
RaiseWikibase: Fast inserts into
the BERD instance

Renat Shigapov1)[0000−0002−0331−2558], Jörg Mechnich1[0000−0002−6406−4906],
and Irene Schumm1[0000−0002−0167−3683]

Mannheim University Library, University of Mannheim, Germany
{firstname}.{lastname}@bib.uni-mannheim.de

Abstract. We create a knowledge graph of German companies in or-
der to facilitate research with Business, Economic and Related Data
(BERD), both modern and historical. For the implementation we chose
Wikibase, but the wrappers of the Wikibase API turned out to be slow
for filling it with millions of entities. This work presents the open source
tool RaiseWikibase for speeding up data filling and knowledge graph
construction by inserting data directly into the database. We test its
performance for creating the items and wikitexts and share a reusable
example for knowledge graph construction.

Keywords: Knowledge graph construction · Wikidata · Wikibase

1 Introduction

Motivation. German company data are spread over many providers, registers
and time spans. The company identifiers in Germany are sadly famous for their
lack of uniqueness, inconsistent representations and multiple registrations per
legal entity1. The modern data for millions of German companies were scraped
and unchained by OpenCorporates [9]. The collection was supported by the
TheyBuyForYou project [8] and is used in euBusinessGraph [6]. Historical in-
formation about German companies is still confined within many undigitized
documents as reported by the EurHisFirm project [5]. Only some of the docu-
ments were digitized, processed and structured [2,3]. All this makes knowledge
graph construction for German companies difficult, urgent and necessary.

Wikibase and Wikidata. We chose Wikibase for creating a knowledge graph. Its
benefits are a live Blazegraph-based SPARQL endpoint, RDF export, an API,
data science tools and the promising strategy for the decentralized Wikibase
Ecosystem [4]. The general-purpose Wikidata knowledge graph [10] (the main
Wikibase instance) can help with ontology development for new instances.

1 https://blog.opencorporates.com/2019/02/19/wait-what-the-problems-of-company-
numbers-in-germany-and-how-were-handling-them

https://opencorporates.com
https://theybuyforyou.eu
https://www.eubusinessgraph.eu
https://eurhisfirm.eu
https://wikiba.se
https://www.wikidata.org
https://blog.opencorporates.com/2019/02/19/wait-what-the-problems-of-company-numbers-in-germany-and-how-were-handling-them
https://blog.opencorporates.com/2019/02/19/wait-what-the-problems-of-company-numbers-in-germany-and-how-were-handling-them


2 R. Shigapov et al.

Related work. An ontology and data can be filled into a Wikibase instance
manually or using the wrappers of the Wikibase API. WikidataIntegrator
[1], wikibase-cli, Wikidata-Toolkit, WikibaseIntegrator, Pywikibot, QuickState-
ments and many other tools are excellent for data filling during the collaborative
knowledge graph development. However, they can insert roughly 1-6 entities per
second, making data filling and knowledge graph construction with a fresh Wik-
ibase instance lengthy. A solution is to insert data directly into the database,
but a ready-to-use tool for it does not yet exist. The only relevant work [11]
provides code in Java for Wikibase 1.34. Unfortunately, its reuse requires chang-
ing hard-coded values and restructuring of the code. Instead, we implemented
RaiseWikibase in Python for Wikibase 1.35.

Our contribution and structure. We present the tool RaiseWikibase for speed-
ing up data filling and knowledge graph construction with Wikibase. Next, we
describe RaiseWikibase, raise our BERD instance, and make conclusions.

2 Raising Wikibase

RaiseWikibase is written in Python, uses the version “1.35” of the Wik-
ibase Docker image, and connects to the MariaDB database using the mysql-
client library. The open source code is shared at https://github.com/UB-
Mannheim/RaiseWikibase.

The main functions are page and batch. The page function executes in-
serts into the database but does not commit them. Multiple page functions are
wrapped into a transaction inside the batch function. Creating a million of items
is as simple as batch(’wikibase-item’,items), where the first argument spec-
ifies a content model and items is a list of JSON representations of the items.

To create or edit the JSON representation of an entity, we added the fol-
lowing functions for the Wikibase data model2: entity, claim, snak, label,
alias and description. They return the suitable template dictionaries. Eigh-
teen datatypes are implemented in the snak function. The JSON representation
of an item with an English label, aliases, description and one claim is given by:

item = entity(labels=label(’en’, ’organization ’),

aliases=alias(’en’, [’organisation ’, ’org’]),

descriptions=description(’en’,’social entity ’),

claims=claim(prop=’P2101 ’,

mainsnak=snak(datatype=’string ’,

value=’org’,

prop=’P2101 ’)),

etype=’item’)

RaiseWikibase inserts data into the nine tables according to the database
schemas of Mediawiki and Wikibase. While this is sufficient in case of unstruc-
tured data, for structured data some of the secondary tables are also changed.

2 https://www.mediawiki.org/wiki/Wikibase/DataModel

https://github.com/SuLab/WikidataIntegrator
https://github.com/maxlath/wikibase-cli
https://github.com/Wikidata/Wikidata-Toolkit
https://github.com/LeMyst/WikibaseIntegrator
https://github.com/wikimedia/pywikibot
https://github.com/magnusmanske/quickstatements
https://github.com/magnusmanske/quickstatements
https://github.com/wmde/wikibase-docker
https://github.com/wmde/wikibase-docker
https://github.com/PyMySQL/mysqlclient
https://github.com/PyMySQL/mysqlclient
https://github.com/UB-Mannheim/RaiseWikibase
https://github.com/UB-Mannheim/RaiseWikibase
https://www.mediawiki.org/wiki/Manual:Database_layout
https://www.mediawiki.org/wiki/Wikibase/Schema
https://www.mediawiki.org/wiki/Wikibase/DataModel


RaiseWikibase: Fast inserts into the BERD instance 3

1000 2000 3000 4000 5000 6000
Number of characters per page

200

250

300

350
Sp

ee
d 

in
 p

ag
es

 p
er

 se
co

nd

(a) Wikitexts

0 5 10 15 20
Number of claims per page

140

160

180

200

220

240

260

280

Sp
ee

d 
in

 p
ag

es
 p

er
 se

co
nd

(b) Items

Fig. 1: RaiseWikibase performance in the batch mode of page creation.

Fig. 1 shows the results of our performance analysis. Every data point is
based on a batch of ten thousands pages. Fig. 1a illustrates the results of six
repeated experiments indicated by differently-shaped data points. In Fig. 1b two
colors represent repeated experiments and three shapes of a data point stand
for: l – a claim lacks qualifiers and references, 6 – a claim has one qualifier and
no reference, and n – a claim has one qualifier and one reference. The insert
rate decreases approximately linearly with increasing number of characters per
wikitext and with increasing number of claims per item. Small pages can be
uploaded at rates of 250-350 wikitexts per second (Fig. 1a) and 220-280 items
per second (Fig. 1b). The source codes and technical details about our tests can
be found on GitHub.

The ElasticSearch index and some of the secondary tables are built after data
filling. Queries on the “page” and “text” tables can be made. A bot account,
needed for the wrappers of the Wikibase API, is created automatically.

3 Raising BERD

A fresh Wikibase instance contains only the main page. An ontology, templates,
modules, structured and unstructured data have to be filled into the database.
Some extensions have to be installed and many parameters have to be configured.

We prepared the configuration files, modules and extensions, created the
templates, changed the sidebar, a style of pages (skin) and the main page. The
page with SPARQL examples, shown at the query frontend, is also created. These
files are stored in the “texts” folder of RaiseWikibase, are quickly uploaded using
the page function and can be easily adapted to a new use case.

The Wikidata properties are reused. Unfortunately, the federated properties
in Wikibase are still under development and the extension WikibaseImport does
not work as expected and turned out to be slow. We created three properties
with IDs “P1”3, “P2” and “P3” shown in Table 1a. Then, the Wikidata endpoint
is queried for all (8600+) properties with labels, descriptions, aliases, datatypes,

3 This is only the last and unique part of ID. The full URLs are omitted for brevity.

https://github.com/filbertkm/WikibaseImport


4 R. Shigapov et al.

formatter URLs and formatter URIs for RDF resources. Those properties con-
taining the triples with “P1”-“P3” are then created locally, see Table 1b.

(a) Four properties created manually

BERD ID Wikidata ID English label

P1 - Wikidata ID

P2 P1630 formatter URL

P3 P1921
formatter URI for RDF

resource

P4 - native company number

(b) More than 8600 properties queried from the Wikidata endpoint

P5 P6 head of government

... ... ...

P8656 P9448 introduced on

(c) Automatically matched properties by semantic annotator “bbw”

P1020 P1320 Open Corporates ID

P91 P159 headquarters location

(d) Manually matched properties

P5699 P6375 street address

P588 P813 retrieved

Table 1: (a) Four properties created manually, (b) more than 8600 properties queried
from the Wikidata endpoint, (c) the properties matched automatically by the semantic
annotator “bbw”, and (d) the properties matched manually.

The German company dataset4, donated to the Open Knowledge Founda-
tion Deutschland by OpenCorporates, is converted to a CSV file. To automate
ontology learning with Wikidata, the open source semantic annotator “bbw” [7]
is applied to a part of the “company” table. The properties matched automat-
ically are listed in Table 1c. Table 1d shows the properties matched manually.
Additionally, we created a property for a native company number with ID “P4”
as shown in Table 1a. It corresponds to the registration authority (court), the
code related to a legal form and the number which is unique for the given court.

To reduce memory requirements, the JSON representations of entities are
created using RaiseWikibase while reading the data from a CSV file line by line
and the batch function is executed for lists with 100000 entities. Each entity has
at most three claims with one qualifier and one reference. A million entities of
German companies are filled into the BERD instance in seventy minutes.

Note that ElasticSearch indexing and building some of the secondary ta-
bles take additional time. We plan to add a multiprocessing implementation to
improve on those issues.

4 https://offeneregister.de

https://okfn.de
https://okfn.de
https://offeneregister.de


RaiseWikibase: Fast inserts into the BERD instance 5

4 Conclusions

We presented the open source tool RaiseWikibase for speeding up data
filling and knowledge graph construction using Wikibase and shared it at
https://github.com/UB-Mannheim/RaiseWikibase. Up to a million entities and
wikitexts per hour can be filled. A reusable example of knowledge graph con-
struction is provided.

Acknowledgments. This work was funded by the Ministry of Science, Research
and Arts of Baden-Württemberg through the project “Business and Economics
Research Data Center Baden-Württemberg”. We thank Jesper Zedlitz for [11].

References

1. Burgstaller-Muehlbacher, S., Waagmeester, A., Stupp, G., Arrow, T., konstin,
jleong-ndn, Putman, T., Mystou, Mietchen, D., Su, A., pdehaye, Leturia, I.,
Vrandečić, Andrea: SuLab/WikidataIntegrator 0.5.1 (2020), https://doi.org/10.
5281/zenodo.3621065

2. Gehrlein, S., Kamlah, J., Pintsch, M., Schumm, I., Weil, S.: Vom Papier zur Date-
nanalyse. “Neue” historische Forschungsdaten für die Wirtschaftswissenschaften.
In: Heuveline, V. (ed.) E-Science-Tage 2019 : Data to Knowledge. vol. 598, pp.
140–152. heiBOOKS (2020), https://doi.org/10.11588/heibooks.598.c8423

3. Gram, D., Karapanagiotis, P., Krzyzanowski, J., Liebald, M., Walz, U.: An exten-
sible model for historical financial data with an application to German company
and stock market data. SAFE Working Paper No. 300 (2020), http://dx.doi.org/
10.2139/ssrn.3770607

4. Pintscher, L., Voget, L., Koeppen, M., Aleynikova, E.: Strategy for the Wikibase
Ecosystem (2019), https://w.wiki/334L

5. Poukens, J.: EURHISFIRM D4.2: Report on the Inventory of Data and Sources
(2018), https://doi.org/10.5281/zenodo.3246457

6. Roman, D., Alexiev, V., Paniagua, J., Elvesæter, B., von Zernichow, B.M., Soylu,
A., Simeonov, B., Taggart, C.: A Bird’s-Eye View of euBusinessGraph: A Business
Knowledge Graph for Company Data. In: ISWC 2020 Demos and Industry Tracks.
vol. 2721, pp. 39–44 (2020), http://ceur-ws.org/Vol-2721/paper493.pdf

7. Shigapov, R., Zumstein, P., Kamlah, J., Oberländer, L., Mechnich, J., Schumm,
I.: bbw: Matching CSV to Wikidata via Meta-lookup. In: Semantic Web Challenge
on Tabular Data to Knowledge Graph Matching (SemTab 2020) at ISWC 2020.
vol. 2775, pp. 17–26 (2020), http://ceur-ws.org/Vol-2775/paper2.pdf

8. Soylu, A., Elvesæter, B., Turk, P., Roman, D., Corcho, Ó., Simperl, E., Makgill,
I., Taggart, C., Grobelnik, M., Lech, T.C.: An overview of the TBFY knowledge
graph for public procurement. In: ISWC 2019 Satellite Tracks (Posters & Demon-
strations). vol. 2456, pp. 53–56 (2019), http://ceur-ws.org/Vol-2456/paper14.pdf

9. Taggart, C., Hanley, M., Skene, A.: Creating the German open company
data: how we did it (2019), https://blog.opencorporates.com/2019/02/07/
creating-the-german-open-company-data-how-we-did-it

10. Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledgebase. Com-
mun. ACM 57(10), 7885 (Sep 2014), https://doi.org/10.1145/2629489

11. Zedlitz, J.: Filling a Wikibase instance with millions of data (2020), https://blog.
factgrid.de/archives/2013

https://github.com/UB-Mannheim/RaiseWikibase
https://www.berd-bw.de
https://www.berd-bw.de
https://doi.org/10.5281/zenodo.3621065
https://doi.org/10.5281/zenodo.3621065
https://doi.org/10.11588/heibooks.598.c8423
http://dx.doi.org/10.2139/ssrn.3770607
http://dx.doi.org/10.2139/ssrn.3770607
https://w.wiki/334L
https://doi.org/10.5281/zenodo.3246457
http://ceur-ws.org/Vol-2721/paper493.pdf
http://ceur-ws.org/Vol-2775/paper2.pdf
http://ceur-ws.org/Vol-2456/paper14.pdf
https://blog.opencorporates.com/2019/02/07/creating-the-german-open-company-data-how-we-did-it
https://blog.opencorporates.com/2019/02/07/creating-the-german-open-company-data-how-we-did-it
https://doi.org/10.1145/2629489
https://blog.factgrid.de/archives/2013
https://blog.factgrid.de/archives/2013

	RaiseWikibase: Fast inserts into the BERD instance

