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Abstract
In this paper, we propose the neural homomorphic vocoder
(NHV), a source-filter model based neural vocoder framework.
NHV synthesizes speech by filtering impulse trains and noise
with linear time-varying (LTV) filters. A neural network
controls the LTV filters by estimating complex cepstrums of
time-varying impulse responses given acoustic features. The
proposed framework can be trained with a combination of
multi-resolution STFT loss and adversarial loss functions. Due
to the use of DSP-based synthesis methods, NHV is highly
efficient, fully controllable and interpretable. A vocoder was
built under the framework to synthesize speech given log-Mel
spectrograms and fundamental frequencies. While the model
cost only 15 kFLOPs per sample, the synthesis quality remained
comparable to baseline neural vocoders in both copy-synthesis
and text-to-speech.

Index Terms: speech synthesis, source-filter model, harmonic-
plus-noise model, waveform model

1. Introduction
Generative neural networks have obtained tremendous success
in generating high-fidelity speech and other audio signals.
Audio generation models conditioned on speech features such
as log-Mel spectrograms can be used as vocoders. Neural
vocoders have greatly improved the synthesis quality of modern
text-to-speech systems [1, 2]. Auto-regressive models, includ-
ing WaveNet [3] and WaveRNN [4], generate audio a sample at
a time conditioned on all previously generated samples. Flow-
based models, including Parallel WaveNet [5], ClariNet [6],
WaveGlow [7] and FloWaveNet [8], generate audio samples in
parallel with invertible transformations. GAN based models,
including GAN-TTS [9], Parallel WaveGAN [10], and Mel-
GAN [11], are also capable of parallel generation. Instead of
being trained with maximum likelihood, they are trained with
adversarial loss functions.

Neural vocoders can be designed to include speech syn-
thesis models in order to reduce computational complexity and
further improve synthesis quality. Many models aim to improve
source signal modeling in a source-filter model, including LPC-
Net [12], GELP [13], GlotGAN [14]. They only generate source
signals (e.g., linear prediction residual signal) with neural net-
works while offloading spectral shaping to time-varying filters.
Instead of improving source signal modeling, the neural source-
filter (NSF) [15, 16] framework replaces linear filters in the
classical model with convolutional neural network based filters.
NSF can synthesize waveform by filtering a simple sine-based
excitation signal [15]. Neural audio synthesis with sinusoidal
models is also explored recently. DDSP [17] proposes to
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synthesis audio by controlling a Harmonic plus Noise model
with a neural network. In DDSP, the harmonic component is
synthesized with additive synthesis where sinusoids with time-
varying amplitudes are added. And the noise component is
synthesized with linear time-varying filtered noise. DDSP has
been proved successful in modeling musical instruments. In this
work, we further explore the integration of DSP components in
neural vocoders.

We propose a novel neural vocoder framework called neural
homomorphic vocoder, which synthesizes speech with source-
filter models controlled by a neural network. We demonstrate
that with a shallow CNN containing 0.6 million parameters,
we can build a neural vocoder capable of reconstructing high-
quality speech from log-Mel spectrograms and fundamental
frequencies. While the computational complexity is more than
100 times lower compared to baseline systems, the quality of
generated speech remains comparable. Audio samples and
further information are provided in the online supplement1. We
highly recommend readers to listen to the audio samples.

2. Neural homomorphic vocoder
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Figure 1: A simplified source-filter model in discrete time. e[n]
is source signal. s[n] is speech.

The source-filter model is a widely applied linear model of
speech production and synthesis [18]. A simplified version of
the source-filter model is demonstrated in figure 1. The linear
filter h[n] describes the combined effect of glottal pulse, vocal
tract, and radiation in speech production. The source signal e[n]
is assumed to be either a periodic impulse train p[n] in voiced
speech, or noise signal u[n] in unvoiced speech. In practice,
e[n] can be a multi-band mixture of impulse and noise [19–21].
Np is time-varying. And h[n] is replaced with a linear time-
varying filter.

In neural homomorphic vocoder (NHV), a neural network
controls linear time-varying (LTV) filters in source-filter mod-
els. Similar to the Harmonic plus Noise model, NHV generates
harmonic and noise components separately. The harmonic com-
ponent, which contains periodic vibrations in voiced sounds, is
modeled with LTV filtered impulse trains. The noise compo-
nent, which includes background noise, unvoiced sounds, and
the stochastic component in voiced sounds, is modeled with
LTV filtered noise.

1https://zjlww.github.io/is2020/
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Figure 2: Illustration of NHV during inference. Gradients are
propagated backward along red lines. Green boxes contain
trainable parameters.

In the following discussion, the original speech signal x and
reconstructed signal s are divided into non-overlapping frames
with frame length L. We define m as the frame index, n as the
the discrete time index, and c as the feature index. The total
number of frames M and total number of sampling points N
follow N = M × L. In f0, S, hh, hn, 0 ≤ m < M − 1. x,
s, p, u, sh, sn are finite duration signals, in which 0 ≤ n <
N − 1. Impulse responses hh, and hn are infinitely long, in
which n ∈ Z. Impulse response h is causal, in which n ∈ Z

and n ≥ 0.
The speech synthesis process is illustrated in figure 2. First,

the impulse train p[n] is generated from frame-wise fundamen-
tal frequency f0[m]. And the noise signal u[n] is sampled from
a Gaussian distribution. Then, the neural network estimates
impulse responses hh[m,n] and hn[m,n] in each frame, given
the log-Mel spectrogram S[m, c]. Next, the impulse train p[n]
and the noise signal u[n] are filtered by LTV filters to obtain
the harmonic component sh[n] and the noise component sn[n].
Finally, sh[n] and sn[n] are added together and filtered by a
trainable causal FIR filter h[n], as proposed in DDSP [17].

In order to train the neural network, multi-resolution STFT
loss LR, and adversarial losses LG and LD are computed from
x[n] and s[n], as illustrated in figure 3. Since LTV filters are
fully differentiable, gradients can propagate back to the NN
filter estimator.

Adversarial Loss Function
(e.g. non-causal WaveNet)

Multi-resolution STFT Loss

Figure 3: Illustration of the loss functions used to train NHV.

In the following sections, we further describe different
components in the NHV framework.

2.1. Impulse train generator

Many methods [22, 23] exist for generating alias-free discrete
time impulse trains. Additive synthesis is one of the most
accurate methods. As described in equation (1), we can use
a low-passed sum of sinusoids to generate an impulse train.
f0(t) is reconstructed from f0[m] with zero-order hold or linear
interpolation. p[n] = p(n/fs). fs is the sampling rate.

p(t) =

⎧⎨
⎩

∑2kf0(t)<fs
k=1 cos(

∫ t

0
2πk f0(τ)dτ),

if f0(t) > 0
0, if f0(t) = 0

(1)

Additive synthesis can be computationally expensive as
it requires summing up about 200 sine functions at the sam-
pling rate. The computational complexity can be reduced
with approximations [22, 23]. For example, we can round the

fundamental periods to the nearest multiples of the sampling
period. In this case, the discrete impulse train is sparse. It can
then be generated sequentially, one pitch mark at a time.

2.2. Neural network filter estimator
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Figure 4: NN output is defined to be complex cepstrums.

We propose to use complex cepstrums (ĥh and ĥn) as the
internal description of impulse responses (hh and hn). The
generation of impulse responses is illustrated in figure 4.

Complex cepstrums describe the magnitude response and
the group delay of filters simultaneously. The group delay
of filters affects the timbre of speech, as reported in several
papers [21, 24, 25] and books [26, 27]. Instead of using linear-
phase or minimum-phase filters, NHV uses mixed-phase filters,
with phase characteristics learned from the dataset.

Restricting the length of a complex cepstrum is equiva-
lent to restricting the levels of detail in the magnitude and
phase response. This gives an easy way to control the filters’
complexity. The neural network only predicts low-quefrency
coefficients. The high-quefrency cepstrum coefficients are set
to zero. In our experiments, two 10 ms long complex cepstrums
are predicted in each frame.

In the implementation, the DTFT and IDTFT must be
replaced with DFT and IDFT [18]. And IIRs, i.e., hh[m,n] and
hn[m,n], must be approximated by FIRs. The DFT size should
be sufficiently large to avoid serious aliasing. N = 1024 is a
good choice for our purpose.

2.3. LTV filters and Trainable FIRs

The harmonic LTV filter is defined in equation (3). The noise
LTV filter is defined similarly. A trainable causal FIR filter
h[n] is applied at the last step in speech synthesis [17]. The
convolutions can be carried out in either the time domain or
the frequency domain. The filtering process of the harmonic
component is illustrated in figure 5.

wL[n] �
{

1, 0 ≤ n ≤ L− 1
0, otherwise

(2)

sh[n] =

m<M∑
m=0

(wL[n−mL] · p[n]) ∗ hh[m,n] (3)

s[n] = (sh[n] + sn[n]) ∗ h[n] (4)

Figure 5: Signals sampled from a trained NHV model around
frame m0. The figure shows 512 sampling points, or 4 frames.
Only one impulse response hh[m0, n] from frame m0 is plotted.

2.4. Neural network training

2.4.1. Multi-resolution STFT loss

Point-wise loss between x[n] and s[n] can not be applied to
train the model, as it requires glottal closure instants (GCIs)
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in x and s to be fully aligned. Multi-resolution STFT loss is
tolerant of phase mismatch in signals [10, 13, 15, 17]. Suppose
we have C different STFT configurations, 0 ≤ i < C. Given
original signal x, and reconstruction s, their STFT amplitude
spectrograms calculated with configuration i are Xi and Si,
each containing Ki values. In NHV, we use a combination of
the L1 norm of amplitude and log-amplitude distances. The
reconstruction loss LR is the sum of all distances under all
configurations.

LR =
1

C

C−1∑
i=0

1

Ki

(‖Xi − Si‖1 + ‖logXi − logSi‖1
)

(5)

We find using more STFT configurations leads to fewer
artifacts in output speech. We used Hanning windows with sizes
(128, 256, 384, 512, 640, 768, 896, 1024, 1536, 2048, 3072,
4096), with 75% overlap. The FFT sizes are set to twice the
window sizes.

2.4.2. Adversarial loss functions

NHV relies on adversarial loss functions with waveform input
to learn temporal fine structures in speech signals. Although we
do not need adversarial loss functions to guarantee periodicity
in NHV, they still help ensure phase similarity between s[n]
and x[n]. The discriminator should give separate decisions for
different short segments in the input signal [9–11]. The discrim-
inator we used in our experiments is a WaveNet conditioned on
log-Mel spectrograms. Details of discriminator structure can be
found in section 3. We used the hinge loss version of the GAN
objective [28, 29] in our experiments.

LD =Ex,S [max (0, 1−D(x, S))] +

Ef0,S [max (0, 1 +D(G(f0, S), S))]
(6)

LG =Ef0,S [−D(G(f0, S), S)] (7)

D(x, S) is the discriminator network. D takes original signal x
or reconstructed signal s, and ground truth log-Mel spectrogram
S as input. f0 is the fundamental frequency. S is the log-
Mel spectrogram. G(f0, S) outputs reconstructed signal s. It
includes the source signal generation, filter estimation and LTV
filtering process in NHV. The discriminator is trained to classify
x as real and s as fake by minimizing LD . And the generator is
trained to deceive the discriminator by minimizing LG.

3. Experiments
To verify the effectiveness of the proposed vocoder framework,
we built a neural vocoder and compared its performance in copy
synthesis and text-to-speech with various baseline models.

3.1. Corpus and feature extraction

All vocoders and TTS models were trained on the Chinese Stan-
dard Mandarin Speech Corpus (CSMSC)2. CSMSC contains
10000 recorded sentences read by a female speaker, totaling to
12 hours of high-quality speech, annotated with phoneme se-
quences, and prosody labels. The original signals were sampled
at 48 kHz. In our experiments, audios were downsampled to
22050 Hz. The last 100 sentences were reserved as the test set.

All vocoder models were conditioned on band-limited
(40 - 7600 Hz) 80 bands log-Mel spectrograms. The win-
dow length used in spectrogram analysis was 512 points

2https://www.data-baker.com/open source en.html

(23 ms at 22050 Hz), and the frame shift was 128 points
(6 ms at 22050 Hz). We used the REAPER3 speech processing
tool to extract an estimate of the fundamental frequency. The f0
estimations were then refined by StoneMask.

3.2. Model configurations

3.2.1. Details of vocoders
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Figure 6: Network used in experiment. I is DFT based complex
cepstrum inversion. h̃h and h̃n are DFT approximations of hh

and hn.

In the NHV model, two separate 1D convolutional neural
networks with the same structure were used for complex cep-
strum estimation, as illustrated in figure 6. Note that the outputs
of the neural network need to be scaled by 1/|n|, as natural
complex cepstrums decay at least as fast as 1/|n|,

The discriminator was a non-causal WaveNet conditioned
on log-Mel spectrograms with 64 skip and residual channels.
The WaveNet contained 14 dilated convolutions. The dilation is
doubled for every layer up to 64 and then repeated. The kernel
sizes in all layers were 3.

A 50ms exponentially decayed trainable FIR filter was ap-
plied to the filtered and mixed harmonic and noise component.
We found that this module made the vocoder more expressive
and slightly improved perceived quality.

Several baseline systems were used to evaluate the perfor-
mance of NHV, including an MoL WaveNet [5], two variants of
the NSF model, and a Parallel WaveGAN. In order to examine
the effect of the adversarial loss, we also trained an NHV model
with only multi-resolution STFT loss (NHV-noadv).

The MoL WaveNet [5] pre-trained on CSMSC from ESP-
Net [30] (csmsc.wavenet.mol.v1) was borrowed for evaluation.
The generated audios were downsampled from 24000 Hz to
22050 Hz.

A hn-sinc-NSF [16] model was trained with the released
code. We also reproduced the b-NSF model and augmented
it with adversarial training (b-NSF-adv). The discriminator in
b-NSF-adv contained 10 1D convolutions with 64 channels.
All convolutions had kernel size 3, with strides following the
sequence (2, 2, 4, 2, 2, 2, 1, 1, 1, 1) in each layer. All layers ex-
cept for the last one were followed by a leaky ReLU activation
with a negative slope set to 0.2. We used STFT window sizes
(16, 32, 64, 128, 256, 512, 1024, 2048), and mean amplitude
distance instead of mean log-amplitude distance described in
the paper [15].

We reproduced the Parallel WaveGAN [10] model. There
were several modifications compared to the descriptions in
the original paper. The generator was conditioned on log f0,
voicing decisions, and log-Mel spectrograms. The same STFT
loss configurations in b-NSF-adv were used to train Parallel
WaveGAN.

The online supplement contains further details about
vocoder training.

3https://github.com/google/REAPER

242



3.2.2. Details of the text-to-speech model

A Tacotron2 [2] was trained to predict log f0, voicing deci-
sion, and log-Mel spectrogram from texts. The prosody and
phonetic labels in CSMSC were both used to produce text
input to Tacotron. NHV, Parallel WaveGAN, b-NSF-adv, and
hn-sinc-NSF were used in TTS quality evaluation. We did not
fine-tune the vocoders with generated acoustic features.

3.3. Results and analysis

3.3.1. Performance in copy synthesis

A MUSHRA test was conducted to evaluate the performance
of proposed and baseline neural vocoders in copy synthesis.
24 Chinese listeners participated in the experiment. 18 items
unseen during training were randomly selected and divided
into three parts. Each listener rated one part out of three.
Two standard anchors were used in the test. Anchor35 and
Anchor70 represent low-pass filtered original signal with cut-
off frequencies of 3.5 kHz and 7 kHz. The box plot of all scores
collected is shown in figure 7. The mean MUSHRA scores and
their 95% confidence intervals can be found in table 1.

Figure 7: Box plot of MUSHRA scores

Table 1: Mean MUSHRA score with 95% CI in copy synthesis

Model MUSHRA Score

Orignial 98.4± 0.7
WaveNet 93.0± 1.4
b-NSF-adv 91.4± 1.6
NHV 85.9± 1.9
Parallel WaveGAN 85.0± 2.2
Anchor70 71.6± 2.5
NHV-noadv 62.7± 3.9
hn-sinc-NSF 58.7± 2.9
Anchor35 50.0± 2.7

Wilcoxon signed-rank test demonstrated that except for two
pairs (Parallel WaveGAN and NHV with p = 0.4, hn-sinc-
NSF and NHV-noadv with p = 0.3), all other differences are
statistically significant (p < 0.05). There is a large perfor-
mance gap between NHV-noadv and NHV model, showing that
adversarial loss functions are essential to obtaining high-quality
reconstruction.

3.3.2. Performance in text-to-speech

To evaluate the performance of vocoders in text-to-speech, we
performed a mean opinion score test. 40 Chinese listeners
participated in the test. 21 utterances were randomly selected
from the test set and were divided into three parts. Each listener
finished one part of the test randomly.

Table 2: Mean MOS score with 95% CI in text-to-speech

Model MOS Score

Original 4.71± 0.07
Tacotron2 + hn-sinc-NSF 2.83± 0.11
Tacotron2 + b-NSF-adv 3.76± 0.10
Tacotron2 + Parallel WaveGAN 3.76± 0.12
Tacotron2 + NHV 3.83± 0.09

Mann–Whitney U test showed no statistically significant
difference between b-NSF-adv, NHV, and Parallel WaveGAN.

3.3.3. Computational complexity

We report the required FLOPs per generated sample by different
neural vocoders. We do not consider the complexity of acti-
vation functions, and computations in feature upsampling and
source signal generation. Filters in NHV are assumed to be
implemented with FFT. And N point FFT is assumed to cost
5N log2 N FLOPs.

The Gaussian WaveNet is assumed to have 128 skip chan-
nels, 64 residual channels, 24 dilated convolution layers with
kernel size set to 3. For b-NSF, Parallel WaveGAN, LPCNet,
and MelGAN, hyper-parameters reported in the papers were
used for calculation. Further details are provided in the online
supplement4.

Table 3: FLOPs per sampling point

Model FLOPs/sample

b-NSF 4.× 106

Parallel WaveGAN 2.× 106

Gaussian WaveNet 2.× 106

MelGAN 4.× 105

LPCNet 1.4× 105

NHV 1.5× 104

As NHV only runs at the frame level, its computational
complexity is much lower than models involving a neural
network running directly on sampling points.

4. Conclusions
This paper proposed the neural homomorphic vocoder, a neural
vocoder framework based on the source-filter model. We
demonstrated that it is possible to build a highly efficient neural
vocoder under the proposed framework capable of generating
high-fidelity speech.

For future works, we need to identify causes of speech
quality degradation in NHV. We found the performance of NHV
sensitive to the structure of the discriminator and the design
of reconstruction loss. More experiments with different neural
network architectures and reconstruction losses may lead to
better performance. Future research also includes evaluating
and improving the performance of NHV on different corpora.
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