, & Gal
(2022). Prioritized training on points that are learnable, worth learning, and not yet learnt.
International Conference on Machine Learning.

Mittal, Niemeijer, Schäfer, & Brox (2023). Best practices in active learning for semantic segmentation.
arXiv.

Mittal, Tatarchenko, Çiçek, & Brox (2019). Parting with illusions about deep active learning. arXiv.

Munjal, Hayat, Hayat, Sourati, & Khan (2022). Towards robust and reproducible active learning
using neural networks. Conference on Computer Vision and Pattern Recognition.

Ning, Zhao, Li, & Huang (2022). Active learning for open-set annotation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Notin, Kollasch, Ritter, van Niekerk, Paul, Spinner, Rollins, Shaw, Orenbuch, Weitzman, Frazer,
Dias, Franceschi, Gal, & Marks (2023). ProteinGym: large-scale benchmarks for protein design
and fitness prediction. Conference on Neural Information Processing Systems.

Notin, Rollins, Gal, Sander, & Marks (2024). Machine learning for functional protein design. Nature
Biotechnology.

Olson, Wu, & Sun (2014). A comprehensive biophysical description of pairwise epistasis throughout
an entire protein domain. Current Biology.

Osband, Asghari, Van Roy, McAleese, Aslanides, & Irving (2023). Fine-tuning language models via
epistemic neural networks. International Conference on Machine Learning.

Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf,
Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, & Chintala (2019). PyTorch:
an imperative style, high-performance deep learning library. Conference on Neural Information
Processing Systems.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg,
Vanderplas, Passos, Cournapeau, Brucher, Perrot, & Duchesnay (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research.

Poelwijk, Socolich, & Ranganathan (2019). Learning the pattern of epistasis linking genotype and
phenotype in a protein. Nature Communications.

Pokusaeva, Usmanova, Putintseva, Espinar, Sarkisyan, Mishin, Bogatyreva, Ivankov, Akopyan,
Avvakumov, Povolotskaya, Filion, Carey, & Kondrashov (2019). An experimental assay of the
interactions of amino acids from orthologous sequences shaping a complex fitness landscape. PLoS
Genetics.

Pourahmadi, Nooralinejad, & Pirsiavash (2021). A simple baseline for low-budget active learning.
arXiv.

Raffel, Shazeer, Roberts, Lee, Narang, Matena, Zhou, Li, & Liu (2020). Exploring the limits of
transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research.

Rainforth, Foster, Ivanova, & Bickford Smith (2024). Modern Bayesian experimental design.
Statistical Science.

Rao, Bhattacharya, Thomas, Duan, Chen, Canny, Abbeel, & Song (2019). Evaluating protein transfer
learning with TAPE. Conference on Neural Information Processing Systems.

Rauch, Aßenmacher, Huseljic, Wirth, Bischl, & Sick (2023). Activeglae: A benchmark for deep active
learning with transformers. Joint European Conference on Machine Learning and Knowledge
Discovery in Databases.

Riesselman, Ingraham, & Marks (2018). Deep generative models of genetic variation capture the
effects of mutations. Nature Methods.

Rives, Meier, Sercu, Goyal, Lin, Liu, Guo, Ott, Zitnick, Ma, & Fergus (2021). Biological structure and
function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings
of the National Academy of Sciences.

Romero, Krause, & Arnold (2013). Navigating the protein fitness landscape with Gaussian processes.
Proceedings of the National Academy of Sciences.

Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, & Fei-Fei
(2014). ImageNet large scale visual recognition challenge. International Journal of Computer
Vision.

Scheffer, Decomain, & Wrobel (2001). Active hidden Markov models for information extraction.
International Symposium on Intelligent Data Analysis.

Sener & Savarese (2018). Active learning for convolutional neural networks: a core-set approach.
International Conference on Learning Representations.

Seo, Kim, Ahn, & Lee (2022). Active learning on pre-trained language model with task-independent
triplet loss. AAAI Conference on Artificial Intelligence.

Settles (2012). Active Learning. Morgan and Claypool.

Settles & Craven (2008). An analysis of active learning strategies for sequence labeling tasks.
Conference on Empirical Methods in Natural Language Processing.

Siméoni, Budnik, Avrithis, & Gravier (2020). Rethinking deep active learning: using unlabeled data
at model training. International Conference on Pattern Recognition.

Stanton, Maddox, Gruver, Maffettone, Delaney, Greenside, & Wilson (2022). Accelerating bayesian
optimization for biological sequence design with denoising autoencoders. International Conference
on Machine Learning.

Tamkin, Nguyen, Deshpande, Mu, & Goodman (2022). Active learning helps pretrained models
learn the intended task. Conference on Neural Information Processing Systems.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Tsimpourlas, Petoumenos, Xu, Cummins, Hazelwood, Rajan, & Leather (2022). Benchpress: A deep
active benchmark generator. Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques.

Tsuboyama, Dauparas, Chen, Laine, Behbahani, Weinstein, Mangan, Ovchinnikov, & Rocklin (2023).
Mega-scale experimental analysis of protein folding stability in biology and design. Nature.

von Neumann & Morgenstern (1947). Theory of Games and Economic Behavior. Princeton University
Press.

Werner, Burchert, Stubbemann, & Schmidt-Thieme (2024). A cross-domain benchmark for active
learning. Conference on Neural Information Processing Systems.

Wittmann, Johnston, Almhjell, & Arnold (2022). evSeq: cost-effective amplicon sequencing of every
variant in a protein library. ACS Synthetic Biology.

Wu, Dai, Olson, Lloyd-Smith, & Sun (2016). Adaptation in protein fitness landscapes is facilitated
by indirect paths. eLife.

Xu, Zhang, Lu, Zhu, Zhang, Chang, Liu, & Tang (2022). PEER: a comprehensive and multi-task
benchmark for protein sequence understanding. Conference on Neural Information Processing
Systems.

Yang, Lal, Bowden, Astudillo, Hameedi, Kaur, Hill, Yue, & Arnold (2025). Active learning-assisted
directed evolution. Nature Communications.

Yang, Wu, & Arnold (2018). Machine-learning-guided directed evolution for protein engineering.
Nature Methods.

Yehuda, Dekel, Hacohen, & Weinshall (2022). Active learning through a covering lens. Conference
on Neural Information Processing Systems.

Yi, Seo, Park, & Choi (2022). PT4AL: Using self-supervised pretext tasks for active learning.
European Conference on Computer Vision.

Yuan, Lin, & Boyd-Graber (2020). Cold-start active learning through self-supervised language
modeling. Conference on Empirical Methods in Natural Language Processing.

Zhan, Liu, Li, & Chan (2021). A comparative survey: Benchmarking for pool-based active learning.
In IJCAI.

Zhan, Wang, Huang, Xiong, Dou, & Chan (2022). A comparative survey of deep active learning.
arXiv.

Zhang, Chen, Canal, Mussmann, Das, Bhatt, Zhu, Bilmes, Du, Jamieson, & Nowak (2024). Label-
Bench: a comprehensive framework for benchmarking adaptive label-efficient learning. arXiv.

Zhou, Renduchintala, Li, Wang, Mehdad, & Ghoshal (2021). Towards understanding the behaviors
of optimal deep active learning algorithms. In International Conference on Artificial Intelligence
and Statistics.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A DATASETS USED IN EXISTING ACTIVE-LEARNING EVALUATIONS

From all papers published at AISTATS, ICML, NeurIPS and UAI in the past 10 years, we selected
all papers with the word “active” in the title or abstract, giving an initial list of 441 papers. We then
stepped through a shuffled version of this paper list, annotating each paper according to six queries:

Q1. Is the paper on active learning, based on its abstract and keywords?

Q2. Is the paper on reinforcement learning, based on its title, abstract and keywords?

Q3. What computer-vision datasets, if any, are used in the empirical evaluation?

Q4. What natural-language-processing datasets, if any, are used in the empirical evaluation?

Q5. What synthetic datasets, if any, are used in the empirical evaluation?

Q6. What other datasets, if any, are used in the empirical evaluation?

Our stopping limit was either 200 papers or four hours of annotation time; we hit the latter first,
covering 103 papers within the time. We included all papers for which the answer to Q1 was “yes”
and the answer to Q2 was “no”.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B ADDITIONAL RELATED WORK

Active learning evaluations Active-learning methods are often assessed with established machine-
learning datasets that include modifications to their composition to highlight specific methodological
contributions, such as adding redundancies or class imbalances, or joining datasets (Bickford Smith
et al, 2023; Citovsky et al, 2021; Lüth et al, 2023). Benchmarks developed specifically for assessing
active-learning methods or assessing machine-learning models using active learning include Ac-
tiveGLAE (natural-language tasks for transformers; Rauch et al, 2023), CDALBench (combining
text, vision, and tabular data; Werner et al, 2024), computer-vision tasks (Ji et al, 2023), BenchPress
(code generation; Tsimpourlas et al, 2022) and Realistic-AL (Lüth et al, 2023). The last of these is
arguably the closest to our work: the authors identify five “pitfalls” when applying active learning in
the real world and compare their work against a number of existing efforts (Beck et al, 2021; Bengar
et al, 2021; Chan et al, 2021; Gao et al, 2020; Kim et al, 2021; Krishnan et al, 2021a; Mittal et al,
2019; Munjal et al, 2022; Yi et al, 2022; Zhan et al, 2022). However, whereas Realistic-AL focuses
its analysis on large, labelled computer-vision datasets (eg, CIFAR-10 and MIO-TCD)—as do the
studies they compare against—our ALPS problems shift the focus to the domain of protein-property
prediction. In this focus on a scientific application, our work aligns with that of Gorantla et al (2024),
who applied several active-learning methods to binding-affinity-prediction tasks.

Protein-property prediction Predicting the structure and the function of a protein from its sequence
is an important challenge in biochemistry, and its principled assessment (e.g., CASP; Kryshtafovych
et al, 2019) has facilitated significant progress by machine learning in the field (AlQuraishi, 2019;
Jumper et al, 2021; Evans et al, 2021; Abramson et al, 2024). Over recent years, benchmarking
property prediction has seen many efforts curating publicly available datasets and tasks (Dallago et al,
2021; Frazer et al, 2021; Kucera et al, 2024; Notin et al, 2023; Rao et al, 2019; Riesselman et al, 2018;
Xu et al, 2022). Notable property-prediction benchmarks include FLIP (Dallago et al, 2021), PEER
(Xu et al, 2022), ProteinGym (Notin et al, 2023) and ProteinShake (Kucera et al, 2024). These efforts
have generally been tailored to assess (static) machine-learning models’ predictive performance
(zero-shot predictions of mutation effects in clinical and deep-mutational-scanning assays). Thus,
none of the previous protein-property benchmarks have assessed active-learning methods for their
usability or elucidated algorithmic properties and shortfalls. The use of probabilistic models and
Bayesian-optimisation algorithms to optimise one or multiple protein properties has been considered
in (Romero et al, 2013; Stanton et al, 2022; Gruver et al, 2023; Khan et al, 2023). Finally, Yang
et al (2025) optimised protein properties using active learning (effectively performing batch Bayesian
optimisation) but did not focus on evaluation design in its own right.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Identifier Validation-set cost Hyperparameter Modality Acquisition References
Realistic-AL ✓ ✓ image batch Lüth et al (2023)
ActiveGLAE ✓ ✓ text batch Rauch et al (2023)
LabelBench ✓ ✓ image batch Zhang et al (2024)
CDALBench ✓ ✓ text, image, tabular single,batch Werner et al (2024)
Reliable deep AL ✗ ✓ image batch Ji et al (2023)
BenchPress* ✗ ✗ code generation Tsimpourlas et al (2022)
DISTIL ✗ ✗ image batch Beck et al (2021)
Reducing label effort ✗ ✗ image batch Bengar et al (2021)
Marginal benefit of AL ✗ ✗ image Chan et al (2021)
Consistency-based semi-supervised AL ✗ ✗ image batch Gao et al (2020)
TA-VAAL ✗ (✓) image batch Kim et al (2021)
SCAL ✗ ✗ image batch Krishnan et al (2021b)
Parting with illusions ✗ ✗ image batch Mittal et al (2019)
Robust & reproducible AL ✓ ✓ image batch Munjal et al (2022)
PT4AL ✗ ✗ image single,batch Yi et al (2022)
DeepAL+ ✗ ✗ image batch Zhan et al (2022)
Revisiting AL, Vision Foundation No* No* image batch Gupte et al (2024)
BADGE ✗ ✓ image, openml batch Ash et al (2020)
Interplay of UM and deep AL ✓ ✓ image, synth batch Huseljic et al (2024)
Open-Set annotation, LfOSA ✗ ✗ image batch Ning et al (2022)
AL for imbalanced datasets Yes* ✓ image batch Aggarwal et al (2020)
Limitations of AL ✗ ✗ image, text batch Hu et al (2021)
optimal AL ✗ ✗ image, text batch Zhou et al (2021)
Benchmarking pool-based AL ✗ ✗ tabular, synth single, batch Zhan et al (2021)
Efficacy of deep AL for image ✗ ✗ image batch Li et al (2022)
Margin all you need? ✗ ✗ tabular batch Bahri et al (2022)
Ours ✓ ✓ biochemistry single,batch

Table 2 Comparison of related Active Learning benchmarks with emphasis on the inclusion of validation set
cost, hyperparameter-tuning, and covered modalities. Noteable exceptions: BenchPress is a code generation
framework and not strictly an AL benchmark. Special cases (marked with *) include (Gupte et al, 2024), which
acknowledge the issues but do not discuss solutions in their benchmark, and (Aggarwal et al, 2020), which
considers 10-fold cross-validation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C ALPS DETAILS

C.1 SOURCE DATA

1 10 20 28
Number of mutations, m

0

5000

p
d

a
ta

(m
)

AAV2 input distribution

1 2 3 4
Number of mutations, m

0

5

10

lo
g
p

d
a

ta
(m

)

GB1 input distribution

1 10 20 28
Number of mutations, m

0

5000

10000

p
d

a
ta

(m
)

GRB2 input distribution

−10 0
y

0.0

0.2

0.4

p
d

a
ta

(y
|m

)

AAV2 label distribution

m = 1

m = 10

m = 20

m = 28

−10 −5 0
log y

0.0

0.2

0.4

p
d

a
ta

(l
o

g
y
|m

)

GB1 label distribution

m = 1

m = 2

m = 3

m = 4

−2 0
y

0

1

2

p
d

a
ta

(y
|m

)

GRB2 label distribution

m = 1

m = 10

m = 20

m = 28

1 10 20 30
Number of mutations, m

0

10000

p
d

a
ta

(m
)

His3 input distribution

1 5 10 12
Number of mutations, m

0

1000

p
d

a
ta

(m
)

mKate2 input distribution

1 2 3 4
Number of mutations, m

0

5

10

lo
g
p

d
a

ta
(m

)

TrpB input distribution

−4 −2 0
y

0

5

p
d

a
ta

(y
|m

)

His3 label distribution

m = 1

m = 10

m = 20

m = 30

0 1 2
y

0

2

p
d

a
ta

(y
|m

)

mKate2 label distribution

m = 1

m = 5

m = 10

m = 12

−10 −5 0
log y

0.0

0.2

0.4
p

d
a

ta
(l

o
g
y
|m

)

TrpB label distribution

m = 1

m = 2

m = 3

m = 4

Figure 8 Overview of the label and property distributions for all source datasets that are the basis for the ALPS
problems. The number of mutations (as properties of the sequence) was used to curate the ALPS-Restricted
tasks, whereas the labels have been used to curate class balances for ALPS-Unbalanced. See Table 3 for
references and measured effects.

Dataset Effect of Interest Description (number sites mutated) (unique positions) N References License
GB1 Epistasis (indiv.) combinatorially complete binding (0-4) (4) 149,361 Wu et al (2016); Yang et al (2025) CC-BY 4.0 International
TrpB Epistasis (indiv.) combinatorially complete enzyme (0-4) (4) 159,129 Johnston et al (2024); Yang et al (2025) CC-BY 4.0 International
GRB2-SH3 Allostery (design) allosteric abundance+binding library, (0-20) (34) 71,233 Faure et al (2024) MIT
AAV2 Viability (design) engineered viral capsid (0-29) (varying lengths) 39,172 Dallago et al (2021); Bryant et al (2021) MIT
mKate2 Epistasis (general) bridging two genotypes (eqFP) (0-13) 8,192 Poelwijk et al (2019); Faure & Lehner (2024) CC-BY 4.0 International
His3 Epistasis (general) 12 WTs with high-order mutants (NA) 956,648 Pokusaeva et al (2019); Notin et al (2023) CC-BY 4.0 International

Table 3 ALPS source data overview, displaying investigated effect (from the original source), number of
samples in the data, and license. For AAV2, a subset of random mutagenesis deselecting model-dependent designs
was used.

C.2 PROBLEMS

Generally, we define a task in the ALPS benchmark based on the label set, or any property vector
which can be derived from the input sequence, see Figure 8. We specifically consider the Hamming
distance relative to the reference (wild-type) sequence. To further specify the task, we can curate the
label vector and the property vector by sub-selecting either or both. This allows us to easily add new
tasks if required, based on the label-set or input properties.

C.2.1 CORE TASK

A broad test bed for the label acquisition strategies is the datasets in their raw, uncurated form. These
datasets allow us to test the hypothesis whether active learning applies in uncurated, imbalanced
experiment settings. We consider 20% of all samples distinct from pool/training for testing, to reflect

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Core task pool, test label-sets. Both label and input property distributions are the same between pool and
test sets.

(b) Unbalanced task pool, test label-sets. The label and input property distributions are the same between
pool and test sets.

(c) Restricted task pool, test label-sets. Both label and input property distributions change between pool
and test set.

(d) Redundant task pool, test label-sets. Input and label distributions are the same for pool and test set.

Figure 9 Overview of the label distributions. For each task and source data the input property mutation m
count as density (left) and likelihood of observing the positive label (right). Mutations for His3 have been taken
from the source set with respect to one reference sequence ("Scer").

standard AL setups. We also consider a fully uncurated setup, the pool set consists of all input-label
pairs available, and the task is to predict the labels on the complete dataset Appendix D.1. For this
specific case, Xpool = Xtest and any input, label pair, which we acquire from the pool is present in
the test set; translating into Xtrain ⊂ Xtest. This task (in either configuration) does not apply to His3,
since binarization requires considerable post-processing steps, which can be found in the original
reference Pokusaeva et al (2019).

C.2.2 UNBALANCED TASK

We investigate whether a change in threshold affects algorithm performance, apart from the reference
inputs used to measure improvement against, initially motivated by protein engineering practices. Our
task follows the previously described uncurated, imbalanced (Core) setup where Xtrain ⊆ Xpool =
Xtest. To obtain varying degrees of label imbalance, we compute five constant threshold values
equidistant between the median label and previous (WT) reference values Figure 9b. We do so by

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Task
Source

AAV2 GB1 GRB2-SH3 mKate2 His3 TrpB

transform

uncurate binarize (ref.) Core Core Core Core see Pokusaeva et al (2019) Core
imbalance binarize (const.) Unbalanced Unbalanced Unbalanced Unbalanced – Unbalanced
constraint/transfer subselect property Restricted Restricted Restricted Restricted – Restricted
redundancies binarize & assign UNK – – – – Redundant –

Table 4 Overview of the problems and what task they are addressing (index), what transformation is applied
to the source labels (columns) to obtain the problem (cells). We report results for individual problems (black)
and if task definitions apply (in general) and can be derived with the provided code-base they are indicated in
gray. For example, it is possible to define Restricted task(s) for any input sequence if there are more than two
distinct set of mutations with enough samples to account for the acquisition budget. However, not all distinct
sets of mutations with which a restricted task can be defined present plausible (practical) scenarios. Across all
tasks His3 presents an exception, as the unprocessed measurements cannot be used for the Core task, and due
to the nature of the source data has to be treated with care Pokusaeva et al (2019), see Appendix C.2.4.

discretizing with constant values, for TrpB specifically t ∈ [−4,−3.5,−3,−2.75,−2.5] in log y
labels (see alps/config/compute_protein_task/data/trpb.yaml).

- labels: binary_const
const_val: -4

C.2.3 RESTRICTED TASK

We split the dataset into a disjoint pool- and test-set, to test whether active label acquisition is
beneficial when an out-of-domain test/target set is given. The objective is to predict labels from
inputs with k number of mutations relative to the reference. Given Hamming distance HD of the
string inputs x, let Xtest = {x ∈ X | HD(x, xref) = k} and Xpool = {x ∈ X | HD(x, xref) < k}.
The pool from which training labels are acquired has < k mutations. The test set with which we
assess performance has k mutations. This subsequently yields different label distributions between
pool and test Figure 9c. To obtain the run configurations via the described experimental specifications,
we set the GB1,TrpB tasks like so

- labels: binary_wt
curated: True
subset_by: k_mutations
subset_classes:
- [0, 1, 2, 3]
- [4]

This task reflects an experimental measurement campaign, where over multiple rounds more mutations
are introduced to the inputs and a proposal model is used to predict the next set of variants, describing
a transfer learning setting of the predictive models. Alternatively, this task can be formulated
by selecting other label or inputs sets, for example discretizing labels into multiple quantiles and
assigning pool and test to different quantile classes.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.2.4 REDUNDANT TASK

The task we specify encompasses a Xpool of largely uninformative labels and a labelled (zero-one)
minority set. The setting under which labels have been obtained (His3) reflects redundancy in the
pool due to multiple references when measuring observations. Specifically, labels have been obtained
for different experimental setups (libraries). Therefore, discretizing with respect to one reference
becomes impossible across all data in the source set. Given that inputs in His3 are associated with
multiple wild-types, measured under different experimental conditions, we binarize one library
with one reference input (the one it has been compiled with) and assign a third class to all other
observations (the remaining 11 libraries). We refer to this third class as "neither" in the manuscript.
Our pool consists of ≈ 86.8% uninformative (third class) samples, and the labeled classes are
≈ 12.4% negative and ≈ 0.7% positive labels. The starting training pool contains two labels for
each of the three classes. The pool contains all three classes, while test contains two classes only.
To replicate the experiment setup within the benchmark suite requires to first discretize with three
classes, and then to subselect the test classes of interest.
See alps/config/compute_protein_tasks/data/his3.yaml which targets
alps/src/data/tasks/pg.py. To obtain the run configurations via the experimental
specifications, we use

- data_item:
id: HIS3-ALL
wildtype_sequence: EALGAVRGVKRFGSGFAPLDEALSRAVVDL
positions: []
data_dir: ${directories.data}/his/S_all_scaled_info_v2.csv

curated: True
subset_by: labels
labels: ternary_wt
subset_classes:
- [0, 1, 2]
- [0, 1]

target_id: HIS3-S1

C.2.5 BATCHED TASK

The underlying tasks are the Core (uncurated) setups, see Appendix C.2.1, however the acquisition
algorithms are run with batch_size>1 (as specified).

C.3 ENCODINGS

Figure 10 Encoding of the protein sequence inputs. We encode a reference sequence, consisting of single-letter
amino acid codes, into a continuous vector of fixed length. Pretrained encoder models take the full sequence
length (for all datasets) and encode it to the model’s number of dimensions, see Table 5. The onehot and
georgiev encodings can be limited to encode only the mutated positions (GB1,TrpB), segments including
mutations (mKate2,His3), and full-length sequences (GRB2-SH3,AAV2).

The inputs are string sequences (amino acid sequences) either as the residues of the mutated positions
(GB1,TrpB) or the sequence of complete length (GRB2,AAV2,His3), which we encode to a real-
valued matrix. To select the best performing protein language model (PLM) we evaluate a set of 22

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

PLMs available through huggingface, Table 5. As simple baselines, we consider simple onehot and
georgiev encodings of the amino acid sequences Georgiev (2009).

Name #dimensions #layers #params Memory Dataset Reference

esm1_t6_43M_UR50S 768 6 43M 0.17GB Uniref50/S 2018_0 Rives et al (2021)
esm1_t12_85M_UR50S 768 12 85M 0.34GB Uniref50/S 2018_0 Rives et al (2021)
esm1_t34_670M_UR50D 1280 34 670M 2.7GB Uniref50/D 2018_0 Rives et al (2021)
esm1_t34_670M_UR50S 1280 34 670M 2.7GB Uniref50/S 2018_0 Rives et al (2021)
esm1_t34_670M_UR100 1280 34 670M 2.7GB Uniref100 2018_0 Rives et al (2021)
esm1b_t33_650M_UR50S 1280 33 650M 2.6GB Uniref50/S 2018_0 Rives et al (2021)
esm1v_t33_650M_UR90S_[1-5] 1280 33 650M 2.6GB Uniref90/S 2020_0 Meier et al (2021)
esm2_t6_8M_UR50D 320 6 8M 0.03GB Uniref50/D 2021_0 Lin et al (2023)
esm2_t12_35M_UR50D 480 12 35M 0.14GB Uniref50/D 2021_0 Lin et al (2023)
esm2_t30_150M_UR50D 640 30 150M 0.6GB Uniref50/D 2021_0 Lin et al (2023)
esm2_t33_650M_UR50D 1280 33 650M 2.6GB Uniref50/D 2021_0 Lin et al (2023)
esm2_t36_3B_UR50D 2560 36 3B 12GB Uniref50/D 2021_0 Lin et al (2023)
esm2_t48_15B_UR50D 5120 48 15B 60GB Uniref50/D 2021_0 Lin et al (2023)
esm3_sm_open_v1 1536 48 1.4B 5.6GB custom Hayes et al (2025)

prot_albert 4096 12 224M 0.9GB Uniref100 Elnaggar et al (2022)
prot_bert 1024 30 420M 1.7GB Uniref100 Elnaggar et al (2022)
prot_bert_bfd 1024 30 420M 1.7GB BFD100 Elnaggar et al (2022)
prot_xlnet 1024 30 409M 1.6GB Uniref100 Elnaggar et al (2022)
prot_t5_xl_uniref50 1024 24 3B 12GB Uniref50 Elnaggar et al (2022)
prot_t5_xl_bfd 1024 24 3B 12GB BFD100 Elnaggar et al (2022)
prot_t5_xxl_uniref50 1024 24 11B 44GB Uniref50 Elnaggar et al (2022)
prot_t5_xxl_bfd 1024 24 11B 44GB BFD100 Elnaggar et al (2022)

Table 5 Overview of all pretrained encoders available in ALPS.

C.4 LABEL PREPROCESSING

Binary classification Given a reference threshold, listed WT reference sequence value (unless
indicated otherwise), we assign positive classes if function values are equal or greater than that
reference value.
Exact specifications for reference sequence wildtype_sequence (in sets of sequences seq_id) and
labels (label_id) can be found in the respective alps/config/compute_protein_tasks/data/
{aav,allo,eqfp,gb1,grb2,his3,trpb}.yaml . The WT reference binary classification is
labels: binary_wt.
Binary classes can also be assigned by constant values, see labels: binary_const, which has
been applied to compute ALPS-Unbalanced.

C.5 METRICS

Accuracy Given N input-label pairs, (xi
∗, y

i
∗)

N
i=1, we compute

accuracy :=
1

N

N∑
i=1

I(argmax
y′
∗

pϕ(y
′
∗|xi

∗) = yi∗). (1)

Expected negative log likelihood We compute

NLL := − 1

N

N∑
i=1

log pϕ(y
′
∗ = yi∗|xi

∗). (2)

F1 score We compute the F1 score from the true positive count (TP) and false positive count (FP)
as

f1 :=
2TP

(2TP + FP + FN)
. (3)

AUROC We use the Scikit-learn (Pedregosa et al, 2011) implementation to calculate AUROC
(macro (unweighted) aggregate with McClish correction). For the binary-label case, we compute

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

ROC-AUC :=
1

2

(
1 +

AUC(FPR,TPR)− 1
2 max(FPR)2

max(FPR)− 1
2 max(FPR)2

)
. (4)

C.6 ALGORITHMS

C.6.1 PREDICTION HEADS

Logistic regression is as implemented in scikit-learn (sklearn.linear_model.LogisticRegression)
(max_iter=10000) with l2 penalty, optimized regularization parameter C, given a validation sample.
For each model fit, we determine the optimal regularizer ∈ [0.001, 0.01, 1, 100, 1000] as minimizing
LNLL on the validation set.

Random forest is as implemented in scikit-learn (sklearn.ensemble.RandomForestClassifier)
with default parameters (n_estimators=100 using the gini criterion).

Neural network with MC dropout implemented in PyTorch, three layer fully connected ar-
chitecture (sizes 128, 128, 128) with dropout-rate of 0.1 (10%), following Gal & Ghahramani
(2016) https://github.com/yaringal/DropoutUncertaintyExps. Training is done minimiz-
ing LNLL loss (unless stated otherwise) with early stopping (patience is 5.000 steps) on a validation
set (size 1.000 samples). Optimizer is (PyTorch’s) SGD optimizer with learning-rate γ = 0.01 and
weight decay λ = 0.0001 Paszke et al (2019).

C.6.2 ACQUISITION

EPIG as implemented in Bickford Smith et al (2023) (available at https://github.com/
fbickfordsmith/epig under MIT license) with n_target_samples=100 without nested MC
computed from scores in batches of 1000.

BALD as implemented in Kirsch et al (2019) (available at https://github.com/BlackHC/
batchbald_redux/ under Apache-2.0 license) computing scores in batches of 1000.

Random Random acquisition is numpy (v1.26.0) random (Generator) choice (without replace-
ment) with size=batch_size.

TypiClust follows the implementation in Hacohen et al (2022) as provided in the repository
(https://github.com/avihu111/TypiClust/) (MIT license) with n_neighbors=20. A batch
size of 50 is used, unless stated otherwise.

BADGE follows the implementation in Ash et al (2020) from the repository (https://github.
com/JordanAsh/badge/) and is applied to neural network predictors with MC-dropout, unless
indicated otherwise. Due to run-time of the underlying models a batch-size of 50 is used, unless
indicated otherwise.

BAIT follows the implementation in Ash et al (2021) and is used with neural network prediction
heads and a batch-size of 50, unless indicated otherwise.

24

https://https://github.com/yaringal/DropoutUncertaintyExps
https://https://github.com/fbickfordsmith/epig
https://https://github.com/fbickfordsmith/epig
https://https://github.com/BlackHC/batchbald_redux/
https://https://github.com/BlackHC/batchbald_redux/
https://https://github.com/avihu111/TypiClust/
https://https://github.com/JordanAsh/badge/
https://https://github.com/JordanAsh/badge/

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D ADDITIONAL RESULTS

D.1 POOL EQUAL TO TEST

0 1000 2000
Number of labels

80

85

90

95

M
ea

n
te

st
ac

c
(%

)

ALPS-Core-AAV2

0 1000 2000
Number of labels

96

98

100
ALPS-Core-GB1

0 1000 2000
Number of labels

90

92

94

ALPS-Core-GRB2-SH3

0 1000 2000
Number of labels

80

90

100
ALPS-Core-mKate2

0 1000 2000
Number of labels

98

99

100
ALPS-Core-TrpB

BALD

EPIG

random

TypiClust

0 1000 2000
Number of labels

0.4

0.6

M
ea

n
te

st
N

L
L

ALPS-Core-AAV2

0 1000 2000
Number of labels

0.2

0.4
ALPS-Core-GB1

0 1000 2000
Number of labels

0.2

0.3

0.4

ALPS-Core-GRB2-SH3

0 1000 2000
Number of labels

0.2

0.4

0.6

ALPS-Core-mKate2

0 1000 2000
Number of labels

0.1

0.2

0.3
ALPS-Core-TrpB

BALD

EPIG

random

TypiClust

Figure 11 Core task performance with test-set as all samples (including training). Generally, we find an
increase in test performance for all acquisitions BALD, EPIG, and random (cf. Fig 1) and a decreased standard
error across seeds (7 seeds reported). The order of performance stays the same, i.e. BALD outperforming EPIG
in 4 out of 5 core tasks, and EPIG outperforming BALD on all Core tasks for the expected NLL loss.

D.2 ADDITIONAL CLASSIFIER

We include a fully connected neural network (three layers) with MC dropout (rate 10%) Gal &
Ghahramani (2016) as a deep learning classifier. As this significantly increases the compute time per
step, we set the batch size to 50 and report results on two core datasets GB1,TrpB.

0 500 1000 1500
Number of labels

60

70

80

90

100

M
ea

n
te

st
ac

c
(%

)

ALPS-Core-GB1

0 500 1000 1500
Number of labels

60

70

80

90

100
ALPS-Core-TrpB

BALD

EPIG

random

TypiClust

0 500 1000 1500
Number of labels

0.0

0.5

1.0

M
ea

n
te

st
N

L
L

ALPS-Core-GB1

0 500 1000 1500
Number of labels

0.0

0.5

1.0

1.5
ALPS-Core-TrpB

BALD

EPIG

random

TypiClust

Figure 12 Performance of the neural network (NN) model with MC dropout (ESM3 encoding) on two Core
tasks (GB1,TrpB) using batch acquisition (BALD, EPIG, TypiClust) in batches of 50 (8 seeds). Compared to the
random forest (RF) performance on the same datasets, we ultimately observe very high accuracy and comparable
NLL values. However, with a NN, both BALD and EPIG require more labels to obtain the same performance,
i.e. up to 400 labels the test accuracy is below 90, which is significantly lower than for ESM3+RF on the same
pool and test set also using batch acquisition Figure 13.

0 500 1000 1500
Number of labels

85

90

95

M
ea

n
te

st
ac

c
(%

)

ALPS-Core-GB1

0 500 1000 1500
Number of labels

98.0

98.5

99.0

99.5

ALPS-Core-TrpB

BALD

EPIG

random

TypiClust

0 500 1000 1500
Number of labels

0.1

0.2

0.3

M
ea

n
te

st
N

L
L

ALPS-Core-GB1

0 500 1000 1500
Number of labels

0.025

0.050

0.075

0.100

0.125

ALPS-Core-TrpB

BALD

EPIG

random

TypiClust

Figure 13 Performance of random forest prediction (ESM3 encoding) using batched acquisition (BALD,
EPIG) with batch-size 50 (8 seeds).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 500 1000 1500
Number of labels

0.6

0.8

1.0

R
el

at
iv

e
m

ea
n

te
st

ac
c

ALPS-Core-GB1

ESM3+MCDO+BatchBALD

ESM3+MCDO+BatchEPIG

ESM3+MCDO+TypiClust

ESM3+RF+BatchBALD

ESM3+RF+BatchEPIG

ESM3+RF+TypiClust

0 500 1000 1500
Number of labels

2.5

5.0

7.5

R
el

at
iv

e
m

ea
n

te
st

N
L

L

ALPS-Core-GB1

ESM3+MCDO+BatchBALD

ESM3+MCDO+BatchEPIG

ESM3+MCDO+TypiClust

ESM3+RF+BatchBALD

ESM3+RF+BatchEPIG

ESM3+RF+TypiClust

Figure 14 Relative performance over random (ratio) comparing neural network prediction head with MC
dropout against random-forest regressor on ESM3 on one Core task (GB1) using batched acquisition (BALD,
EPIG, TypiClust) with batch-size 50 (8 seeds).

D.3 F1-SCORE METRIC

Core tasks presented with the F1-score metric.

0 1000 2000
Number of labels

0.00

0.25

0.50

M
ea

n
te

st
f1

ALPS-Core-AAV2

0 1000 2000
Number of labels

0.00

0.25

0.50

0.75
ALPS-Core-GB1

0 1000 2000
Number of labels

0.00

0.25

0.50

0.75
ALPS-Core-GRB2-SH3

0 1000 2000
Number of labels

0.0

0.5

1.0
ALPS-Core-mKate2

0 1000 2000
Number of labels

0.0

0.5

ALPS-Core-TrpB

BALD

EPIG

random

TypiClust

Figure 15 Performance (F1 score on the test set) of a random-forest classifier on ESM3 over number of
acquired labels (x-axis). We observe higher test performance of active acquisition (EPIG, BALD) over random
(light green) except for curated set (mKate2).

2 5 12 17 23

Imbalance ratio (neg./pos.)

0.00

0.05

0.10

0.15

0.20

0.25

D
iff

er
en

ce
in

m
ea

n
te

st
f1

ALPS-Unbalanced-TrpB-[2,5,12,17,23]

BALD

EPIG

TypiClust

random

Figure 16 Performance (mean F1 score on test computed over all acquired samples with std.err.) over different
imbalance ratios (x-axis) (zero to one proportion) obtained from varying threshold discretization (six seeds).

0 500 1000
Number of labels

0.0

0.1

0.2

M
ea

n
te

st
f1

ALPS-Redundant-HIS3-ALL

BALD

EPIG

random

TypiClust

Figure 18 Test performance (F1 score) on two-class test set, with three class pool/training set. Prediction-
oriented active learning shows significant gains over random acquisition.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 1000 2000
Number of labels

0.00

0.25

0.50

M
ea

n
te

st
f1

ALPS-Restricted-GB1

0 1000 2000
Number of labels

0.00

0.25

0.50

ALPS-Restricted-GRB2-SH3

0 1000 2000
Number of labels

0.0

0.2

0.4
ALPS-Restricted-TrpB

BALD

EPIG

random

TypiClust

Figure 17 Performance (test F1 score) with ESM3 encoded inputs for training on pool distinct from the test
set on seven seeds. sTraining inputs are up to HD = (k − 1) from a reference, and test/target set is HD = k,
with k = 4 for GB1, TrpB, and k = 16 for GRB2-SH3.

1 16 50 100

batch-size

0.2

0.4

0.6

M
ea

n
te

st
f1

ALPS-Core-GB1

1 16 50 100

batch-size

ALPS-Core-TrpB

BALD

EPIG

random

Figure 19 Expected performance (empirical mean F1 score across steps, with standard error across 8 seeds)
over different batch-sizes (x-axis).

0 1000 2000
Number of labels

0

100

200

R
el

at
iv

e
m

ea
n

te
st

f1

ALPS-Core-GB1
ESM3+RF+BALD

ESM3+RF+EPIG

Georgiev+RF+BALD

Georgiev+RF+EPIG

onehot+RF+BALD

onehot+RF+EPIG

0 1000 2000
Number of labels

ALPS-Core-GB1
ESM3+LR+entropy

Georgiev+LR+entropy

onehot+LR+entropy

Figure 20 Test performance (F1 score) relative to random performance (ratio) for all models (three encoders
with two classifiers) over number of acquired samples.

0 1000 2000
Number of labels

0

50

R
el

at
iv

e
m

ea
n

te
st

f1

ALPS-Core-TrpB
ESM3+RF+BALD

ESM3+RF+EPIG

Georgiev+RF+BALD

Georgiev+RF+EPIG

onehot+RF+BALD

onehot+RF+EPIG

0 1000 2000
Number of labels

ALPS-Core-TrpB
ESM3+LR+entropy

Georgiev+LR+entropy

onehot+LR+entropy

Figure 21 Test performance (F1 score) for all models (three encodings with two classifiers) over number of
acquired samples.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D.4 AUROC METRIC

All experimental results presented with the AUROC metric.

0 1000 2000
Number of labels

0.6

0.8

M
ea

n
te

st
ro

c
au

c

ALPS-Core-AAV2

0 1000 2000
Number of labels

0.6

0.8

1.0
ALPS-Core-GB1

0 1000 2000
Number of labels

0.6

0.8

1.0
ALPS-Core-GRB2-SH3

0 1000 2000
Number of labels

0.6

0.8

1.0
ALPS-Core-mKate2

0 1000 2000
Number of labels

0.6

0.8

1.0
ALPS-Core-TrpB

BALD

EPIG

random

TypiClust

Figure 22 Performance (AUROC) of a random-forest classifier on ESM3 on the test set over number of
acquisitions. We observe higher test performance of active acquisition (EPIG) over random (light green) except
for AAV2 (8 seeds).

2 5 12 17 23

Imbalance ratio (neg./pos.)

−0.03

−0.02

−0.01

0.00

0.01

D
iff

er
en

ce
in

m
ea

n
te

st
ro

c
au

c

ALPS-Unbalanced-TrpB-[2,5,12,17,23]

BALD

EPIG

TypiClust

random

Figure 23 Performance of test AUROC (random-forest on ESM3, mean over run with std.err.) given different
imbalance-ratios (zero-to-one) by varying threshold discretization (six seeds).

0 1000 2000
Number of labels

0.6

0.8

M
ea

n
te

st
ro

c
au

c

ALPS-Restricted-GB1

0 1000 2000
Number of labels

0.6

0.8

ALPS-Restricted-GRB2-SH3

0 1000 2000
Number of labels

0.6

0.8

1.0
ALPS-Restricted-TrpB

BALD

EPIG

random

TypiClust

Figure 24 Performance (AUROC) with random-forest on ESM3 encoded inputs for training on pool distinct
from the test set. Training inputs are up to HD = (k− 1) from a reference, and test/target set is HD = k, with
k = 4 for GB1, TrpB, and k = 16 for GRB2-SH3 (8 seeds).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

1 16 50 100

batch-size

0.875

0.900

0.925

0.950

M
ea

n
te

st
ro

c
au

c

ALPS-Core-GB1

1 16 50 100

batch-size

ALPS-Core-TrpB

BALD

EPIG

random

Figure 25 Expected performance (empirical mean over test metric across steps, with standard error (8 seeds)
over different batch-sizes.

0 1000 2000
Number of labels

1.0

1.2

R
el

at
iv

e
m

ea
n

te
st

ro
c

au
c

ALPS-Core-GB1

ESM3+RF+BALD

ESM3+RF+EPIG

Georgiev+RF+BALD

Georgiev+RF+EPIG

onehot+RF+BALD

onehot+RF+EPIG

0 1000 2000
Number of labels

ALPS-Core-GB1
ESM3+LR+entropy

Georgiev+LR+entropy

onehot+LR+entropy

Figure 26 Relative performance (test AUROC to random ratio) for all models (three encoders with two
classifiers) over the number of acquired samples.

0 1000 2000
Number of labels

0.75

1.00

1.25

R
el

at
iv

e
m

ea
n

te
st

ro
c

au
c

ALPS-Core-TrpB

ESM3+RF+BALD

ESM3+RF+EPIG

Georgiev+RF+BALD

Georgiev+RF+EPIG

onehot+RF+BALD

onehot+RF+EPIG

0 1000 2000
Number of labels

ALPS-Core-TrpB
ESM3+LR+entropy

Georgiev+LR+entropy

onehot+LR+entropy

Figure 27 Test performance (AUROC) for all models (three encoders with two classifiers) over the number of
acquired samples.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

D.5 BADGE AND BAIT

70

80

90

T
es

t
a

cc
u

ra
cy

(%
)

ALPS-Core-AAV2
with ESM3 encoder

70

80

90

ALPS-Core-AAV2
with Georgiev encoder

70

80

90

ALPS-Core-AAV2
with onehot encoder

TypiClust

BADGE

BAIT

90

95

100

T
es

t
a

cc
u

ra
cy

(%
)

ALPS-Core-GB1
with ESM3 encoder

90

95

100

ALPS-Core-GB1
with Georgiev encoder

90

95

100

ALPS-Core-GB1
with onehot encoder

80

85

90

95

T
es

t
a

cc
u

ra
cy

(%
)

ALPS-Core-GRB2
with ESM3 encoder

80

85

90

95

ALPS-Core-GRB2
with Georgiev encoder

80

85

90

95

ALPS-Core-GRB2
with onehot encoder

70

80

90

100

T
es

t
a

cc
u

ra
cy

(%
)

ALPS-Core-mKate2
with ESM3 encoder

70

80

90

100

ALPS-Core-mKate2
with Georgiev encoder

70

80

90

100

ALPS-Core-mKate2
with onehot encoder

0 1000 2000
Number of labels

90

95

100

T
es

t
a

cc
u

ra
cy

(%
)

ALPS-Core-TrpB
with ESM3 encoder

0 1000 2000
Number of labels

90

95

100

ALPS-Core-TrpB
with Georgiev encoder

0 1000 2000
Number of labels

90

95

100

ALPS-Core-TrpB
with onehot encoder

Figure 28 Test accuracy of BADGE and BAIT relative to TypiClust on the ALPS-Core problems.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0

1

T
es

t
ex

p
ec

te
d

N
L

L

ALPS-Core-AAV2
with ESM3 encoder

0.0

0.5

1.0

ALPS-Core-AAV2
with Georgiev encoder

0.0

0.5

1.0

ALPS-Core-AAV2
with onehot encoder

TypiClust

BADGE

BAIT

0.0

0.1

0.2

0.3

T
es

t
ex

p
ec

te
d

N
L

L

ALPS-Core-GB1
with ESM3 encoder

0.0

0.1

0.2

0.3

ALPS-Core-GB1
with Georgiev encoder

0.0

0.1

0.2

0.3

ALPS-Core-GB1
with onehot encoder

0.0

0.5

1.0

T
es

t
ex

p
ec

te
d

N
L

L

ALPS-Core-GRB2
with ESM3 encoder

0.0

0.5

1.0

ALPS-Core-GRB2
with Georgiev encoder

0.0

0.5

ALPS-Core-GRB2
with onehot encoder

0

1

T
es

t
ex

p
ec

te
d

N
L

L

ALPS-Core-mKate2
with ESM3 encoder

0.0

0.5

1.0

ALPS-Core-mKate2
with Georgiev encoder

0

1

ALPS-Core-mKate2
with onehot encoder

0 1000 2000
Number of labels

0.0

0.1

0.2

0.3

T
es

t
ex

p
ec

te
d

N
L

L

ALPS-Core-TrpB
with ESM3 encoder

0 1000 2000
Number of labels

0.0

0.1

0.2

0.3

ALPS-Core-TrpB
with Georgiev encoder

0 1000 2000
Number of labels

0.0

0.1

0.2

0.3

ALPS-Core-TrpB
with onehot encoder

Figure 29 Test expected NLL of BADGE and BAIT relative to TypiClust on the ALPS-Core problems.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

D.6 RUN TIMES

Dataset Prediction head Method Median Minimum Maximum

AAV Random forest BALD 10 10 10
EPIG 8 6 12
TypiClust 231 226 279
Random 5 4 7

Neural network BADGE 86 77 104
BAIT 75 67 89
TypiClust 304 298 352
Random 70 62 94

GB1 Random forest BALD 21 15 32
EPIG 30 19 30
TypiClust 263 166 265
Random 7 7 7

Neural network BADGE 123 107 3519
BAIT 117 112 487
TypiClust 354 252 356
Random 115 94 127

GRB2 Random forest BALD 15 8 18
EPIG 15 10 19
TypiClust 242 168 248
Random 8 7 9

Neural network BADGE 85 81 106
BAIT 84 81 102
TypiClust 312 243 318
Random 87 74 95

TrpB Random forest BALD 16 15 28
EPIG 21 16 28
TypiClust 263 170 345
Random 6 5 10

Neural network BADGE 137 112 2954
BAIT 132 115 1091
TypiClust 361 316 467
Random 134 115 151

mKate2 Random forest BALD 5 5 6
EPIG 5 4 6
TypiClust 117 75 119
Random 4 4 6

Neural network BADGE 78 72 97
BAIT 65 62 80
TypiClust 164 134 171
Random 76 72 81

Table 6 Per-step (acquisition plus training) run times (in seconds) on the ALPS-Core problems.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

D.7 PLOTS WITH FULL VERTICAL-AXIS RANGES

Some of the active-learning plots in Section 6 use vertical axes with reduced ranges so that the gaps
between curves are easier to see. Here we present corresponding plots with full ranges.

0 1000 2000
Number of labels

60

80

M
ea

n
te

st
ac

c
(%

)

ALPS-Core-AAV2

0 1000 2000
Number of labels

80

100
ALPS-Core-GB1

0 1000 2000
Number of labels

60

80

ALPS-Core-GRB2-SH3

0 1000 2000
Number of labels

60

80

ALPS-Core-mKate2

0 1000 2000
Number of labels

60

80

100
ALPS-Core-TrpB

BALD

EPIG

random

TypiClust

0 1000 2000
Number of labels

0.4

0.6

M
ea

n
te

st
N

L
L

ALPS-Core-AAV2

0 1000 2000
Number of labels

0.25

0.50

ALPS-Core-GB1

0 1000 2000
Number of labels

0.2

0.4

0.6

ALPS-Core-GRB2-SH3

0 1000 2000
Number of labels

0.25

0.50

0.75

ALPS-Core-mKate2

0 1000 2000
Number of labels

0.00

0.25

0.50

ALPS-Core-TrpB

BALD

EPIG

random

TypiClust

Figure 30 Figure 2 with full vertical-axis ranges.

0 500 1000
Number of labels

0

50

M
ea

n
te

st
ac

c
(%

)

ALPS-Redundant-HIS3-ALL

BALD

EPIG

random

TypiClust

0 500 1000
Number of labels

1

2
M

ea
n

te
st

N
L

L

ALPS-Redundant-HIS3-ALL

BALD

EPIG

random

TypiClust

Figure 31 Figure 4 with full vertical-axis ranges.

0 1000 2000
Number of labels

50

75

100

M
ea

n
te

st
ac

c
(%

)

ALPS-Restricted-GB1

0 1000 2000
Number of labels

60

80

ALPS-Restricted-GRB2-SH3

0 1000 2000
Number of labels

60

80

100
ALPS-Restricted-TrpB

BALD

EPIG

random

TypiClust

0 1000 2000
Number of labels

0.25

0.50

0.75

M
ea

n
te

st
N

L
L

ALPS-Restricted-GB1

0 1000 2000
Number of labels

0.2

0.4

0.6

ALPS-Restricted-GRB2-SH3

0 1000 2000
Number of labels

0.00

0.25

0.50

ALPS-Restricted-TrpB

BALD

EPIG

random

TypiClust

Figure 32 Figure 5 with full vertical-axis ranges.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0 1000 2000
Number of labels

2.5

5.0

7.5

R
el

at
iv

e
m

ea
n

te
st

ac
c ALPS-Core-GB1

ESM3+RF+BALD

ESM3+RF+EPIG

Georgiev+RF+BALD

Georgiev+RF+EPIG

onehot+RF+BALD

onehot+RF+EPIG

0 1000 2000
Number of labels

ALPS-Core-GB1
ESM3+LR+entropy

Georgiev+LR+entropy

onehot+LR+entropy

0 1000 2000
Number of labels

1

2

3

R
el

at
iv

e
m

ea
n

te
st

N
L

L ALPS-Core-GB1
ESM3+RF+BALD

ESM3+RF+EPIG

Georgiev+RF+BALD

Georgiev+RF+EPIG

onehot+RF+BALD

onehot+RF+EPIG

0 1000 2000
Number of labels

ALPS-Core-GB1
ESM3+LR+entropy

Georgiev+LR+entropy

onehot+LR+entropy

Figure 33 Figure 7 with full vertical-axis ranges.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

E LABEL NOISE

Here we provide some information regarding label noise in the ALPS problems, drawing from the
papers introducing the original experimental datasets that we use to construct ALPS. We recommend
referring to the full papers to better contextualise the content we quote.

AAV2 Bryant et al (2021) noted label noise “caused by low plasmid counts for specific variants”;
discussed dealing with the noise by filtering based on plasmid count and by binarising measurements;
and reported high correlations between experimental replicates (their Supplementary Figure 2).

GB1 Wu et al (2016) noted label noise for “10,639 missing variants (i.e. 6.6% of the sequence
space) that had fewer than 10 sequencing read counts in the input library”; discussed dealing with the
noise by filtering based on read count and imputing missing labels; and reported “high reproducibility
in the data” and “fitness measurements. . . highly consistent with our previous study”.

GRB2 Faure et al (2024) said they “obtained triplicate abundance measurements for 129,320 variants,
which is 0.0007% of the sequence space” and the “measurements were highly reproducible”.

His3 Pokusaeva et al (2019) said they “measured fitness for a total of 4,018,105 genotypes (875,151
unique amino acid sequences) with high accuracy” while noting that “For one segment, 9, the accuracy
of our experiment was low”; they supported their judgements with an “accuracy analysis”.

mKate2 Poelwijk et al (2019) used sequence barcoding and a Poisson noise model to “correct
for mis-sorting events and unobserved spurious mutations that can introduce errors in assigning
phenotypes”, leading to “removal of 2% of counts, after which final enrichments were calculated”.

TrpB Johnston et al (2024) reported that their “fitness values of overlapping subsets of the 3- and
4- site libraries were highly correlated” and that “Analysis of the nearly one million unique codon
combinations sampled showed that synonymous mutations had minimal impact on fitness”, indicating
their measurements of protein fitness had a good level of internal consistency.

35

	Introduction
	Evaluating active learning
	Shortfalls in existing evaluations
	Protein-property prediction
	Active Learning on Protein Sequences
	The ALPS problems
	Codebase

	Experiments
	Setup
	Uncurated data helps stress-test data acquisition
	Sensitivity to class imbalance varies between acquisition methods
	Accounting for the task of interest is key for handling redundant inputs
	Restricted acquisition poses a particularly difficult challenge
	Stochastic batch acquisition has mixed effects on predictive performance
	The effectiveness of active learning depends on the model being trained

	Conclusion
	Datasets used in existing active-learning evaluations
	Additional related work
	ALPS details
	Source data
	Problems
	Core Task
	Unbalanced Task
	Restricted Task
	Redundant Task
	Batched Task

	Encodings
	Label preprocessing
	Metrics
	Algorithms
	Prediction heads
	Acquisition

	Additional Results
	Pool equal to Test
	Additional Classifier
	F1-score metric
	AUROC metric
	BADGE and BAIT
	Run times
	Plots with full vertical-axis ranges

	Label noise

