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Abstract. The study of neural generative models of human sketches is
a fascinating contemporary modeling problem due to the links between
sketch image generation and the human drawing process. The landmark
SketchRNN provided breakthrough by sequentially generating sketches
as a sequence of waypoints. However this leads to low-resolution image
generation, and failure to model long sketches. In this paper we present
BézierSketch, a novel generative model for fully vector sketches that are
automatically scalable and high-resolution. To this end, we first introduce
a novel inverse graphics approach to stroke embedding that trains an en-
coder to embed each stroke to its best fit Bézier curve. This enables us to
treat sketches as short sequences of paramaterized strokes and thus train
a recurrent sketch generator with greater capacity for longer sketches,
while producing scalable high-resolution results. We report qualitative
and quantitative results on the Quick, Draw! benchmark.
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Fig. 1: Left: SketchRNN [8] generates sketches by sampling waypoints (red dots)
which lead to coarse images upon zoom. Right: Our BézierSketch samples smooth
curves (green control points) thus providing scalable vector graphic generation.

1 Introduction

Generative neural modeling of images [6, 12] is now an established research area
in contemporary machine learning and computer vision. Rapid progress has been
made in generating photos [11, 24], with effort being focused on fidelity, diversity,
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and resolution of image generation, along with stability of training; as well as
sequential models for text and video [2, 31]. Generative modeling of human
sketches in particular has recently gained interest, along with other applications
of sketch analysis such as recognition [34, 33], retrieval [28, 21, 4] and forensics
[13] – all facilitated by the growth of large scale sketch datasets [8, 28].

Sketch generation provides an excellent opportunity to study sequential gen-
erative models, and is particularly fascinating due to the potential to establish
links between learned generative models and human sketching – a communica-
tion modality that comes innately to children, and has existed for millennia.
Recent breakthroughs in this area include SketchRNN [8], which provided the
first neural generative sequential model for sketch images, and Learn2Sketch [30]
which provided the first conditional image to sequential sketch model. While con-
ventional image generation models focus on producing ever-larger pixel arrays
in high fidelity, these methods aim to model sketches using a more human-like
representation consisting of a collection of strokes.

SketchRNN [8], the landmark neural sketch generation algorithm, treats
sketches as a digitized sequence of 2D points on a drawing canvas sampled along
the trajectory of the ink-flow. This model of sketches has several issues, however:
It is inefficient, due to the dense representation of redundant information like
highly correlated temporal samples; and as sketches are ultimately pixels on a
grid, it is prone to sampling noise. Crucially it provides limited graphical scala-
bility: SketchRNN sets out to achieve vector graphic generation (and claims to
achieve this). However it does not generate truly scalable vector graphs as re-
quired by applications such as digital art. Since generated sketches are composed
of dense line segments, its samples are only somewhat smoother than raster
graphics (Fig. 1). Finally, it suffers from limited capacity. Because it models
sketches as a sequence of pixels, it is limited in the length of sketch it can model
before the underlying recurrent neural network begins to run out of capacity.

In this paper we propose a fundamental paradigm change in the representa-
tion of sketches that enables the above issues to be addressed. Specifically, we aim
to represent sketches in terms of parameterized smooth curves [27]. These pro-
vide a scalable representation of a finite length curve using few Control Points.
From a large family of parametric curves, we choose Bézier curves due to their
simple structure. In order to train a generative model of human sketches with
this representation, the key question is how to encode human sketches as param-
eterized curves. To this end, a key technical contribution is a vision-as-inverse-
graphics [14, 26, 5] approach, that learns to embed human sketch strokes as in-
terpretable parameterized Bézier curves. We train BézierEncoder in an inverse-
graphics manner by learning to reconstruct strokes through a white-box graph-
ics (Bézier) decoder. Given this new low-dimensional stroke representation, we
then train BézierSketch to generate sketches. Our stroke-level generative model
requires many fewer iterations than the segment-level SketchRNN, and thus
provides better generation of longer sketches, while providing high-resolution
scalable vector-graphic sketch generation (Fig. 1).
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In summary, the contributions of our work are: (1) BézierEncoder, a novel
inverse-graphics approach for mapping strokes to parameterized Béziers, (2)
BézierSketch, a sequential generative model for sketches that produces high-
resolution and low-noise vector graphic samples with improved scalability to
longer sketches compared to the previous state of the art SketchRNN.

2 Related Work

Parameterized Curves Bézier curves are a powerful tool in the field of com-
puter graphics and are extensively used in interactive curve and surface design
[27], as are a more general family of curves known as Splines [3]. Optimization
algorithms to fit Bézier curves and Splines from data have been studied. Few
specially crafted algorithms do exist specifically for cubic Bézier curves [29, 20].
However the challenge for most curve and spline-fitting methods is the exis-
tence of latent variables t that correspond training points and the location of
their projection onto the curve. This leads to two-stage alternating algorithms
for separately optimizing the curve parameters (control points) and latent pa-
rameter t [17, 22]. Importantly, such methods [17, 22] including few promising
ones [35] require expensive per-sample alternating optimization, or iterative in-
ference in expensive generative models [25, 15] which make them unsuitable for
large scale or online applications. In contrast, we uniquely take the approach of
learning a neural network that maps strokes to Bézier curves in a single shot.
This neural encoder is a model that needs to be trained, but unlike per-sample
optimization approaches, it is inductive. So once trained it can provide one-shot
estimation of curve parameters and point association from an input stroke.

Generative Models Generative models have been studied extensively in the
machine learning literature, often in terms of density estimation with directed
[23, 1] or undirected [10] graphical models. Research in this field accelerated after
the emergence of Generative adversarial networks (GAN) [6], Variational Au-
toencoder (VAE) [12] and their derivatives. Handling sequences are of particular
importance and hence specialized algorithms [2, 31] were developed. Although
RNNs have been successfully used for generating handwriting [7] without vari-
ational training, these methods lacked flexibility in terms of generation quality.
The emergence of VAE and variational training methods allows the fusion of
RNNs with variational objective led to the first successful generative sequence
model [2] in the domain of Natural Language Processing (NLP). It was quickly
adapted by SketchRNN [8] in order to extend [7] to free-hand sketches.

Inverse Graphics “Inverse Graphics” is line of work that aims to estimate
3D scene parameters from raster images without supervision. Instead it predicts
the input parameters of a computer graphics pipeline that can reconstruct the
image. Several attempts were made [26, 14] to estimate explicit model parameters
of 3D objects from raw images. A specialized case of the generic Inverse Graphics
idea is to estimate parameters of 2D objects such as curves. As a recent example,
an RNN based agent named SPIRAL [5] learned to draw characters in terms of
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pen an brush curves. SPIRAL, however, is extremely costly due to its reliance
on Policy Gradient [32] reinforcement learning training and black-box renderer.
Learning for Curves Few works have studied learning for curve generation.
The recent SVG Font Generator [18] trains an excellent font embedding with
a recurrent vector font image generator. However it is trained with supervi-
sion rather than inverse graphics, and limited to the more structured domain of
font images. Other attempts [16] also use supervised learning on synthetic data,
rather than unsupervised learning on real human sketches as we consider here.

3 Methodology

Background: Conventional Sketch representation and Generation A
common format [8] for a digitally acquired sketch S is as a sequence of 2-tuples,
each containing a 2D coordinate on the canvas sampled from a continuous draw-
ing flow and a pen-state bit denoting whether the pen touches the canvas or not.

S =
[
(Xi, qi)

]L
i=1

(1)

where Xi ,
[
x y
]T
i
∈ R2, qi ∈ {PenUp,PenDown} and L is the cardinality

of S representing the length of the sketch. The state-of-the-art sketch generator
SketchRNN [8] learns a parametric Recurrent Neural Network (RNN) to model
the joint distribution of coordinates and pen state as a product of conditionals,
i.e. psketchrnn(S; θ) =

∏L
i=1 p

(
Xi, qi |X<i, q<i; θ

)
, where θ is the set of param-

eters of the model and X<i and q<i denote the list of locations and pen-state
bits respectively before Xi and qi.

Towards a Stroke-Level Representation We are interested in moving from
such a segment-level representation toward stroke-level. To this end we modify

the structure of our input data to S̄ ,
[
Tj

]N
j=1

, with Tj ,
[
X

(j)
i

]Nj

i=1
where Tj

is the jth stroke of length Nj , |Tj | segregated from the sketch by following the

pen-state bit, and consequently
∑N

j=1Nj = L.

Towards a Stroke-Level Generative Model Existing generative sketch
models [8, 30] generate a segment at each iteration. Given a stroke-segmented
training set S̄, we would like to train a generative model analogous to SketchRNN.
That is, to model the distribution over possible sketches with a parametric model
pmodel(S̄; θ) and that approximates the original data distribution pdata(S̄). Dif-
ferent sketches having different lengths N makes this problem suitable for Re-
current Neural Networks (RNN). One could model the probability of a sketch
as a product of the probabilities of individual strokes Tj conditioned on all
its previously seen strokes T<j and parameterized by set of parameters θ as
pmodel(S̄; θ) =

∏
j p(Tj |T<j ; θ). However, a problem with such an approach is

that the individual strokes Tj are of varying length which would require a hi-
erarchical model where p(Tj |·) is again modeled as a sequence. So we instead

propose to learn fixed length embedding ej , e(Tj) ∈ Rd for any stroke Tj
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Fig. 2: (a) An example of Bézier curve of degree n = 3 with n+ 1 control points.
(b) Bézier curves with Gaussian noise (µ = 0, Σ = 5I2) added to control points
produce similar curves in image space.

and corresponding non-parametric decoder d(·) such that Tj ≈ d(ej). We then

model the encoded sketch e(S̄) ,
{
ej

}N
j=1

as

pmodel(e(S̄); θ) =

N∏
j=1

p(ej |e<j ; θ) (2)

where the individual conditionals are typically one or more mixtures of Gaussians
(GMMs) and where the raw sketch can be rendered at any point by the decoder.
In order to sample a new sketch from the model, we sample each jth stroke from
p(ej |e<j ; θ) and render it as d(ej).

A natural choice for the embedding e(·) could be an encoder RNN trained as
part of a Sequence-to-Sequence autoencoder [31]. However, We take a different
approach and propose a novel inverse-graphics based encoder-decoder framework
T ≈ d(e(T)) where our neural encoder e(·) produces an interpretable represen-
tation because it must decode through a white-box Bézier renderer d(·).

3.1 Stroke embedding: BézierEncoder

To train our parametric stroke embedding with an inverse graphics strategy, we
must first define a differentiable ‘graphics decoder’ which will be later used to
train our neural encoder to map human strokes to Bézier curves.

Inverse Graphics Decoder Bézier curves, used heavily in computer graph-
ics, are smooth curves representable in a closed functional form parameterized by

a sequence of n+1 anchor coordinates P ,
[
Px Py

]T ∈ R2 termed control points.

A degree n Bézier curve with control points
[
P0,P1, · · ·Pn

]
is represented as

C(t; {Pi}) =

n∑
i=0

Bi,n(t) ·Pi (3)

where t ∈ [0, 1] is the parameter of the curve, Bi,n(t) ,
(
n
i

)
ti(1 − t)n−i is the

Bernstein Basis Polynomial in t and C(t) ,
[
Cx(t) Cy(t)

]T ∈ R2 denotes a point
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on the curve at t = t. As t assumes values 0→ 1, the curve starts from P0 and
ends at Pn and the control points

[
P1, · · · ,Pn−1

]
control the trajectory of the

curve, as illustrated in Fig. 2(a). We further use Pn ,
[
Px0, Py0, · · · , Pxn, Pyn

]
∈

R2(n+1) to denote elements (curves) in the continuous space of n + 1 control
points. The decoder function d : P → T can be trivially realized by Eq. 3 with
the set of t-values chosen as per resolution requirement.

We now denote (T,P) as an arbitrary stroke and its Bézier representation,
where we have dropped the subscript j and superscript n for notational brevity.
Using P as an embedding space for T leads to an extremely useful and key
property: Given a choice of n, two similar points in P space correspond to similar
strokes in T space. As a consequence, we can sample from the conditionals in
Eq. 2 to generate variations of a stroke.

Property 1. Given a (T,P) pair where T = d(P) and sample P̂ ∼ N (P, σ),

then the decoded T̂ = d(P̂) is distributed as N (T, σ′).

Proof. Refer to Appendix A in the supplementary document for the proof. Il-
lustrative examples are given in Fig. 2(b).

A stroke to Bézier encoder We wish to learn an embedding function e(·)
that will map a given stroke T to its best fit Bézier representation P. Due to
the variable length of strokes T, we model BézierEncoder with a bi-directional
RNN, with forward and backward states −→si ,←−si ∈ Rh at time-step i as[−→si ,←−si ] = BiRNN(Xi−1, si−1; θ) (4)

However, unlike regular encoder RNNs, we further transform the last hidden
state to get a Bézier curve representation

P = WP
[−→s end;←−s end

]
(5)

where the ‘end’ subscript denotes the state of the RNN at last time-step, [ ; ]
denotes the concatenation operator and WP ∈ R2(n+1)×2h.

The formulation so far enables extracting a curve P from data T. However,
while P is now a sufficient representation to decode the Bézier by means of
Eq. 3, we do not have sufficient information to compute a reconstruction loss
like ‖T − d(e(T))‖ because we lack the association between input coordinates
Xi and interpolation parameters ti. This is where many classic Bézier fitting
techniques [17, 35] resort to slow alternating optimization techniques.

We take a different approach and ask our encoder to also predict the corre-
sponding interpolation parameter ti for each input point Xi. In order to make
valid predictions for t we note the properties it requires due to its role in Bézier
curves generation: 1. 0 6 t̂i 6 1 (by definition of Bézier curve). 2. t̂i 6 t̂i+1 (due
to sequential nature of Xi). Apart from these, we impose another property with-
out any lose of generality: 3. t1 = 0 and tend = 1 (this will make X1 and Xend

coincide with P0 and Pn respectively). Please refer to the experiment section
for an implementation trick to do so.
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Fig. 3: Inverse graphics training of our BézierEncoder architecture for model-
based single-pass stroke [Xi] to Bézier P mapping.

To enable our encoder to meet these requirements above, we do not compute
tis directly, but instead compute increments ∆ti , ti − ti−1 (with t0 , 0)
from

[−→si ;←−si
]

at every step i. The ti-values can then be easily computed as a
cumulative sum of all ∆ti up to i. Thus, the second path of our encoder predicts

t̂i =

i∑
i′=1

∆̂ti′ , with ∆̂ti = Softmaxi(Wt ·
[−→si ;←−si

]
). (6)

The usage of Softmax() enforces all three requirements stated above.

To summarize: Our full architecture, as shown in Figure 3 thus has two
pathways: A Bézier embedding pathway that predicts the curve P for the entire
stroke input T and an interpolation parameter pathway that further predicts the
estimated curve parameter t̂i for each input point Xi in T. Given the (Xi, t̂i)
pairs and P predicted by our encoder, we can now train our model with the
following reconstruction loss:

L(θ,WP ,Wt) ,
∑
i

∥∥C(t̂i,P)−Xi

∥∥2 (7)

which is optimized w.r.t. encoder parameters {θ,WP ,Wt} by SGD. Once trained,
we can compute the best-fit Bézier for any stroke using Eq. 5, which provides a
feed-forward single pass solution to a typically alternating optimization.

A Multi-Degree Representation Extension To add more flexibility, we
can extend this basic building block to learn a multi-degree representation of
a given stroke T. In order to do so, we encode the stroke using the the same
RNN in Eq. 4 parameterized by θ but use a set of different WPn and Wn

t for a
predefined range of degree n ∈ [nmin, · · · , nmax] to predict Bézier representations
of different degrees along with their corresponding tni -values.
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t̂ni =

i∑
i′=1

∆̂t
n

i′ , with ∆̂t
n

i = Softmaxi(W
n
t ·
[−→si ;←−si

]
) and

Pn = WPn

[−→s end;←−s end

] (8)

The total loss is now the sum of losses at every order n:

Ltotal ,
nmax∑

n=nmin

Ln, with Ln(θ,WPn ,Wn
t ) ,

∑
i

∥∥C(t̂ni ,Pn)−Xi

∥∥2 (9)

Inference in this model can now predict a set of Bézier representations for
different degrees, where higher order curves fit the data better at the cost of
more control points. The preferred order can then be chosen manually according
to user requirement, or automatically by heuristic. An effective heuristics is to
evaluate the loss Ln for all n and choose the smallest n for which Ln ≤ Ltolerance.

Smoothness Regularizer Our training objectives Eq. 7 or Eq. 9 may lead to
overfitting in the domain of Bézier curves during encoder learning. To avoid this
we add a smoothness regularizer (with regularization strength β) that prefers
sequential control points to be nearby. Specifically, we add β · Rn with Ln for

each n, where Rn(Pn) ,
n∑

i=1

‖Pi+1 −Pi‖22.

3.2 Sketch generation: BézierSketch

We next leverage our choice of Bézier representation space, and encoding model
P = e(·) to define two alternative vector graphic generative models for sketches.

Control Point mode Given a sketch as a sequence of stroke embeddings
{Pj}Ni=1 obtained from the raw input strokes as P = e(T), we can modify the
original data structure in Eq. 1 and substitute the set of absolute co-ordinates
of every stroke by the set of control points of its Bézier representation. The
modified sketch Scp would be

Scp =
[(

P
(j)
0 , q

(j)
0

)
, · · · ,

(
P

(j)
i , q

(j)
i

)
, · · · ,

(
P(j)

nj
, q(j)nj

)]N
j=1

(10)

When encoded this way by our Bézier encoder, each sketch is represented
by a relatively shorter (mostly) list of parametric control points rather than
the original long list of coordinates. In this format, different strokes can have
different degrees, as indicated by the use of nj above.

Given this sequential representation of a sketch dataset, we can now train a
generative sketch model. Since Scp is structurally same as original S apart from
its length and the interpretation of its co-ordinates, we can re-use exactly the
same architecture and training procedure as SketchRNN [8]. We use a variational
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sequence-to-sequence autoencoder [31] with a latent vector encoding the whole
sketch. Thus one sketch is encoded first to a list of Bézier curves, and then to
a latent vector in SketchRNN architecture; and decoded first to a list of curve
parameters, and then rendered by the Bézier renderer. Please refer to Appendix
B for a brief review of the SketchRNN architecture in the context of our problem.

Stroke mode Given a sketch S as set of strokes {Tj}Nj=1, we transform

it as Sst = {Pj}Nj=1 where Pj = e(Tj). We model the whole sketch using a
sequence-to-sequence autoencoder, where each time-step processes one stroke
represented as a fixed order Bézier curve. We use a bi-directional RNN to encode
the whole sketch stroke-by-stroke. The hidden states (forward and backward) of

the encoder
−→
h j ,
←−
h j at time-step j is given as[−→

h j ,
←−
h j

]
= BiRNN(Pj−1,hi−1;Θ)

A latent vector z ∈ RNz encoding the whole sketch is sampled using the
parameters of a Gaussian distribution computed from the last hidden states

z ∼ N (µz,diag(σz)), with [µz, σz] = f
([−→

h N ;
←−
h N

]
;Θ
)

An unidirectional decoder RNN is initialized using z and models the proba-

bility of jth stroke embedding conditioned on the hidden state gj ∈ RHd

p(Pj |gj ;Θ) = GMM
(
Pj ;
{
µm
j (gj), Σ

m
j (gj), π

m
j (gj)

}M
m=1

)
gj = DecoderRNN([Pj−1; z] ,gj−1;Θ)

(11)

where
{
µm
j , Σ

m
j , π

m
j

}
are the parameters of the M -component GMM for the jth

stroke. For computational efficiency, we consider diagonal Σm
j and by definition∑

m πm
j = 1. Given a trained model, we can sample from this distribution to

generate similar Pj which will resemble its original domain data Tj as guaranteed

by property 1. Along with Pj at every step j, we also predict a stop bit b̂j ∈ [0, 1]
denoting end of sketch which is compared against the ground-truth stop bit
bj , 1j=N . The sketch generator is trained with the following objective function

L({Pj}Ni=1 ;Θ) =

− 1

Nmax

N∑
j=1

log GMM
(
Pj |
{
µm
j , Σ

m
j , π

m
j

}M
m=1

;Θ
)

− 1

Nmax

N∑
j=1

bj log b̂j

− 1

2Nz

Nz∑
i=1

(
1 + σi

z − µi
z − exp(σi

z)
) (12)

The first two terms of L are the log-likelihood of a sequence {Pj}Ni=1 under
the model and the loss due to the stop bit respectively. The third term denotes
the KL-divergence loss for imposing a Gaussian prior on the latent code z. The
diagonal entries of Σm

j have been raised by exp(·) to make them non-negative
and Softmax(·) has been used to ensure

∑
m πm

j = 1.
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4 Experiments & Results

Dataset Quick, Draw! is a large sketch dataset [8] collected as a part of an
online game to draw a given category within a time-limit, in which thousands
of people around the world participated. Due to the problem definition and
structure of data used by our framework (see Eq.1), Quick, Draw! is the most
suitable dataset to validate it. Different versions of the dataset use different
sampling rates at which the sketches are stored as point sequences. SketchRNN
is known to work well only on data with lower sampling rate (i.e., ET

[
|T|
]

is

lower) than the raw data (ET

[
|T|
]

is higher) recorded. Due to fixed length of
Bézier representations, our framework can adapt to data with both high and low
sampling rates without any modification. Although our method is generalizable
across all categories, we experimented with few categories to validate our claims.

Our framework has two main components: 1. Embedding each stroke into its
Bézier representation. 2. Training a generative model with the encoded sketches
either in control point mode or stroke mode. As our BézierEncoder is a key con-
tribution, we validate this in isolation, before comparing our whole BézierSketch
framework to SketchRNN [8].

4.1 Stroke Embedding Experiments

Implementation Details We created a dataset of all strokes from all sketches
in a category of Quick, Draw! in order to train the stroke embedding model de-
scribed in Section 3.1. We adopted some tricks that made the training and rep-
resentation more efficient in practice. We normalized all strokes to start from the
origin (i.e., X1 = [0, 0]T ). Furthermore, we assumed that the first control point
P0 of a Bézier representation is always aligned to the first absolute coordinate
of the stroke (i.e., X1 = P0). Given these design choices, we can ignore the first
control point (fixing it to origin) and only predict successive differences of control
points (i.e., ∆P1 , P1−P0, ∆P2 , P2−P1 and so on) and then decode Pi as

Pi =
∑i

i′=1∆Pi′ while evaluating the loss in Eq. 7. We chose the hidden state di-
mension to be h = 256 and nmin = 3, nmax = 9 for learning multi-degree Bézier
representation. To exclude over complicated strokes, we apply some heuristics
to split a stroke into two or more. Specifically, we split a stroke into multiple
parts based on two criteria: 1. Every part is within a maximum length and 2.
Every part has only one sharp bend (determined by computing its curvature at
a given point). We set the regularizer weight β = 10−3.

Results We first qualitatively demonstrate the results of inferring Bézier rep-
resentations of input strokes. Fig. 4(top left) shows fitting results for various
curve orders (columns) – showing variable amounts of detail being captured at
different orders. It also shows fitting examples at both low (above) and high
(below) sampling rates – confirming that our encoder can adapt to both.

We next qualitatively illustrate the training dynamics of our model via the
fit estimated as training progresses. The results in Fig. 4(middle) show the es-
timated fit during training in terms of Bézier curve (red) and control points
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Fig. 4: Evaluating our BézierEncoder. (Top left) Learned representations of
multi-degree Bézier stroke embedding. Top and bottom rows contain moderate
and high-sampling rate respectively. (Top right) Test loss for various categories
when trained on same category vs “Cat”, demonstrating transferability of the
encoder. (Middle) Visualising training dynamics. Blue: Stroke to fit. Red and
Green: Bézier curve and control points. Cyan: Estimated point correspondence.
(Bottom) Examples of full sketches and their learned Bézier representation.

(green) for a stroke defined by (blue) points. Recall that our encoder also pre-
dicts the interpolation parameters t that match each input point to a location
on the curve. These correspondences are indicated in (cyan). Clearly both the
fit and the estimated correspondences improve with training iterations. Refer to
Appendix C in the supplementary document for similar visualization of more
samples.

Given that our training data is grouped into categories, we next verify that
our encoder indeed learns a generic Bèzier embedding, and is not overfitted to
a specific category. Specifically, we compare the test loss for reconstructing data
of each category when the encoder is trained on the same category as testing vs
trained vs a disjoint category to testing. The results in Fig. 4(top right) shows
that the embedding generalizes quite well to categories it is not trained on.

Finally, Fig. 4(bottom) shows examples of full sketches encoded by our en-
coder, and then decoded as Béziers. We can see that the encoded sketches reflect
the input, but are smoother and cleaner.
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4.2 Sketch generation Experiments

Setup In control point mode, a fully trained multi-degree embedding model
is used to restructure all sketches in our dataset as Scp. We set Ltolerance =
10−3 to select the best n. We then train a SketchRNN-like model [8] using the
restructured data. As data augmentation, we added 2D standard normal noise
at all control points. Sampling from the latent space and decoding it by the
decoder will generate sequence of control points and stroke/sketch ending bits.
Treating one entire stroke as a set of control points, we can then draw it on a
canvas using Eq. 3 with any required level of granularity.

In stroke mode, we encode each stroke with a fixed degree of n = 9. Very
similar to control point mode, we use a Bi-LSTM to encode the whole sketch
stroke-by-stroke and extract Nz dimensional latent vector. By conditioning on
the latent vector, the decoder produces Bézier representation P of one stroke at
each time-step. Thus, the length of a sketch coincides with the number of strokes
present in the sketch. At each step of the decoder, we sample one stroke from
p(Pj |gj , Θ) which is modeled as a GMM with M = 10 mixture components.
However, unlike the control point mode and its corresponding SketchRNN-like
architecture, we do not use correlation parameter in the constituent Gaussians.
This design choice makes the individual dimensions of the Gaussians indepen-
dent, sampling from which is justified given property. 1. Apart from Pj , we

predict one more quantity in practice: the start location vj , (vx, vy)Tj of the
stroke w.r.t the whole sketch. The need for vj arises due to the practical con-
sideration of relocating the start of each individual stroke at the origin while
encoding them.

Results Qualitative results of generated unconditional sketch samples from
both our model variants are shown in Fig. 5(a). We can see that, similarly
to SketchRNN, BézierSketch generates diverse and plausible samples. However,
uniquely our samples are high-resolution vector graphic sketches. Fig. 5(b) also
shows examples of conditional samples where the right group of three images are
samples conditioned on the left sketch encoding.

The use of Bézier curves as stroke representation reduces the average length
of a given stroke’s representation significantly and as a direct consequence, the
description length for whole sketches as well. In Fig. 6, we compare the length his-
tograms of original data and its Bézier representation both on stroke and sketch
level, confirming that Béziers are systematically shorter (left). This is the same
for strokes and sketches sampled by vanilla and SketchRNN and BézierSketch
respectively (right).

This property of shorter representations for any given sketch means that
our generator should have an advantage modeling longer sketches compared to
vanilla SketchRNN since it only needs to model shorter sequences. To evaluate
this, we use a modified Fréchet Inception Distance (FID) [9] score to compare the
generated samples from both models. We first trained both our generator model
and SketchRNN on the entire dataset (of each category). We then create a subset
of sketches whose original length is l ± 20 and use them to generate samples.
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(a)

(b)

Fig. 5: Qualitatively evaluating BézierSketch. (a) Samples drawn unconditionally
in control point mode (left half) and stroke mode (right half). (b) Sketch samples
generated by conditioning on the first sketch (double bordered) in each set.
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Fig. 6: Stroke/Sketch Length histogram for original data (left) and generated
samples (right). Bézier encodings are shorter sequences than the raw data.

All original and generated samples are rendered on a canvas and projected down
to a concise feature vector using pre-trained Sketch-a-Net 2.0 [33] classifier. We
compute the empirical mean and covariance of both real samples and generated
samples as (µr, Σr) and (µg, Σg) and then estimate modified FID as:

FID = ‖µr − µg‖2 + Tr(Σr +Σg − 2(ΣrΣg)1/2)

The results in Fig. 7 plots the modified FID score with increasing length
value l for both SketchRNN and our model on each category of sketches. We can
see that our model leads to improved (lower) FID score, especially for longer
sketches. This is illustrated qualitatively in Fig. 7, where we can see that for
longer sketches, our framework produces much more reliable reconstruction than
QuickDraw, which fails to make reasonable reconstruction in these cases.
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Fig. 7: Left: FID score (↓) vs length of sketch shows the effectiveness of our
generative model on longer sketches. Right: Qualitative samples of long sketches.
Three columns denote the original sketch, SketchRNN and our BézierSketch.

Fig. 8: Unconditionally generating handwritten words from the IAM database.

Other applications Although crafted with sketches in mind, our framework
can be adapted to other applications like handwriting generation (in line with
the work of [7]) with little to no modification. In fact, any 2D sequence data
with two-level hierarchical representation (e.g., stroke and sketch) can be mod-
eled using the same framework. Online handwritten characters are composed of
relatively short strokes which we model with Bézier curves. We use the online
handwritten sentences from the IAM handwriting database [19], embed the con-
stituent strokes with our Bézier representation and train our generative model
for words. Fig. 8 shows qualitative samples from our resulting word generator.

5 Conclusions

In this paper we presented an inverse graphics approach to training an efficient
model-based single-pass stroke-to-Bézier encoder via reconstruction through a
Bézier decoder. Such approach surpasses the conventional fitting-based methods
in terms of quality and efficiency. Furthermore, this enabled us to advance gener-
ative sketch models by generating sketches as sequences of parameterized curves
rather than pixels, leading to arbitrary-resolution scalable vector graphic sam-
ples. This new representation also enables better generation of longer sketches
compared to existing state of the art. In future work we will investigate extend-
ing to more complex parameterized curves such as B-splines, and developing an
encoder to predict curves from rasterized images directly.
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