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ABSTRACT

Deep metric learning continues to play a crucial role in many computer vision ap-
plications, while its various mining and weighting strategies have been extensively
investigated. Techniques based on pairwise learning often use excessive random
sampling and end up in slow convergence and model degradation. Further, neural
network approaches mostly employ MLP layers for metric learning. The tactic can
indeed be thought of as graph convolutions with only self-connections, indicating
that local neighborhood relationships are neglected. We comprehensively identify
the missing neighborhood relationships issue of conventional embedding and pro-
pose a novel approach, termed as Graph Local Embedding (GLE), to deep metric
learning. Our method explores the local relationships and draws on the graph con-
volution networks to construct a discriminative mapping for embedding learning.
The strategy can enhance metric learning by exploring the manifold-to-manifold
relationships. By focusing on an essential variety of neighboring relations within
GLE, burdens of redundant pairs can be substantially eased, and the context of
each encoded data is greatly enriched. We demonstrate in the experiments that
coupling GLE with existing metric learning techniques can yield impressive per-
formance gains on popular benchmark datasets for fine-grained retrieval.

1 INTRODUCTION

Deep metric learning has become an active research topic and is widely applied in many areas,
such as object/face recognition, few-shot learning, and image retrieval tasks. It mainly focuses on
learning an embedding to encode data points of the same class to stay together and those of different
classes to be far away. This is typically achieved by enforcing a loss function to promote intra-class
compactness and inter-class separability effectively. In general, metric learning can be built on two
kinds of scenarios, classwise and pairwise. The former aims to approximate the center of each class
to realize the objective (Aziere & Todorovic, 2019; Deng et al., 2019; Kim et al., 2020; Liu et al.,
2017; Movshovitz-Attias et al., 2017; Wang et al., 2018). However, it often calls for a rigid training
procedure, not easily generalized to, e.g., unseen classes. The latter divides training samples into
pair or triplet relations and considers a metric function to build up feature discrimination (Schroff
et al., 2015; Sohn, 2016; Song et al., 2016; Wah et al., 2011; Wang et al., 2019b;a; Manmatha
et al., 2017; Zheng et al., 2019). Nevertheless, due to training with random sampling, it inevitably
causes the resulting formulation involving too many redundant pairs, rather than a good number of
informative samples, and consequently leads to slow convergence and model degradation, which
could substantially limit the targeted performance improvement.

Among the abovementioned techniques, those that are based on the pairwise scheme often learn
the embedding via a single multi-layer perceptron (MLP) layer, as shown in the left column (Con-
ventional Embedding) of Figure 1a. Indeed, existing approaches essentially converge to designing
various mining and weighting strategies to explore the informative samples for embedding learning.
They rely heavily on the effectiveness of the mining and weighting schemes to model targeted pairs,
e.g., to properly group similar/positive pairs or dissimilar/negative pairs. The optimization then
proceeds to promote compactness for those similar pairs and separation for dissimilar pairs. Such
approaches mainly focus on optimizing the inter-sample, i.e., sample-to-sample, correlations based
on the neighborhood structure of the resulting embedding, as shown in Figure 1b. It implicitly im-
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Figure 1: (a) Comparison between conventional embedding and our Graph Local Embedding (GLE).
Our method considers the essential local neighboring relations to effectively construct the embed-
ding via pairwise metric learning. Different colors and shapes reflect class labels and embedding
spaces, respectively. (b–d) Three types of neighbor relationships in metric learning. (b) The sample-
to-sample relationships correspond to the linear metric learning. (c) The sample-to-manifold rela-
tionships correspond to the message-passing based embedding. The proposed GLE aims to encode
the local manifold for each sample to explore the (d) manifold-to-manifold relationships.

plies that the neighbor relationships among samples in the induced feature spaces of convolutional
neural networks (CNNs) are mostly neglected during embedding learning.

Motivated by that neighbor relationships are crucial in manifold learning to construct a discrim-
inative embedding, a new avenue of recent research efforts on metric learning has explored the
mechanism of message passing, which exchanges pivotal information among neighboring nodes to
unify a robust representation. Group loss in Elezi et al. (2020) takes a class-prior matrix and adopts
hand-crafted rules to iteratively refine the class information, while MPN by Seidenschwarz et al.
(2021) exploits the Transformer design to learn the attention scores. Zhu et al. (2020) instead pro-
pose ProxyGML that employs multiple intra-class proxies to construct local manifolds and takes
the label propagation scheme to transfer the node information. The design principle of these ap-
proaches is essentially class-driven and the encoded representations are learned to correlate their
class center—that is, the underlying constructed graph is used to impose sample-to-manifold rela-
tionships for metric learning, as illustrated in Figure 1c.

Deviating from adopting the MLP based sample-to-sample and the message-passing based sample-
to-manifold mechanisms, our method, termed as graph local embedding (GLE), tackles the missing
consideration of neighborhood relationships in conventional CNN-based embeddings by exploring
the association between the MLP and the graph convolutional network (GCN) layer. Specifically,
we point out that the MLP of metric learning can be cast in terms of graph convolution with only
self-connections, indicating that local neighborhood relationships are neglected during the embed-
ding construction. Such self-connections suggest that the pairwise deep metric learning techniques
concern only the sample-to-sample relationships in learning the targeted embedding and may suffer
the burden of redundant pairs. We instead model the local manifold of each data point and then
construct a robust GCN representation to integrate the local neighborhood relationships, as shown
in the right column (Graph Local Embedding) of Figure 1a. More specifically, by performing graph
convolutions over a sparse graph, we can encode the local neighborhood relationship of each sam-
ple into the GCN feature. Hence, the succeeding metric learning can explore the relationships of
inter-neighborhood, i.e., manifold-to-manifold, as shown in Figure 1d. Once we impose the met-
ric function to promote the feature discrimination, not only the inter-sample dependency will be
considered, but also their neighbors will be jointly optimized to satisfy the imposed criteria.
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Our main contributions can be characterized as follows: (1) We pinpoint the inefficiency of the con-
ventional MLP of metric learning as a naı̈ve graph convolution with only self-connections, essen-
tially disregarding the neighborhood relations. (2) We introduce a novel metric learning framework
that constructs a robust GCN embedding, effectively accounting for local manifold relations. (3)
Our method achieves comparable results or significant performance gains over other SOTA pairwise
metric learning techniques in testing with popular fine-grained image-retrieval benchmark datasets.

2 RELATED WORK

2.1 PAIRWISE METRIC LEARNING

The goal of metric learning is to establish a discriminative embedding that projects the original fea-
ture representations of the data to a new space with high intra-class compactness and inter-class
separability. Here, we discuss some classical pairwise metric learning techniques. Chopra et al.
(2005) introduce contrastive loss for learning an embedding with Siamese networks to promote the
discrimination. The formulation forms several positive and negative pairs where the positive pairs
are encouraged to be closer to each other, and the negative pairs to be farther away at least beyond
a specified margin. Schroff et al. (2015) considers a triplet loss whose triplet relation indicates the
anchor, positive, and negative samples, in embedding learning. It works by minimizing the distance
between the anchor to the positive sample and simultaneously maximizing the distance between the
anchor to the negative one. However, the design principle of the above-mentioned losses tend to
cause inefficient learning due to excessively redundant pairs. This concern prompts recent studies
to emphasize developing mining and weighting schemes to resolve this issue. The margin based
loss in Manmatha et al. (2017) designs a distance weighted sampling scheme to seek informative
samples and to impose a margin penalty to separate inter-class samples. Both N-pair loss (Sohn,
2016) and lifted structure loss (Song et al., 2016) consider mining harder negative samples to speed
up convergence. On the other hand, ranked List Loss in Wang et al. (2019a) exploits all sample pairs
to construct a comprehensive structure for metric learning, while MS loss by Wang et al. (2019b)
instead extensively evaluates the type of similarity pairs and designs a principled approach to min-
ing and weighting informative pairs. Departing from mining informative samples, Sun et al. (2020)
propose circle loss that achieves self-paced weighting, via investigating the disparity between an
optimal solution and the sample itself, to dynamically adjust the gradient of each sample, further
resulting in flexible optimization. Some other studies (Duan et al., 2018; Mao et al., 2019) con-
sider adversarial attacks to improve the feature discrimination further. The DAMLRRM by Xu
et al. (2019) employs the minimum spanning tree (MST) to form an intra-class manifold (set) and
then imposes a metric function over such pairs in the formed manifold to promote classwise com-
pactness. Such a scheme is essentially similar to the just described approaches (Sohn, 2016; Song
et al., 2016; Sun et al., 2020; Wang et al., 2019b;a; Manmatha et al., 2017), which model targeted
pairs via specific strategies and then impose metric function to promote embedding discrimination.
Finally, we remark that all these approaches implicitly assume a form of graph convolution with
self-connections and thus result in inter-sample, or sample-to-sample, optimization.

2.2 MANIFOLD LEARNING

Manifold learning typically aims to retain intrinsic neighboring structures in the underlying lower-
dimensional feature space. The classical manifold learning techniques such as LLE (Roweis & Saul,
2000) and Isomap (Tenenbaum et al., 2000) estimate the local manifolds via justifiable assumptions.
However, the effectiveness of these approaches mainly relies on the training data and lacks the ca-
pacity to handle unseen data. Chien & Chen (2016); van der Maaten (2009) consider the parametric
framework based on a deep neural network to enhance the generalization ability of manifold learn-
ing. No matter learning-based or spectral-based optimization, the neighboring relations act as an
important reference to realize the objective. Despite the implementations of metric learning and
manifold learning are quite different, their common nature likewise focuses on learning an embed-
ding to establish a discriminative mapping accounting for unseen data. Observing that MLP-based
deep metric learning does not utilize the neighboring relations during the embedding construction,
our proposed graph local embedding lifts this limitation to not only improve the effectiveness of
neural network based metric learning but also ameliorate the issue of redundant training pairs.
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2.3 MESSAGE PASSING FOR METRIC LEARNING

Graph convolutional networks (GCNs) have been extensively discussed in recent years and show
impressive capability in handling non-Euclidean data distribution, e.g., graph data (Kipf & Welling,
2017; Hamilton et al., 2017; Li et al., 2019; Chen et al., 2020; Xu et al., 2020). The main concept
of GCN is to learn an embedding, which analyzes the neighborhood structure to yield a discrimi-
native representation. In deep metric learning, message passing is popular for refining the feature
representation based on the graph neighboring structures. By iteratively exchanging the information
among nodes, it can generate an attention score to ensure that the model pays more attention to
those similar nodes. Group Loss in Elezi et al. (2020) considers a class-prior matrix and takes the
hand-crafted rules to iteratively refine the class information. Instead of the hard assignment, MPN
(Seidenschwarz et al., 2021) exploits the Transformer design with multiple layers to learn the at-
tention scores. Unlike learning the neighboring structure of the data points, ProxyGML (Zhu et al.,
2020) adopts multiple intra-class proxies as neighboring data points. However, these designs are
established on the closswise scenario, meaning that the constructed final representation is encour-
aged only to gather around the center of each class and far away from other inter-class ones. In
other words, the constructed graph and message passing are coupled to impose sample-to-manifold
relationships based on the resulting neighborhood structures.

We instead do not refine the attention scores or use the label information to explicitly specify the
local relationships. Our approach follows the learned CNN mapping to define the local relationships
and draws on the graph convolutions to better encode the features for metric learning. Whenever the
neighboring structures of two inter-class samples are similar to each other, it would cause a large
penalty by our proposed framework. To the best of our knowledge, we are the first to formulate a
robust embedding for pairwise metric learning by exploring local neighboring relations via GCNs.

3 GRAPH LOCAL EMBEDDING

In pairwise metric learning, the redundant pairs, which are less informative and cause unexpected
limitation in performance gain, often become the main obstacle for discriminative embedding learn-
ing. To tackle this challenging issue, we propose an embedding framework, termed as graph local
embedding (GLE), to construct a robust embedding with the local neighborhood and class correla-
tions of each data point for pairwise metric learning. Our approach can be simplified as a pipeline
of three key steps, including local manifold construction, GCN embedding, and metric learning.

3.1 GCN VIEW OF LINEAR METRIC LEARNING

To learn a discriminative embedding, deep pairwise metric learning often considers the following
procedure to encode input into high-level representations. Given an image batchB = {Ii}ni=1 in the
RGB space and each image Ii is labeled with a class label yi, where n is the batch size. To begin
with, we assume that a convolutional neural network is applied to learn a non-linear transformation
to encode B into the deep features X ∈ Rn×d. Then, a linear MLP layer for metric learning is
exploited to learn a mapping into an embedding space Flinear ∈ Rn×m. Finally, CNN and the
linear layer will be jointly optimized via a specific metric loss function to realize the discriminative
embedding. Formally, the underlying embedding via linear mapping can be expressed by

Flinear = XW (1)

where W ∈ Rd×m is a linear mapping, transforming deep features X into Flinear.

It is pivotal to point out that the above deep metric learning in (1) can be regarded as a form of
graph convolution with self-connections. That is, each data point is associated only with itself and
does not link to others—that is, it can be reformulated as deep features X , multiplied by an identity
matrix which represents an n× n graph with only self-connections. Thus we can rewrite (1) into

Flinear = InXW (2)

where In ∈ Rn×n indicates an identity matrix.

With (2), it can be readily observed that the linear learning adopted by most previous studies as-
sumes self-connections In and overlooks the neighboring relations, which could further suffer from

4



Under review as a conference paper at ICLR 2022

an ineffective learning procedure due to information mining from redundant pairs. To resolve the
issues, we propose to model the local manifold of each data point and develop a robust GCN em-
bedding for pairwise deep metric learning. Naturally, the drawbacks of redundant pairs are greatly
eased owing to paying attention to the neighboring relations. Moreover, effectively integrating the
local neighboring relations via non-linear graph convolutions can properly realize the inter local
neighborhood optimization, leading to a more general formulation of deep metric learning.

3.2 LOCAL MANIFOLD CONSTRUCTION

To form a local manifold of each data point in the feature space, we consider using an affinity graph
to encode neighbor relations. Given a batch B of size n, we construct an affinity graph G ∈ Rn×n
where each node represents an encoded data point xi from B, and the edge between each pair of
nodes is initialized via their cosine similarity. That is, an edge affinity gij in G can be formulated as:

gij =<
xi
‖xi‖

,
xj
‖xj‖

> (3)

where i and j respectively indicate the indexes of the underlying samples in B.

Notice that although the class label information is available in the supervised metric learning, the
construction of G does not use it to specify the neighbors of each node. The main reasoning is
that not only the intra-class neighbors are useful but also the inter-class ones can provide important
information for metric learning. For example, in the optimization process of metric learning, it
would be useful to yield a larger penalty when observing local manifolds, now not restricting to
samples of the same class, of an arbitrary pair of inter-class samples are significantly overlapped.

We show below several popular strategies for local manifold construction and justify their validity
in our experimental results. The intuitive idea is to adopt either the k-nearest neighbors (k-nn) or
ε-ball to define the local neighbors of each sample. The former works by keeping the top-k entries
from the given ranking list, while the latter preserves those elements whose similarities are higher
than the specified ε. The k-nn and ε-ball neighborhoods can be respectively expressed as

gij =
k-nn

{
gij , if xj ∈ N (xi, k),

0, otherwise,
and gij =

ε-ball

{
gij , if gij > ε,

0, otherwise,
(4)

where N (xi, k) is the set of top-k samples of xi according to the ranking list of {gij}nj=1, and ε
denotes the similarity threshold of the ε-ball.

Yet, another strategy for constructing local manifolds from G is to apply random sampling over a
complete graph to form the neighbors of each sample. We here consider two kinds of sampling
schemes, purely random and Bernoulli, to preserve the edges from the given graph G. In the former
sampling scheme, we employ uniform sampling to randomly select the neighbors. For the latter, the
probability of a neighbor will be selected depending on its similarity to a given anchor i.

3.3 GCN EMBEDDING

After building the local manifold G, we introduce a general GCN (Kipf & Welling, 2017) to con-
struct an embedding for metric learning. Comparing with the typical graph convolution operation,
the obtained local manifold G is sparse and exhibits essential local neighboring relations. It can
consequently result in a robust embedding more relevant to the subsequent metric learning. By
replacing the self-connections In in (2), we establish the proposed GCN local embedding F by

F = σ(ÂXW ) (5)

Â = D̃− 1
2 ÃD̃− 1

2 (6)

where σ represents an activation function for non-linear mapping. Ã = G + In is an adjacency
matrix by the propagation rule in Kipf & Welling (2017) to prevent exploding/vanishing gradients
and D̃ is a normalized degree matrix with its ith diagonal entry D̃ii =

∑N
j=1 Ãij .

3.4 METRIC LEARNING

To learn a discriminative embedding, one can consider using any popular loss function for metric
learning. In our formulation, we consider using a simple objective function, which aims to reduce
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the sn − sp, where sn and sp denote the similarity of a negative pair (different-class) and of a posi-
tive pair (same-class), respectively (Sun et al., 2020). Unlike the linear MLP metric learning, GLE
explores the local relationships and draws on the graph convolution to construct a discriminative
mapping for deep metric learning. It enhances metric learning by exploring the inter-neighborhood
(manifold-to-manifold) relationships. As GLE enriches the representation of each sample with local
and informative neighboring relations, either of the similarity sn for a negative pair or the similar-
ity sp for a positive pair will not simply entail the pure inter-sample similarity. In particular, the
neighboring associations of the anchor, its respective positives and negatives will all turn out to be
important references. In the experiments, we find as expected that the burden of redundant pairs
will be greatly eased owing to exploring the complex variants of neighboring relations. Importantly,
when the model is trained to meet the requirement of the resulting metric, not only each negative
sample (with respect to a given anchor) must be far away from the underlying anchor but also its
local neighborhood has to respect the same criterion simultaneously. In addition, the anchor will
receive the neighboring connections via its positive samples and enforces these neighbors to stay
nearby, and simultaneously be far away from the implied negatives.

4 EXPERIMENTAL RESULTS

4.1 DATASETS

We assess our method, i.e., GLE, on three fine-grained retrieval benchmark datasets, including CUB
(Wah et al., 2011), Cars-196 (Krause et al., 2013), and Stanford Online Products (SOP) (Song et al.,
2016). Briefly, the benchmark datasets CUB, Cars-196, SOP respectively contain 11, 788 images
of 200 bird categories, 16, 185 images of 196 vehicle categories, and 120, 053 images of 22, 634
online product categories. Following Sun et al. (2020), we use half of the classes for training and the
remaining classes for testing by measuring the image retrieval performance with Recall@k (R@k).

4.2 IMPLEMENTATION DETAILS

Our backbone network employs ResNet-50 (He et al., 2016) pre-trained on ImageNet (Deng et al.,
2009) to extract deep features. We train one-layer GCN and an embedding layer of 512-dimension
representation for neighborhood relationships modeling and metric learning, respectively. Our data
augmentation follows the same settings as Kim et al. (2020) for both training and testing phases,
and the input images are of size 227 × 227 as (Seidenschwarz et al., 2021; Sun et al., 2020; Xuan
et al., 2018). GLE is trained with AdamW optimizer (Loshchilov & Hutter, 2019) for 60 epochs, and
each batch is constructed with a PK batch sampler of P classes and K instances per class (K = 5)
as Hermans et al. (2017). While testing, we augment the query image with random flip and crop
to construct the neighboring nodes of the query’s local manifold. In addition, we also provide the
result, marked as GLE∗, concerning only the self-connections during local manifold construction.

4.3 ABLATIONS

In the ablation analysis, we discuss how the batch size, local neighborhood (training/testing), and
pairwise metric learning loss affect the model performance.

4.3.1 BATCH SIZE

Table 1 shows the effect of different batch sizes constructed by the PK batch sampler, where the
instances per class are fixed andK = 5. The results show that our model is not sensitive to the batch
size, and it has the best or the second-best performances by adopting the batch size of 120.

4.3.2 LOCAL NEIGHBORHOOD IN TRAINING

Table 2 shows the different local neighborhood construction methods during training. Notice that
all models in Table 2 adopt the same local neighborhood construction in testing, i.e., the self-
connections. This experiment employs the proposed GCN embedding step and the MS loss (Wang
et al., 2019b) in the metric learning step. To validate the effectiveness of local neighborhood in train-

6



Under review as a conference paper at ICLR 2022

Table 1: Effect of batch size on Recall@k (R@k).

Batch CUB Cars-196

Size R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

80 69.1 79.7 86.9 91.9 88.6 93.5 95.9 97.7
120 70.1 80.0 87.2 92.6 88.7 93.3 96.1 97.6
160 69.3 78.3 86.3 92.1 88.3 93.0 95.9 97.7
200 69.3 79.2 86.4 91.8 87.1 92.5 95.4 97.5
240 69.4 79.4 86.9 92.0 87.8 92.6 95.4 97.4

Table 2: Effect of local manifold construction in
training while using self-connections in testing.

Local Manifold CUB Cars-196 SOP

(training) R@1 R@2 R@1 R@2 R@1 R@10

Self-connections 68.5 78.5 85.2 91.6 80.7 92.2
Full-connections 66.9 77.9 79.6 87.5 75.2 88.6
Purely random 66.4 77.5 80.7 88.7 77.0 89.7
Bernoulli 66.8 77.8 81.4 88.7 78.2 90.6
k-nn 66.9 77.3 80.1 87.9 79.2 91.0
ε-ball 69.4 79.4 87.2 92.4 81.0 92.6
k-nn + ε-ball 70.1 80.0 88.7 93.3 81.2 93.1

Table 3: Effect of local manifold construction in test-
ing while using k-nn + ε-ball in training.

Local Manifold CUB Cars-196

(testing) R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

Self-connections (GLE∗) 70.1 80.0 87.2 92.6 88.7 93.3 96.1 97.6
k-random 71.5 81.3 88.1 92.5 91.0 94.7 97.0 98.3
k̄-nn 67.5 78.0 86.1 91.7 89.9 94.3 96.7 98.1
k-nn 72.2 82.4 88.9 93.2 91.3 95.0 97.2 98.5
ε-ball (GLE) 72.9 82.5 89.0 93.2 91.6 95.1 97.2 98.4
ε-ball + k-random 72.0 81.6 88.3 92.8 90.3 96.9 98.1 98.8
ε-ball + k̄-nn 69.3 79.8 87.4 92.3 89.0 93.7 96.0 97.6
ε-ball + k-nn 72.1 82.3 88.9 93.1 91.1 95.1 97.3 98.5

ing, our baseline model employs the self-connections, i.e., the traditional learning manner using pure
linear mapping (2). We discuss the methods for local manifold construction as follows:

Full-connections. This method denotes the anchor point links to all other samples within a batch
to learn the embedding jointly and can be regarded as a complete graph in our GLE. Despite the
normalization diagonal degree matrix D can emphasize the importance of each entry, the large
number of negative pairs leads to an imbalance learning and hence results in the worst performance.

Purely random & Bernoulli. Section 3.2 elaborates two random sampling methods on neighbors
within the given graph to construct the local manifold in our GLE. The selected neighbors using
purely random sampling cannot capture the local manifold structure and hence fail to encode the
helpful graph representations for learning the local neighborhood. The Bernoulli sampling shows
slightly better performance than purely random sampling, yet its effectiveness highly relied on the
quality of the deep feature space concerning the local relationships.

k-nn & ε-ball. The k-nn method selects the top-k similar nodes for the GLE by ranking the edges
among the anchor to other samples. The performance is not good enough since the k-nn method
may include irrelevant edges in combination with enlarging the graph’s sparsity. The ε-ball can
exclude irrelevant edges significantly owing to its ε threshold, where a larger ε involves highly
similar connected neighbors, and we set ε to be 0.7 in our experiments. We observed that the
combination of k-nn and ε-ball by simultaneously concerning the sparsity of the graph and high
similarity among anchor and edges, we can obtain the best performance, as shown in the last row of
Table 2. Hence, our GLE employs such a configuration in the following experiments.

4.3.3 LOCAL NEIGHBORHOOD IN TESTING

While testing a GLE-based image retrieval task, we augment the query image with random flip and
crop to construct the query’s local manifold since the other images besides the query should not be
available for use. Table 3 shows the different local manifold construction methods during testing.
Precisely, we augment each query image to ten images for constructing the query’s local manifold,
and we respectively select the most similar k images (k-nn), the most dissimilar k images (k̄-nn),
and random k images (k-random) for discussing the effect of the local manifold construction. Notice
that we use the local neighborhood construction method by ‘k-nn + ε-ball’ and optimized by MS loss
for all configurations in Table 3. As the results in Table 2, the baseline using the self-connections in
testing also merely shows moderate performance. Though the query’s local manifold is constructed
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Table 4: Effect of pairwise metric learning losses and GCN embeddings. Table 3 indicates the
configurations on local manifold construction of GLE and GLE∗.

Pairwise Metric GCN CUB Cars-196 SOP

Learning Loss Embedding R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@102 R@103

Contrastive
Linear 61.4 72.4 81.7 88.5 81.5 88.5 93.1 95.6 75.2 88.6 95.1 98.2
GLE∗ 63.7 74.0 83.1 89.9 82.8 89.1 92.9 95.8 77.8 90.0 96.0 98.7
GLE 68.1 78.2 85.9 91.1 85.2 91.3 95.1 97.2 79.2 91.2 96.4 98.9

Triplet
Linear 55.5 66.6 77.3 84.9 63.1 73.9 82.2 88.6 73.6 88.0 95.3 98.7
GLE∗ 56.1 67.1 77.8 85.2 64.0 74.5 83.2 89.5 75.9 88.4 95.2 98.6
GLE 57.4 69.2 78.4 86.8 65.0 75.3 83.6 90.0 77.1 88.4 95.2 98.6

MS
Linear 68.5 78.5 87.0 92.5 85.2 91.6 94.7 96.8 80.7 92.2 96.9 98.9
GLE∗ 70.1 80.0 87.2 92.6 88.7 93.3 96.1 97.6 81.2 93.1 97.3 99.1
GLE 72.9 82.5 89.0 93.2 91.6 95.1 97.2 98.4 82.3 93.1 97.5 99.2

Circle
Linear 68.4 78.6 86.5 92.0 83.6 90.4 94.8 97.1 80.4 91.7 96.7 98.9
GLE∗ 69.6 80.5 88.1 93.0 85.2 91.2 95.2 97.5 80.9 92.0 97.0 99.0
GLE 73.5 82.6 89.2 93.7 89.3 94.1 96.4 98.1 81.6 92.7 97.4 99.0

from its augmentation, the results in Table 2 show that the ε-ball (ε = 0.7) is still preferred, yet the
construction method ‘ε-ball + k-nn’ does not bring more performance gain as in the training phase.

4.3.4 PAIRWISE METRIC LEARNING LOSS

Our GLE can leverage any popular metric learning loss function to learn a discriminative embed-
ding. This experiment discusses the effect of pairwise metric learning losses by equipping with Con-
trastive loss (Chopra et al., 2005), Triplet loss (Schroff et al., 2015), MS loss (Wang et al., 2019b),
and Circle loss (Sun et al., 2020). Table 4 shows that the proposed graph local embedding construct-
ing the local manifold in both training and testing (GLE) achieves the best performance compared
to the traditional learning manner (Linear) without utilizing any local manifold. Even though the
GLE∗, which only constructs the local manifold in training, also shares the benefits from the GCN
embedding within the introduced graph local embedding. While equipping with the MS loss, the
proposed model shows the best performance besides the CUB dataset. The performance gain of
GLE, derived from that GLE can raise the ranking of those positive samples, in Table 4 supports our
strategy that exploring the manifold-to-manifold relationships can enhance metric learning.

4.4 COMPARISON WITH THE STATE-OF-THE-ART METHODS

Table 5 compares the proposed GLE against other state-of-the-art metric learning methods on CUB,
Cars-196, and SOP benchmark datasets. The results show the superior performance of GLE using
the standard metric of Recall@k on all datasets.

The first group in Table 5 denotes the conventional linear metric learning methods. For example,
the method DAMLRRM (Xu et al., 2019) employs the minimum spanning tree for modeling metric
learning. Then it forms an intra-class manifold and then imposes a metric function over pairs in the
formed manifold to promote classwise compactness. Its embedding is formulated by one single MLP
layer, similar to self-connections, and can be regarded as a sample-to-sample relationships. Such a
group of methods learning sample-to-sample relationships may suffer the burden of redundant pairs.
In contrast, our GLE explores the manifold-to-manifold relationships and eases the redundant pairs.

In Table 5, the second group denotes the ensemble metric learning methods. For example, the
method XBM (Wang et al., 2020) enriches informative pairs via an additional cross-batch memory
module to obtain performance gain compared with the conventional linear metric learning methods.
However, such a group of ensemble methods suffers the additional cost of a memory dictionary to
store high-level representations for the entire dataset. In contrast, our GLE surpasses these ensemble
metric learning methods without the extra cost of any additional storage.

The third group in Table 5 denotes the message passing based metric learning methods. This group
of methods such as MPN (Seidenschwarz et al., 2021), ProxyGML (Zhu et al., 2020), and Group
Loss (Elezi et al., 2020) concerning sample-to-manifold relationships. While learning the sample-
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Table 5: Comparison of GLE against the state-of-the-art metric learning methods. From top to bot-
tom, the first group denotes the conventional linear method, the second group denotes the ensemble
methods, and the third group denotes the message passing based method. The backbone column
shows the backbone network and embedding size. B: BN-Inception, G: GoogLeNet, R: ResNet-50.

Methods Backbone
CUB Cars-196 SOP

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@102 R@103

DAMLRRM (Xu et al., 2019) G512 55.1 66.5 76.8 85.3 73.5 82.6 89.1 93.5 69.7 85.2 93.2 –
HTL (Ge et al., 2018) G512 57.1 68.8 78.7 86.5 81.4 88.0 92.7 95.7 74.8 88.3 94.8 98.4
RLL-H (Wang et al., 2019a) B512 57.4 69.7 79.2 86.9 74.0 83.6 90.1 94.1 76.1 89.1 95.4 –
HDC (Song et al., 2017) G384 60.7 72.4 81.9 89.2 83.8 89.8 93.6 96.2 75.9 88.4 94.9 98.1
SoftTriple Qian et al. (2019) B512 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9 78.3 90.3 95.9 –
MS (Wang et al., 2019b) B512 65.7 77.0 86.6 91.2 84.1 90.4 94.0 96.5 78.2 90.5 96.0 98.7
Circle (Sun et al., 2020) B512 66.7 77.4 86.2 91.2 83.4 89.8 94.1 96.5 78.3 90.5 96.1 98.6
ABIER (Opitz et al., 2017) G512 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1 74.2 86.9 94.0 97.8
ABE (Kim et al., 2018) G512 60.6 71.5 79.8 87.4 85.2 90.5 94.0 96.1 76.3 88.4 94.8 98.2
RLL-(L,M,H) (Wang et al., 2019a) B1536 61.3 72.7 82.7 89.4 82.1 89.3 93.7 96.7 79.8 91.3 96.3 –
DREML (Xuan et al., 2018) R128 63.9 75.0 83.1 89.7 86.0 91.7 95.0 97.2 – – – –
XBM (Wang et al., 2020) B512 65.8 75.9 84.0 89.9 82.0 88.7 93.1 96.1 79.5 90.8 96.1 98.7
D&C (Sanakoyeu et al., 2019) R128 65.9 76.6 84.4 90.6 84.6 90.7 94.1 96.5 75.9 88.4 94.9 98.1
ProxyGML (Zhu et al., 2020) B512 66.6 77.6 86.4 – 85.5 91.8 95.3 – 78.0 90.6 96.2 –
Group Loss (Elezi et al., 2020) B512 66.9 77.1 85.4 91.5 88.0 92.5 95.7 97.5 76.3 88.3 94.6 –
MPN (w/o Auxiliary CE Loss) R512 68.1 – – – 87.2 – – – – – – –
MPN (w/ Auxiliary CE Loss) R512 70.3 80.3 87.6 92.7 88.1 93.3 96.2 98.2 81.4 91.3 95.9 –
MPN (Seidenschwarz et al., 2021) R512 70.8 – – – 88.6 – – – – – – –
GLE∗ R512 70.1 80.0 87.2 92.6 88.7 93.3 96.1 97.6 81.2 93.1 97.3 99.1
GLE R512 72.9 82.5 89.0 93.2 91.6 95.1 97.2 98.4 82.3 93.1 97.5 99.2

to-manifold relationships, this group of methods may suffer the class-driven limitation mentioned
in the introduction. Namely, they tend to select the sample leaning toward its class center and
simultaneously being far away from other class centers. Our GLE instead considers manifold-to-
manifold relationships to formulate a robust embedding and surpasses these methods over datasets
CUB, Cars-196, and SOP.

5 CONCLUSION

While training with random sampling, the redundant pairs inevitably happening and are harmful to
embedding learning. To address this issue, previous studies make an extensive discussion on how
to mining the informative samples. This paper identifies the issue of missing neighborhood relation-
ships in conventional CNN-based embedding by pointing out that the linear MLP layer is a form of
graph convolution with self-connections, which implies that the pairwise metric learning techniques
only discuss the sample-to-sample relationships during the targeted embedding and thus suffer re-
dundant pairs. We propose a novel deep metric learning called Graph Local Embedding (GLE) to
instead model the local manifold for constructing a robust embedding for deep metric learning. By
encoding the local neighborhood relationship into the GCN feature of each sample, our GLE can
significantly enrich the context of each encoded data and thus build a better learning pattern while
enforcing the metric function. Through the experiments on the public benchmarks, we demonstrate
the effectiveness of our GLE. In particular, our GLE can perform great results and surpass state-of-
the-art approaches with a clear margin, even if comparing with ensemble approaches.
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