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Abstract. Automated generation of radiology reports from X-ray im-
ages serves as a crucial task to streamline the diagnostic workflow for
medical imaging and enhance the efficiency of radiologist decision-making.
For clinical accuracy, most existing approaches focus on achieving accu-
rate predictions of the existence of abnormalities, despite the inherent
uncertainty impacting the reliability of the generated report, which is
often clarified by radiologists simultaneously. In this paper, we present a
unified report generation framework featuring a novel diagnostic uncer-
tainty estimation model, named Diagnostic Uncertainty Encoding frame-
work (DiagUE). Inspired by the clinician’s uncertainty-aware radiology
decision-making behavior, DiagUE first formulates belief-based diagnos-
tic uncertainty metrics that effectively capture the variability of radi-
ology abnormalities. Then, the estimated uncertainty-aware abnormal-
ity prediction is integrated with a report generation model under a
novel visual-language encoding mechanism. Extensive experiments on
two public benchmark datasets demonstrate that DiagUE could outper-
form SOTA baselines in ensuring the clinical accuracy of both abnormal-
ity description and diagnostic uncertainty of the report generation.

Keywords: Uncertainty Estimation · Radiology Report Generation ·
Medical Analysis.

1 Introduction

Nowadays, the radiology reporting plays a crucial role in expediting medical
workflow in hospitals [3, 5, 13]. Radiology images are complex and difficult to
interpret, with abnormalities manifesting with varying appearances. In reality,
there are numerous instances where experienced radiologists generate diagnostic
reports with inherent uncertainties [2, 17]. For instance, as shown in Fig. 1, given
⋆ This work is done when Sixing Yan is a visiting student in CFAR, Agency for Science,

Technology and Research, Singapore.
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Fig. 1. Left: Examples of radiology report with uncertain diagnosis. Right: Radiology
reports by the proposed approach with the correponding attention maps.

There is no pneumothorax. There is mild pulmonary
edema. There is a persistent left retrocardiac opacity. A
right lower lobe opacity may represent atelectasis or
pneumonia. There are bilateral pleural effusions, left
greater than right. Swan - ganz catheter tip is at the
right ventricular outflow tract.

Input X-ray image Detected anatomical parts

Attention on abnormal
lung regions 

Attention on abnormality-
relevant regions 

Slightly decreased pulmonary edema compared to
most recent study, however right upper and lower lobe
parenchymal opacities are more prominent and may
represent pneumonia. The previously seen moderate-
to-severe pulmonary edema has slightly improved.
mild cardiomegaly is stable. No pneumothorax. The
swan-ganz catheter through a right internal jugular
approach ends in the region of the main pulmonary
artery. Mediastinal and hilar contours are normal.

Ground-truth radiology report

Generated report by the proposed approach,
where correct diagnostic descriptions are

highlighted by colors

The left basilar opacification is
increased for increased pleural
effusion.

Report without uncertain diagnosis

A small left pleural effusion could
be present.
Report with single uncertain diagnosis

Milder opacification at left lung
base may represent worsening
edema vs effusion vs atelectasis.

Report with multiple uncertain diagnosis

an X-ray image exhibiting developmentally abnormality observation, even a well-
trained radiologist may only be able to identify that the observation falls within
one of several possible abnormality categories, making it challenging to reach
a definitive conclusion at the current stage. Acknowledging and managing such
diagnostic uncertainty is essential for advancing the accuracy and reliability of
radiology report generation systems.

Despite its importance, most existing approaches only consider predicting
the appearance of abnormality as a certain decision, while neglecting the crucial
diagnostic uncertainty information. Recently, there has been a growing interest
in uncertainty-aware models in the medical imaging community. Some initial
efforts involve inferring uncertainty scores from predicted probability for abnor-
mality classification to align the features from classification and segmentation
tasks [18, 23]. Another approach leverages variational inference techniques to
enhance the posterior distribution [14]. However, developing uncertainty mod-
els would require the radiology knowledge, and notably, the existing approaches
exhibit limited connection with the clinician’s uncertainty estimation behavior.
We also highlight that existing works could not offer human comprehensible un-
certainty estimation results, where the incorporation of uncertainty awareness
could add an additional dimension of diagnostic information for end-users.

Developing uncertainty estimation models also has immense potential to
generate clinically accurate reports. To achieve that, one prevailing direction
is to formulate the generation process as a two-stage task [15, 22] of predict-
ing medical keywords from images and generating report by the image feature
and predicted keywords. However, radiologists’ decision-making is more infor-
mative and context-aware since subtle details may not be explicitly represented
as keywords. To enhance the two-stage model, it becomes imperative to incor-
porate more informative tasks in the initial stage and offer high-quality fea-
tures imbued with richer clinical contexts at the second stage. In this paper,
we present an uncertainty-aware report generation approach that can serve the
aforementioned two objectives simultaneously. Specifically, we formulate a novel
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clinically-inspired uncertainty prediction task, which assesses diagnostic uncer-
tainty based on two main sources of variabilities: abnormality variability and
observer variability . Abnormality variability indicates both variation between
observations of individuals and variation between subjects [16], while observer
variability corresponds to the intra- and inter-variation of radiologists in med-
ical imaging [1]. Then, we compute the diagnostic uncertainty score by propa-
gating diagnostic belief representing subjective logistics (SL) [8] of radiolo-
gists in drawing abnormality conclusions. Consequently, we extract context-rich
uncertainty-aware visual and language embeddings to generate radiology reports.

Overall, the contributions of this paper are three-fold: i) we introduce a
clinically-inspired formulation of the abnormality uncertainty estimation model
featuring abnormality-level and observer -level uncertainties in the abnormality
diagnosis process; ii) a unified uncertainty-aware encoder-decoder architecture is
presented, which leverages the uncertainty prediction outcome and uncertainty-
aware abnormality feature for report generation; and iii) we demonstrate ex-
tensive experiments on two publicly available chest X-ray datasets to evaluate
DiagUE, with SOTA performance of clinical accuracy on abnormality descrip-
tions and diagnostic uncertainty in the generated reports.

2 Related Works

Radiology Report Generation X-ray report generation models offer con-
venient decision-making support for radiologists to discern abnormalities from
medical images and provide clinical conclusions by end-to-end training [21, 20,
27]. Initial approaches utilized an encoder-decoder architecture to achieve au-
tomatically radiolilogy image report generation [5, 4]. Recently, to improve the
clinical accuracy of the report, knowledge graph-based approaches have been
explored [28, 30]. While they enhance the intricate semantic connections, clinical
correctness is constrained by assuming indifferent abnormality prediction-based
diagnostic behavior. Our work is the first one to propose modeling diagnostic
uncertainty to enhance clinical accuracy for such methods.

Uncertainty Modeling in Medical Imaging Despite the importance of un-
certainty modeling in medical imaging [2, 17], limited works have been proposed
in this area. Most deep models tend to approximate deterministic functions, over-
looking uncertainty prediction in clinical diagnosis. In [9, 18, 23], evidence-based
methods are introduced to address uncertainty in medical image classification.
Recently, the uncertainty of the input X-ray image is also considered in the re-
port generation [24]. Our work is related to [14], where a variational inference
framework is proposed to align visual-language modalities in the latent space
with posterior from latent topic variables. Where their uncertainty comes from
incorporating a variational framework, we formulate a unique clinically-inspired
uncertainty prediction task aimed at classifying clinicians’ uncertainty scores
and utilizing the uncertainty-aware features to improve the downstream report
generation task. To the best of our knowledge, our work is the first one to in-
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Fig. 2. Part I: An illustration of the DiagUE-based report generation framework.
Part II: Demonstrating the numerical value of abnormality beliefs for three diagnostic
variation, where the upper row corresponds to a relatively uncertain prediction (case
1) and the lower row corresponds to a relatively certain prediction (case 2).

1. Intra-Abnormality Variability 2. Inter-Abnormality Variability 3. Intra-Observer Variability

Part I. DiagUE-based Report Generation Framework Part II. Variability Evaluation of Two Diagnostic Belief of Abnormality Candidate

Case 1

Case 2

Anatomy-aware
Visual Encoder

Diagnostic Belief
Abnormality Prediction

Diagnostic Uncertainty
Estimation 

Visual-Language
Degree Encoder

Report Decoder

troduce the clinically-inspired uncertainty-aware diagnostic prediction task for
medical reporting.

3 Diagnostic Uncertainty Estimation in Radiology
Report Generation

Radiologists commonly adhere to typical diagnostic procedures for generating
clinical reports. Initially, they identify abnormal observations in the images to
gather clinical evidence of abnormalities. Subsequently, radiologists form sub-
jective logistics (i.e., diagnostic belief ) to draw a diagnosis conclusion of a
particular abnormality, which is then detailed in written reports with comprehen-
sive context information, e.g., reflecting the degree of diagnostic uncertainty. In
this section, we introduce a clinically-inspired Diagnostic Uncertainty Encoding
framework (DiagUE) to enhance clinical accuracy of radiology reports through
uncertainty-aware decision-making (shown in Fig. 2).

Overall, the uncertainty-aware report generation involves the following steps.
First, we encode the anatomy-aware abnormality features F from the visual
features I of a frontal chest X-ray image to estimate the diagnostic belief of
abnormality existence b and diagnostic uncertainty u. Afterward, the estimated
b and u together with a customized report format X are encoded to form a
degree-based visual-language embeddings d. Accordingly, F and d are used to
guide the neural decoder to output the radiology report R.

3.1 Estimating Diagnostic Belief of Anatomy-aware Abnormalities

Anomalies are usually detected in the anatomical regions that are considered ab-
normal in the prior examination. Given the questionable region detected, clinical
evidence of possible abnormalities is then collected to form the diagnostic belief
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to make the follow-up diagnosis. This motivates us to first obtain the vision em-
bedding of anatomical parts and subsequently estimate the diagnostic belief of
each abnormality candidate by the obtained anatomy embedding.

Given an input X-ray image, the visual extractor (e.g., pre-trained Vision
Transformer [20]) encodes it as I ∈ RHW×D of HW feature map with D dimen-
sional features. To detect potential abnormalities on each anatomical part, we
also encode the regions of N anatomical parts detected by a pre-trained object
detector [25] with each anatomical region represented as Vn ∈ RHnWn×D. We
then learn the visual feature of K pre-defined abnormalities on each anatomical
part, and estimate diagnostic belief of whether these abnormalities are diagnosed
as clinical findings or not. To achieve that, we introduce a learnable memory ma-
trix E

(Abn)
k ∈ RE×D of each k-th abnormality with a number of E memory slots.

Fn,k the visual feature of anatomy-aware abnormality is then computed by the
cross-attention network CrossAttn(·, ·), and bn,k the diagnostic belief of the ex-
istence of (n, k)-th abnormality is obtained:

Fn,k = CrossAttn(Vn, E
(Abn)
k ); bn,k = AvgPooling

HnWn→1
(FFN
D→1

(Fn,k)). (1)

where FFN(·) is a two-layer fully-connected neural network [29]. Then, bn,k is
used as the prediction probability of abnormality existence, optimized by multi-
label classification of whether (n, k)-th abnormality is observed or not.

3.2 Estimating Belief-based Diagnostic Uncertainty

In radiology tests, radiologists could only report the appearance of abnormality
given sufficient diagnostic belief; otherwise, they would report possible abnor-
malities as suspected findings and suggest follow-up examination or treatment.
To mimic this, we present a novel belief-based diagnostic uncertainty estimation
mechanism, where we formulate the clinically-inspired uncertainty based on three
types of variability in the abnormality detection on the radiology imaging: i)
Intra-abnormality variability for single abnormality with uncertain appearance;
ii) Inter-abnormality variability for multiple confusing disjoint abnormalities;
and iii) Intra-observer variability for one observer with instance noises.

i) Intra-Abnormality Variability (Intra-Abn) v(Intra-Abn) in radiology imag-
ing is usually observed when an abnormality has varied appearances and the
prediction toward the detected observation is hard to confirm. This variability
could be captured by the amount of diagnostic belief in the existence of an abnor-
mality, when it is not enough to make a positive diagnosis (“Definitely present”)
while too much to make a negative diagnosis (“Definitely absent”).

To collect the related variability v(Intra-Abn), we first learn a numerical range
of diagnostic belief that indicates the expected uncertain diagnosis, denoted
[t
(lower)
k , t

(upper)
k ]. t(lower)

k , t
(upper)
k ∈ (0, 1) are the lower and upper bounds of the

numerical range learned by two scalar parameters. Then, v(Intra-Abn)
n,k is measured
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by the relative value of bn,k with reference to [t
(lower)
k , t

(upper)
k ] as:

v
(Intra-Abn)
n,k = (bn,k − t

(upper)
k )(bn,k − t

(lower)
k ). (2)

ii) Inter-Abnormality Variability (Inter-Abn) v(Inter-Abn) is considered
when one abnormal observation could be related to conflict abnormalities with
similar appearances. If several abnormalities on one anatomical part are assigned
with high but close diagnostic beliefs, then the predictions of these abnormali-
ties will become conflict where none of the abnormalities can be distinguished
from others as a confirmed diagnosis. To measure the variability among multiple
abnormalities v(Inter-Abn), we consider the deviation of diagnostic beliefs as,

v
(Inter-Abn)
n,k = 1− |b̄n − bn,k|∑K

k=1 |b̄n − bn,k|
b̄n; b̄n =

1

K

K∑
k=1

bn,k (3)

iii) Intra-Observer Variability (Intra-Obs) v(Intra-Obs) is found in the radi-
ology imaging where varying predictions can be made by one observer (radiolo-
gist) for the same observation. This variability is indicated where the predictions
vary due to the fine-grained changes of one abnormality observation. Motivated
by the Monte Carlo dropout used in the uncertainty validation [26, 12], we cap-
ture this variability by estimating additional diagnostic beliefs using the input
image feature with random dropout operations. Then v(Intra-Obs) is measured by
the deviation of the diagnostic belief from the image with/without dropouts as,

v
(Intra-Obs)
n,k =

1

|Bn,k|
∑

b̂n,k∈Bn,k

|b̂n,k − bn,k|
bn,k

, (4)

where |b̂n,k − bn,k| calculates the deviation of diagnostic beliefs between the
input image feature with and without dropouts, and Bn,k = {b̂n,k} is the set of
diagnostic beliefs estimated by Fn,k processed with different dropout operations.

Variability-based Diagnostic Uncertainty un,k is then obtained by weighted
summing the diagnostic variability as un,k = w

(1)
n,k(v

(Intra-Abn)
n,k )+w

(2)
n,k(v

(Inter-Abn)
n,k )+

w
(3)
n,k(v

(Intra-Obs)
n,k ) where the operation wn,k(·) ∈ (0, 1) is composed of a SoftPlus

activation function to ensure the variability value to be larger than 0 [23], and
an importance weighting to be learned by a scalar parameter. un,k is used as
the probability of diagnostic uncertainty towards (n, k)-th abnormality, opti-
mized by the multi-label classification of whether the diagnosis of the (n, k)-th
abnormality is reported as uncertain findings or not.

3.3 Report Generation with Belief-Driven Uncertainty Estimation

Given the input X-ray image encoded as the visual embedding of anatomy-aware
abnormalities Fn,k and the diagnostic results (bn,k, un,k) obtained, a radiology
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report is generated that is also required to follow certain report formats (denoted
X = {xk,m}M,K

m=1,k=1 with M report formats considered). With a pre-defined K
abnormalities considered, in total K sub-reports are generated by the decoder,
where each sub-report Rk is specified to the k-th abnormality. The complete
report R̂ will be concatenated from {R1, ..., RK} in the post-processing step.

Visual degree embedding To guide the neural decoder by the prediction
results of abnormality existence and the associated diagnostic uncertainty, the
numerical probabilities are usually transformed to a high-dimension vector by
the linear projection, which could be easily over-fitting. To avoid that, we propose
a degree mechanism to encode the prediction results by a set of disentangled
feature vectors where each vector is related to certain input values. In particular,
we first construct a learnable degree matrix D ∈ RC×D that represents C different
degrees in D-dimension. Given the predicted probability p in decimal value, we
first scale it to a pre-defined degree range {1, 2, ...C}. Then, the degree embedding
of p is indexed from the degree matrix D as Dc (the c-th row of D).

To obtain the degree embedding of the existence probability toward k-th ab-
normality d

(Abn)
k ∈ R1×D, the degree vectors are indexed by bn,k and aggregated

as d
(Abn)
k = 1/N

∑N
n=1 D

(Abn)[bn,k]
where D(Abn) is the degree matrix of abnormality prediction. Similarly, we

encode un,k to the degree embedding of the diagnostic uncertainty d
(Unc)
k ∈

R1×D by the degree matrix of uncertainty estimation D(Unc), given as d
(Unc)
k =

1/N
∑N

n=1 D
(Unc)[un,k].

Language degree embedding The radiology report is a mission-oriented doc-
ument following varied report formats, which are related to the language quality
of the report, such as level of details for different abnormalities. To allow user
customization, we also encode user-input report formats as language degree em-
bedding to guide the report generation. We start by representing each report
format using an integer value x

(Lang)
k,m ∈ {1, 2, ...C}, and construct the degree

matrices of report formats {D(Lang)
m }Mm=1. Accordingly, the language degree em-

bedding d
(Lang)
k is obtained by d

(Lang)
k = FFNMD→D

(⊕M
m=1 D

(Lang)
m [x

(Lang)
m,k ]

)
.

The visual-language degree embedding dk is then obtained by fusing all de-
gree embeddings as dk = FFN3D→D(d

(Abn)
k ⊕ d

(Unc)
k ⊕ d

(Lang)
k ).

Uncertainty-aware Report Decoder In addition to the prediction results,
we also extract the visual features of uncertain regions to improve the report
generation. In particular, we learn the embedding of visual uncertainty of the
k-th abnormality, denoted as Uk, by the abnormality embedding {Fn,k} as:

F̂n,k = CrossAttn(Fn,k, E
(Unc)
k ); Uk = AvgPooling

N×HW×D→1×D

N⊕
n=1

F̂n,k (5)

where E
(Unc)
k ∈ RE×D is a learnable memory matrix. To guide the report genera-

tion, we concatenate dk and Uk with the last hidden state of the token sequence
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Table 1. Performance comparison on report generation by MIMIC CXR data
(222,705/1,807/3,269 for train/valid/test).

Model CE RadRQI-F1 Uncertainty Acc.
(14) (19) TopK Hits Hard Soft

Transformer [19] 0.360 0.550 0.199 24.0 0.287 0.319
M2Transformer [6] 0.385 0.584 0.231 35.7 0.303 0.342
R2Gen [5] 0.333 0.589 0.199 26.0 0.277 0.317
R2Gen-CMN [4] 0.415 0.607 0.282 30.0 0.321 0.366
WCL [27] 0.572 0.555 0.191 22.0 0.262 0.313
XProNet [21] 0.534 0.564 0.141 20.0 0.268 0.311
GIT [20] 0.660 0.642 0.307 17.0 0.367 0.422
DiagUE (proposed) 0.664 0.688 0.319 31.5 0.441 0.473

(sentence) of (k-1)-th abnormality (denoted as hk−1,T ∈ RD at the last time
step T ) to feed to the language decoder in the k-th sentence generation, given
as yk,t, hk,t = Decoder(Uk ⊕ dk ⊕ hk−1,T , yk,1, ..., yk,t−1). The generated report
Rk = {yk,1, yk,2, ..., yk,T } is optimized by the language modeling loss [6].

4 Experiment

4.1 Experimental Settings

We use the publicly available report dataset MIMIC CXR [11] and IU Xray [7]
for evaluation. We collect K = 19 abnormalities in N = 10 anatomical regions
with two types of labels for training and testing by RadGraph [10] and Chest
ImaGemone [25]: i) whether the abnormalities exist; and ii) whether the diagno-
sis is uncertain. Clinical quality of the generated reports is evaluated by clinical
efficacy (CE) [5], radiology report quality index (RadRQI-F1) [28] and diagnostic
uncertainty accuracy. Detailed task settings including hyperparameter configu-
rations for DiagUE can be found in appendix.

4.2 Evaluation Results

We conduct extensive benchmark experiments to evaluate the reports generated
by DiagUE (shown in Table 1)5. Among the baselines, GIT demonstrates strong
overall performance, surpassing other baselines on most of CE metrics for abnor-
mality prediction and RadRQI-F1 metrics for attribute keywords prediction. No-
tably, GIT also showcases high standards in diagnostic uncertainty estimation.
Remarkably, DiagUE achieves a performance improvement of 7.5% over GIT
in CE(19). Also, an average performance improvement of 15.8% is achieved in
the uncertainty estimation metrics. This suggests that incorporation of DiagUE
can effectively enhance clinical accuracy in terms of both abnormality prediction
and diagnostic uncertainty estimation in radiology report generation.
5 Additionally, we present evaluation results on NLG quality, abnormality detection

scores on another IU Xray dataset, and a thorough ablation study in the appendix.
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5 Conclusion

We present DiagUE, a belief-based diagnostic uncertainty encoding framework
featuring a clinically-inspired diagnostic uncertainty estimator that effectively
models the variability of radiology abnormalities. To the best of our knowledge,
this is the first attempt to simultaneously consider diagnostic predictions on both
the abnormality existence and diagnostic uncertainties in the radiology imaging
domain. Through comprehensive empirical evaluations, we demonstrate that Di-
agUE surpasses state-of-the-art methods in terms of both clinical accuracy for
abnormalities and uncertainty prediction on two benchmark datasets.
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