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Abstract

Recent research has attempted to associate pref-001
erence optimization (PO) performance with the002
underlying preference datasets. In this work,003
our observation is that the differences between004
the preferred response y+ and dispreferred re-005
sponse y− influence what LLMs can learn,006
which may not match the desirable differences007
to learn. Therefore, we use distance and re-008
ward margin to quantify these differences, and009
combine them to get Distance Calibrated Re-010
ward Margin (DCRM), a metric that measures the011
quality of a response pair for PO. Intuitively,012
DCRM encourages minimal noisy differences and013
maximal desired differences. With this, we014
study 3 types of commonly used preference015
datasets, classified along two axes: the source016
of the responses and the preference labeling017
function. We establish a general correlation be-018
tween higher DCRM of the training set and better019
learning outcome. Inspired by this, we pro-020
pose a best-of-N2 pairing method that selects021
response pairs with the highest DCRM. Empiri-022
cally, in various settings, our method produces023
training datasets that can further improve mod-024
els’ performance on AlpacaEval, MT-Bench,025
and Arena-Hard over the existing training sets.1026

1 Introduction027

Preference optimization (PO) methods such as028

DPO (Rafailov et al., 2024) have shown success029

in improving LLMs’ performance in various tasks030

(Dubois et al., 2024). These methods usually in-031

volve a contrastive learning objective that encour-032

ages LLMs to generate a preferred response y+033

with higher probability and a dispreferred response034

y− with lower probability, given a query x.035

Prior research (Tang et al., 2024; Razin et al.,036

2024) has shown the importance of selecting suit-037

able response pairs for PO training. In particular,038

the contrastive training signals sent to LLMs are039

partly derived from the differences between y+ and040

1Our code will be released soon.
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Figure 1: Top: Ideal response pairs should have fewer
noisy differences (small distances) and more desired
differences (large reward margins). DCRM measures re-
sponse pair quality with this intuition; Bottom: Com-
mon preference datasets (SS-RM, DS-RM, DS-Fix; See
§ 2.2) have varying locations in the distance-reward mar-
gin landscape, but none achieves an ideal combination.

y−. These differences influence what LLMs can 041

learn, which often do not exactly match the set 042

of desirable differences to learn. This is because, 043

aside from differences that we want models to learn 044

(useful signals; e.g., y+ is more helpful than y− 045

in factoid question answering), there can be noisy 046

differences (noisy signals). For instance, y+ and 047

y− can differ in features that are irrelevant for a 048

task (e.g., different writing styles for factoid ques- 049

tion answering) or that the differences are in an 050

incorrect direction (e.g., y+ is less correct than y−). 051

Intuitively, if there are more noisy differences, then 052

LLMs may not effectively learn the desired differ- 053

ences (e.g., to be more helpful) (See Figure 1). 054
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Although prior research (D’Oosterlinck et al.,055

2024; Wu et al., 2024) has investigated the correla-056

tion between certain proxies of "differences" (e.g.,057

edit distance) and PO learning outcome, it does058

not distinguish noisy and desired differences, and059

therefore cannot accurately model the relationship.060

Therefore, we develop a metric called Distance061

Calibrated Reward Margin (DCRM) that aims to mea-062

sure the density of desired differences among the063

total differences present. DCRM is the ratio between064

the reward margin, which is a proxy for the amount065

of desired differences, and two distance metrics066

(edit distance, probability difference), which are067

proxies for the total amount of differences.068

To study DCRM, we study three common types069

of preference datasets, categorized by their (1) re-070

sponse sources and (2) preference labeling scheme.071

We use Ultrafeedback (Cui et al., 2023) as the seed072

to construct the datasets, and find that different073

types of datasets vary in their average DCRM values.074

We train three base models (LLaMA-2-7B-Chat,075

LLaMA-3.2-1B-Instruct, Gemma-2B-IT) on these076

datasets and use AlpacaEval (Dubois et al., 2024),077

MT-Bench (Zheng et al., 2023), and Arena-Hard078

(Li et al., 2024) for evaluation. Across all settings,079

we notice a correlation between higher DCRM and080

better training outcomes. We further conduct a081

feature analysis to inspect the properties of each082

dataset and understand qualitatively what signals083

(i.e., noisy or desired differences) models learn084

after training. Inspired by the aforementioned cor-085

relation, we propose a method called Best of N2086

pairing to select response pairs with high DCRM, and087

show that training LLMs on the new datasets gives088

higher performance than on the original datasets.089

Our contribution is summarized as follows.090

• We propose a novel metric DCRM that measures091

the quality of a response pair for PO training.092

• We compare three common types of prefer-093

ence datasets and show a positive correlation094

between the average DCRM value of a training095

dataset and the training effectiveness.096

• We propose best-of-N2 pairing, which selects097

response pairs with high DCRM values for ef-098

fective PO training.099

2 Task Setup100

2.1 Problem Definition101

Let π(y|x) be a language model (LM) that places102

a probability distribution over response y condi-103

tioned on input x. Let D = {xi, y+i , y
−
i } be a pref- 104

erence dataset where responses y+ are preferred 105

to y−. Offline preference optimization, like Direct 106

Preference Optimization (DPO)2 (Rafailov et al., 107

2024), use D to train model πθ starting from the 108

base model πref , by minimizing the following loss: 109

LDPO

= −E(x,y+,y−)∼D

[
log σ

(
β log

πθ(y
+|x)

πref(y+|x)

− β log
πθ(y

−|x)
πref(y−|x)

)]
where β is a hyperparameter. 110

In this work, we aim to understand how qualita- 111

tive and quantitative differences between y+ and 112

y− influence the learning behavior of DPO. 113

2.2 Preference Datasets 114

To guide our investigation, we group common tech- 115

niques for preference dataset curation into 3 cate- 116

gories, according to two axes: source distribution 117

of the response y, and the preference labeling func- 118

tion (see Figure 2). 119
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Figure 2: Commonly used preference datasets, catego-
rized into 3 types according to their responses sources
and preference labeling functions.

Same Source w/ RM Preference (SS-RM) The 120

original DPO work (Rafailov et al., 2024) proposed 121

to sample y+ and y− from the same model, πref 122

(SSπref
), and derive the preference labels using a 123

reward model. This has been widely adopted in 124

follow-up works (Meng et al., 2024; Amini et al., 125

2024; Azar et al., 2023; Lai et al., 2024). Note that 126

y+ and y− can also be from the same source that 127

2Many variations of DPO have been proposed (Azar et al.,
2023; Park et al., 2024; Meng et al., 2024; Hong et al., 2024).
Since our focus in this work is investigating the impact of
preference dataset choices, we fix DPO as our PO algorithm.
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is not πref (SSπother
), meaning that these datasets128

can be re-used to train a different base LLM too.129

Diff Source w/ RM Preference (DS-RM) Ear-130

lier work in DPO used output pairs sampled from131

two different humans (Köpf et al., 2023) or models132

(Ultrafeedback binarized (Cui et al., 2023; Tunstall133

et al., 2023); Argilla-OpenOrca3) to construct the134

dataset (i.e., y+ is from a different source than y−).135

The preference labels were typically assigned using136

a reward model or LLM-based judges. This dataset137

construction is agnostic to the choice of the pol-138

icy πref . Once created, these datasets can again be139

re-used without additional sampling or preference140

labeling overhead for any new choice of πref (Wu141

et al., 2024; Hong et al., 2024; Bai et al., 2022).142

Diff Source w/ Fixed Preference (DS-Fix)143

It is possible to have a prior estimate of the relative144

strengths of two sampling sources (e.g. using rank-145

ings on benchmarks like Chatbot-Arena (Chiang146

et al., 2024)). In such scenarios, instance-level pref-147

erence between 2 responses from different sources148

can be assigned based on model-level rankings (i.e.,149

y+ is always from a "stronger" model than y−).150

Methods such as SPIN (Chen et al., 2024) have suc-151

cessfully used such strategies (setting y− ∼ πref)152

while others (D’Oosterlinck et al., 2024) report153

suboptimal performance with these datasets.154

2.3 Measuring density of desired differences155

Our goal is to study how corpus-level differences in156

preference pairs impact models’ learned behavior157

after DPO. We quantify the difference between y+158

and y− using a combination of three metrics, which159

we explain and motivate below:160

Token-level edit distance (e∆) between y+ and161

y− is the first distance metric that we use. It is162

the token-level Levenshtein distance between 2 out-163

puts. e∆ is easily computable and πref agnostic. It164

captures differences in length, lexicon, syntax, etc.165

πref ’s LogProb Difference (p∆) is the second166

distance metric that we use. It is computed as167

|log πref(y+|x)−log πref(y
−|x)|. p∆ measures the168

difference in probability mass placed on y+ and y−169

by πref . It captures a different notion of “distance”170

from edit-distance; two samples can be very dif-171

ferent lexically but be assigned similar probability172

by πref , or vice versa. These are tougher for the173

3https://huggingface.co/datasets/argilla/
distilabel-intel-orca-dpo-pairs

implicit reward model in DPO to distinguish, and 174

this measure helps us account for such instances. 175

Reward Margin (r∆) measures the difference in 176

rewards from a reward model RM. It is computed 177

as r∆ = ry+ − ry− , where ry is the reward score 178

RM assigns to an output y. This reward margin 179

quantifies the desired differences in targeted (rele- 180

vant) features between the two outputs, irrespective 181

of their lexical and probability differences. 182

We combine these to construct a single met- 183

ric that measures the density of “desired” differ- 184

ences between two outputs. We call this distance- 185

calibrated reward margin (DCRM): 186

DCRM(y+, y−) =
σ(r∆)− 0.5

e∆ + p∆ + ϵ
(1) 187

We omit (y+, y−) as the arguments for r∆, e∆, p∆ 188

for brevity and include constant ϵ = 1 for numeric 189

stability. The numerator captures the normalized 190

reward margin4 between y+ and y− (a 0-centered 191

Bradley-Terry model (Bradley and Terry, 1952)), 192

and the denominator measures their distances (i.e., 193

lexical and probabilistic differences).5 194

We hypothesize that when the useful contrast 195

signals (desired differences, measured by r∆) are a 196

large fraction of the total differences (measured by 197

e∆ + p∆) in the response pair (i.e., useful signals 198

are dense), training becomes more effective. 199

DCRM captures this hypothesis. A high DCRM im- 200

plies (1) a high reward margin between y+ and y− 201

(i.e. there are many desired differences between the 202

two for πref to learn from) and (2) low distances be- 203

tween the two (i.e., the total differences are small). 204

In this case, training signals are more meaningful 205

and less noisy for the LLMs to learn effectively.6 206

3 Experiment Setup 207

3.1 Training Setup 208

Models We experiment with three options for 209

our base model (πref ). They include LLaMA2 210

(LLaMA-2-7B-Chat; Touvron et al. (2023b)), 211

LLaMA3.2 (LLaMA-3.2-1B-Instruct; Grattafiori 212

et al. (2024), and an extra model from other series 213

Gemma (Gemma-2B-IT; Mesnard et al. (2024)). 214

We train each of these models using the DPO ob- 215

jective for 2 epochs, and select the best checkpoint 216

4We apply the sigmoid function to normalize r∆ to be
between [0, 1] and subtract 0.5 to preserve the margin sign.

5We do not adjust the scales of e∆ and p∆ since we find
that these are similar across most settings in our experiments.

6See Appendix D for the properties of DCRM.
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Type Dataset e∆ p∆ r∆(e-2) DCRM(e-2)

πref =LLaMA2 (LLaMA-2-7B-Chat)
SS-RM πref 427 32.48 2.82 4.54

Gma2 370 91.78 1.70 2.87
Mst 526 158.54 2.13 1.59

DS-RM Gma2-Mst 542 226.47 2.03 1.13

DS-Fix Gma2-Mst 542 226.47 1.02 0.43
πref =LLaMA3.2 (LLaMA-3.2-1B-Instruct)

SS-RM πref 434 120.07 4.22 7.53
Gma2 370 84.78 1.70 3.15
Mst 526 176.22 2.13 1.68

DS-RM Gma2-Mst 542 228.22 2.03 1.17

DS-Fix Gma2-Mst 542 228.22 1.02 0.44

Table 1: Statistics of the datasets. Each metric value
is averaged across examples. Changing πref changes
p∆ and so we report separate statistics for LLaMA2
and LLaMA3.2. The reported DCRM values are scaled 1k
times for visualization, which does not affect correlation
analysis. SS-RM datasets have the highest DCRM while
DS-Fix ones have the lowest DCRM.

based on validation performance. Please refer to217

Appendix B for other training details. Due to length218

constraints, we report results for LLaMA2 and219

LLaMA3.2 in the main paper, and put the results220

for Gemma in Appendix E.221

We use the overall scores from the reward model222

ArmoRM (Wang et al., 2024a) to compute r∆.223

Preference Datasets We use the 60K prompts224

from Ultrafeedback (Cui et al., 2023). We create225

our preference datasets using responses sampled226

from four different models across the three settings227

(SS-RM, DS-RM, DS-Fix) described in § 2.2.228

For SS-RM, we sample responses from the base229

model πref . We also use Gemma-2-9B-IT (Gma2)230

and Mistral-7B-Instruct-v0.2 (Mst) as two extra231

sources of responses. For each source, we follow232

Meng et al. (2024) and sample N = 5 responses233

and then select the best response pair with the high-234

est r∆ using the reward model RM.235

For DS-RM, we fix the source distributions to236

Gemma-2-9B-IT (Gma2) and Mistral-7B-Instruct-237

v0.2 (Mst). We sample one response from each,238

and decide the preference label using RM. We find239

that roughly 70% of y+ comes from Gma2 and240

70% of y− comes from Mst.241

For DS-Fix, we use the same response pairs as242

DS-RM, but always set y+ to be from Gemma-2-9B-243

IT (stronger model) and y− to be from Mistral-7B-244

Instruct-v0.2 (weaker model), respectively.245

Dataset Statistics Table 1 shows the dataset246

statistics. As expected, SS-RM datasets, which get247

AP-L AP-R MT AH

LLaMA2 12.57 10.43 5.41 8.90

SS-RM +πref 22.36 16.81 5.55 16.67
+Gma2 15.89 13.12 5.50 11.57
+Mst 15.49 12.07 5.40 10.42

DS-RM +Gma2-Mst 14.13 11.51 5.52 10.55

DS-Fix +Gma2-Mst 13.26 8.99 5.24 6.68

LLaMA3.2 14.15 15.34 4.66 10.88

SS-RM +πref 22.80 25.65 5.01 18.88
+Gma2 24.57 27.52 4.99 15.91
+Mst 19.43 19.94 4.91 16.03

DS-RM +Gma2-Mst 20.01 21.61 5.01 13.61

DS-Fix +Gma2-Mst 10.31 8.20 4.54 14.94

Table 2: Main Results; AP-L: Length-Controlled Win
Rate on AlpacaEval; AP-R: Raw Win Rate on AlpacaE-
val; MT: MT-Bench Score; AH: Arena-Hard Win Rate;
SS-RM datasets generally lead to the best performance
while DS-Fix ones lead to the worst performance.

the paired responses from the same source, have 248

the lowest e∆ and p∆, leading to the highest overall 249

DCRM. DS-RM has higher distances and consequently 250

lower DCRM. Surprisingly, we find that DS-Fix has 251

the lowest reward margin even though its samples 252

have a higher lexical difference. This makes it have 253

the lowest DCRM across the three settings. 254

3.2 Quantitative Evaluation 255

We evaluate the general conversational and 256

instruction-following abilities of our trained mod- 257

els πθ using three chat benchmarks, AlpacaEval, 258

MT-Bench, and Arena-Hard. AlpacaEval reports 259

the models’ win rates against a baseline model, 260

GPT-4-1106-Preview (Achiam et al., 2024). Arena- 261

Hard run similar evaluations, with GPT-4-0314 as 262

the baseline model. MT-Bench is a multi-turn con- 263

versational benchmark and uses a judge model to 264

score the model’s responses on a scale of 10.7 265

4 Comparing Different Types of 266

Preference Datasets 267

In this section, we compare models that are trained 268

on different types of preference datasets, and estab- 269

lish a correlation between the dataset-level DCRM 270

value and downstream performances. We report 271

the results in Table 2. 272

Sampling from the same source distribution 273

(SS-RM) outperforms other methods. Table 2 274

7For all three benchmarks, we use GPT-4o-mini-2024-
0718 (Hurst et al., 2024) as the judge to regulate costs.
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Figure 3: DCRM is positively correlated with models’
performance boost on AP-L. PCC: Pearson Correlation
Coefficient; Y axis: change in AP-L after training. Each
point in the diagram corresponds to a trained model.

shows that sampling response pairs from the same275

distribution (πref and others) and deriving prefer-276

ences using the reward model perform better than277

DS-RM and DS-Fix. In particular, training with278

responses from πref gives the best performance,279

which mirrors findings from prior work (Tang et al.,280

2024). Relating back to Table 1, SS-RM datasets281

also have the highest DCRM value.282

To our surprise, SS-RM Gma2 is on par with283

SS-RM πref when πref=LLaMA3.2. Consulting Ta-284

ble 1, we see that SS-RM Gma2 has a lower p∆ than285

that of LLaMA3.2, possibly explaining this result.286

DS-Fix performs worse than the base model.287

This technique performs the worst among the three288

dataset settings. Similar results have also been re-289

ported by D’Oosterlinck et al. (2024). In fact, we290

find that its performance is worse than even the291

starting model. In Appendix A, we show that there292

are consistent stylistic differences between the two293

source distributions (e.g. presence of more emojis294

in Y + than Y −), which is reflected in the model’s295

output after training. Again, relating back, DS-Fix296

datasets also have the lowest DCRM value.297

DCRM is positively correlated with model per-298

formance after training. With the above obser-299

vations, we formally quantify the correlation be-300

tween DCRM and downstream performance. To in-301

clude sufficient data points, we sample multiple302

outputs from the source distributions and select re-303

sponse pairs that vary the dataset-level p∆, e∆, and304

r∆.8 We compute the performance boost, i.e. the305

AP-L improvement of πθ against πref , and show its306

correlation with DCRM in Figure 3.9307

8See Appendix F for details.
9See MT and AH correlations in Appendix G.

We find that DCRM and downstream performance 308

are moderately positively correlated, with a Pear- 309

son Correlation of 0.59, which is stronger than the 310

individual metrics – correlation with e∆, p∆, and 311

r∆ is -0.51, -0.55, and 0.43 respectively (See Ap- 312

pendix F.1). We observe a saturation effect once 313

DCRM passes 0.075, and suspect this to be caused 314

by the inherent limitations of the reward model. 315

5 Operationalizing DCRM 316

In § 4, we observe that higher DCRM is correlated 317

with better training outcomes. Can we use this 318

correlation to guide training dataset selection? 319

Approach An answer is to sample responses 320

from πref . However, this can be expensive with 321

a large model or dataset. Instead, we want to inves- 322

tigate how to select the best response pair from an 323

existing pool of responses, Formally, given N re- 324

sponses {y1, · · · , yN} (and also {yN+1, · · · , y2N} 325

from a second model in the DS setting), we propose 326

to select the pair (yi, yj) with the highest DCRM. We 327

denote this as Best of N2 pairing (BoN2), since we 328

select the best pair from N ×N candidates. Our 329

method is different from the conventional method 330

(used in SS-RM), which chooses the pair with the 331

highest reward margin by setting y+ and y− to the 332

response with the highest and lowest reward scores. 333

Setup We apply our method to three baselines. 334

In the Same Source (SS-RM) setting, we reselect 335

the response pair using the existing N responses 336

sampled from (1) πref , or (2) Mst. In the Different 337

Sources (DS-RM)10 setting, we use (3) Gma2-Mst 338

as the third baseline, and select a response pair with 339

the highest DCRM while maintaining the condition 340

that y+ and y− come from different sources.11 341

Table 3 gives a comparison between the origi- 342

nal and reselected datasets. After reselection with 343

DCRM, both e∆ and p∆ decrease, while r∆ stays in 344

a reasonable range without too much drop. 345

5.1 Main Results 346

We compare BoN2 against the baselines in Table 4. 347

Best of N2 pairing increases performance across 348

all settings. When training LLaMA3.2, we ob- 349

serve a higher performance across all baselines. 350

When training LLaMA2, performance increases 351

10Applying our method to the DS-Fix setting leads to the
same dataset as DS-RM, so we combine them together

11Baseline (3) is not strictly a fair comparison. In Ap-
pendix E we provide a fair baseline w/ BoN2 (r∆ only).

5



Type Dataset e∆ p∆ r∆(e-2) DCRM(e-2)

πref =LLaMA2 (LLaMA-2-7B-Chat)
SS-RM πref 427 32.48 2.82 4.54

w/ BoN2 370 23.87 2.52 5.94

SS-RM Mst 526 158.54 2.13 1.59
w/ BoN2 410 79.94 1.79 2.07

DS-RM Gma2-Mst 542 226.47 2.03 1.13
w/ BoN2 458 142.94 3.27 2.58

πref =LLaMA3.2 (LLaMA-3.2-1B-Instruct)
SS-RM πref 434 120.07 4.22 7.53

w/ BoN2 356 63.55 3.58 11.48

SS-RM Mst 526 176.22 2.13 1.68
w/ BoN2 339 78.81 1.78 2.44

DS-RM Gma2-Mst 542 228.22 2.03 1.17
w/ BoN2 374 134.94 3.24 3.02

Table 3: Statistics of the original and new datasets;
w/ BoN2 indicates datasets whose response pairs are
reselected using best-of-N2 method. They have a higher
DCRM value than their original counterparts.

AP-L AP-R MT AH

LLaMA2 12.57 10.43 5.41 8.90

SS-RM +πref 22.36 16.81 5.55 16.67
w/ BoN2 22.41 17.2 5.67 16.07

SS-RM +Mst 15.49 12.07 5.40 10.42
w/ BoN2 17.42 13.29 5.48 10.99

DS-RM +Gma2-Mst 14.13 11.51 5.52 10.55
w/ BoN2 16.82 13.6 5.48 11.75

LLaMA3.2 14.15 15.34 4.66 10.88

SS-RM +πref 22.80 25.65 5.01 18.88
w/ BoN2 24.77 27.64 5.10 20.25

SS-RM +Mst 19.43 19.94 4.91 16.03
w/ BoN2 21.73 21.37 5.11 16.62

DS-RM +Gma2-Mst 20.01 21.61 5.01 13.61
w/ BoN2 24.53 27.76 5.04 19.17

Table 4: Main Results; BoN2 datasets give a stronger
performance than their original counterparts.

notably on top of both Mst (SS-RM) and Gma2-352

Mst (DS-RM), especially for the latter.353
However, performance only increases marginally354

in the LLaMA2 πref (SS-RM) setting. We suspect355

that most responses from LLaMA2 are similar to356

each other. In this case, maximizing the reward357

margin will not incur very high distances, so the358

response pairs from πref (SS-RM) are already close359

to the best. There is little room for improvement360

no matter how we reselect the pairs. This is evident361

in Table 3, where we observe a smaller reduction362

in e∆ and p∆ compared with every other setting.363

5.2 Ablation Study364

Since DCRM is composed of three metrics, we do an365

ablation study of our method in the πref (SS-RM)366

AP-L AP-R MT AH

LLaMA2 12.57 10.43 5.41 8.90

+πref 22.36 16.81 5.55 16.67
w/ BoN2 22.41 17.20 5.67 16.07

-p∆ 22.1 17.27 5.59 15.62
-e∆ 24.04 17.14 5.51 14.61
-r∆ 14.81 12.11 5.54 12.97

Table 5: Ablation Study on DCRM in the SS-RM setting;
Removing p∆ or e∆ hurts performance slightly, while
removing r∆ significantly reduces performance.

setting. We remove one of p∆, e∆, or r∆ from 367

DCRM and reselect the response pair. Table 5 shows 368

that removing p∆ gives a performance close to 369

that of the complete metric, while removing 370

e∆ slightly hurts performance. In Appendix I, 371

we show that removing either of these in the Mst 372

(SS-RM) and DS-RM settings can still give a per- 373

formance boost over the original datasets, which 374

means in these settings our method can be effective 375

with a cheaper computation. 376

Removing r∆ makes training much less effective. 377

This is expected, since without r∆ our method se- 378

lects response pairs that have the smallest distances 379

and are minimally different. This not only elimi- 380

nates noisy differences, but also those useful ones. 381

6 Qualitative Analysis (Feature-Analysis) 382

§ 4 and § 5 show the correlation between the DCRM 383

value of a training set and quantitative performance. 384

We also want to inspect whether these datasets have 385

qualitative differences, to validate our starting moti- 386

vation that connects performance with data quality 387

(i.e., more desired differences and fewer noisy ones 388

between y+ and y− make PO more effective), and 389

better ground DCRM with this quality. 390

We analyze the feature differences between y+ 391

and y−. We define relevant features (correctness, 392

helpfulness, etc.) as those that the LLMs should 393

learn, and irrelevant features (writing style, sar- 394

casm, tone, etc.) as those not targeted by the task. 395

Features To align with the reward signals, we use 396

the 11 features (de-duplicated) from the ArmoRM 397

reward model as the relevant features. These in- 398

clude helpfulness, truthfulness, etc. We manually 399

define 21 irrelevant features that are roughly orthog- 400

onal to these relevant features (See the full lists in 401

Appendix C.1). The useful training signals come 402

from differences between y+ and y− that are along 403

relevant features and are pointing in the correct di- 404

rection (y+ is better than y− for a relevant feature), 405
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which we call desired feature differences.406

Metrics We define f∆ as the number of features407

along which y+ and y− differ. To measure the frac-408

tion of desired feature differences, we define fdes
∆409

as the fraction of features in f∆ that are (a) relevant410

and (b) contrasted in the correct direction (i.e. y+411

is “better” than y− for that feature). Fraction of412

features that only satisfy condition (a) is denoted413

by f rel
∆ . Similar to DCRM, fdes

∆ indicates the ratio of414

useful contrast signals among noisy signals.415

To compute these, we prompt GPT-4o-mini-416

0718 to (1) identify the three most prominent fea-417

tures that differ between the two responses (setting418

f∆=3) and (2) indicate a contrast direction for each419

feature if applicable (i.e., whether y+ is better). Re-420

ferring to the list of relevant features, we can then421

compute f rel
∆ and fdes

∆ . Note that we can use this422

to study the training dataset (i.e. Y +-Y −), and the423

learned differences after training (Ytrained-Yref ).424

Analysis of training datasets (Y + − Y −) To425

study the feature differences LLMs see during train-426

ing, we compute the average f rel
∆ and fdes

∆ across427

200 randomly sampled (y+, y−) from the training428

dataset. Higher fdes
∆ implies higher dataset quality.429

Analysis of learning outcomes (Ytrained − Yref )430

To study what LLMs actually learn after train-431

ing, we compute f rel
∆ and fdes

∆ for 200 randomly432

sampled (ytrained ∼ πθ(x), yref ∼ πref(x)) pairs433

where x is a test prompt in the AlpacaEval dataset.434

Higher fdes
∆ implies that the model learns more435

useful signals (e.g., to be more helpful) and fewer436

noisy ones (e.g., to be more sarcastic).437

Following § 4 and § 5, we compare different438

preference datasets in § 6.1, and then show how439

BoN2 can improve response pair quality in § 6.2.440

6.1 Comparing Common Preference Datasets441

We present the results in Table 6 to understand (1)442

what the model sees during training and (2) what it443

actually learns.444

DS-Fix datasets have the lowest proportion of445

desired feature differences in its training data.446

Analyzing the training set Y +-Y −, we see that re-447

sponse pairs from πref (SS-RM) have the highest448

percentage of desired feature differences, indicat-449

ing the highest quality. On the other hand, DS-Fix450

has the lowest percentage. These results are consis-451

tent with our observations in Table 2. Surprisingly452

DS-RM has a higher fdes
∆ than Gma2 (SS-RM) and453

Mst (SS-RM). A possible explanation will be their454

Y +-Y − Ytrained-Yref

f rel
∆ fdes

∆ f rel
∆ fdes

∆

πref =LLaMA2 (LLaMA-2-7B-Chat)
SS-RM πref 63.83 41.83 53.75 29.81

Gma2 56.42 38.08 53.94 29.53
Mst 62.83 37.83 54.00 29.19

DS-RM Gma2-Mst 61.75 39.92 53.31 28.66

DS-Fix Gma2-Mst 62.5 36.33 52.22 18.83
πref =LLaMA3.2 (LLaMA-3.2-1B-Instruct)

SS-RM πref 64.67 43.25 60.08 37.50
Gma2 56.42 38.08 59.00 37.58
Mst 62.83 37.83 61.00 35.58

DS-RM Gma2-Mst 61.75 39.92 60.33 34.17

DS-Fix Gma2-Mst 62.50 36.33 60.17 23.33

Table 6: fdes
∆ : Percentage of desired feature differ-

ences among the identified feature differences; f rel
∆ : Per-

centage of relevant feature differences; Y +-Y −: differ-
ences identified between y+ and y− in the training set;
Ytrained-Yref : differences identified between model’s
output on AlpacaEval after training (Ytrained) and be-
fore training (Yref ). SS-RM datasets typically have the
highest fdes

∆ , followed by DS-RM and then DS-Fix.

actual marginal differences in dataset quality since 455

at least 1 side of the response sources overlap. 456

Desired feature differences learned by the model 457

are proportional to their presence in the train- 458

ing set. Our initial observation is that higher fdes
∆ 459

in the training dataset (i.e. Y +-Y −) generally in- 460

duces higher fdes
∆ in Ytrained-Yref . This indicates 461

a consistency between the training set and learned 462

outcome for desired feature differences. To analyze 463

this trend in a fine-grained manner and for more 464

general feature differences, we do the following 465

case study in the LLaMA2 πref (SS-RM) setting. 466

In general, feature differences learned by the 467

model are proportional to their presence in the 468

training set. We inspect the distribution of fea- 469

ture differences per category (i.e., the percentage of 470

each kind of feat. diff. among all the identified feat. 471

diff.). Figure 4 shows that for both relevant and ir- 472

relevant features, the distributions for Y +-Y − and 473

Ytrained-Yref are similar, with a KL divergence of 474

0.2109 and 0.1284 respectively, so more promi- 475

nent feature differences in the training set are 476

picked up by the model more after training.12 477

6.2 Effect of Applying Best-of-N2 Pairing 478

Best of N2 pairing produces datasets with a 479

higher proportion of desired feature differences. 480

We conduct the same feature-based analysis as in 481

12See Appendix C.3 for more analysis.
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Figure 4: Distributions of relevant (top) and irrelevant
(bottom) feature differences. Each pair of adjacent blue
and orange bars represents the percentage of a kind
of feat. diff. (y+ more helpful, y− less truthful, etc.)
among the identified feat. diff. Blue: training set differ-
ences (Y +-Y −); Orange: differences in model outputs
on AlpacaEval after or before training (Ytrained-Yref ).
Y +-Y − and Ytrained-Yref have similar distributions.

§ 6.1. Table 7 indicates that in most settings, the482

datasets produced by our method have a higher per-483

centage of desired feature differences (See fdes
∆ in484

Y +-Y −), which guides the models to learn effec-485

tively and do better in relevant features after train-486

ing (See fdes
∆ in Ytrained-Yref ). In the LLaMA2487

πref (SS-RM) setting, fdes
∆ in Y +-Y − remains ap-488

proximately the same after applying our method,489

which can be caused by what we discuss in § 5.1.490

7 Related Work491

Preference Optimization Preference Optimiza-492

tion is an alternative to traditional RLHF meth-493

ods (Ouyang et al., 2022) such as PPO (Schulman494

et al., 2017). It avoids the need for an explicit re-495

ward model. Popular PO algorithms includes DPO496

(Rafailov et al., 2024), IPO (Azar et al., 2023),497

KTO (Ethayarajh et al., 2024), R-DPO (Park et al.,498

2024), SimPO (Meng et al., 2024), CPO (Xu et al.,499

2024), ORPO (Hong et al., 2024), and so on. Many500

papers report performance increases on AlpacaE-501

val when training LLMs using PO methods on chat502

datasets (Ding et al., 2023; Cui et al., 2023).503

Response Pairs The choice of response pairs in504

PO affects training outcomes. Tajwar et al. (2024)505

Y +-Y − Ytrained-Yref

f rel
∆ fdes

∆ f rel
∆ fdes

∆

πref =LLaMA2 (LLaMA-2-7B-Chat)
SS-RM πref 63.83 41.83 53.75 29.81

w/ BoN2 64.17 41.50 54.58 31.58

SS-RM Mst 62.83 37.83 54.00 29.19
w/ BoN2 66.25 39.08 54.08 30.25

DS-RM Gma2-Mst 61.75 39.92 53.31 28.66
w/ BoN2 62.83 42.75 55.67 30.83

πref =LLaMA3.2 (LLaMA-3.2-1B-Instruct)
SS-RM πref 64.67 43.25 60.08 37.50

w/ BoN2 65.00 44.83 59.67 38.42

SS-RM Mst 62.83 37.83 61.00 35.58
w/ BoN2 65.17 40.25 59.33 34.25

DS-RM Gma2-Mst 61.75 39.92 60.33 34.17
w/ BoN2 62.83 41.42 60.33 36.75

Table 7: Results for feature-based analysis. BoN2

datasets have a higher fdes
∆ in most settings.

and Tang et al. (2024) investigate response sources 506

and illustrate the benefits of sampling responses 507

on policy. Another line of work focuses on the 508

differences between y+ and y−. Prior work (Fisch 509

et al., 2024; Amini et al., 2024; Furuta et al., 2024) 510

suggests that LLMs should learn a different reward 511

margin for each example, since different response 512

pairs can vary in their contrastiveness (i.e., y+ is 513

much or only a little better than y−). 514

In reality, however, y+ and y− often differ in 515

features irrelevant for the task, and a larger gap be- 516

tween them is not always desirable. Certain work 517

focuses on eliminating specific irrelevant differ- 518

ences such as length (Singhal et al., 2023). Others 519

take a more general perspective. Wu et al. (2024) 520

use reward margins to measure differences and dy- 521

namically scales the training signals for each ex- 522

ample. D’Oosterlinck et al. (2024) and Guo et al. 523

(2024) construct minimally different pairs by revis- 524

ing y− with a stronger LLM to get y+. However, 525

these methods either do not accurately model the 526

relationship between response pair differences and 527

quality, or require a stronger LLM to be present. 528

8 Conclusion 529

We propose a metric called DCRM that measures 530

the density of useful training signals in response 531

pairs and show its correlation with the PO training 532

outcome. Inspired by this correlation, we design a 533

Best of N2 pairing method, which can curate high- 534

quality datasets to train LLMs with PO effectively. 535

In addition, we provide a feature analysis to inspect 536

the characteristics of various common datasets with 537

varying DCRM values. 538
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Limitations539

Due to time constraints, we only focus on general540

chat datasets and benchmarks for training and eval-541

uation. While we do provide evaluation results for542

more task-specific benchmarks such as GSM8K,543

more efforts can be made to instead train LLMs in544

these task-specific settings to validate our claims.545

In addition, our BoN2 method works with an546

existing pool of responses. Instead of having to547

sample multiple responses per prompt, an alter-548

native to our method will be to use constrained549

decoding to guide the response generation process550

toward a high DCRM value.551

Ethics Statement552

After manual inspection, we are confident that our553

work adheres to ethical guidelines. We use Ultra-554

feedback prompts to curate our datasets, which are555

open-sourced and publicly available, without the556

presence of sensitive or private content.557
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A Preliminary Study in the DS-Fix setting779

Although prior work (D’Oosterlinck et al., 2024)780

has shown that sampling responses from differ-781

ent sources gives different performances on chat782

benchmarks like AlpacaEval (Dubois et al., 2024),783

a missing piece is a qualitative understanding of784

how the choice of these sources shapes the learned785

behaviors of LLMs.786

In an early pilot study in the DS-Fix setting, we787

observe a trend for LLMs to over-exploit benign788

features when y+ and y− have consistent stylistic789

differences, which in turn leads to worse perfor-790

mance after training. The following are 2 examples791

that demonstrate this.792

Case Study I: Chat Benchmark We use the793

60K prompts from Ultrafeedback (Cui et al., 2023)794

and sample y+ from a strong model Gemma-2-795

9B-IT (Riviere et al., 2024) and y− from a weak796

model Mistral-7B-Instruct-v0.2 (Jiang et al., 2023).797

We set πref to LLaMA-2-7B-Chat (Touvron et al.,798

2023b) and train it with DPO for 2 epochs. We799

evaluate its performance on AlpacaEval.800

Surprisingly, the model’s raw win rate decreases801

after training (See Table 8). We then closely in-802

spect the model’s output. Compared with πref , the803

trained model tends to generate more emojis and804

other stylistic symbols (See example on the top left805

of Figure 5).806

AlpacaEval
LC WR Length

LLaMA-2-7B-Chat 12.57 10.43 1502

+Gma2-Mst 13.26 8.99 1166

Table 8: Result on AlpacaEval. LC: length controlled
win rate; WR: raw win rate. The model’s raw win rate
decreases after training.

Quantitatively, we conduct a token-level analy- 807

sis, where we calculate the average frequency for 808

each token to appear in models’ responses to Al- 809

pacaEval questions before training (Yref ) or after 810

training (Ytrained) (See details in Appendix A.1). 811

We then check the tokens whose frequency in- 812

creases the most when going from Yref to Ytrained 813

(See Figure 5 top right). As expected, 5 out of the 814

top 10 tokens are emoji tokens (those surrounded 815

by <>). The rest are mostly also stylistic tokens (** 816

and * are used to bold text and create bullet points). 817

These stylistic features are indeed learned from 818

the training set. We calculate the same frequency 819

differences for each token when changing from 820

dispreferred responses Y − to preferred responses 821

Y +, and found the same emoji token (<0x0A>) 822

and other stylistic tokens (**, *, etc.) to appear 823

much more frequently in Y + than in Y −. 824

Case Study II: Math Benchmark We also con- 825

duct experiments on a Math Benchmark, GSM8K 826

(Cobbe et al., 2021). We adopt the setting from 827

SPIN (Chen et al., 2024) and set y+ to be the re- 828

sponses from human annotators and y− to be the re- 829

sponses from πref (LLaMA-2-7B-Chat). We then 830

use DPO to train πref for 5 epochs, on 6,725 ex- 831

amples from GSM8K’s original training split. We 832

use the remaining 748 examples for validation and 833

select the best checkpoint. Similar to the previous 834

case study, we again observe a surprising perfor- 835

mance drop on GSM8K’s test split. 836

GSM8K ACC (0-shot)

LLaMA-2-7B-Chat 23.88

+Human-πref 18.20

Table 9: Result on GSM8K; ACC: Accuracy; The
model’s accuracy decreases after training.

Manual inspection suggests that the model tends 837

to generate repetitive sentences that include nonsen- 838

sical math calculations (Figure 5 bottom left). The 839

token-level analysis reveals that the model learns to 840
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Who is Larry Page?

Great question!  Larry Page is a well-
known  tech entrepreneur and 
computer scientist. He is best known for 
co-founding  Google, the … have any 
other questions. 

Thank you for your question! Larry Page is 
a well-known American computer 
scientist and entrepreneur, best known as 
the co-founder of Google, the … have any 
other questions.
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Terry eats 2 yogurts a day … How much 
does he spend on yogurt over 30 days?

Terry eats 2 yogurts a day. Terry eats 2*2=4 
yogurts a day. Terry eats 4*30=120 yogurts 
a month. ... Terry eats 
58009600000000000000*5=2920440000
00000000

Terry eats 2 yogurts a day, so he eats 2 x 2 
= 4 yogurts in one day. … Terry spends 
$1.25 x 30 = $37.50 on yogurt.
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Figure 5: Top: Case Study with Chat Benchmark; Bottom: Case Study with Math benchmark; Left: Example of
LLM’s output before training (yref ) and after training (ytrained); Middle: Top 10 tokens whose frequency increases
the most when changing from Y − to Y + in the training set; Right: Top 10 tokens whose frequency increases the
most when changing from the model’s output before training (Yref ) to after training (Yref ) on the test set.

generate more digits, which is also attributable to841

the difference between Y + and Y − in the training842

set (Figure 5 bottom right and middle).843

The above suggests that differences between y+844

and y− in irrelevant spurious features in the train-845

ing set cause LLMs to pick up these features in-846

stead of those targeted ones (correctness, etc.). This847

leads us to hypothesize that when the proportion (or848

density) of truly useful contrast signals decreases849

among all the contrast signals in the response pair,850

training becomes less effective.851

A.1 Token-level Analysis852

We define a length normalized bag of words rep-853

resentation of a sequence y as follows: we count854

for each token t in the vocabulary V its number855

of occurrences in y, which we denote as n(t, y).856

We then divide it by the length of y, |y|, to get857

bown(t, y) = n(t,y)
|y| . This tells how much of y858

is made up of t. We then compute the average859

of this value across the model’s responses to Al-860

pacaEval queries after training (Ytrained) to get861

bown(t, Ytrained) =

∑
y∈Ytrained

bown(t,y)

|Ytrained| , and sim-862

ilarly bown(t, Yref ) for model’s responses before863

training (Yref ).864

The difference between bown(t, Ytrained) and865

bown(t, Yref ) tells how much more frequently t ap-866

pears in the model’s responses after training. Simi- 867

larly, we can take the preferred responses Y + and 868

dispreferred responses Y − in the training set, and 869

search for tokens that occur more frequently in 870

Y +. 871

B Training Details 872

We set β = 0.1, and train the model for 2 epochs. 873

We use Adam Optimizer with a learning rate of 874

5e-7, warmup ratio of 0.1, and a cosine learning 875

schedule. 876

C Feature Difference Analysis 877

C.1 Relevant and Irrelevant Features 878

We define the relevant features to be the 11 features 879

synthesized from the 19 reward features modeled 880

by ArmoRM. As for the irrelevant features, we 881

manually select 21 features that are not directly 882

related to the relevant features and include an addi- 883

tional "other" feature that refers to all other features 884

not specified in the list. See details in Table 10. 885

C.2 Prompt 886

The prompt is shown in Table 11. We instruct the 887

judge to identify the top 3 features in which the 888

2 given responses differ, and the corresponding 889
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Relevant Features

"helpfulness", "correctness", "factuality", "co-
herence", "verbosity", "instruction follow-
ing", "truthfulness", "honesty", "harmless-
ness", "code complexity", "code readability"

Irrelevant Features

"writing style", "tone", "politeness", "friendli-
ness", "caring or not", "intimacy", "empathy",
"language type", "casual or formal", "author-
itative or not", "creativity", "certainty", "hu-
mor", "passive or active", "pessimistic or op-
timistic", "explicit or implicit", "sarcastic or
not", "passion", "repetitiveness", "word usage
diversity", "structure of presentation", "other"

Table 10: Complete List of Relevant and Irrelevant
Features

contrast directions if applicable. To avoid potential890

biases, we do not reveal the source of each response891

(y+ or y−; ytrained or yref ). Additionally, we ask892

the judge to give 2 separate predictions where in the893

first prediction y1 = y+(ytrained), y2 = y−(yref )894

and in the second prediction y1 = y−(yref ), y2 =895

y+(ytrained), respectively.896

C.3 Reward differences for relevant features897

Reward differences of relevant features fol-898

low similar distributions between Y +-Y − and899

Ytrained-Yref . Since we have the fine-grained re-900

ward score for each of the relevant features from Ar-901

moRM13, we compute the change in reward score902

per feature. Consistent with what we notice in § 6.1,903

Figure 6 shows that the reward score changes in904

Y +-Y − and Ytrained-Yref are similar. In particular,905

the top 3 features with the highest changes, which906

explain over 50 percent of the total reward score907

changes, are the same for both settings (i.e., the908

top 3 are honesty, code complexity, and instruction909

following in both settings).910

D DCRM Properties911

Our DCRM metric has the following properties.912

1. Encourage high reward margin, low distance.913

Denote the distance e∆ + p∆ as d. For any re-914

sponse pairs pij and pi′j′ , if r∆(pij) > r∆(pi′j′)915

and d(pij) = d(pi′j′), then DCRM(pij) >916

13These are the 19 original, unsynthesized features, contain-
ing duplications.
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Figure 6: The fine-grained, per feature reward score
differences in both settings overlap significantly. X-
axis: relevant feature. u: Ultrafeedback, h: Helpsteer
(Wang et al., 2024b), a: Argilla, b: BeaverTails (Ji et al.,
2023); Y-axis: reward score difference per feature when
going from Y − (Yref ) to Y + (Ytrained).

DCRM(pi′j′). Similarly, if r∆(pij) = r∆(pi′j′) 917

and d(pij) < d(pi′j′), then DCRM(pij) > 918

DCRM(pi′j′). 919

2. Preserve reward margin sign. DCRM al- 920

ways has the same sign as the reward margin. 921

For any pairs pij , pi′j′ , pi′′j′′ where r∆(pij) < 922

0, r∆(pi′j′) = 0, and r∆(pi′′j′′) > 0, we 923

should have DCRM(pi′′j′′) > DCRM(pi′j′) > 924

DCRM(pij). This means any pair with a pos- 925

itive overall training signal has a higher DCRM 926

value than those with an overall neutral signal, 927

followed by those with an overall negative sig- 928

nal. Additionally, for any pairs pij and pi′j′ 929

where r∆(pij) = r∆(pi′j′) = 0, we have 930

DCRM(pij) = DCRM(pi′j′). This means any 931

pairs with an overall neutral training signal have 932

the same DCRM value. 933

E Complete Results 934

Table 12, 13, 14 show the complete results and 935

dataset statistics for each πref that we have trained. 936

Similar to the main results in § 5.1, we observe 937

that SS-RM generally performs the best and DS- 938

Fix generally performs the worst, and that there 939

is a positive correlation between the average DCRM 940

value of the training dataset and the model’s perfor- 941

mance boost after training. 942

F Correlation Analysis on AlpacaEval 943

In addition to the 3 SS-RM, 1 DS-RM, and 1 DS- 944

Fix settings discussed in § 3, we also include the 8 945
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Given 2 responses y1 and y2 to a query x, identify the top 3 most prominent features in which y1 and y2
differ. Provide a justification for each feature that you identified. The features that you identified should
only come from the following set of potential features:

{explicit or implicit, instruction following, code readability, caring or not, pessimistic or optimistic,
writing style, certainty, truthfulness, casual or formal, tone, intimacy, code complexity, passion,
friendliness, passive or active, authoritative or not, word usage diversity, correctness, politeness, language
type, factuality, empathy, creativity, coherence, repetitiveness, verbosity, sarcastic or not, structure of
presentation, harmlessness, humor, helpfulness, honesty}

Note that the features "code complexity" and "code readability" are only applicable for programming or
coding tasks. Do not indicate these for non programming or coding tasks.

If you think none of the feature listed above can explain the differences between y1 and y2, propose new
features that can explain the differences. Again, provide a justification for each proposed new feature.

Additionally, for any feature where it makes sense to say y1 is "better" or "worse" than y2 in terms of that
feature (e.g., helpfulness, where more helpful is better; verbosity, where less verbose is better), identify
which response is better. You should put "y1" or "y2". For other features where differences do not imply
"better" or "worse" (writing style, tone, formal or casual, language type, etc.), put "Not applicable".

Give your response in the following JSON format:

{
feature 1: {

"justification": justification 1,
"better response": "y1" or "y2" or "Not applicable"

},
...
feature 3: {

"justification": justification 3,
"better response": "y1" or "y2" or "Not applicable"

}
}

Query x: {x}

Response y1: {y1}

Response y2: {y2}

Answer:

Table 11: Prompt for Sequence-level Analysis.
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Performance Dataset Statistics
AP-L AP-R MT AH e∆ p∆ r∆(e-2) DCRM(e-2)

LLaMA-2-7B-Chat 12.57 10.43 5.41 8.90 - - - -

SS-RM +πref 22.36 16.81 5.55 16.67 427 32.48 2.82 4.54
w/ BoN2 22.41 17.2 5.67 16.07 370 23.87 2.52 5.94
+Mst 15.49 12.07 5.40 10.42 526 158.54 2.13 1.59
w/ BoN2 17.42 13.29 5.48 10.99 410 79.94 1.79 2.07
+Lma3 19.59 15.49 5.38 12.62 427 74.07 2.01 1.82
+Gma2 15.89 13.12 5.50 11.57 370 91.78 1.70 2.87

DS-RM +Gma2-Mst 14.13 11.51 5.52 10.55 542 226.47 2.03 1.13
w/ BoN2 (r∆ only) 16.20 13.17 5.48 11.98 495 257.84 3.78 2.21
w/ BoN2 16.82 13.6 5.48 11.75 458 142.94 3.27 2.58

DS-Fix +Gma2-Lma3 14.02 9.53 5.63 10.62 490 212.21 2.21 2.08
+Gma2-Mst 13.26 8.99 5.24 6.68 542 226.47 1.02 0.43

Table 12: Results on LLaMA-2-7B-Chat. Lma3: LLaMA-3-8B-Instruct

Performance Dataset Statistics
AP-L AP-R MT AH e∆ p∆ r∆(e-2) DCRM(e-2)

Gemma-2B-IT 16.07 10.31 4.80 5.40 - - - -

SS-RM +πref 27.03 18.01 4.97 9.58 229 56.48 4.15 11.11
w/ BoN2 28.08 17.64 4.93 10.50 197 35.93 3.74 14.90
+Mst 22.96 14.66 5.02 8.39 526 244.81 2.13 1.50
w/ BoN2 26.71 16.89 5.03 9.58 342 99.29 1.74 2.22
+Lma3 25.49 17.04 5.15 8.63 427 110.00 2.01 3.07
+Gma2 25.13 17.76 5.19 10.22 370 103.15 1.70 2.85

DS-RM +Lma3-Mst 22.36 15.03 4.96 7.70 466 295.38 1.77 1.10
w/ BoN2 (r∆ only) 24.41 15.16 4.98 7.09 515 355.66 3.59 2.03
w/ BoN2 26.14 17.76 5.09 9.21 393 170.61 3.03 2.80

DS-Fix +Lma3-Mst 16.81 16.15 4.53 6.23 466 295.38 0.71 0.32

Table 13: Results on Gemma-2B-IT. Note that for symmetrical purposes, we include an additional Lma3-Mst
(DS-RM/DS-Fix) setting in place of the Gma2-Mst (DS-RM/DS-Fix) setting since Gemma and Gma2 are from the
same series.

Performance Dataset Statistics
AP-L AP-R MT AH e∆ p∆ r∆(e-2) DCRM(e-2)

LLaMA-3.2-1B-Instruct 14.15 15.34 4.66 10.88 - - - -

SS-RM +πref 22.80 25.65 5.01 18.88 434 120.07 4.22 7.53
w/ BoN2 24.77 27.64 5.10 20.25 356 63.55 3.58 11.48
+Mst 19.43 19.94 4.91 16.03 526 176.22 2.13 1.68
w/ BoN2 21.73 21.37 5.11 16.62 339 78.81 1.78 2.44
+Lma3 27.81 32.73 5.16 19.35 427 61.33 2.01 3.81
+Gma2 24.57 27.52 4.99 15.91 370 84.78 1.70 3.15

DS-RM +Gma2-Mst 20.01 21.61 5.01 13.61 542 228.22 2.03 1.17
w/ BoN2 (r∆ only) 21.72 24.66 4.99 17.84 495 269.60 3.78 3.02
w/ BoN2 24.53 27.76 5.04 19.17 374 134.94 3.24 3.02

DS-Fix +Gma2-Lma3 10.31 8.20 4.84 13.23 490 211.42 2.21 2.27
+Gma2-Mst 17.79 13.79 4.54 14.94 542 228.22 1.02 0.44

Table 14: Results on LLaMA-3.2-1B-Instruct
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additional settings for more accurate computation946

of the correlation. These include the 3 settings in947

§ 5 where we apply our Best of N2 method with948

DCRM and 5 settings from the ablation study (e∆949

only, p∆ only, e∆+p∆, e∆+r∆, p∆+r∆).950

F.1 Correlation with individual metrics951

Figure 7: Correlation with e∆

Figure 8: Correlation with p∆

Figure 9: Correlation with r∆

In Figure 7, 8, and 9, for each individual com-952

ponent of DCRM (e∆, p∆, and r∆), we show the953

correlation between the training set’s metric value954

and the change in the model’s length controlled 955

win rate on AlpacaEval post-training. DCRM has a 956

stronger correlation than these individual metrics. 957

G Correlation with MT-Bench and 958

Arena-Hard 959

Figure 10: Correlation with MT-Bench Performance

Figure 11: Correlation with Arena-Hard Performance

In Figure 10 and 11 we show the correlations be- 960

tween DCRM and the model’s performance changes 961

on MT-Bench and Arena-Hard. We observe a weak 962

positive correlation with MT-Bench scores with 963

a Pearson Correlation Coefficient of 0.20, possi- 964

bly due to the fact that MT-Bench evaluates the 965

model’s multi-turn conversation abilities, while our 966

dataset and training are for single-turn conversation. 967

Arena-Hard shows a moderate positive correlation, 968

with a Pearson Correlation Coefficient of 0.49, sim- 969

ilar to the case with AlpacaEval discussed in § 4. 970

H Task-specific and OOD Downstream 971

Performance 972

We also investigate more task-specific and out-of- 973

distribution downstream performance for each set- 974
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GSM8K ME-Hard

LLaMA-2-7B-Chat 23.28 24.55

SS-RM +πref 21.51 24.3
w/ BoN2 23.35 25.75
+Mst 21.76 26.5
w/ BoN2 22.14 25.4
+Lma3 23.91 26.1
+Gma2 23.76 26.1

DS-RM +Gma2-Mst 22.16 25.65
w/ BoN2 22.90 26.5

DS-Fix +Gma2-Lma3 19.82 21.1
+Gma2-Mst 18.62 20.55

Table 15: Task-specific and out-of-distribution down-
stream performance of each setting. GSM8K: 5-shot
accuracy on GSM8K; ME-Hard: MixEval-Hard over-
all score; Training on DS-Fix datasets hurts models’
performance while training on other datasets generally
preserves or even increases the performance.

AP-L AP-R Length

LLaMA-2-7B-Chat 12.57 10.43 1502

+(SS-RM) πref 22.36 16.81 1530
w/ BoN2 22.41 17.20 1561

-p∆ 22.1 17.27 1526
-e∆ 24.04 17.14 1513
-r∆ 14.81 12.11 1529

Table 16: Ablation Study on DCRM

ting, using GSM8K (Cobbe et al., 2021)14 and975

MixEval-Hard (Ni et al., 2024). As shown in Ta-976

ble 15, the model’s performance trained in the977

DS-Fix settings decreases compared with the base978

model πref , while in other settings the performance979

is maintained close to πref or even increases. This980

suggests that noisy signals learned from the DS-981

Fix datasets not only hurt LLMs’ general conver-982

sational abilities but also their task-specific down-983

stream effectiveness.984

I Ablation Study for best-of-N2 pairing985

We also do an ablation study in the LLaMA-2-986

7B-Chat πref (SS-RM) setting. In particular, we987

remove 1 of e∆, p∆, and r∆ from DCRM. Remov-988

ing e∆ or p∆ means setting DCRM’s denominator989

to p∆ + ϵ or e∆ + ϵ. Removing r∆ means setting990

DCRM to just 1
e∆+p∆+ϵ , in which case the new Best991

of N2 method effectively selects the pair with the992

smallest distance.993

14We use the lm-evaluation-harness library ver-
sion 0.4.5 at https://github.com/EleutherAI/
lm-evaluation-harness/tree/v0.4.5 to compute
GSM8K results.

Table 16 shows that the performance after re- 994

moving either e∆ or p∆ is close to that of the 995

complete metric. In Table 17, 18, and 19 we have 996

similar observations in other settings too. A merit 997

entailed by this insight is that, in certain settings 998

such as Mst (SS-RM) and DS-RM, our method can 999

work well with just e∆ and r∆, without the need 1000

for a forward pass on the model to compute p∆. r∆ 1001

are usually collected during the preference annota- 1002

tion process and given in the preference dataset. In 1003

this case, we only need to compute e∆ to apply our 1004

selection strategy, which is cheap and simple. 1005

AP-L AP-R Length

LLaMA-2-7B-Chat 12.57 10.43 1502

+(SS-RM) πref 22.36 16.81 1530
w/ BoN2 22.41 17.20 1561

-p∆ 22.1 17.27 1526
-e∆ 24.04 17.14 1513

+(SS-RM) Mst 15.49 12.07 1463
w/ BoN2 17.42 13.29 1456

-p∆ 16.86 12.80 1446
-e∆ 17.13 13.04 1446

+(DS-RM) Gma2-Mst 14.13 11.51 1511
w/ BoN2 16.82 13.6 1522

-p∆ 16.8 13.54 1528
-e∆ 17.54 13.98 1518

Table 17: On LLaMA-2-7B-Chat, keeping r∆ and 1
distance metric also works reasonably well and gives
performance close to the complete metric.

AP-L AP-R Length

Gemma-2B-IT 16.07 10.31 1224

+(SS-RM) πref 27.03 18.01 1357
w/ BoN2 28.08 17.64 1343

-p∆ 26.73 16.02 1311
-e∆ 28.2 17.76 1331

+(SS-RM) Mst 22.96 14.66 1349
w/ BoN2 26.71 16.89 1328

-p∆ 25.37 16.67 1355
-e∆ 25.89 15.65 1278

+(DS-RM) Lma3-Mst 22.36 15.03 1379
w/ BoN2 26.14 17.76 1432

-p∆ 25.89 18.63 1458
-e∆ 24.12 15.78 1364

Table 18: On Gemma-2-9B-IT, keeping r∆ and 1 dis-
tance metric also works reasonably well and gives per-
formance close to the complete metric.

Removing r∆ makes training less effective. In 1006

general, we observe in Table 20 that purely optimiz- 1007

ing against distances with either e∆, p∆, or both 1008

is much less effective than when r∆ is included. 1009
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AP-L AP-R Length

LLaMA-3.2-1B-Instruct 14.15 15.34 1980

+(SS-RM) πref 22.8 25.65 2725
w/ BoN2 24.77 27.64 2825

-p∆ 24.58 27.89 2582
-e∆ 24.19 27.33 2716

+(SS-RM) Mst 19.43 19.94 1980
w/ BoN2 21.73 21.37 1915

-p∆ 21.08 20.56 1892
-e∆ 21.00 20.68 1882

+(DS-RM) Gma2-Mst 20.01 21.61 2062
w/ BoN2 24.53 27.76 2145

-p∆ 23.43 26.52 2181
-e∆ 23.16 26.21 2127

Table 19: On LLaMA-3.2-1B-Instruct, keeping r∆ and
1 distance metric also works reasonably well and gives
performance close to the complete metric.

AP-L AP-R Length

LLaMA-2-7B-Chat 12.57 10.43 1502

+ (SS-RM) πref 22.36 16.81 1530
w/ BoN2 22.41 17.20 1561

e∆ only 13.97 11.68 1538
p∆ only 15.89 13.11 1537
e∆ +p∆(DCRM-r∆) 14.81 12.11 1529

Table 20: Ablation Study on DCRM without reward mar-
gins. Selecting response pairs with the smallest dis-
tances leads to suboptimal performance.

This is expected, since selecting the pair with the1010

smallest distance reduces the reward margin signifi-1011

cantly, indicating that not only the noisy differences1012

but also the desired differences are eliminated in1013

the selected pair.1014

J Discussion on Computational cost1015

The term N2 in BoN2 comes from pairing the1016

N responses. We analyze the cost BoN2 incurs1017

and compare that with the cost of the conventional1018

response pairing methods (e.g., selecting the re-1019

sponse pair with the largest r∆).1020

Firstly, in the sampling stage, similar to conven-1021

tional methods, we sample N responses (not N21022

responses) from the model, which means we do not1023

incur extra sampling cost.1024

Secondly, in the reward scoring stage, we again1025

follow conventional methods and use the reward1026

model to give each response a reward score.1027

Thirdly, during pairing, we compute r∆, e∆, and1028

p∆ for each response pair. Computing r∆ just1029

needs simple arithmetic. For p∆, again only sim-1030

ple arithmetic is needed, and the log probability1031

of each response is a readily available byproduct 1032

when sampling the responses. e∆ can be efficiently 1033

computed using existing libraries such as the edit 1034

distance library from Python. After this, we com- 1035

pute the DCRM value of each response pair and select 1036

the pair with the highest DCRM value. 1037

Although the third stage incurs quadratic costs 1038

in terms of the number of responses N , we argue 1039

that these costs are still minimal, since (1) a rel- 1040

atively small N is usually sufficient and large N 1041

gives diminishing returns (See Appendix K), (2) 1042

the cost for each pair is minimal either due to arith- 1043

metic simplicity (r∆ and p∆) or implementation 1044

efficiency (e∆). 1045

Therefore, the bulk of computation is still spent 1046

on response sampling and reward scoring, which 1047

are the same in our and conventional methods, and 1048

applied to each output separately (i.e., O(N) com- 1049

pute). Consequently, the total extra cost our method 1050

incurs is comparable to the conventional methods. 1051

K Increasing Number of Responses 1052

The hyperparameter N controls the number of re- 1053

sponses in the response pool. Increasing N should 1054

help create a more diverse set of responses, boost 1055

the quality of the response pairs identified by our 1056

BoN2 method, and raise the trained model’s per- 1057

formance on benchmarks. To inspect the effect 1058

of increasing N , we change N from the original 1059

value of 5 to 8 and curate a new dataset to train 1060

LLaMA-2-7B-Chat. Table 21 shows the results. 1061

AP-L AP-R Length

LLaMA-2-7B-Chat 12.57 10.43 1502

+ (SS-RM) πref 22.36 16.81 1530
w/ BoN2, N = 5 22.41 17.20 1561
w/ BoN2, N = 8 23.35 17.89 1548

Table 21: Results with different values of N . Increasing
N beyond 5 gives diminishing returns.

As N increases, we observe diminishing returns. 1062

We suspect the reason to be that we are only sam- 1063

pling from one single source model, which puts an 1064

upper bound on the response diversity. However, 1065

this is not a deficiency specific to our method. In 1066

fact, all methods that sample multiple responses 1067

from the same model will eventually suffer from 1068

diminishing returns as N increases. 1069
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