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ABSTRACT

Quantization-aware Training (QAT) is able to reduce the training cost by quantiz-
ing neural network weights and activations in the forward pass and improve the
speed at the inference stage. QAT can be extended to Fully-Quantized Training
(FQT), which further accelerates the training by quantizing gradients in the back-
ward pass as backpropagation typically occupies half of the training time. Un-
fortunately, gradient quantization is challenging as Stochastic Gradient Descent
(SGD) based training is sensitive to the precision of the gradient signal. Particu-
larly, the noise introduced by gradient quantization accumulates during backward
pass, which causes the exploding gradient problem and results in unstable train-
ing and significant accuracy drop. Though Batch Normalization (BatchNorm) is a
de-facto resort to stabilize training in regular full-precision scenario, we observe
that it fails to prevent the gradient explosion when gradient quantizers are injected
in the backward pass. Surprisingly, our theory shows that BatchNorm could am-
plify the noise accumulation, which in turn hastens the explosion of gradients. A
BatchNorm rectification method is derived from our theory to suppress the ampli-
fication effect and bridge the performance gap between full-precision training and
FQT. Adding this simple rectification loss to baselines generates better results than
most prior FQT algorithms on various neural network architectures and datasets,
regardless of the gradient bit-widths used (8,4, and 2 bits).

1 INTRODUCTION

Quantization-aware Training (QAT) is a popular track of research that simulates the neural network
quantization (weights and activations) during the course of training to curb the inference-time accu-
racy drop of low-bit models (e.g. INT8 quantization). On the other hand, theoretical calculations
on the BitOps (Yang & Jin (2021); Guo et al. (2020)) computation costs can easily conclude that
backpropagation accounts for half of the computations during training. Empirical data1 shows back-
ward pass sometimes even costs more in practice. Decreasing the gradient bit-widths will apparently
reduce computation overheads of backpropagation Horowitz (2014). If variables in backward pass
are also quantized, adding up the forward quantization in QAT, all the network variables required in
training would be fully quantized and the whole training process could be accelerated on dedicated
hardware, i.e., Fully-Quantized Training (FQT), providing huge accessibility of large model training
to users with limited computation capability. Recent work Zhu et al. (2020) has shown that INT8
FQT speeds up the forward pass and the backward pass by 1.63× and 1.94× respectively when
training ResNet-50 on ImageNet with NVIDIA Pascal GPU.

Yet gradient quantization under the FQT scheme is vastly underexplored, as it is notoriously more
challenging than forward quantization in QAT. It is observed that network training is sensitive to the
precision of gradients, and low-bit gradient quantization leads to unstable training and significant
accuracy drop (see Fig. 1). More importantly, the accumulation of gradient quantization noise in
backward pass (see Fig. 2) causes the exploding gradient problem during backpropagation, even
resulting in training failure. In contrast to weight/activation quantization, gradient quantization noise
produced during backpropagation cannot be automatically corrected by optimizing objective loss.

Unlike prior works on optimizing gradient quantizers for quantization noise reduction Zhou et al.
(2016); Choi et al. (2018); Zhu et al. (2020), this paper reveals the negative effect of Batch Nor-

1https://github.com/jcjohnson/cnn-benchmarks
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malization (BatchNorm) on amplifying the gradient quantization noise accumulation, when training
deep Convolutional Neural Networks (CNNs) with low bit gradients. We show that the noise amplifi-
cation effect further explodes the gradients during the backward pass. We thus propose a BatchNorm
rectification method to suppress the noise amplification effect and alleviate the gradient explosion
problem, which in turn enables stabilized training and better accuracy at low-bit gradients.

Our contributions are summarized as follows:

• We discover that BatchNorm fails to prevent the exploded low-bit gradients in full-
quantized training through theoretic analysis, and may even amplify the accumulated gra-
dient quantization noise, which further aggravates the gradient explosion.

• According to our theory, we propose a simple yet effective BatchNorm variance rectifica-
tion algorithm without introducing noticeable overhead, to suppress the noise amplification
effect, resulting in alleviated gradient explosion.

• Extensive experiments on MNIST, CIFAR-10, and ImageNet show that our method
achieves improved training and higher accuracy over state-of-the-arts with vanilla gradi-
ent quantizers, regardless of the gradient bit-widths used (8,4,2 bits).

2 RELATED WORK

Quantization-Aware Training (QAT). DoReFa-Net Zhou et al. (2016) proposed to optimize the
clipping value and the scaling factor of the uniform quantizers for weights and activations separately.
It was validated on image classification task under multiple bit-widths, but only with the rather sim-
ple AlexNet architecture. PACT Choi et al. (2018) proposed to quantize the activations with a learn-
able layer-wise clipping value, which not surprisingly achieved better accuracy than DoReFa-Net
at 5-bit down to 2-bit. Most QAT works quantize weights and activations simultaneously, by opti-
mizing the uniform quantization parameters Zhang et al. (2018a); Esser et al. (2020); Bhalgat et al.
(2020), layer-wise or channel-wise mixed-precision quantization Jin et al. (2020); Lou et al. (2020),
or leveraging non-uniform quantization such as Logarithmic quantizer Miyashita et al. (2016) and
piece-wise linear quantizer Fang et al. (2020). Most recent QAT works Zhou et al. (2016); Choi
et al. (2018); Zhang et al. (2018a); Esser et al. (2020); Bhalgat et al. (2020) used “Straight-Through
Estimator” (STE) Bengio et al. (2013) to estimate the gradient of the non-differentiable quantization
function, while other work Gong et al. (2019) softened the linear quantization operation in order to
match the true gradient with STE.

Fully-quantized Training (FQT). FQT aims to accelerate and quantize the backward pass of net-
work training with low-bit error signals and gradients, agnostic to single machine or parallel training.
Early attempt Zhou et al. (2016) adopted a primitive quantizer design based on uniform quantizer
for gradients (without scaling and other optimization) and large performance drops are witnessed
when training with low-bit gradients. SBM Banner et al. (2018) adopted fixed-point 8-bit gra-
dient quantization, but only focused on improving the quantization schemes in the forward pass.
WAGEUBN Yang et al. (2020) quantized gradients to 8-bit integers, but also showed a huge per-
formance gap against its full-precision counterpart. NITI Wang et al. (2020) integrated gradient
calculations with parameter update operations to reduce the gradient quantization noise with well-
designed quantizers. However, it can only support shallow CNN architectures and did not explore
any deeper networks with BatchNorm. In Zhu et al. (2020), the authors considered the sharp and
wide distribution of gradients, and proposed to clip the gradients according to the deviation of the
gradient distribution before quantization, achieving on-par results with full-precision training. To
compensate the quantization loss on gradient, AFP Zhang et al. (2020) and CPT Fu et al. (2021)
used higher precision data to aid low-precision training. DAINT8 Zhao et al. (2021) adopted a be-
spoke 8-bit channel-wise gradient quantization to suppress the negative effect of quantization noise
during training. Gradient quantization with less than INT8 representations remains largely unex-
plored. FP4 Sun et al. (2020) managed to train modern CNN architectures using 4-bit gradients
without significant accuracy loss, but the gradients were represented as floating-point numbers.

Batch Normalization in QAT. Most QAT approaches either left BatchNorm in between parame-
terized layer (Conv/FC) and activation layer (ReLU) without quantization Zhou et al. (2016); Choi
et al. (2018) or with quantization Yang et al. (2020), or absorbed BatchNorm into Conv before
weight quantization in the forward pass Jacob et al. (2018), or directly trained a BatchNorm-free
shallow network architecture to achieve full 8-bit integer-only arithmetic Wang et al. (2020). To our
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Figure 1: Validation accuracy curve
of AlexNet on ImageNet with
W2A2dx3dW2 w/ or w/o the pro-
posed Lσ . (dx denotes error signal,
dW is gradients of weights, same
below).
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Figure 2: Illustration of gradient explosion problem
(measured by the variance of gradients across lay-
ers) with {2, 4, 8}-bit uniformly quantized gradients.
Statistics are computed from ResNet-20 on CIFAR-10
with 8-bit W/A. Y-axis is in log scale.

best knowledge, this paper is the first to systematically study the effect of BatchNorm on the training
stability of quantized networks with low-bit gradients.

Norm-free Networks. There is another interesting line of works that gets rid of normalization layers
from CNN architectures for good Zhang et al. (2018b) while still manages to train the full-precision
networks stably. However, there is still a lack of attempts to adapt norm-free networks to QAT or
even FQT settings at the first place, where potential problems need to be addressed when low-bit
quantizers are introduced. Therefore, we decide currently it is not mature enough to discuss this
track in this paper which targets at FQT.

Prior efforts reducing variances in backpropagation. Rectifying gradient variances during back-
propagation has been sporadically discussed for full-precision training, e.g. in Kaiming Initializa-
tion He et al. (2015) where it leverages weight distributions in Conv and FC layers and one can opt
for backward variance rectification if the gradients are observed to be chaotic. However, optimal for-
ward and backward rectification still cannot be satisfied simultaneously, especially when backward
signals contains significant amount of quantization noises. In our attempts, using “fan-out” mode in
kaiming initialization alone still cannot avoid training crashes in worse cases (e.g. MobileNet-V2
under W4A4G4). To our knowledge, there is no work studying the impact of normalization layers
in CNNs for gradient rectification under the FQT setting.

3 PRELIMINARIES

Key Notations. We denote the variance of a probabilistic variable as D(·). We denote gradient w.r.t.
weights as gw and error signal as gx. We use the plural term ”gradients” to generally refer to all
backward pass variables including gw and gx. In such contexts, subscripts of g are omitted. Similar
to the additive quantization noise for weight and activation quantization in Meller et al. (2019), the
quantized gradients g̃ at each layer can be decomposed into three parts:

g̃ = g + e(g) + δq(g), (1)

where g and e(g) denote the original gradients and the gradient quantization noise at current layer
respectively, and δq(g) represents the accumulated gradient quantization noise propagated from
all its succeeding layers during backward. E.g., for the (l − 1)th layer, δq(gal−1

) represents the
quantization noise accumulated from layer l to the last layer (see Fig. 3).

In this manuscript, we format the bit-widths of weights (W), activations (A), backward errors (dx)
and gradients of weights (dW ) used in experiments as W/A/dx/dW if error dx and gradients dW
are assigned different bit-widths, or simplified as W/A/G if dx and dW have the same bit-width.

Batch Normalization. Batch Normalization Ioffe & Szegedy (2015) is widely adopted technique
to stabilize the training of deep full-precision networks. The forward pass in a BatchNorm layer
consists of operations calculating the mean and variance of each channel over a mini-batch with N
input samples {xn}Nn=1. Each channel of the input xn is first normalized to x̂c = (xc − µc)/σc.
The normalized input x̂ is finally linearly scaled and shifted as y = γ⊺x̂ + β. The relationship
between backward error on BatchNorm’s input xn and that on x̂n is: (we omit channel notations
here for simplicity)
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Figure 3: Illustration of weight/activation quantization in forward pass and gradient quantization in
backward pass. MAC denotes the multiply–accumulate operations. Q(.) denotes the quantizer for
weights (W), activations (A), or Gradients (G). In backward pass, the gradient quantization noise
δq(gal−1

) accumulated from the lth layer to the last layer is propagated to the (l − 1)th layer and
added to the (l − 1)th layer’s gradient quantization noise e(gal−1

) induced by itself.

gxn =
1

Nσ

[
Ngx̂n

−
N∑

n=0

gx̂n
− x̂n

N∑
n=0

gx̂n
x̂n

]
. (2)

4 PROBLEM IDENTIFICATION: ACCUMULATION OF GRADIENT
QUANTIZATION NOISE EXPLODES GRADIENTS

Gradients play a crucial role in backpropagation based optimization and make a huge impact on
training stability and convergence speed. Intuitively, as we inject quantizers in between backward
pass, the error signal become more and more noisy each time it passes through a quantizer. As the
bit-width decreases, the quantization noise injected in error signal at each single layer increases ex-
ponentially. From a perspective of variance, since quantization introduces additive noise e(g) to the
original signal g, the variance of quantization noise D(e(g)) is also added to the error signal D(g),
which will be reflected in the propagated errors and will increase over the course of backpropaga-
tion. As shown in Fig. 2, under various bit-width of gradients, we observe the variance of quantized
error signals expanded during backpropagation. As the bit-width decreases, the variance also in-
flated much more drastically on shallow layers than late layers, implying that quantization noise is
the culprit of the variance accumulation and explosion. As a result, the quantization impact on error
signal and the weight update are severely affected, especially in those early layers. Eventually in
worse cases when the accumulated quantization noise is overwhelming, the training goes off nature
course and crashes. (e.g. under extremely low bit-width Fig. 7)

Fig. 3 provides a glance at the accumulation mechanism of the gradient quantization noise in the
backward pass. During backpropagation, the quantization of the error signal on the lth layer intro-
duces the quantization noise denoted as e(gal

). e(gal
) is propagated to its predecessor - the (l−1)th

layer, together with the gradient quantization noise δq(gal
) accumulated from the (l + 1)th layer to

the last layer L. Similarly, e(gal−1
) and δq(gal−1

) are propagated to the (l − 2)th layer, and so on.

As shown in Fig. 3, both forward and backward pass have similar accumulation phenomenon, but
why backward pass suffers more from the quantization during training? This is because quantization
noise introduced in the forward pass are reflected in the computation graph w.r.t. the objective loss,
therefore their impact can be partially offset by quantization-aware training, while quantization noise
introduced during backward does not contribute to the objective loss.

In view of some cases under the setting of distributed gradient compression Alistarh et al. (2017),
which only quantizes full-precision gradients after backpropagation is done, can stably train CNNs
with as low as 4-bit gradients, we attribute the exploding gradient problem in FQT setting mainly to
the accumulation of gradient quantization noise introduced by low-bit gradient quantizers.

5 BATCHNORM AMPLIFIES THE ACCUMULATED NOISE

In this section, we develop a theoretical framework to understand the role of BatchNorm in gradient
quantization, explaining why BatchNorm may worsen the gradient explosion problem in FQT. One
can refer to Appendix A.2 for the proofs of the theorems.
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Quantifying the impact of BatchNorm on Noise Accumulation. Through theoretical studies,
we find that BatchNorm may amplify the accumulation of gradient quantization noise. This finding
might be counter-intuitive as BatchNorm has been expected to regularize the “variance” and prevent
the gradient explosion problem, by scaling the activations in forward pass. However, not only vanilla
BatchNorm mainly focuses on rectifying variances in forward pass, but also does not count in the
situation where the gradient signals are noisy. When error signal passes through such scaling layer
inside BatchNorm, the error signal is also scaled by the reciprocal of the corresponding scaling
factor (σ) when calculating its derivative. When training process is in full-precision, such scaling
on error signal is manageable. But when the error signal contains accumulated noise from previous
layers, the noise is scaled at the same time, causing unpredictable behavior to the backpropagation.
Hence our theoretical focus is fundamentally different from previous “variance rectification and
reduction” studies.

The following theorem quantifies how specifically BatchNorm affects the accumulation effect.
Assumption 1. δq(gx̂i

) and x̂i are i.d.d. and are both zero-mean Zhao et al. (2021).

Theorem 1. Given Assumption 1, for a BatchNorm layer in a quantized network, the relationship
between the gradient quantization noise w.r.t. the BatchNorm’s input xi and that of the normalized
input x̂i depends on the σ of BatchNorm with batch size N , in the form of

η =
D(δq(gxi

))

D(δq(gx̂i
))

=
1

N2σ2
(N2 + 2N). (3)

Remark 1.1. In Eq. (3), we define the amplification factor of the accumulated noise as η, which
is the ratio of statistical variances between the scaled error signal δq(gxi

) and one before scaling
δq(gx̂i

) (see Fig. 4).
Corollary 1.1. To prevent BatchNorm from introducing more gradient quantization noise (i.e. the
statistical variance D(δq(gx̂i

))) when propagating the error signal to preceding layers, a desirable
η∗ should not be greater than 1. Thus, a desirable σ of the BatchNorm should be σ ≥ σ∗ =√

1 + 2
N .

Scaling
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Figure 4: Illustration of gradient
propagation inside BatchNorm.

In short, Theorem 1 studies the amplification factor η over
the accumulated gradient quantization noise when gradient
passes through BatchNorm scaling, and Corollary 1.1 provides
a close form solution of the ideal condition of the BatchNorm
variance σ to satisify minimum noise accumulation.

As the accumulated quantization noise during backward can-
not be automatically amortized by the training objective in
FQT, ones are left with only options to either (1) minimize
the primary source of noise by improving gradient quantizer
design, or (2) minimize the accumulation of such noise. With
the first choice being obvious, in this paper, we instead aim to
raise people’s awareness about the second choice and the importance of properly scaling the noisy
error signal to alleviate noise amplification problem in backward pass and the eventual training sta-
bility.

6 OUR METHOD: RECTIFYING BATCHNORM FOR GRADIENT QUANTIZATION

Inspired by our theory in Sec. 5, we develop a solution to suppress the noise amplification effect in
a principled way, which in turn reduces the gradient explosion for improved training of quantized
networks with low bit gradients. Based on Theorem 1 and Corollary 1.1, we expect the σ to be
larger than the ideal value σ∗, so that the noise amplification factor η =

D(δq(gxi
))

D(δq(gx̂i
)) between the

output and the input of BatchNorm is minimized. Therefore, we propose a method to stabilize the
training with low bit gradients, by rectifying the variance of BatchNorm computed in forward pass:

min. f(w)

s.t. Lσ =
1

L

L∑
l=1

MSE
(
min

(σl

σ∗ , 1
)
, 1
)
= 0,

(4)
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where f : S → R is the regular objective loss (e.g., cross-entropy loss for classification) and w ∈ S
denotes neural network weights. σL = {σl}Ll=1 is the set of σ from all BatchNorm layers in the
network with depth L. We use Mean Square Error (MSE) between σl

σ∗ and 1 to enforce that σl at
each BatchNorm layer approaches to σ∗. The Lagrangian dual approximation form of Eq. (4) is:

f ′(w) = f(w) + λLσ, (5)

where λ is an adjustable parameter to balance f(w) and the proposed rectification loss Lσ .

Gradient Computation and Computation Overhead. The overhead introduced by our proposed
rectification term only has linear time complexity. During backpropagation, the error signal of
rectification term Lσ when propagated to BatchNorm’s input x on channel i at layer l is:

∂Lσ

∂ai
l

=

{
2

σ∗N ( 1
σ∗ − 1

σi
l

)(ai
l − µi

l), σi
l < σ∗;

0, otherwise
, (6)

where σ∗, N and channel-wise BatchNorm parameters µi
l, σ

i
l are all constant scalars during back-

propagation, showing the added rectification is very cheap and negligible when training on devices
capable of vectorized computation optimization including GPUs. More detailed analysis can be
found in Appendix A.4.

7 EXPERIMENTS

To evaluate our method, we conduct extensive experiments on various neural network architectures
and popular datasets for image classification with low-bit gradients.

Experimental Setup. To highlight the impact of BatchNorm, we only use two vanilla quantizers for
gradients in all experiments without any optimizations: uniform quantizer and logarithmic quantizer
(see Appendix A.1). Our method introduces only one hyper-parameter λ in Eq. (5), which is manu-
ally initialized then can be ramped down by the cosine rule during training or stay the same. For each
parametrized layer in backpropagation, the gradient gw and error signal gx are quantized separately,
and they can be quantized to different bit-widths. To evaluate our rectification method, we ensure
all the used CNN architectures have BatchNorm layers, including ShallowNet and AlexNet-BN, the
architecture details of which are listed in Appendix A.3. More details are listed in Appendix A.4

7.1 MAIN RESULTS

INT8 comparisons. We compare our method (training with Lσ) to state-of-the-art gradient quan-
tization approaches reporting results with 8-bit gradients: UI8 Zhu et al. (2020), FP8 Wang et al.
(2018), AFP Zhang et al. (2020), SBM Banner et al. (2018), DAINT8 Zhao et al. (2021). Using 8-bit
Logarithmic quantizer for gradients and the proposed rectifier Lσ , Tab. 1 shows that our method out-
performs the state-of-the-arts in almost all cases, despite that we simple use vanilla quantizers on the
gradient, while the quantizer designs of the counterparts are heavily engineered, e.g. DAINT8 Zhao
et al. (2021) adopts vector quantization to process error signal in channel-wise manner. We found
that MobileNet-V2 on ImageNet is harder to train with 8-bit gradients with vanilla quantizer designs
even training with our Lσ , ending up with around 1% accuracy drop than SOTA Zhao et al. (2021).
As an ablation, for ResNet-20 on CIFAR10, our method boosts the accuracy by 1% from baseline
training (w/o Lσ), also for ResNet-18 on ImageNet, Lσ achieves almost 2% improvement.

Comparisons on 4-bits gradients. Since there are very few works on quantized neural networks
with less than 8-bit gradients, we compare our method to a 4-bit floating-point quantization method
named FP4 Sun et al. (2020) which actually adopt 4 bit floating-point representations, and the base-
line which is without the proposed Lσ . As shown in Tab. 2, we observe that in most cases our
method with INT4 gradient quantization reports higher accuracy than FP4 Sun et al. (2020), despite
FP4 Sun et al. (2020) adopts floating-point quantization with customized radix and scaling selec-
tions. We also observe that our method (w/ Lσ) performs better than the baseline, further verifies the
effectiveness of the proposed Lσ . On the other hand, we observe MobileNet-V2 with INT4 gradi-
ents is still unstable and hard to converge even with our rectification method deployed (it explained
why most FQT works did not report results for INT4 gradients on MobileNet-V2). Thus, we’d like
to leave the FQT of MobileNet-V2 for future work.
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Dataset Arch Method Top-1

CIFAR-10

ResNet-20

UI8 92.0
FP8 92.2

DAINT8 92.8
w/o Lσ 91.9

Ours 92.9

Mobile-V2

UI8 93.4
DAINT8 94.4
w/o Lσ 94.5

Ours 94.6

ImageNet

ResNet-18

UI8 69.7
FP8 67.3

DAINT8 70.2
SBM 69.6

w/o Lσ 69.1
Ours 70.9

ResNet-50

UI8 76.3
SBM 76.3

DAINT8 76.6
AFP 76.2

w/o Lσ 76.4
Ours 76.8

Mobile-V2

UI8 71.2
DAINT8 71.9

AFP 70.5
w/o Lσ 70.74

Ours 70.9

Table 1: Comparing state-of-the-art methods with
bit-width W8A8G8. (Mobile-V2=MobileNet-V2)

Dataset Arch Method Top-1

CIFAR-10

VGG-16
FP4 91.5

w/o Lσ 90.7
Ours 92.5

ResNet-18
FP4 92.7

w/o Lσ 93.7
Ours 94.0

ImageNet

AlexNet-BN
FP4 56.3

w/o Lσ 57.2
Ours 57.3

ResNet-18
FP4 68.3

w/o Lσ 69.61
Ours 69.71

ResNet-50
FP4 74.01

w/o Lσ 73.67
Ours 73.4

Table 2: Comparison with FP4 gradient quanti-
ation with bit-width W4A4G4. Log-INT4 quan-
tizer is used for gradients.

λ 0.1 0.25 0.5 1

Top-1 (%) 68.6 68.4 70.1 67.0

Table 3: Effect of λ for training quan-
tized ResNet-18 on CIFAR-10 with bit-width
W2A2G2.

7.2 EXTREMELY LOW BIT-WIDTHS

Despite scarce exploitation in the wild and the challenges, we further attempt to quantize gradients to
even lower bit-widths, with different backbone network architectures, bit-widths combinations, and
gradient quantizers, to further evaluate the theoretical capability of the proposed rectifier Lσ . When
gradients are quantized to very low bit-widths, we expect the training becoming extremely unstable
as the quantization noise and eventually the accumulation effect becoming much severer. Consider-
ing the increased training instability, we perform three independent trials for each experiments and
report the comprehensive scores as (mean±std).

Simple network architectures. As shown in Tab. 4, we first study the training of a two-layer
quantized neural network ShallowNet on MNIST. We set the bit-width for weights, activations, and
gradients as 2-bit (W2A2G2) and use Logarithmic quantizer for gradients. We observed that baseline
training without Lσ crashed twice out of 3 repetitive runs, while the training with the proposed Lσ is
stable throughout. In other words, our method outperforms the baseline by a large margin, improving
the average accuracy by +54.4% (from 38.8% to 93.2%).

On larger dataset ImageNet, we also have the similar observation for AlexNet-Bn, where baseline
method fails to train completely while our method with Lσ can train stably throughout three trials.

More complex network architectures. We further test the effectiveness of our method in FQT
training of networks with more complex structures. We push the boundary of the lowest bit-widths
settings we can achieve, as lowest as e.g. W2A2G2 on ResNet-18 in Tab. 5. We observed that the
FQT on VGG-16 is slightly more sensitive to the quantization than ResNet-18, thus we have to set
higher bit-widths for VGG-16. We also notice that on VGG-16, error (dx) requires more bit-width
than gradients w.r.t. weights (dW ). In all, our method performs consistently better than the baseline
(w/o Lσ) on all settings, in particular, the performance gain on VGG-16 is significant.

As an additional remark, we notice that compared to other models, ResNets are more robust against
more quantization noise throughout our experiments as suggested in Tab. 2 and Tab. 5. We conjec-
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(a) Training Loss for Shal-
lowNet@MNIST.

(b) Training Loss for VGG-
16@CIFAR-10.

(c) Training Loss for ResNet-
18@CIFAR-10.

(d) Test Acc. for Shal-
lowNet@MNIST.

(e) Test Acc. for VGG-
16@CIFAR-10.

(f) Test Acc. for ResNet-
18@CIFAR-10.

Figure 5: Illustration of stabilized training of quantized networks with lower than 4-bit gradients w/
Lσ , compared to the baseline w/o Lσ . Our method (w/ Lσ) shows higher averaged accuracy and
lower variance across repeated runs. X-axis in all sub-figures represents epochs.

Bit-widths Lσ
Runs Avg Top-1 (%) Diff. (%)(W/A/dx/dW ) #1 #2 #3

ShallowNet on MNIST

2/2/2/2 w/o 10.0 94.9 11.4 38.8± 48.7 -
w/ 92.0 94.4 93.3 93.2± 1.1 +54.4

AlexNet-BN on ImageNet

2/2/3/2 w/o - - - - -
w/ 47.6 49.46 46.53 47.86± 1.48 +47.86

Table 4: Ablations of Lσ under extremely low bit-widths. Scores in red denotes failed train.

ture that it is due to the full-precision shortcuts within, making them naturally more robust against
the accumulation effect during backward pass. Theoretical investigation towards this phenomenon
would be an interesting future research topic.

7.3 OTHER DISCUSSIONS

Can Lσ stabilize training? Fig. 5 illustrates the improved training of quantized networks with less
than 4-bit gradients, thanks to the rectification loss Lσ . Fig. 5a and Fig. 5d are ShallowNet trained
on MNIST for bit-width configuration W2A2G2 with Logarithmic gradient quantizer. Fig. 5b and
Fig. 5e are VGG-16 trained on CIFAR-10 for W4A4dx4dW2 with Logarithmic gradient quantizer.
Fig. 5c and Fig. 5f are ResNet-18 trained on CIFAR-10 for W4A4G4 with uniform gradient quan-
tizer. We plot out the average loss/accuracy (AVG) and standard deviation of loss/accuracy (STD)
of 3 trails separately. From Fig. 5a, Fig. 5b and Fig. 5c, we observe that the rectification loss Lσ

dominates the training loss for the first few epochs, forcing the optimization adapted to the low-bit
gradients. Afterwards, the training process becomes much more stable with training loss decreased
and test accuracy increased gradually (see Fig. 5d, Fig. 5e and Fig. 5f). On the contrary, training
without Lσ is not able to suppress the negative effect of gradient quantization noise, resulting in
training instability or even crash.

Can Lσ suppress the noise amplification effect? To verify such stabilizing effect indeed comes
from the proposed rectification, we further studies its impacts on gradient distribution layer by layer.
Fig. 6 illustrates the distribution of variances of gradients w.r.t. layer output activations when training
quantized VGG-16 on CIFAR-10 with bit-width W4A4dx4dW2. By injecting the rectification loss
Lσ defined on BatchNorm in training objective function, one can see the noise amplification effect is
largely suppressed, and thus the gradients are less exploded (measured by the variances of gradients).
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bit-widths
(W/A/dx/dW )

Gradient
Quantizer Lσ

Avg
Top-1 (%)

VGG-16

4/4/4/2 Uniform w/o 50.0± 8.4
w/ 66.7± 8.7

4/4/4/2 Logarithm w/o 66.8± 4.9
w/ 71.0± 5.4

ResNet-18

2/2/2/2 Uniform w/o 70.0± 1.5
w/ 71.0± 0.8

2/2/2/2 Logarithm w/o 59.9± 2.1
w/ 61.6± 2.0

Table 5: Ablations of Lσ and quantizers under extremely low bit-widths.

Figure 6: Distribution of variances of
gradients w.r.t. activations when train-
ing VGG-16 on CIFAR-10 with bit-width
W4A4dx4dW2. Logarithmic quantizer is
used for gradients.

Figure 7: Train loss curve of AlexNet on Im-
ageNet with W4A4dx4dW2 w/ or w/o Batch-
Norm. (dx denotes error signal, dW is gradients
of weights, same below).

As a result, it help prevent crashing in training with low bit gradients (see NaN at the 2.4kth iteration
for training without Lσ).

Effect of λ. As shown in Tab. 3, we study the effect of the hyper-parameter λ when training quan-
tized ResNet-18 on CIFAR-10 with bit-width W2A2G2. The optimal values of λ for different ex-
periments could be different and we heuristically tune them separately.

Can BatchNorm layer be discarded when training with low-bit gradients? Since BatchNorm
amplifies the accumulated quantization noise during backpropagation, one may argue that a straight-
forward way to prevent the noise amplification effect is removing BatchNorm layer from the net-
work architecture. To verify the point, we conducted experiments on training AlexNet with or
without BatchNorm under W4A4dx4dW2 using logarithmic quantizer. As shown in Fig. 7, train-
ing AlexNet without BatchNorm quickly collapsed in the early stage in training. This implies that
at the moment BatchNorm is still an essential building block to deep CNNs training for its rectify-
ing benefits mainly in forward pass, while our rectification method complementarily stabilizes the
backward pass, at least in the case when quantization is applied especially in FQT.

8 CONCLUSIONS

In this paper, we study an under-explored factor causing the gradient explosion problem when train-
ing deep CNNs with low-bit gradients, from a theoretical perspective. Our theory sheds light on
the negative effect of BatchNorm in amplifying the accumulated gradient quantization noise during
backpropagation, which leads to unstable training or even crash. The theory inspires a simple yet
effective method to stabilize FQT with low-bit gradients, which consistently brings performance
gain on a wide range of CNNs and datasets compared to state-of-the-art FQT algorithms.
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A APPENDIX

A.1 GRADIENT QUANTIZER CHOICES

For gradient quantization, in each layer, the full-precision error dx and gradient dW are quantized,
then de-quantized, and the quantized error propagated back to the next layer during backward pass
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Zhou et al. (2016); Zhu et al. (2020); Yang et al. (2020); Wang et al. (2018). Uniform quantizer is
the default and common choice gradient quantization, where given the gradients g ∈ {dx,dW}, the
asymmetric uniform quantizer with bit-width B and quantization levels ranging from [a, b] can be
formulated as:

gq = Quantu(g
′, a, b, B) = round

(
clip(g′, a, b) · 2

B−1 − 1

b− a

)
, (7)

where g′ = g+ δq(g) (see Sec. 3 for details) and clip(x, a, b) = min(max(x, a), b). The quantized
gradients are de-quantized as g̃ = gq · b−a

2B−1−1
. Similarly, the symmetric uniform quantizer can be

defined as Quants = Quantu(g,−c, c, B) where the c is the clipping value.

We also explored logarithmic quantizer Miyashita et al. (2016) in this paper for gradient quantization
given by:

gq = Quantlog(g
′, c, B) =

{
sign(g′) · 2Quantu(log2 |g′|,log2 (c)−2B−1,log2 (c),B), g′ ̸= 0;

0, g′ = 0
(8)

A.2 QUANTIFYING THE AMPLIFICATION EFFECT IN GQNA

Theorem 1. For a BatchNorm layer within a quantized network, the relationship between gradient
quantization error of BatchNorm’s input xi and that of the normalized input x̂i only depends on the
batch size N and the σ of BatchNorm, in the form of

D(δq(gxi))

D(δq(gx̂i
))

=
1

N2σ2
(N2 + 2N). (9)

Proof. First we extend the Eq.2 to its quantized counterpart:

g̃xi
=

1

Nσ

[
N g̃x̂i

−
N∑
i=0

g̃x̂i
− x̂i

N∑
i=0

g̃x̂i
x̂i

]
(10)

and

e(gxi) =
1

Nσ

[
Ne(gx̂i

)−
N∑
i=0

e(gx̂i
)− x̂i

N∑
i=0

e(gx̂i
)x̂i

]
. (11)

Expand Eq. (10) using Eq. (1):

gxi
+ δq(gxi

) + e(gxi
) =

1

Nσ

[
N(gx̂i

+ δq(gx̂i
) + e(gx̂i

))−
N∑
i=0

(gx̂i
+ δq(gx̂i

) + e(gx̂i
))

−x̂i

N∑
i=0

(gx̂i
+ δq(gx̂i

) + e(gx̂i
))x̂i

]
. (12)

Eliminating terms in Eq. (12) using Eq. (1) and Eq. (11), we have:

δq(gxi) =
1

Nσ

[
Nδq(gx̂i

)−
N∑
i=0

δq(gx̂i
)− x̂i

N∑
i=0

δq(gx̂i
)x̂i

]
. (13)

Calculate the variance D(·) of LHS and RHS of the above we have: (assume δq(gx̂i
) and x̂i are

i.d.d. and are both zero-mean)

D(δq(gxi
)) =

1

N2σ2
D

(
Nδq(gx̂i

)−
N∑
i=0

δq(gx̂i
)− x̂i

N∑
i=0

δq(gx̂i
)x̂i

)
(14)

=
1

N2σ2

[
N2D(δq(gx̂i

)) +D

(
N∑
i=0

δq(gx̂i
)

)
+D

(
x̂i

N∑
i=0

δq(gx̂i
)x̂i

)]
(15)

=
1

N2σ2

[
N2D(δq(gx̂i

)) +

N∑
i=0

D(δq(gx̂i
)) +D

(
x̂i

N∑
i=0

δq(gx̂i
)x̂i

)]
(16)
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=
1

N2σ2

[
N2D(δq(gx̂i

)) +ND(δq(gx̂i
)) +D(x̂i)

N∑
i=0

D(δq(gx̂i
))D(x̂i)

]
(17)

=
1

N2σ2

[
N2D(δq(gx̂i

)) +ND(δq(gx̂i
)) +ND(δq(gx̂i

))
]

(18)

=
1

N2σ2

[
N2D(δq(gx̂i

)) + 2ND(δq(gx̂i
))
]

(19)

=

[
1

σ2
+

2

Nσ2

]
D(δq(gx̂i

)). (20)

Therefore,
D(δq(gxi

))

D(δq(gx̂i
))

=
1

σ2
+

2

Nσ2
=

1

N2σ2
(N2 + 2N). (21)

A.3 ARCHITECTURE DETAILS

ShallowNet.

class ShallowNet(nn.Module):
def __init__(self):

super().__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.bn1 = nn.BatchNorm2d(20)
self.relu1 = nn.ReLU(inplace=False)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.bn2 = nn.BatchNorm2d(50)
self.relu2 = nn.ReLU(inplace=False)
self.pool2 = nn.MaxPool2d(2, 2)
self.avgpool = nn.AvgPool2d(4, stride=1)
self.fc = nn.Linear(50, 10)

def forward(self, x):
x = self.pool1(self.relu1(self.bn1(self.conv1(x))))
x = self.pool2(self.relu2(self.bn2(self.conv2(x))))
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x

AlexNet-BN.

class AlexNetBN(nn.Module):
def __init__(self, num_classes=1000):

super(AlexNetBN, self).__init__()
self.features = nn.Sequential(

nn.Conv2d(3, 96, kernel_size=12, stride=4),
nn.ReLU(inplace=True),

nn.Conv2d(96, 256, kernel_size=5, padding=2, groups=2,
bias=False),↪→

nn.BatchNorm2d(256, eps=1e-4, momentum=0.9),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
nn.ReLU(inplace=True),

nn.Conv2d(256, 384, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(384, eps=1e-4, momentum=0.9),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
nn.ReLU(inplace=True),

nn.Conv2d(384, 384, kernel_size=3, padding=1, groups=2,
bias=False),↪→
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nn.BatchNorm2d(384, eps=1e-4, momentum=0.9),
nn.ReLU(inplace=True),

nn.Conv2d(384, 256, kernel_size=3, padding=1, groups=2,
bias=False),↪→

nn.BatchNorm2d(256, eps=1e-4, momentum=0.9),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.ReLU(inplace=True),

)

self.classifier = nn.Sequential(
nn.Linear(256 * 6 * 6, 4096, bias=False),
nn.BatchNorm1d(4096, eps=1e-4, momentum=0.9),
nn.ReLU(inplace=True),
nn.Linear(4096, 4096, bias=False),
nn.BatchNorm1d(4096, eps=1e-4, momentum=0.9),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),

)

def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), 256 * 6 * 6)
x = self.classifier(x)
return x

A.4 TRAINING SETTINGS AND HYPER-PARAMETERS

Following Sun et al. (2020), we adopt Parameterized Clipping Activation (PACT) Choi et al. (2018)
for activation quantization and Statistics Aware Weight Binning (SAWB) Choi et al. (2019) for
weight quantization. We choose the SGD optimizer and train all quantized network models from
scratch. The learning rate is adjusted with a cosine scheduler (Loshchilov & Hutter (2017)). For
MNIST, we set the learning rate as 0.1, weight decay as 0.0001, and train for 20 epochs. For
CIFAR-10, we set the learning rate as 0.1 for all architectures, weight decay 0.0001 for ResNet-18
and VGG-16, and weight decay 0.0004 for MobileNet-V2. For ImageNet, we set the learning rate
as 0.0512 and weight decay as 0.0001 for ResNet-18, learning rate 0.01 and weight decay 0.0005
for AlexNet, and learning rate 0.1 and weight decay 0.00004 for MobileNet-V2. All models on
CIFAR-10 and ImageNet are trained for 120 epochs, except for MobileNet-V2 that is trained for 150
epochs. For ImageNet, training images are randomly cropped to 224×224 and then randomly flipped
horizontally. For experiments on MNIST and CIFAR-10, we repeat the training of each model for 3
runs by varying the random seed and report the average accuracy with standard deviation. Same as
other INT8 works Zhu et al. (2020), we left the first and the last weighted layers as well as activations
in full-precision for all INT8 experiments. For INT4 experiments, we followed the setting in Choi
et al. (2019) that only left shortcut layers in ResNets in full-precision and quantized all other layers.

We specify the choices of λ and its ramping down strategy as below.

Comparing SOTA with 8-bit gradients

Dataset Arch λ Ramping down?

CIFAR-10 ResNet-20 0.5 N
MobileNet-V2 0.5 N

ImageNet
ResNet-18 0.5 N
ResNet-50 0.5 N

MobileNet-V2 0.5 N

Table 6: Comparing state-of-the-art with 8-bit gradients.

Comparing SOTA with 4-bit gradients

Experiments with lower-than-4-bit gradients
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Dataset Arch λ Ramping down?

CIFAR-10 VGG-16 0.5 Y
ResNet-18 0.5 Y

ImageNet AlexNet 0.5 N
ResNet-18 0.5 Y

Table 7: Comparing our 4-bit fixed-point gradient quantization to the 4-bit floating-point gradient
quantiation FP4 Sun et al. (2020).

bit-widths
(W/A/dx/dW )

Gradient
Quantizer λ Ramp down?

ShallowNet on MNIST
2/2/2/2 Uniform 0.1 N

VGG-16 on CIFAR-10
4/4/4/2 Uniform 0.5 Y
4/4/4/2 Logarithm 0.5 Y

ResNet-18 on CIFAR-10
2/2/2/2 Uniform 0.5 Y
2/2/2/2 Logarithm 0.1 Y

Table 8: Less than 4-bit gradients.

A.5 DETAILED ANALYSIS OF COMPUTATION OVERHEAD

To more directly derive in the linear complexity conclusion, one can simplify Eq. (6) into ∂Lσ

∂al
=

C1 ⊙ al +C2, where ⊙ denotes the element-wise multiplication, C1,C2 are both constant tensors
with the same shape as al. The partial derivative ∂Lσ

∂al
is further aggregated with the error signal

from objective function ∂f(w)
∂al

to compute the gradient w.r.t. weights ∂f ′(w)
∂wl

. Here Lσ introduces
no extra computation cost.

Tab. 9 gives an empirical verification of the actual training overhead of our method compared to the
baseline.

Dataset Arch w/o Lσ Ours Diff.

ImageNet
ResNet-18 43.4 44.6 0.67%
ResNet-50 143.32 152.58 6.46%

MobileNet-V2 162.4 171.2 5.41%

Table 9: Comparison of training time (hours).

A.6 DETAILED ABLATIONS ON HYPER-PARAMETER (ON HIGHER BIT-WIDTHS)

To comprehensively evaluate the influence of the choices of hyper-parameter λ, we further tested
the model performance on higher bit-width.

Tab. 10 shows the results under different λ values of ResNet-18 on CIFAR-10. The quantizer choice
for gradients is log quantizer.

λ 0 0.1 0.25 0.5 1
Top-1 (%) 93.7 93.88 93.57 94.0 93.71

Table 10: Ablation study of λ under bit-widths W4A4G4.
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