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ABSTRACT

Modular object-centric representations are essential for human-like reasoning but
are challenging to obtain under spatial ambiguities, e.g. due to occlusions and view
ambiguities. However, addressing challenges presents both theoretical and practical
difficulties. We introduce a novel multi-view probabilistic approach that aggregates
view-specific slots to capture invariant content information while simultaneously
learning disentangled global viewpoint-level information. Unlike prior single-view
methods, our approach resolves spatial ambiguities, provides theoretical guarantees
for identifiability, and requires no viewpoint annotations. Extensive experiments on
standard benchmarks and novel complex datasets validate our method’s robustness
and scalability.

1 INTRODUCTION

(a) (b)

Figure 1: (a) Occlusion Ambiguity: the orange
object, which is occluded by the blue object, could
be any of the six plausible objects shown on the
right. (b) View Ambiguity: the blue object is ob-
served from two different viewpoints (represented
with a red arrow and a dot), leading to a change
in its overall shape. In general, identifiable repre-
sentations resolve ambiguities by determining the
most plausible object under occlusion and correct
object properties in case of view transformation by
leveraging information from multiple viewpoints.

The ability to capture the notion of objectness
in learned representations is considered to be
a critical aspect for developing situation-aware
AI systems with human-like reasoning capabil-
ities (Schölkopf & von Kügelgen, 2022; Lake
et al., 2017). Objectness can be characterised
as understanding the environment from the per-
spective of its building blocks. These can further
be divided into object-part composition Hinton
(1979; 2022), which might be a potential rea-
son why humans generalise across environments
with few examples to learn from Tenenbaum
et al. (2011). Recent advances in object-centric
representation learning (OCL) have shown great
potential in segregating objects in observed
scenes (Locatello et al., 2020b; Kori et al., 2023;
Löwe et al., 2024). Indeed, the goal of OCL
is to enable agents to learn representations of
objects in an observed scene in the context of
their environment, as opposed to learning global
representations as in the case of traditional gen-
erative models such as variational auto-encoders
(Kingma & Welling, 2013). OCL approaches enable agents to learn spatially disentangled repre-
sentations, which is an important step in compositional scene generation (Bengio et al., 2013; Lake
et al., 2017; Battaglia et al., 2018; Greff et al., 2020) and understanding of causal (and physical)
interactions between the objects (Marcus, 2003; Gerstenberg et al., 2021; Gopnik et al., 2004).

Recent progress in OCL has been limited to learning scene representations from single-viewpoints
(Locatello et al., 2020b; Engelcke et al., 2021; Singh et al., 2021; Kori et al., 2023; Chang et al.,
2022; Seitzer et al., 2022; Löwe et al., 2024). Although these approaches can learn meaningful object-
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specific representations, they encounter significant challenges stemming from spatial ambiguities
such as occlusion and view ambiguities (see Fig. 1 for examples). Additionally, while it has been
hypothesised that these models learn un-occluded object representations even in the case of occlusions.
Learning from a single viewpoint fails to capture effective object representations, due to the presence
of multiple plausibilities of partially or fully occluded objects and the effects of view transformations,
as demonstrated in Fig. 1 and highlighted by the results in Fig. 2 (we will revisit these results later in
section 4). Another example of spatial ambiguities can be observed in Fig. 3, where object O4 in
x1 and x2 can be interpreted as a cube, but only after considering x3 we can conclude that being a
pyramid.

Figure 2: Identifiability across a number
of views measured with Slot Mean Cor-
relation Coefficient (SMCC).

A handful of approaches, including MULMON(Li et al.,
2020), DYMON(Li et al., 2021), OCLOC(Yuan et al.,
2024), have considered multiple viewpoints for object rep-
resentations. Additionally, methods such as (Liu et al.,
2025; Chen et al., 2021; Luo et al., 2024) effectively use
NERF(Mildenhall et al., 2021) for constructing a 3D en-
vironment from multi-viewpoint images, where the oc-
clusions are addressed by construction. Among these
methods, MULMON, DYMON, and all NERF based ap-
proaches assume that the viewpoint annotations are known,
which simplifies the problem of learning to disentangle
object representations conditioned on viewpoint informa-
tion.

Figure 3: This illustrates a scene with four objects Os =
{O1,O2,O3,O4}, observed from three different viewpoints,
each described with a set of clearly visible objects: O1 =
{O3,O4},O2 = {O1,O3,O4},O3 = {O1,O2,O3,O4}.
The corresponding images are passed through view and con-
tent encoders, and sampled global view vector v is used
to estimate transformation function Tθv given by parame-
ters θv predicted using a localisation network. We apply a
view-specific inverse T −1

θv on respective images projecting
them to an implicit space, which is used to learn view condi-
tioned slot posterior corresponding to GMMs represented by
q(sv | T −1

θv (xv)), which are further aggregated to marginal-
ize viewpoint information, resulting in a content posterior,
also a GMM q(c | {s1, . . . , sV }), which is further accumu-
lated across all samples resulting in optimal prior p(c).

The problem setting in this work
aligns with OCLOC, in that, our aim
is to learn invariant object represen-
tations while simultaneously learning
global view information with respect
to an implicit global coordinate frame.
This eliminates the requirement for
paired viewpoint-image data. While
OCLOC introduces an innovative ap-
proach for learning global view infor-
mation independently of the scene, its
primary focus is on achieving object-
consistency unconditional to views
rather than explicitly learning view-
invariant object representations. Addi-
tionally, learning global unconditional
view representations does not guaran-
tee learning identifiable view/object
representations, which was not stud-
ied for OCLOC. In this work, we pro-
vide a novel model, where object rep-
resentations satisfy view-invariance
and view representations satisfy ap-
proximate equivariance properties, al-
lowing us to exploit objects’ inherent
geometry and semantics to establish
correspondences across views.

In single-view OCL, Kori et al.
(2024); Brady et al. (2023);
Lachapelle et al. (2023) make
an effort in rigorously formalising the
underpinning, explicit and implicit
assumptions and provide conditions under which models result in learning identifiable slot
representations, leaving out ambiguous scenarios. Unlike them, our approach resolves spatial
ambiguities, provides theoretical guarantees for identifiability, and requires no viewpoint annotations.
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To the best of our knowledge, this is the first work addressing explicit formalisations of assumptions
and theory required for achieving identifiable object representations under occlusions with multi-view
observational data. To this end, we make use of the spatial Gaussian mixture models(GMM) in latent
distribution across viewpoints to encourage identifiability without additional auxiliary data. Our
main contributions in this work can be summarised as follows:

(i) We propose a probabilistic slot attention variant, View-Invariant Slot Attention (VISA) for
learning identifiable object-centric representations from multiple viewpoints, resolving
spacial ambiguities such as occlusions and view ambiguities (Section 2).

(ii) We prove that our object-centric representations are identifiable in the case of partial or full
occlusions without additional view information up to an equivalence relation with a mixture
model specification (Section 3).

(iii) We provide conclusive evidence of our identifiability results, including visual verification on
synthetic datasets; we also demonstrate the scalability of the proposed method on two new,
carefully designed complex datasets MVMOVI-C and MVMOVI-D (Section 4).

2 VISA FORMALISM

Let x1:V = {x1, . . .xV } ∈ X = X 1×· · ·×X V , V views of the same scene observed from different
viewpoints with an observational space X ⊆ RV×H×W×C . We consider [V ] as a shorthand notation
for {1, . . . , V }. Let Oe = O1 ∪ · · · ∪ OV correspond to an abstract notion of object sets of an
environment, while Ov,∀v ∈ [V ] is a set of objects present in a considered viewpoint v. Importantly,
we consider that the number of objects per viewpoint can vary, i.e., |O1∪· · ·∪OV | ≥ |Ov| ∀ v ∈ [V ],
allowing for partial or full occlusion in some viewpoints. Let v1:V ∈ V = V1 × · · · × VV ⊆ RV×dv

be inferred viewpoint-specific information1, while s1:V1:K ∈ S = S1 × · · · × SV ⊆ RV×K×ds

correspond to a viewpoint-specific slot representation. Let c1:K ∈ C ⊆ RK×dc capture the notion
of an aggregate, effectively accumulating the object knowledge across viewpoints. For any subset
A of [V ], we represent scene observations as xA = {xi : ∀i ∈ A} ∈ ×i∈AX i. The inferred
viewpoints and the view specific slots are denoted as vA = {vi : ∀i ∈ A} ∈ ×i∈AVi, and
sA1:K = {si1:K : ∀i ∈ A} ∈ ×i∈ASi, respectively. We define pA(c) as the distribution of c over A. A
more comprehensive summary of notations and terminologies is provided in App. A.

c

uµk

σk

πk

c̄ x v

v

σv

µv

πv

K N V

c̄ = Tθv (c)

Figure 4: Graphical model for multi-view proba-
bilistic slot attention: For every image in a dataset
a view v ∈ Rdv ∼ p(v), this view is used to com-
pute transformation Tθv . Similarly, desired number
(< K) of content representations c ∈ RN×ds are
sampled content distribution p(c). Finally, the im-
age x is generated using the transformed content
Tθv (c) and view v.

In modelling, w.l.o.g, we consider access to
a certain subset A ⊆ [V ], ensuring the model’s
applicability across different scenarios. Further-
more, to simplify notation, we sometimes do not
include the superscript denoting the full set of
views, thereby using x = xA, s1:K = sA1:K , and
v = vA interchangeably. Likewise, if we do
not specify the subscripts for c and s, it implies
they represent the entire collection of objects,
specifically as s = sA1:K and c = c1:K . Lastly,
for any function f that operates on two distinct
inputs x = f(z,v), its inverse is denoted by
z = f−1(x;v), which signifies the reversal of
f conditioned on a variable v. In the rest of
this section, we introduce all the components
involved in our model. We also introduce as-
sumptions, examples, and intuition wherever
necessary. Considering the generative model Eqn. 1, which is overviewed in graphical model Fig. 4,
any scene x is generated using view v and content c. Here, both c and v are latent variables learned
with variational inference(Kingma & Welling, 2013).

p(x) =

∫∫
p(xv | Tθv (c),vv) p(c) p(vv) dvv dc (1)

1We abuse the terminology by considering viewpoint, lighting, object dimension, to be encoded in a
representation v. Note that the v is inferred by the model.
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View model. Given that the view property remains consistent across all objects, we treat the view
as a global, image-level property as opposed to Yuan et al. (2024), where view is treated as an
object-level property. Assuming access to a discrete set of viewpoints denoted by A, we consider
prior over a view distribution to be a GMM represented by p(v) =

∑|A|
v=1 π

vN (v;µv,σ
2
v). To learn

the parameters of this GMM, we consider the posterior of the form qϕ(v | xv) ∀ v ∈ A2. In both
prior and posterior, we consider the covariance to be diagonal, implicitly making an ICA assumption
(Khemakhem et al., 2020a). The sampled variable v ∼ qθ(v | xv) is used to estimate transformation
parameters θv ∈ R3×2 as in Jaderberg et al. (2015) which makes an affine transformation map Tθv ,
which is later applied on content c and on view-specific slots s. It is important to note that we use the
same set of parameters ϕ across all viewpoints in A for inferring view information v.

Viewpoint specific slots. As illustrated in Fig. 3 the inference of c depends on the view-specific
slots s. For a considered image xv, v ∈ A, we first apply an inverse view transformation T −1

θv

and model the slot distribution as a spatial mixture model represented by q(sA1:K | T
−1
θv (xA)). The

inverse transformation makes sure that the estimated object representations across all view in A
are in a common implicit representation space. As this is an intermediate variable which does not
show up in our generative model in Eqn. 1, we update the corresponding parameters with closed-
form equations via expectation maximisation algorithm as in Kori et al. (2024). The resulting slot
posterior is a conditional GMM as described in Eqn. 2, where x̄v = T −1

θv (xv) is a transformed inputs,
(µk(x̄

v), σ2
k(x̄

v), πk(x̄
v)) are mean, diagonal covariance, and mixing coefficients for the considered

a view and object.

q(sv | x̄v) =

K∑
k=1

πk(x
v)N

(
svk;µk(x̄

v),σ2
k(x̄

v)
)

(2)

Representation matching. Given the permutation equivariance property of slot representations,
we use a matching function with a permutation matrix P v, ms : SA → SA such that ms(s

v
1:K) =

P vsv1:K mapping representation axis w.r.t P v. The permutation matrix P v is estimated by
considering the slots of the first viewpoint s1 as a base representation, and other representations
sv ∀v ∈ A are matched to align with it. We utilise Hungarian matching, as illustrated in Locatello
et al. (2020b); Wang et al. (2023), to estimate this permutation matrix P v , to control the noise in the
matching algorithm, we introduce view-warmup strategy, which we detail in App. G.5.

Content aggregator. We consider g : S → C as a content aggregator function, which marginalises
the effect of view conditioning. To achieve this, we consider a convex combination of all the aligned
slot representations (aligned to a base representation), considering mixing coefficients πk(x

v) (we
use πv

k for simplicity) in Eqn. 2 as a combination weight. The convex combination accounts for
potential object occlusions, which may cause objects to be absent in particular views ensuring only
active representations are combined (refer to an intuition below), resulting in a content posterior
(q(c | s)), which is a GMM with mixing coefficients π̃k =

(∑|A|
v=1 π

v
k

)
/|A| and the parameters

described in Eqn. 4 (w.l.o.g we consider s,π to represent aligned representations), refer to
Lemma F.3, with wi = 1/|A| ∀i ∈ A. Additionally, algorithm 1 details the entire forward process.

Intuition: Content aggregation

Based on illustrated example in Fig. 3, for images x1,x2,x3, the resulting matched slots and
mixing coefficients correspond to s1 = {s1r, s1r, s1O3

, s1O4
, s1b}, s2 = {s2O1

, s2r, s
2
O3

, s2O4
, s2b}, s3 =

{s3O1
, s3O2

, s3O3
, s3O4

, s3b}, where svOi
, svr , and svb correspond to slot representation for object Oi, ran-

dom slot representation and background information, respectively, with mixing coefficients π1 =
{0, 0, 1, 1, 1},π2 = {1, 0, 1, 1, 1}, and π1 = {1, 1, 1, 1, 1}. Proposed aggregation merges the slots
ignoring the random slots svr , resulting in cO1 = (s2O1

+ s3O1
)/2, cO2 = s3O2

and so on.

2We consider the parametric form of q to be Gaussian.
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g(s1:V1:K ,π1:V ) =

|A|∑
v=1

πv
1:k

|A|π̃v
k

sv1:K ; (3)

µ̃k(x
A) =

|A|∑
v=1

πv
k

|A|π̃v
k

µk(x
v); σ̃2(xA) =

|A|∑
v=1

(
πv
k

|A|π̃v
k

)2

σ2
k(x

v); (4)

Mixing function and training objective. We consider both additive and non-additive (ref. definition
E.1) mixing functions fd : C × Vv → X v. For additive decoders, we use a spatial-broadcasting
(Greff et al., 2019) and MLP decoders, and for non-additive mixing function, we use auto-regressive
transformers (Vaswani et al., 2017). We use the shared decoder fd for all views and objects, modelling
the conditional distribution p(xv | Tθv (c),vv). To train our model in an end-to-end fashion, we
maximise the log-likelihood of the joint p(xA), which results in the evidence lower bound (ELBO),
Eqn. 5, check Lemma F.1. Here, we consider the distribution form of p(xv | c,vv) to be Gaussian
with learnable mean with isotropic covariance.

E log p(x | Tθv (c),v)−KL (q(v | x) ∥ p(v)) (5)

3 THEORETICAL ANALYSIS

In this section, we leverage the properties of the proposed model to theoretically demonstrate the
learning of identifiable representations under challenging spatial ambiguities. In this work, we
consider our data-generating process to satisfy a viewpoint sufficiency assumption (refer to 3.1).
Assumption 3.1. (View-point sufficiency) For any set A ⊆ [V ], we consider set A to be view-
point sufficient iff |OA| = |Oe|. This basically means that all the objects are visible across all the
considered views A, even when an individual view may not contain all the objects.

Example 1. Based on illustrated example in Figure 3, the scene is composition of four objects
Oe = {O1,O2,O3,O4}, view point subset A = [V ] = {1, 2, 3} is considered to be view point
sufficient since

⋃
v∈AOv = {O3,O4} ∪ {O1,O3,O4} ∪ {O1,O2,O3,O4} = Oe.

Given that we learn the parameters of our view-specific spatial GMM with closed-form updates, we
do not use an explicit prior minimising KL divergence. Instead, we rely on the fact that marginalising
the effect of data points from posterior (aggregate posterior) is an optimal prior (Hoffman & Johnson,
2016; Kori et al., 2024), resulting in p(c) =

∫∫
q(c|sA,xA)dsAdxA. Given that GMMs are universal

density approximates given enough components (even GMMs with diagonal covariances), the
resulting aggregate posterior q(c) = p(c) is highly flexible and multi-modal. It often suffices to
approximate it using a sufficiently large subset of the dataset if marginalising out the entire dataset
becomes computationally restrictive.
Lemma 3.2 (Optimal Prior). For A ∈ [V ], given the a local content distribution q(c1:K | sA1:K ,xA)
(per-scene xA ∈ {xA

i }Mi=1), which can be expressed as a GMM with K components, the aggregate
posterior q(c) is obtained by marginalizing out x, s is a non-degenerate global Gaussian mixture
with MK components:

p(c) = q(c) =
1

M

M∑
i=1

K∑
k=1

π̂ikN
(
c; µ̂ik, σ̂

2
ik

)
. (6)

Proof Sketch. The result is obtained by integrating the product of involved posterior densities q(c |
s)q(s | x)p(x). Further, we verify if the mixing coefficients sum to one in the new mixture, proving
the aggregate to be well-defined.

With this, we show three main results: firstly, we show that aggregate content representations (c)
are identifiable without supervision (up to ∼s). Secondly, we show that these representations are
invariant to the choice of viewpoints under assumption 3.1. Finally, we show that the model exhibits
in an approximate view equivariance.
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Theorem 3.3. (Affine Equivalence) For any subset A ⊆ [V ], such that |A| > 0 , given a set of images
xA ∈ XA and a corresponding aggregate content c ∈ C and a non-degenerate content posterior
q(c | sA), considering two mixing function fd, f̃d satisfying assumption F.4, with a shared image,
then c are identifiable up to ∼s equivalence.

Proof Sketch. To prove the following result, we follow multiple steps as described below: (i). We
demonstrate the distribution p(c) obtained as a result of lemma 3.2 is non-degenerate and a valid
distribution, (ii). With the above results, we demonstrate invertibility restrictions on mixing functions,
(iii). Finally, we constrain the subspace to affine, demonstrating ∼s of aggregate content c.

Intuition: Affine equivalence Considering an example 1, with two perfectly trained mod-
els fd and f̃d. Resulting aggregate contents are described as c = f−1

d (xA;vA) =

{cO1
, cO2

, cO3
, cO4

, cOb
} and c̃ = f̃−1

d (xA;vA) = {c̃O2
, c̃O4

, c̃O3
, c̃O1

, c̃Ob
} for A = [V ] =

{1, 2, 3}. ∼s equivalence states that there exists a permutation matrix P which aligns the ob-
ject order in c̃ to match with c and there exists and invertible affine mapping A such that
c̃Ok

= AcOk
∀k ∈ {1, 2, 3, 4}.

Theorem 3.4. (Invariance of aggregate content) For any subset A,B ⊆ [V ], such that |A| >
0, |B| > 0 and both A,B satisfy an assumption 3.1, we consider aggregate content to be invariant if
fA ∼s fB for data XA ×XB .

Proof Sketch. To prove this, we extend the proof of Thm. 3.3, and establish that there exist two
inevitable affine functions hA, hB for mixing functions fA, fB : C × V → X to map representations
c with a given view set vA to observations xA. Later, we show that, in the case of invariance, an
affine mapping exists from hA to hB .

Intuition: Invariant slots. Considering an example 1, with A = {1, 3}, B = {2, 3},
such that sets A,B are viewpoint sufficient. Let fA and fB , be trained models on XA

and XB respectively. Resulting in c = f−1
A (xA;vA) = {cO1 , cO2 , cO3 , cO4 , cOb

} and
c̃ = f̃−1

B (xB ;vB) = {c̃O2
, c̃O4

, c̃O3
, c̃O1

, c̃Ob
}. Thm. 3.4 states that the representations

T −1
θB (c̃Ok

) can be mapped to T −1
θA (cOk

) by permuting object indices and an affine transforma-
tion.

Theorem 3.5. (Approximate representational equivariance) For a given aggregate content c, for any
two views v, ṽ ∼ pA(v), resulting in respective scenes x ∼ pA(x | v, c) and x̃ ∼ pA(x | ṽ, c), for
any homeomorphic transformation hx ∈ Hx such that hx(x) = x̃, their exists another homeomorphic
transformation hv ∈ Hv such thatHv ⊆ Hx ⊆ Rdim(x) and v = h−1

v

(
f−1
d (hx(x); c)

)
.

Remark 3.6. Note that the theorem only says that the transformation function transforming the view
representations v as an effect of the homeomorphic transformation of x lies in the same subspace of
input transformations.

Proof Sketch. We prove the following result by following the steps in Thm. 3.4, over a view
distribution p(v) but for a fixed content vector c.

Intuition: Approximate equivariance In the scenario when the cameras are positioned such
that they have overlapping fields of view, and their relative pose (rotation and translation) must
avoid degeneracies like aligning on the same plane or mapping points to infinity. This results in
the transformation between views being smooth, invertible, and consistent. If the scene is planar
or depth variations are minimal, the homography can capture the transformation accurately
without the need for inverse rendering. Notably, the cameras should have non-zero rotation
and translation to avoid collapsing the scene, and their intrinsic parameters must be known or
identical to prevent distortions. When the scenario satisfies all the above properties, the 2D
homography transformation H between two camera views can be learned as a homeomorphic
transformation (Hartley & Zisserman, 2003).
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Figure 5: Identifiability of q(c). The top row indicates individual feature distribution across five
different runs. The bottom row reflects the feature distribution, which we use as a proxy for multi-
dimensional features given Lemma F.2. As observed, mean feature distribution across runs is either
scaled, shifted, or split (increase in number of modes); this provides strong evidence of recovery of
the latent space up to affine transformations, empirically verifying our claims in Thm. 3.3.

Table 1: Comparing identifiability of q(s), q(c), and p(v) scores wrt existing OCL methods.

METHOD CLEVR-MV GQN GSO

SMCC ↑ INV-SMCC ↑ MCC ↑ SMCC ↑ INV-SMCC ↑ MCC ↑ SMCC ↑ INV-SMCC ↑ MCC ↑

AE 0.32 ± .02 - - 0.29 ± .02 - - 0.24 ± 0.08 - -
SA 0.47 ± .03 - - 0.38 ± .02 - - 0.28 ± 0.06 - -
PSA 0.49 ± .02 - - 0.38 ± .02 - - 0.30 ± 0.04 - -
MulMON 0.61 ± .03 0.62 ± .02 - 0.59 ± .06 0.61 ± .02 - 0.56 ± 0.04 0.48 ± 0.06 -
OCLOC 0.63 ± .02 0.64 ± .01 0.48 ± .04 0.60 ± .03 0.60 ± .01 0.42 ± .08 0.58 ± 0.04 0.54 ± 0.03 0.46 ± 0.04

VISA 0.67 ± .01 0.66 ± .01 0.60 ± .04 0.59 ± .01 0.63 ± .01 0.52 ± .03 0.60 ± .03 0.61 ± .02 0.58 ± .03

4 EMPIRICAL EVALUATION

Given the work’s theoretical focus, experimentally, we aim to provide strong empirical evidence of
our identifiability, invariance, and equivariance claims in a multiview setting. We also extend our
experiments to standard imaging benchmarks, including CLEVR-MV, CLEVR-AUG, GQN (Li
et al., 2020); we additionally demonstrate the framework’s scalability to highly diverse setting with
GSO (Downs et al., 2022) and proposed datasets MV-MOVIC, MV-MOVID which are multiview
versions of MoViC dataset with fixed and varying scene-specific cameras (Greff et al., 2022).
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Figure 6: Viewpoint invariance for q(c). The
top and bottom row indicates individual feature
levels and mean feature distributions, respectively.
Each columns reflect marginalised aggregate con-
tent distribution q(c) when trained with different
view pairs {(blue, red), (green, blue), and (green,
red)}, respectively. As the resulting distributions
with different datasets only vary by an affine trans-
formation, providing strong evidence for Thm. 3.4.

Experimental setup. To verify our claims
on (i) identifiability claim, we train our model
on a given view subset A ⊆ [V ] and compare
view averaged slot mean correlation coefficient
(SMCC) measure Kori et al. (2024), (ii) invari-
ance claim, we train multiple models on dif-
ferent subsets of viewpoints A,B ⊆ [V ] and
compare the aggregate content representations
across models, quantifying the similarities with
SMCC, we consider this measure to be invari-
ant SMCC (INV-SMCC), and finally, (iii) for
subspace equivariance, we consider a trained
model with a view subset A ⊆ [V ] and compute
MCC of view information v by applying ran-
dom homeomorphic transformations on samples
xA ∼ XA (which can also be done by consider-
ing samples xB ∼ XB , where cameras relative
position satisfy the required constraints 3.5, and
analyse p(vA) and p(vB)).

Models & baselines. We consider two ablations with two types of decoders: (i) additive with MLPs
and spatial broadcasting CNNs and (ii) non-additive decoders, which include transformer models. In
all cases, we use LeakyReLU activations to satisfy the weak injectivity conditions (Assumption F.4).
In terms of object-centric learning baselines, we compare with standard additive autoencoder setups
following (Brady et al., 2023), slot-attention (SA) (Locatello et al., 2020b), probabilistic slot-attention
(PSA) (Kori et al., 2024), MulMON (Li et al., 2020), and OCLOC (Yuan et al., 2024).
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Table 2: Identifiability and generalisability analysis on MV-MOVIC dataset.

METHOD IN-DOMAIN RESULTS OUT-OF-DOMAIN RESULTS

mBO ↑ SMCC ↑ INV-SMCC ↑ MCC ↑ mBO ↑ SMCC ↑ INV-SMCC ↑ MCC ↑

SA-MLP 0.28 ± 0.091 0.36 ± 0.004 - - 0.26 ± 0.08 0.38 ± 0.006 - -
PSA-MLP 0.30 ± 0.022 0.38 ± 0.002 - - 0.30 ± 0.03 0.40 ± 0.005 - -

VISA-MLP 0.28 ± 0.021 0.52 ± 0.021 0.61 ± 0.023 0.54 ± 0.026 0.27 ± 0.02 0.51 ± 0.029 0.58 ± 0.031 0.52 ± 0.021

SA-TRANSFORMER 0.34 ± 0.014 0.36 ± 0.016 - - 0.33 ± 0.041 0.36 ± 0.043 - -
PSA-TRANSFORMER 0.37 ± 0.021 0.38 ± 0.007 - - 0.37 ± 0.033 0.39 ± 0.016 - -

VISA-TRANSFORMER 0.38 ± 0.008 0.44 ± 0.003 0.46 ± 0.001 0.53 ± 0.011 0.36 ± 0.017 0.46 ± 0.033 0.46 ± 0.018 0.55 ± 0.082

CASE STUDY 1: ILLUSTRATION OF IDENTIFIABILITY. To definitively show the validity of our
claims about identifiability (Thm 3.3, Thm 3.4, and Thm 3.5), we created a synthetic unconfounded
scenario for modelling. This provides us with two data modalities, Fig, 7 (i) projected point cloud data,
and (ii) corresponding imagery data, we detail point cloud illustrations in appendix G.1. Additionally,
this dataset also provides us with the ground truth object and viewpoint features for evaluation. To
visualise the aggregate mixture, following Lemma F.2, we use the projected GMM to interpret the
distribution of random variables in Rd.

The data-generating process is thoroughly explained in the App. D.1. In Fig. 5, we display the
distributions of marginalized aggregate content distribution q(c), comparing individual features and
a mean feature across different runs that are either scaled, shifted, or split (increase in number of
modes), which is reflective of affine transformation of features across runs. To quantitatively measure
the same, we computed SMCC and observed it to be 0.72± 0.04, empirically verifying our Thm.
3.3. Furthermore, to illustrate the invariance of distribution q(c) across viewpoints (Thm. 3.4), we
consider three different viewpoints. We use all possible pairs to learn q(c) distributions as illustrated
in Fig. 6, where the distributions are described w.r.t viewpoints described by {g, r}, {r, b}, and
{g, b}, respectively. These distributions were also found to have similar properties as before, with
an observed SMCC of 0.71± 0.11, further confirming the claims in Thm. 3.4. Additionally, Fig. 2
demonstrates the improvement in identifiability as the number of viewpoints increases.

CASE STUDY 2: IMAGING APPLICATIONS. We first evaluate the framework on standard bench-
marks, specifically focusing on CLEVR-MV, CLEVR-AUG, GQN, and GSO with simple objects.
Given the true generative factors are unobserved, we derive our quantitative assessments from
multiple runs. The results are shown in Table 1, confirming the validity of our theory on imaging
datasets. Regarding the baseline comparisons that utilize a single viewpoint, the INV-SMCC mirrors
the SMCC due to its inherent design (i.e., aggregation of a set with a single element is the same
element). Moreover, in the case of AE, SA, PSA, and MULMON, the models do not estimate view
information but either treat them independently or use the observed view conditioning, rendering the
MCC metric inapplicable. Fig. 12 showcases how the number of viewpoints impacts the identifiability
of the s,v, and c variables; the involved experiments reflect the increase in performance with an
increase in the number of views, across all benchmark datasets.

Additionally, we demonstrate our methodology on proposed complex datasets, MV-MOVIC and
MV-MOVID, the latter dataset enables us to examine the model performs when the assumption 3.1
is not satisfied. To evaluate model behaviour in an environment with consistent objects but with
different viewpoints, we conducted in-domain and out-of-domain (OOD) evaluations. For in-domain
analysis, the model is trained and assessed on the same viewpoint group A = [1, 2, 3]. Conversely, for
OOD evaluation, we consider the previously trained model but test it against a new set of viewpoints
B = [3, 4, 5]. The findings presented in Table 2 regarding the MV-MOVIC dataset reveal that
the SMCC, INV-SMCC, and MCC metrics show similar performance across both domains. This
indicates that the distributional characteristics remain unchanged when both the training and testing
environments contain the same objects. The MV-MOVID dataset analysis can be found in App. G.

5 CONCLUSION & DISCUSSION

Understanding when object-centric representations are both unambiguous and identifiable is essential
for developing large-scale models with provable correctness guarantees. Unlike most existing work
on identifiability, which largely focuses on single-view setups, we offer identifiability guarantees
in multi-view scenarios. We use distributional assumptions for latent slot and view representations,
drawing inspiration from mixture model-based structures. To achieve this, we propose a model that
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is viewpoint-agnostic and does not require additional view-conditioning information. Our model
specifically guarantees the identifiability of view-specific slot representations, viewpoint-invariant
content representations, and view representations, all without the need for additional supervision (up
to an equivalence relation). We visually validate our theoretical claims with unconfounded synthetic
dataset with illustrative 2D data plots. We then empirically demonstrate the model’s identifiability
properties on multiple object-centric benchmarks, highlighting its ability to resolve view ambiguities
in imaging applications. Furthermore, we showcase the scalability of our approach on large-scale
datasets and more complex decoders using realistic datasets and transformer decoders, respectively,
demonstrating its capacity to scale effectively with both data volume and decoder complexity.
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A NOTATIONS

Ov : Abstract object set as observed from viewpoint v.

[V ] = {1, . . . , V } : Exhaustive set of viewpoints, representing all possible views.

A,B ⊂ [V ] : Subsets of viewpoints, used for training.

X = ×v∈AX v : Data space, formed by the Cartesian product of data spaces for
each view in subset A.

xA = {xv : ∀v ∈ A} ∈ X : Data sample, where xv is the data from view v, and xA represents
the set of data across all views in A.

fe : Encoder model maps input data to a latent space or feature
representation.

z : Spatial latent features, representing inferred spatial properties
from the data.

S : View-specific slot space, a space for features that are tied to
particular viewpoints.

C : View-invariant content space, representing features that are con-
stant across different viewpoints.

s ∈ S : Samples from the view-specific slot space, representing view-
dependent latent features.

c ∈ C : Samples from the view-invariant content space, representing
features that remain consistent across views.

fs, f̃s : Slot attention module, responsible for attending to and disentan-
gling different parts of the input related to different views.

fd, f̃d : Mixing function, which combines view-specific and view-
invariant features into a unified representation.

V : View information space, a space that encodes information specific
to each viewpoint (e.g., angle, position).

v ∈ V : A sample from the view information space representing a specific
view or camera configuration.

fv, f̃v : View extractor function, which extracts viewpoint-related infor-
mation from the data.

µc,µs,µv : Mean of invariant content, view-specific slots, and view distribu-
tions.

σc,σs,σv : Standard deviation of invariant content, view-specific slots, and
view distributions.

πc,πs,πv : Mixing coefficients of invariant content, view-specific slots, and
view distributions.

Ank : Assignment confidence of a slot k getting mapped to token n.

P ∈ P ⊆ {0, 1}K×K : Permutation matrix.

ms : Matching function, used to align object representations across
views.

∆K : Simplex in the space of dimension K.

Hx,Hv : Space of homeomorphic transformation.
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B RELATED WORKS

Identifiable representation learning. Learning meaningful representations from unlabeled data
has long been a primary objective of deep learning (Bengio et al., 2013). Several approaches, such as
those proposed by (Higgins et al., 2017; Kim & Mnih, 2018; Eastwood & Williams, 2018; Mathieu
et al., 2019), relied on independence assumptions between latent variables to learn disentangled
representations. However, Hyvärinen & Pajunen (1999); Locatello et al. (2019) demonstrated the
provable impossibility of unsupervised methods for learning independent latent representations from
i.i.d. data. Which is tackled by restricting mixing functions to conformal maps (Buchholz et al., 2022)
or volume-preserving transformations (Yang et al., 2022), or with additional data assumptions (Zim-
mermann et al., 2021; Locatello et al., 2020a; Brehmer et al., 2022; Ahuja et al., 2022; Von Kügelgen
et al., 2021), or by imposing structure in the latent space as in nonlinear Independent Component
Analysis (ICA) (Hyvarinen et al., 2019; Khemakhem et al., 2020a;b), resulting in identifiable models.
In the context of nonlinear ICA, Dilokthanakul et al. (2016) introduced a VAE model with a GMM
prior, and Willetts & Paige (2021) empirically demonstrated the effectiveness of the GMM prior,
which was later rigorously proven by Kivva et al. (2022). Kori et al. (2024) use this notion of latent
GMM in the context of OCL, achieving identifiability guarantees for object-centric representations.
Here, we use this notion in the context of multi-view object-centric representations, tackling the
issues with spatial ambiguities and uncertainties in bindings.

Identifiable Object-centric learning. Extending nonlinear Independent Component Analysis
(ICA) from representation learning to object-specific representational learning has been heavily
explored before (Burgess et al., 2019; Engelcke et al., 2019; Greff et al., 2019) by employing an
iterative variational inference approach (Marino et al., 2018), whereas Van Steenkiste et al. (2020);
Lin et al. (2020) adopt more of a generative perspective, studied the effect of object binding and
scene composition empirically. Recently, the use of iterative attention mechanisms has gained a
significant interest (Locatello et al., 2020b; Engelcke et al., 2021; Singh et al., 2021; Wang et al.,
2023; Singh et al., 2022; Emami et al., 2022). Most of these works operate in a single-view setting,
which causes fundamental issues of viewpoint ambiguities in terms of occlusions and uncertainties
in binding. Recent methods, including Eslami et al. (2018); Arsalan Soltani et al. (2017); Tobin
et al. (2019); Wu et al. (2016) consider a single object from multiple views to tackle this particular
problem. Additionally, Kosiorek et al. (2018); Hsieh et al. (2018); Li et al. (2020) explore multi-object
binding in videos and multiple views, tackling object binding issues across frames. Despite their
empirical effectiveness, most of these works lack formal identifiability guarantees. In line with
recent efforts analysing theoretical guarantees in object-centric representations (Lachapelle et al.,
2023; Brady et al., 2023; Kori et al., 2024), we formally investigate the modelling assumptions and
their implications for achieving identifiability guarantees in the context of multi-object, multiview
object-centric representation learning settings.

Multiview nonlinear ICA. It has been noted that addressing the challenge of nonlinear ICA can
involve incorporating a learnable clustering task within the latent representations, thereby imposing
asymmetry in the latent distribution (Willetts & Paige, 2021; Kivva et al., 2022). Moreover, Gresele
et al. (2020) delve into multiview nonlinear ICA, particularly in scenarios involving corrupted
observations, where they aim to recover invariant representations while accounting for certain
ambiguities. Along similar lines, Daunhawer et al. (2023); Von Kügelgen et al. (2021) explore
the concept of style-content identification using contrastive learning, focusing on addressing the
multiview nonlinear ICA problem. Here, we work along similar lines by emphasising the learning of
invariant content and identifiable object-centric representations. We achieve this by formulating a
reconstruction objective where the enforced invariance and equivariance stem from the underlying
probabilistic graphical model rather than relying on a contrastive learning objective. Similar to
the noiseless setting in Gresele et al. (2020), we demonstrate the recovery of invariant content
representations using different subsets of viewpoints.

Multi-view Object-centric learning. Recent progress in multi-view object-centric learning has
seen notable contributions from methods like MULMON (Li et al., 2020), ROOTS (Chen et al., 2021),
SLOTLIFTER(Liu et al., 2025), and UOCF(Luo et al., 2024), each offering distinct approaches to
compositional representation learning. However, these methods rely heavily on viewpoint annotations,
which limit their applicability in fully unsupervised settings. MULMON refines object representations
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iteratively using annotated viewpoint-image pairs, while ROOTS, SLOTLIFTER, UOCF estimates
3D object positions performing an inverse rendering operation within a grid and projects them into
image space via viewpoint transformations. In contrast, we deal with fully unsupervised framework
without the need of viewpoint annotations while providing approximate viewpoint equivariance for
object representations.

Temporal Object-centric learning. An alternative approach to bypass the need for viewpoint
annotations leverages temporal information. Methods for learning from single-viewpoint video
sequences, such as Relational N-EM (Van Steenkiste et al., 2018), SQAIR (Kosiorek et al., 2018),
SILOT (Crawford & Pineau, 2020), and SAVI (Kipf et al., 2021), focus on modeling object motion,
interactions, and identity tracking across frames, even under occlusion. However, these methods
assume fixed viewpoints, making them unsuitable for multi-view scenarios where objects appear in
different spatial configurations. Additionally, object motion affects individual objects independently,
unlike viewpoint changes, which influence the entire scene. Recent advances such as DYMON (Li
et al., 2021) extend multi-view approaches like MULMON (Li et al., 2020) to dynamic scenes by
disentangling object motion and viewpoint changes, assuming one dominates in adjacent frames.
However, DYMON relies on viewpoint annotations, limiting its utility in unsupervised settings.
Temporal methods such as SIMONE (Luo et al., 2024) address this by leveraging temporal coherence
across multi-view videos, using spatial and temporal positional embeddings to disentangle object and
viewpoint representations. Yet, SIMONe’s reliance on temporal continuity restricts its generalizability
to scenarios where such coherence is absent. In contrast, our framework does not assume temporal
dependencies.

C ALGORITHM

Here we illustrate all the steps involved in the of proposed method VISA, refer 1.

Algorithm 1 View Invariant Slot Attention VISA

1: Input: A ∈ [V ], zA = {fe(xv) ∀v ∈ A} ∈ R|A|×N×d ▷ input representations
2: View: vA = {vv ∼ N (vv;µ(zv),σ2(zv)) ∀v ∈ A} ∈ R|A|×d ▷ view representations
3: View Transformation: θA = {θv = STN(vv) ∀v ∈ A} ∈ R|A|×2×3 ▷ transformation

parameters
4: keyA ←WkT −1

θv (zA) ∈ R|A|×N×d, valueA ←WvT −1
θv (zA) ∈ R|A|×N×d ▷ optional

value := key
5: s← ∅; π̂ ← ∅
6: for v ∈ A do
7: ∀k, π(0)k ← 1/K, µ(0)k ∼ N (0, Id), σ(0)2k ← 1d

8: for t = 0→ T − 1 do
9: Ank ←

π(t)kN(keyn;Wqµ(t)k,σ(t)2k)∑K
j=1 π(t)jN(keyn;Wqµ(t)j ,σ(t)2j)

▷ compute attention

10: Ânk ← Ank∑N
l=1 Alk

▷ normalize attention

11: µ(t+ 1)k ←
∑N

n=1 Ânk · valuen ▷ update slot mean
12: σ(t+ 1)2k ←

∑N
n=1 Ânk · (valuen − µ(t+ 1)k)

2
▷ update slot variance

13: π(t+ 1)k ← 1
N

∑N
n=1 Ank ▷ update mixing coefficient

14: end for
15: s← s ∪ {(µ1:K(T ),σ2

1:K(T ))}; π̂ ← π̂ ∪ {π1:K(T )} ▷ slot collection
16: end for
17: return ConvexCombination(s, π̂) ▷ K view invariant content =0
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Figure 7: Data generating process: The figure illustrates 3D point cloud data in the first row, with
camera location highlighted in red, blue, and green arrow. Following rows indicates projected images
and point cloud as observed from red, blue, and green cameras, respectively.

D DATASETS

D.1 ILLUSTRATIVE DATASET

To visually illustrate the effectiveness of our theory we experiment with two dimensional illustrative
dataset. For this, similar to Kori et al. (2024), we defined a K = 5 component GMM, with differing
mean parameters µ = {µ1, . . . ,µ5}, and shared isotropic covariances, which we use to sample
locations for an object. For a given location, we randomly select one object from {‘cube’,
‘cylinder’, ‘pyramid’, ‘sphere’} and generate 1000 random points on the surface of
the selected shape uniformly covering it. To create a single data point, we randomly select three of
the five locations and place a randomly selected object at the location. To include multiple viewpoints,
we consider V camera location and project the objects, creating V different scenes. We then fill
this by considering convex hull operation resulting in projected images as illustrated in Fig. 7. To
maintain uniformity, we only use imaging modality in the main paper while also demonstrating point
cloud illustrations here in the appendix. We use different colours representing different objects in
Fig. 8, ?? and used 10, 000 data points in total to train our toy models. Unlike existing benchmark
datasets, here we remove all the confounding effects caused by lighting and depth. This provides an
ideal test bed to validate all our theoretical claims.

D.2 PROPOSED DATASET

In this work, we introduce the MV-MOVI datasets, created using Kubric Greff et al. (2022), which
feature multi-view scenes with segmentation annotations. We propose two variants of the dataset:
MV-MOVIC, where the camera locations for every viewpoint remain fixed across all scenes, and
MV-MOVID, where the camera locations dynamically change for each scene.

Both MV-MOVIC and MV-MOVID primarily consist of scenes generated by randomly selecting a
background from a set of 458 available options and choosing K objects, where 3 ≤ K ≤ 6, from a
pool of 930 objects. In total, a significantly high number of images can be generated in general. In
contrast, for this work, we generate 72,000 scenes, each captured from 5 different viewpoints, with
object segmentation masks for every view to facilitate the evaluation of model performance. In the
case of MV-MOVIC, the locations of all five cameras are fixed across the 72, 000 scenes, while in
MV-MOVID, the camera positions are dynamically sampled and vary across scenes.
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E MASK GENERATION

In the case of additive decoders, the decoder outputs K three channelled tensors along with K
single channelled mask. We consider normalising these masks with softmax transformation along
slot dimension, ensuring that each pixel only contributes to a single slot. The resulting softmaxed
masks are used in composing (image =

∑
k maskk · imagek) the slots to reconstruct an image

for training. During inference, we normalise masks with sigmoid transformation, allowing us to
estimate occluded objects visually, resolving the spatial ambiguities with occluded objects. In a later
section, we illustrate the results with both softmax and sigmoid transformations.

E.1 ADDITIVITY IMPLICATIONS

Definition E.1. (Additive models) Function f is considered to be an additive decoder if, for any
object decoders fobj and masking mechanism mobj, if they can be expressed as:

f(z) =
∑

k∈[K]

mobj(zk)⊙ fobj(zk) (7)

As pointed out in Lachapelle et al. (2023), softmax-based masks do not truly fall under the category
of additive decoders due to the competition between masks for groups of pixels. This implies that
the additive decoders studied in Lachapelle et al. (2023) are not expressive enough to represent the
“masked decoders” typically employed in object-centric representation learning. The issue arises
from the normalization of alpha masks, and care must be taken when extrapolating the findings from
Lachapelle et al. (2023) to the models used in practice.

Although sigmoid-based masks satisfy the condition of additivity during inference, it is important
to note that the model is still trained using softmax normalization in our setting. The effect of
using sigmoid masks during inference can be visually observed in App. G.

F PROOFS

Lemma F.1 (ELBO ). With prior distributions p(v) and p(c) for view and content latent random
variables, the likelihood p(x) can be maximised by maximising the following expression:

log p(x) ≥ E log p(x | Tθv (c),v)−KL (q(v | x) ∥ p(v)) := ELBO(x) (8)

Proof. Considering the generative model in Eqn. 1 respecting the graphical model in Fig. 4, we get:

p(x) =

∫∫
p(xA | Tθv (c),vA) p(c) p(vA) dv dc (9)

log p(x) = log

∫∫
p(xA | c1:K ,vA) p(c1:K) p(vA)

q(v, c | xA)

q(v, c | xA)
dv dc1:K (10)

≥
∫∫

q(vA | xA)q(c1:K | T −1
θv (xA)) log p(xA | Tθv (c)1:K ,vA)

p(vA
1:K)

q(vA | xA)

p(cA1:K)

q(c1:K | xA)
dvA dc1:K

(11)

=
∑
v∈A

∫∫
q(vv | xv)q(c1:K | T −1

θv (xv))) log p(xv | Tθv (c)1:K ,vv)
p(vA

1:K)

q(vA | xv)

p(cA1:K)

q(c1:K | xv)
dvv dc1:K

(12)

Given the iterative update for c with EM algorithm, ideally we expect posterior to converge to prior,
which results in:
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log p(x) =
∑
v∈A

∫∫
q(vv | xv)q(c1:K | T −1

θv (xv))) log p(xv | Tθv (c)1:K ,vv)
p(vA

1:K)

q(vA | xv)
dvv dc1:K

(13)

=
∑
v∈A

Ec,v log p(x
v | Tθv (c),v)−KL (q(v | xv) ∥ p(v)) (14)

Given the subscript notation, the above expression can also be expressed as:
Ec,v log p(x | Tθv (c),v)−KL (q(v | x) ∥ p(v)) := ELBO(x) (15)

Lemma F.2 (Mean GMM). Let z ∈ RN×d be a random variable drawn from a GMM with K
components:

z ∼
K∑

k=1

πkN (z;µk,Σk), (16)

where πk are the mixture weights, µk ∈ Rd are the mean vectors, and Σk ∈ Rd×d are the covariance
matrices. Assuming the mixture satisfies the ICA assumption, such that the components of z are
statistically independent. A projected random variable z̄ as the average over the dimensions of z:

z̄ =
1

d

d∑
j=1

zj , (17)

is also distributed according to a GMM with K components, with appropriately transformed means
and variances.

Proof. Given the random variable z follows a GMM, so its density can be expressed as:

p(z) =

K∑
k=1

πkN (z;µk,Σk), (18)

where:
µk = [µk,1, µk,2, . . . , µk,d]

⊤; Σk = diag([σ2
k,1, σ

2
k,2, . . . , σ

2
k,d]). (19)

Considering, the projection of z onto z̄ is defined as:

z̄ =
1

d

d∑
j=1

zj . (20)

Given the ICA assumption, the components z:,j are independent. For a fixed component k, the
projected mean and variance of z̄ can be derived as:

E[z̄] =
1

d

d∑
j=1

µk,j ; Var(z̄) =
1

d2

d∑
j=1

σ2
k,j . (21)

Since the projection z̄ is a linear combination of independent Gaussian variables, z̄ remains Gaussian
for each component k. Thus, the overall distribution of z̄ is also a GMM:

p(z̄) =

K∑
k=1

πkN (z̄;µz̄,k, σ
2
z̄,k), (22)

where:

µz̄,k =
1

d

d∑
j=1

µk,j ; σ2
z̄,k =

1

d2

d∑
j=1

σ2
k,j . (23)

This concludes the proof.
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Lemma F.3 (Convex Combination of GMMs). Let s1 = {s11, . . . , s1K} and s2 = {s21, . . . , s2K} be
two sets of K random vectors in Rd, each distributed according to GMMs:

s1 ∼
K∑

k=1

π1,kN (µ1,k,Σ1,k); s2 ∼
K∑

k=1

π2,kN (µ2,k,Σ2,k) (24)

where µi,k ∈ Rd, Σi,k ∈ Rd×d, and πi,k are the means, covariances, and mixing coefficients
respectively.

Then for any weights w1, w2 ∈ R such that w1 + w2 = 1, the convex combination s = w1s
1 + w2s

2

is also distributed according to a GMM with K components.

Proof. Without loss of generality, assume the components of both GMMs are aligned. For each
component k, we derive the parameters of the resulting mixture:

The mixing coefficients of the resulting GMM are weighted combinations of the original coefficients:

π̃k = w1π1,k + w2π2,k (25)

For each component k, the convex combination of Gaussians results in a Gaussian distribution. The
mean of the resulting Gaussian is:

µ̃k =
w1π1,kµ1,k + w2π2,kµ2,k

π̃k
(26)

The covariance of the resulting Gaussian for each component k can be derived as follows. Firstly,
recall that for a random variable X , the covariance is:

Var(X) = E[(X − E[X])(X − E[X])⊤] = E[XX⊤]− E[X]E[X]⊤ (27)

First lets compute E[sks⊤k ]:

E[sks⊤k ] = E

[(
w1π1,ks

1
k + w2π2,ks

2
k

π̃k

)(
w1π1,ks

1
k + w2π2,ks

2
k

π̃k

)⊤]
(28)

=
w2

1π
2
1,kE[s1k(s1k)⊤] + w2

2π
2
2,kE[s2k(s2k)⊤]

(π̃k)2
(29)

+
w1w2π1,kπ2,k

(π̃k)2
E[s1k(s2k)⊤ + s2k(s

1
k)

⊤] (30)

Then, substitute known expectations:

E[sik(sik)⊤] = Σi,k + µi,kµ
⊤
i,k (31)

E[s1k(s2k)⊤] = µ1,kµ
⊤
2,k (32)

Finally, by subtract E[sik]E[sik]T = µ̃kµ̃
⊤
k we get the covariance:

Σ̃k =
w2

1π
2
1,kΣ1,k + w2

2π
2
2,kΣ2,k

(π̃k)2
(33)

To verify this forms a non degenerate GMM, we show the mixing coefficients sum to 1:
K∑

k=1

π̃k =

K∑
k=1

(w1π1,k + w2π2,k) (34)

= w1

K∑
k=1

π1,k + w2

K∑
k=1

π2,k (35)

= w1 · 1 + w2 · 1 = 1 (36)

Therefore, the convex combination results in a valid Gaussian mixture model with K components,
where each component has mean µ̃k, covariance Σ̃k, and mixing coefficient π̃k.
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Lemma 3.2. (Optimal Content Mixture) For A ∈ [V ], given the a local content distribution q(c1:K |
sA1:K ,xA) (per-scene xA ∈ {xA

i }Mi=1), which can be expressed as a GMM with K components, the
aggregate posterior q(c) is obtained by marginalizing out x, s is a non-degenerate global Gaussian
mixture with MK components:

p(c) = q(c) =
1

M

M∑
i=1

K∑
k=1

π̂ikN
(
c; µ̂ik, σ̂

2
ik

)
. (37)

Proof. We extend the proof in Kori et al. (2024), by incorporating hierarchical slot to aggregate
content formalisation. For which, we begin by noting that the aggregate posterior q(c) is the optimal
prior p(c) so long as our posterior approximation q(c | sA,xA) is close enough to the true posterior
p(c | sA,xA), since for a dataset xA ∈ {xA

i }Mi=1, for which we start with q(sA | xA), wlog, given
view point transformation is deterministic, we consider xA = TθA(xA) we have that:

p(sA) =

∫
p(sA | xA)p(xA)dxA (38)

= ExA∼p(xA)

[
p(sA | xA)

]
(39)

≈ 1

M

M∑
i=1

p(sA | xA
i ) (empirical approximation) (40)

≈ 1

M

M∑
i=1

q(sA | xA
i ) (posterior approximation) (41)

=: q(sA), (42)

We further extend this to q(c), with the result from Lemma F.3, we know that the q(c | sA) is a GMM
with same number of components as q(sv | sv) for any v ∈ [V ] as follows

p(c) =

∫
p(c | sA)p(sA)dsA (43)

= EsA∼p(sA)

[
p(c | sA)

]
(44)

≈ 1

M

M∑
i=1

p(c | sAi ) (45)

≈ 1

M

M∑
i=1

q(c | sAi ) (46)

=: q(c), (47)

where we approximated p(x) using the empirical distribution, then substituted in the approximate
posterior, marginalizing x to get p(s), we later consider the distributional form of p(s) and marginalise
sA to get p(c). This observation was first made by Hoffman & Johnson (2016) and was used in Kori
et al. (2024) we use it to motivate our setup. Given our model fits a local GMM to each latent variable
sampled from the approximate posterior: zA ∼ q(zA | xA

i ), for i = 1, . . . ,M . Let fs(zA) denote
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the (local) the product of GMM density, its expectation is given by:

Ep(xA),q(zA|xA)

[
fs(z

A)
]
=

∫∫
p(xA)q(zA | xA)fs(z

A)dxAdzA (48)

≈
∫∫

1

M

M∑
i=1

δ(xA − xA
i )q(z

A | xA)f(zA)dxAdzA (49)

=

∫
1

M

M∑
i=1

q(zA | xA
i )f(z

A)dzA (50)

=

∫
1

M

M∑
i=1

N
(
zA;µ(xA

i ),σ
2(xA

i )
)
·

K∑
k=1

πk(x
A
i )N

(
zA;µk(x

A
i ),σ

2
k(x

A
i

)
dzA

≈
∫

1

M

M∑
i=1

δ(zA − µ(xA
i )) ·

K∑
k=1

πk(x
A
i )N

(
zA;µk(x

A
i ),σ

2
k(x

A
i

)
dzA

(51)

=
1

M

M∑
i=1

K∑
k=1

πk(x
A
i )N

(
zA;µk(x

A
i ),σ

2
k(x

A
i

)
(52)

=: q(zA), (53)

where we again used the empirical distribution approximation of p(x), and the following basic
identity of the Dirac delta to simplify:

∫
δ(x− x′)fe(x)dx = fe(x

′).

For the general case, however, we must instead compute the product of q(zA | xA) and fs(z
A) rather

than use a Dirac delta approximation as in Eqn. 51. To that end we may proceed as follows w.r.t. to
each datapoint xA

i :

q(zA | xA
i ) · fs(zA) = N

(
zA;µ(xA

i ),σ
2(xA

i )
)
·

K∑
k=1

πk(x
A
i )N

(
zA;µk(x

A
i ),σ

2
k(x

A
i

)
(54)

=

K∑
k=1

πk(x
A
i )
[
N
(
zA;µ(xA

i ),σ
2(xA

i )
)
· N

(
zA;µk(x

A
i ),σ

2
k(x

A
i

)]
(55)

Given that means across all views are aligned, similar to Lemma F.3, we know the resulting combined
GMM has same number of components:

q(zA | xA
i ) · fs(zA) =

|A|∏
v=1

K∑
k=1

π̄v
ikN

(
z; µ̄ivk, σ̄

2
ivk

)
, (56)

Given the product of GMM is a GMM with the number of components equal to the product of a
number of components in individual GMM, however in our setting we consider all the components in
individual GMM across viewpoints to be aligned resulting in GMM with a number of components
equal to the sum of individual components which in our case correspond to K. The posterior
parameters of the resulting mixture are given in closed form by:

σ̄2
ivk =

(
1

σ2
k(x

v
i )

+
1

σ2(xv
i )

)−1

, µ̄ivk = σ̄2
ivk

(
µ(xv

i )

σ2(xv
i )

+
µk(x

v
i )

σ2
k(x

v
i )

)
, (57)

The resulting GMM is still on the view-specific slots, the aggregation of these slots to obtain content
vectors marginalises the viewpoint-level information with convex combination of parameters across
all the viewpoints considered as described in cf. F.3, results in:

|A|∏
v=1

K∑
k=1

π̄v
ikN

(
z; µ̄ivk, σ̄

2
ivk

)
=

K∑
k=1

π̂ikN
(
z; µ̂ik, σ̂

2
ik

)
, (58)
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σ̂2
ik = g(σ̄ik, π̄ik) =

|A|∑
v=1

(
π̄v
ik∑|A|

v=1 π̄
v
ik

)2

σ̄2
ik, (59)

µ̂ivk = g(µ̄ik, π̄ik) =

|A|∑
v=1

π̄v
ik∑|A|

v=1 π̄
v
ik

µ̄ik, (60)

Now to show that the resulting GMM is non-degenerate we need to show
∑K

k=1 π̂ik = 1, for i =
1, 2, . . . ,M . Based on Eqn. 52:

=⇒ 1

M

M∑
i=1

K∑
k=1

π̂ik =
1

M |A|

M∑
i=1

K∑
k=1

|A|∑
v=1

π̄v
ik =

1

M |A|

M∑
i=1

|A| = 1

M |A|
·M |A| = 1, (61)

=⇒ 1

M

M∑
i=1

K∑
k=1

π̂ik = 1. (62)

based on the above equation we can say that the scaled sum of the mixing proportions of all K
components in all M GMMs when the components are aligned must equal 1, show that the resulting
aggregate posterior is non-degenerate and a valid probability distribution.

Assumption F.4 (Weak Injectivity). Let f : Z → X be a mapping between latent space and image
space, where dim(Z) ≤ dim(X ). The mapping fd is weakly injective if there exists x0 ∈ X and
δ > 0 such that |f−1({x})| = 1, ∀x ∈ B(x0, δ) ∩ f(Z), and {x ∈ X : |f−1({x})| =∞} ⊆ f(Z)
has measure zero w.r.t. to the Lebesgue measure on f(Z) (cf. Kivva et al. (2022)).
Remark F.5. In words, Assumption F.4 says that a mapping fd is weakly injective if: (i) in a small
neighbourhood around a specific point x0 ∈ X the mapping is injective – meaning each point in this
neighbourhood maps to exactly one point in the latent space Z; and (ii) while fd may not be globally
injective, the set of points in X that map back to an infinite number of points in Z (non-injective
points) is almost non-existent in terms of the Lebesgue measure on the image of Z under fd.
Theorem F.6 (Mixture of Concatenated Slots). Let fs denote a permutation equivariant probabilistic
slot attention function such that fs(zv, P sv) = Pfs(z

v, sv), where P ∈ {0, 1}K×K is an arbitrary
permutation matrix. Let c = (g(sA1 , .), . . . , g(s

A
K , .)) ∈ RKd be the concatenation of K individual

content vectors, where each vector is an aggregate of all the slots obtained from considered viewpoints
in a viewpoint-set A ⊆ [V ] (cf. Kori et al. (2024)). Due to the nature of the aggregator function, the
individual content vector is Gaussian distributed within a K-component mixture: ck ∼ N (µk,Σk) ∈
Rd,∀k ∈ {1, . . .K}. Then, c is also GMM distributed with K! mixture components:

p(c) =

K!∑
p=1

πpN (c;µp,Σp), where π ∈ ∆K!−1,µp ∈ RKd,Σp ∈ RKd×Kd. (63)

We additionally borrow some theorems and definitions from Kivva et al. (2022) which are essential
for our proofs. First, we restate the definition of a generic point as outlined by Kivva et al. (2022)
below.
Definition F.7. (Generic point) A point x ∈ fd(Rm) ⊆ Rn is generic if there exists δ > 0, such that
fd : B(s, δ)→ Rn is affine for every s ∈ f−1

d ({x})
Theorem F.8 (Kivva et al. Kivva et al. (2022)). Given fd : Rm → Rn is a piecewise affine function
such that {x ∈ Rn : |f−1

d ({x})| =∞} ⊆ fd(Rm) has measure zero with respect to the Lebesgue
measure on fd(Rm), this implies dim(fd(Rm)) = m and almost every point in fd(Rm) (with respect
to the Lebesgue measure on fd(Rm)) is generic with respect to fd.
Theorem F.9 (Kivva et al. Kivva et al. (2022)). Consider a pair of finite GMMs in Rm:

y =

J∑
j=1

πjN (y;µj ,Σj), and y′ =

J′∑
j=1

π′
jN (y′;µ′

j ,Σ
′
j). (64)

Assume that there exists a ball B(x, δ) such that y and y′ induce the same measure on B(x, δ). Then
y ≡ y′, and for some permutation τ we have that πi = π′

τ(i) and (µi,Σi) = (µ′
τ(i),Σ

′
τ(i)).
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Theorem F.10 (Kivva et al. Kivva et al. (2022)). Given z ∼
∑J

i=1 πiN (z;µi,Σi) and z′ ∼∑J′

j=1 π
′
jN (z′;µ′

j ,Σ
′
j) and fd(z) and f̃d(z

′) are equally distributed. We can assume for x ∈ Rn

and δ > 0, fd is invertible on B(x, 2δ) ∩ fd(Rm). This implies that there exists x1 ∈ B(x, δ) and
δ1 > 0 such that both fd and f̃d are invertible on B(x1, δ1) ∩ fd(Rm).

Theorem 3.3 (Affine Equivalence of aggregate content) For any subset A ⊆ [V ], such that |A| > 0
, given a set of images xA ∈ XA and a corresponding aggregate content c ∈ C and a non-degenerate
content posterior q(c | sA), considering two mixing function fd, f̃d satisfying assumption F.4, with a
shared image, then c are identifiable up to ∼s equivalence.

Proof. Based on the results of Kori et al. (2024) we know that when p(s) is aggregate posterior of
q(s | x), p(s) is identifiable up to ∼s equivalence. Additionally, based on lemma 3.2 we know that
both q(s | x) and q(c | s) are a non-degenerate GMM with valid probability distribution. Using
similar arguments in Kori et al. (2024); Kivva et al. (2022) we show that p(c) and p(s) are identifiable
up to ∼s equivalence. W.l.o.g, given view point transformation is deterministic, we consider
xA = TθA(xA).

We know that

p(sA) =

∫
q(sA1:K | xA)p(xA)dxA (65)

=

∫ ∏
v∈A

q(sv | xv)p(xv)dxA (66)

=

∫ ∏
v∈A

(
K∑

k=1

πv
kN

(
sv;µk(x

v),σ2
k(x

v)
))

p(xv)dxA (67)

=
∏
v∈A

1

|X |

∫ ( K∑
k=1

πv
kN

(
cv;µk(x

v),σ2
k(x

v)
))

δ(xv − xv
i )dx

A (68)

=
∏
v∈A

|X |K∑
k=1

1

|X |
π̂v
ikN

(
sv; µ̂ivk, σ̃

2
ivk

) (69)

Change of variables from s to c to get prior over random variable c, with matching function g, results
in:

p(c1:K) =

∫
p(sA1:K)δ

(
sA1:K − g(sA1:K ,πA

1:K)
)
dcA1:K (70)

Given the transformation g is linear, resulting us with the distribution with mean given by:

Ec (c1:K) = Es

(
g(sA1:K ,πA,1:K)

)
(71)

= g
(
Es(s

A
1:K),πA

1:K

)
(72)

=
∑
v∈A

πv
1:K∑

v∈A πv
1:K

Es(s
A
1:K) (73)

and the covariance follows the diagonal structure as in p(c), which can be described as follows:

Var(c1:K) =
∑
v∈A

(
πv
1:K∑

v∈A πv
1:K

)2

Varc(cA1:K) (74)

Finally, the mixture components can be expressed as:

π̃1:K =

∑
v∈A πv

1:K

|A|
(75)
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With distribution parameters described in equations 73, 74, and 75, we define the aggregate content
distribution as GMM expressed as follows:

p(c) =

|X |K∑
k=1

1

|X |
π̃v
kN (v;E(c)k),Var(c)k) (76)

Validity of p(c): The outer summation in equation 76 can be split into two one for image samples
and other for original mixing coefficients, which results in the equation:

p(c) =

|X |∑
i=1

K∑
k=1

1

|X |
π̃v
ikN (v;E(c)ik),Var(c)ik) (77)

Based on this we can observe the each component in our GMM corresponds to particular slots for a
given image in a given viewpoint, triple describing each component is:

{
π̃v
ik, µ̃vik, σ̃

2
vik

}
, for v = 1, . . . , |A| i = 1, 2, . . . , |X |, and k = 1, 2, . . . ,K.

(78)

To verify that p(c) is a non-degenerate mixture, we observe the following implication:
|X |∑
i=1

K∑
k=1

1

|X |

∑
v∈A π̃v

ik

|A|
= 1, (79)

=⇒ 1

|X |
1

|A|

|X |∑
i=1

∑
v∈A

K∑
k=1

πv
ik =

1

|X |
1

|A|
|X | · |A| · 1 = 1 (80)

similar to lemma 3.2, this says that the scaled sum of the mixing proportions of all K components
in all |X | GMMs must equal 1, proving that the associated aggregate posterior mixture p(c) is a
well-defined and non degenerate probability distribution.

Invertibility restrictions: Given two piece-wise affine compositional functions fd, f̃d : C×V → X ,
for a given set of views vA, let c = (c1, . . . , cK),∋ ck ∼ N (ck;µk,Σk) and c′ = (c′1, . . . , c

′
K),∋

c′k ∼ N (c′k;µ
′
k,Σ

′
k) be a pair of aggregate content representations, result of sampling a concatenated

higher dimensional GMM distribution in RKd, as shown in Theorem F.6, Kori et al. (2024). In the
case when, fd♯(C, {vA}) and f̃d♯(C′, {vA})3 are equally distributed. Now assume that there exists
xA ∈ X and δ > 0 such that fd and f̃d are invertible and piecewise affine on B(xA, δ) ∩ fd(S), for
a given set of views vA, which implies dim fd(C, {vA}) = |C|.

Affine subspace: We now restrict the space B(xA, δ) to a subspace B(x′A, δ′) where xA ∈
B(x′A, δ′) such that fd and f̃d are now invertible and affine on B(x′A, δ′) ∩ fd(C × {vA}).
With L ⊆ XA be an |C|-dimensional affine subspace (assuming |XA| ≥ |C|), such that
B(x′A, δ′) ∩ fd♯(C, {vA}) = B(x′A, δ′) ∩ L. We also define hf , hf̃ : C → L to be a
pair of invertible affine functions where h−1

f♯ (B(x′A, δ′) ∩ L) = f−1
d♯ (B(x′A, δ′) ∩ L;vA) and

h−1

f̃ ♯
(B(x′A, δ′) ∩ L) = f̃−1

d♯ (B(x′A, δ′) ∩ L;vA). Implying hf (c) and hf̃ (c
′) are finite GMMs

that coincide with B(x′A, δ′) ∩ L and hf (c) ≡ hf̃ (c
′), theorem F.9, Kivva et al. (2022). Given,

h = h−1

f̃
◦ hf and hf (c) and hf̃ (c

′) then h is an affine transformation such that h(c) = c′.

∼s equivalence: Given Theorems F.8 and F.10, there exists a point x ∈ fd♯(C, {vA}) that is
generic with respect fd and f̃d and invertible on B(x, δ) ∩ fd♯(C, {vA}). Having established that
there is an affine transformation h(c) = c′ and invertiblility of piece-wise affine functions fd and
f̃d on B(xA, δ) ∩ fd♯(C, {vA}), this implies that c is identifiable up to an affine transformation and
permutation of ck ∈ c, concluding our proof.

3fd♯ correspond to push forward operation, applying function fd on all the elements of the given set.
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Remark: Given Theorem F.9, we know that for each higher dimensional mixture component
in p(c) induces the same measure on B(xA, δ) and hence for some permutation τ we have that
(µπ(i),Σπ(i)) = (µ′

τ(π(i)),Σ
′
τ(π(i))). Therefore, each mixture component cπ(i) is identifiable up

to affine transformation, and permutation of aggregate content representations in c. Now, given
sampling ck is equivalent to obtaining K samples from the GMM, q(z) and concatenating, this makes
q(z) identifiable up to affine transformation, h and permutation of slot representations in c. It now
trivially follows that each of the aggregate content representation ck ∼ N (ck;µk,Σk) ∈ Rd,∀ k ∈
{1, . . . ,K} is identifiable up to affine transformation, h based on the following observed property of
GMMs:

K∑
k=1

πkh♯ (N (sk;µk,Σk)) ∼ h♯

( K∑
k=1

πkN (s′k;µ
′
k,Σ

′
k)
)
, (81)

Theorem 3.4 (Invariance of aggregate content) For any subset A,B ⊆ [V ], such that |A| >
0, |B| > 0 and both A,B satisfy an assumption 3.1, we consider aggregate content to be invariant to
viewpoints if fA ∼s fB for data XA ×XB .

Proof. Based on equation 76, pA(s) and pB(s) can be expressed as follows:

pA(c) =

|X |K∑
k=1

1

|X |

∑
v∈A πv

k

|A|
N

(
c;
∑
v∈A

πv
k∑

v∈A πv
k

µvk,
∑
v∈A

(
πvk∑
v∈A πv

k

)2

σ2
vk

)
(82)

pB(c) =

|X |K∑
k=1

1

|X |

∑
u∈B πu

k

|B|
N

(
c;
∑
u∈B

πuk∑
u∈B πu

k

µu
k ,
∑
u∈B

(
πu
k∑

u∈B πu
k

)2

σ2
uk

)
(83)

Given the assumption of viewpoint sufficiency 3.1 we know the objects observed in viewpoint set A
are same as the object observed in set B. Following the results of Theorem 3.3, we know that both
pA(s) and pB(s) are independently identifiable up to ∼s equivalence, which means fA and fB are
invertible for a given views vA and vB respectively.

Affine mapping. Without loss of generality, for a given set of views vA, there exists some L ⊆ XA

be an |S|-dimensional affine subspace, such that B(x′A, δ) ∩ fA♯(C, {vA}) ∩ fB♯(C, {vA}) =

B(x′A, δ) ∩ L. This implies their exists an affine map between c = f−1
A (xA;vA) and c̃ =

f−1
B (xB ;vA). Let hA : C → L to be an invertible affine functions where h−1

A♯ (B(x′A, δ′) ∩ L) =

f−1
A♯ (B(x′A, δ′) ∩ L;vA) = f−1

B♯ (B(x′B , δ′) ∩ L;vA) resulting in hA(c) = c′. Similarly, we can
show their exists an affine map between c̃ = f−1

A (xA;vB) and c̃′ = f−1
B (xB ;vB), such that

hB(c̃) = c̃′.

Invariance setup. In the case when representations are invariant, pA(c) and pB(c) are equally
distributed, which means aggregate content domain in both cases are same or similar CA = CB .

c′ = h(c̃′) (84)
=⇒ hA(c) = (h ◦ hB)(c̃) (85)

=⇒ c = (h−1
A ◦ h ◦ hB)(c̃) (86)

Given composition of affine maps is affine, we can consider the mapping (h−1
A ◦ h ◦ hB) to be an

affine, resulting in an ∼s equivalence between fA and fB .
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Theorem 3.5 (Approximate representational equivariance) For a given aggregate content c, for
any two views v, ṽ ∼ pA(v), resulting in respective scenes x ∼ pA(x | v, c) and x̃ ∼ pA(x | ṽ, c),
for any homeomorphic, monotonic transformation hx ∈ Hx such that hx(x) = x̃, their exists
another homeomorphic and monotonic transformation hv ∈ Hv such thatHv ⊆ Hx ⊆ Rdim(x) and
v = h−1

v

(
f−1
d (hx(x); c)

)
.

Proof. For a given view v and a mixing function fd that satisfy assumptions F.4 and is piecewise
affine, from theorem 3.3 we know the latent view representations are identifiable up to∼s equivalence
for a given aggregate content vector. We know that p(v) is expressed as GMM with a considered set
of viewpoints, ideally learning each component for each viewpoint.

p(v) =

|A|∑
v=1

πvN (v;µv,σv)

Following similar arguments in Theorem 3.3 and Kivva et al. (2022), we can show that for a given
content representation c the view distribution p(v) is identifiable up to affine transformation. This
means, for any two considered models fd, f̃d, such that fd♯(V; {c}) and f̃d♯(V; {c}) are equally
distributed, then for any xA ∼ X with the corresponding content representations given by c the views
v = f−1

d (xv; c), v′ = f̃−1
d (xv; c) are related in by an affine transformation h(v) = v′, results in:

|A|∑
v=1

πvh♯

(
N (v;µv,σ

2
v)
)
∼ h♯

 |A|∑
v=1

πvN (v;µv,σ
2
v)

 , (87)

Without loss of generality we can consider any function f : C × V → X is identifiable up to
affine transformation, with this for given views v, ṽ ∼ p(v) and for any object representations
c, the resulting scenes are sampled by distributions learned with mixing function f is given by
x ∼ pf (x | c,v), x̃ ∼ pf (x | c, ṽ). As previously established for some affine transformation h,

h(v) = f−1(x̃; c) =⇒ v = h−1
(
f−1(x̃; c)

)
(88)

Given hx(x) = x̃, when combined with above equation we know v = h−1
(
f−1(x; c)

)
, ṽ =

h′−1
(
f−1(hx(x); c)

)
, for some invertible affine transformations h and h′.

Given hx is homeomorphic and monotonic, and f is piecewise linear, the inverse can be transferred
resulting in ṽ = h′−1

(
h̄v(f

−1(x; c))
)
, similarly we can also swap h′−1 with h̄v, resulting in

ṽ = h̄v

(
h′−1

(
f−1(x; c)

))
. Additionally combining the results from theorem 3.3 and Kivva et al.

(2022), we know that h′−1 ◦ h is an affine transformation h̄. This results in:

h̄ = h′−1 ◦ h (89)

=⇒ ṽ = (h̄v ◦ h ◦ h̄)
(
f−1(x; c)

)
(90)

=⇒ ṽ = hv(v) (91)

Given affine transformation preserves monotonicity and homeomophism, the resulting transformation
hv ∈ Hv and hv ∈ Hx, concluding the proof.

G EXPERIMENTS

G.1 TOY SETTING

Here, we repeat the experiments in CASE STUDY 1 with point cloud giving us two dimensional distri-
butions, which can analysed visually. In Fig. 8, we display the distributions of marginalized aggregate
content distribution q(c), comparing different runs that are either rotated, skewed, or mirrored with
respect to each other, indicating identifiability up to affine transformation. To quantitatively measure
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Figure 8: Identifiability of q(c) and q(s). Estimated marginalised slot distribution (q(s)–blue
contours) and marginalised content distribution (q(c)–orange contours, across 4 runs of VISA. This
provides strong evidence of recovery of the latent space up to affine transformations, empirically
verifying our claims in Thm. 3.3.
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Figure 9: Viewpoint invariance for q(c). Estimated marginalised aggregate content distribution q(c)
when trained with different view pairs {(green, red), (red, blue), (green, blue)} are illustrated in later
figures. As the resulting distributions with different datasets only vary by an affine transformation,
providing strong evidence for Thm. 3.4.

the same, we computed SMCC and observed it to be 0.95± 0.01, empirically verifying our Thm.
3.3. Furthermore, to illustrate the invariance of distribution q(c) across viewpoints (Thm. 3.4), we
consider three different views. We use all possible pairs to learn q(c) distributions as illustrated in
Fig. 9, where the distributions from second to last sub-figures are learned wrt viewpoints described
by {g, r}, {r, b}, and {g, b}, respectively. Similar to our previous findings, these distributions were
also found to be rotated, skewed, or mirrored relative to each other, with an observed SMCC of
0.87± 0.11, further confirming the claims in Thm. 3.4.

G.2 SYNTHETIC DATASET RESULTS

Here, we illustrate visual results reflecting object binding in the case of view ambiguities. Table 3,
demonstrates identifiability results on CLEVR-AUG datasets. In Fig. 10, we demonstrate the results
of VISA across three different views. We additionally highlight some of the occluded regions which
seem to be better captured by our proposed model, which can be attributed to the multi-view setting
and the sigmoid mask.

Additionally, we also illustrate the results from CLEVR-MV dataset in figure 11.

G.3 INFLUENCE OF NUMBER OF VIEWS

Here, we demonstrate the influence of the number of views on the overall identifiability of object-
centric representations. Similar to Fig. 2, in Fig. 12, we observe an increasing number of views
increase overall results.
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Table 3: Comparing identifiability of q(s), q(c), and p(v) scores wrt existing OCL methods on
CLEVR-AUG dataset.

METHOD SMCC ↑ INV-SMCC ↑ MCC ↑

AE 0.26 ± .01 - -

SA 0.45 ± .05 - -

PSA 0.48 ± .03 - -

MulMON 0.56 ± .04 0.57 ± .01 -

OCLOC 0.58 ± .02 0.60 ± .01 0.48 ± .04

VISA 0.64 ± .01 0.66 ± .01 0.57 ± .04

(a)

(b)

(c)

Figure 10: Visual illustrations of benchmark results on CLEVR-AUG dataset.
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(a)

(b)

(c)

Figure 11: Visual illustrations of benchmark results on CLEVR-MV dataset.

G.4 MVMOVI RESULTS

Here, we discuss the results obtained from the proposed dataset. To reiterate, MVMOVI-C is a variant
where fixed camera positions are maintained for all viewpoints across all scenes in the dataset. This
setup helps assign a fixed type of viewpoint conditioning for all images captured from a particular
camera.

The detection and binding quality of different models are illustrated in Table 2. From these results, we
can clearly observe that while the model demonstrates similar binding capabilities, the identifiability
of object representations is improved in our proposed model. This suggests that the use of fixed
camera positions in MVMOVI-C enhances the consistency and quality of object representation
learning, leading to better detection performance across different viewpoints.
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Figure 12: Influence of Number of viewpoints on identifiability for synthetic datasets.

Figure 13 & 14 showcases the object discovery capabilities of the VISA. In the iteration of the
MVMOVI-D dataset, we vary the camera position for each scene, making the dataset more dynamic
and allowing for the potential violation of assumption 3.1 in certain cases. Table 4 presents the
binding and identifiability results for both in-domain and out-of-domain data, following a similar
analysis as in Table 2. We observe consistent trends and behaviours, suggesting that the impact of the
assumption is minimal. A more detailed analysis of the assumption’s effects will be left for future
work.

(a)

(b)

Figure 13: Visual illustrations of benchmark results on MVMOVI-C dataset with 2 views.

Table 4: Identifiability and generalisability analysis on MV-MOVID dataset.

METHOD INDOMAIN ANALYSIS OUT OF DOMAIN

mBO ↑ SMCC ↑ INV-SMCC ↑ MCC ↑ mBO ↑ SMCC ↑ INV-SMCC ↑ MCC ↑

SA-MLP 0.24 ± 0.031 0.44 ± 0.005 - - 0.24 ± 0.097 0.45 ± 0.008 - -

PSA-MLP 0.26 ± 0.022 0.44 ± 0.006 - - 0.25 ± 0.012 0.42 ± 0.006 - -

VISA-MLP 0.24 ± 0.099 0.48 ± 0.009 0.46 ± 0.054 0.57 ± 0.021 0.25 ± 0.011 0.48 ± 0.006 0.51 ± 0.021 0.55 ± 0.021

SA-TRANSFORMER 0.34 ± 0.017 0.40 ± 0.041 - - 0.34 ± 0.066 0.38 ± 0.031 - -

PSA-TRANSFORMER 0.37 ± 0.021 0.38 ± 0.007 - - 0.36 ± 0.024 0.36 ± 0.016 - -

VISA-TRANSFORMER 0.39 ± 0.016 0.46 ± 0.001 0.48 ± 0.001 0.54 ± 0.032 0.37 ± 0.051 0.46 ± 0.022 0.45 ± 0.010 0.54 ± 0.029
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(a)

(b)

Figure 14: Visual illustrations of benchmark results on MVMOVI-C dataset with 3 views.

G.5 VIEW WARM-UP

Given the stochasticity during the initial phase of training, to facilitate meaningful representation in
content aggregator function, we consider view warm-up strategy. For the initial 100,000 iterations, we
randomly use the view-specific slots for reconstruction instead of invariant content with a probability
of 0.5.

This primary makes sure the feature extractor extracts meaningful representations before aggregation,
which helps to stabilize the training process and allows the model to effectively bind and integrate
information from different perspectives in later stages of training.

G.6 HYPERPARAMETERS

In Table 5, we detail all the hyper-parameters used in our experiments. In the case of benchmark
experiments, we use trainable CNN encoder as used in Locatello et al. (2020b); Kori et al. (2023),
while in the case of proposed MVMOVI datasets we use DINO (Caron et al., 2021) encoder to extract
image features and change our objective to reconstruct these features rather than the original image
as proposed in Seitzer et al. (2022). For most of hyperparameters we use the values suggested by
Locatello et al. (2020b); Seitzer et al. (2022), based on their ablation results.

G.7 COMPUTATIONAL RESOURCES

We run all our experiments on a cluster with a Nvidia NVIDIA L40 48GB GPU cards. Our training
usually takes between eight hours to a couple of days, depending on the model and the dataset. It is
to be noted that speed might differ slightly with respect to the considered system and the background
processes. All experimental scripts will be made available on GitHub at a later stage.
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Table 5: Experimental details w.r.t datasets

DATASETS(↓) PARAMETERS VALUES

CLEVR, GSO

No. Layers 4
No. Views 10 (GSO: 8)
No. Slots 7
Training Epochs 5000
Batch Size 32
Optimizer ADAM
Learning Rate 0.0002
Initial Slot µ N (0, 1)
Initial Slot σ I
Warmup Steps 10000
Decoder SPATIAL BROADCASTING-CNN
x− likelihood N (µx, σ

2
xI)

GQN

No. Layers 4
No. Views 10
No. Slots 4
Training Epochs 5000
Batch Size 64
Optimizer ADAM
Learning Rate 0.0002
Initial Slot µ N (0, 1)
Initial Slot σ I
Warmup Steps 10000
Decoder SPATIAL BROADCASTING-CNN
x− likelihood N (µx, σ

2
xI)

MVMOVI-C, MVMOVI-D

No. Layers 4
No. Views 5
No. Slots 7
Training Epochs 560
Batch Size 64
Optimizer ADAMW
Learning Rate 0.0002
Initial Slot µ N (0, 1)
Initial Slot σ I
Warmup Steps 10000
Pretrained Encoder DINO_VITB16
Decoder MLP, TRANSFORMER
x− likelihood N (µx, I)
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G.8 LIMITATIONS & FUTURE WORK.

We recognize that our assumptions, particularly regarding the viewpoint sufficiency, are strong and
may not always hold in practice. However, we did not observe limiting effects of this assumption on
the proposed MV-MOVID dataset. A more extensive analysis of this assumption and its implications
in real-world applications is left for future work. We would also highlight that the weak injectivity
of the mixing function may not always hold for different types of architectures. While generally
applicable, the piecewise-affine functions we use may not always capture valid assumptions for
real-world problems, e.g., when the model is misspecified. Nevertheless, to the best of our knowledge,
our theoretical results on multi-object, multi-view identifiability are unique and capture key concepts
in object-centric representation learning, opening various new avenues for future research along the
lines of generalisability, world-modelling, and planning.
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