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ABSTRACT

Spatial autocorrelation is a popular concept in geography to measure the neighborhood
dependencies of continuous random variables with geographic coordinates, such as tem-
perature measures or house prices. However, in the real world, the data associated with a
given location is often more complex than a simple scalar value, such as images or text.
Here, we introduce Embedding Local Spatial Autocorrelation, a new statistic to measure
spatial interdependencies of data embeddings at a given location. ELSA adapts and ex-
pands one of the most central concepts in geography for the age of Al and its central data
structure: embeddings. We highlight the utility of ELSA as a measure of spatial homo- and
heterogeneity. Focusing on image embeddings, we provide experiments on using ELSA
to identify geographic clusters, outliers and for spatial analytics of model error terms. We
also comment on further potential applications of ELSA and discuss the shortcomings of
our approach.

1 INTRODUCTION

The first law of geography famously states that “All things are related but near things are more related” Tobler
(1970). This core idea of geospatial data science is captured within the concept of spatial autocorrelation—
and several metrics exist to quantify it. Most popular of these is the Moran’s I, introduced originally by
Moran| (1950) as a global, dataset-level measure, and expanded into its local, observation-level version,
refereed to as “Lisa” (local indicators of spatial autocorrelation), by |Anselin| (1995).

Moran’s I statistics assess how a variable correlates with itself across space. The Global Moran’s I provides
an overall measure for the entire study area, indicating whether the pattern is clustered, dispersed, or random.
The Local Moran’s I, on the other hand, identifies clusters or outliers at specific locations. To give an
illustrative example, let’s consider the prices of houses within a city: a high Global Moran’s I might indicate
that high-priced homes are generally clustered together. Local Moran’s I values can be used to pinpoint
specific neighborhoods where this clustering is particularly strong or where there are anomalies, such as a
high-priced home in a low-priced area. These metrics help geographers and practitioners like policymakers
identify spatial patterns and e.g. target interventions.

Moran’s I is limited to continuous random variables and a assumes a single, continuous scalar value (e.g.
house price) for each location. As such, its use cases are limited to datasets that fulfill this requirement. In
the real world, however, we often have more complex datatypes associated with a location, for example a
social media post or a satellite image. These complex datatypes are often represented in vector embeddings,
obtained via (pretrained) encoder models such as CLIP |Radford et al|(2021)). In this study, we develop
a local spatial autocorrelation metric for data embeddings, allowing for the convenient analysis of spatial
interdependencies of e.g. image and text data with geographic coordinates.
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Our Embedding Local Spatial Autocorrelation (ELSA) metric is inspired by the local Moran’s I, but lever-
ages cosine similarities as a more suitable distance function between embedding spaces. Having a better
intuition of spatial autocorrelation for images and text data can be useful in many different ways. For ex-
ample, ELSA could help detect regions with similar or dissimilar land cover types from satellite imagery,
helping to monitor environmental changes such as deforestation or urban sprawl. By identifying clusters
of similar land cover, researchers can identify areas experiencing rapid change or anomalies, such as unex-
pected vegetation loss in a typically forested area. ELSA might further be used to analyze predictive models
and their performance in different geographic areas, identifying areas of relative spatial heterogeneity as
more difficult to classify than areas of relative spatial homogeneity.

This study details the design of the ELSA metric and highlights its computation and use on real-world image
datasets. Our contributions can be summarized as follows:

* We propose ELSA, a first of its kind measure of local spatial autocorrelation for data embeddings.

* We introduce a permutation testing regime allowing for seamless testing of statistical significance
of the ELSA metric.

* Across several different image datasets, We run experiments highlighting the utility of ELSA
for identifying geographic clusters of homogeneous data, detecting outliers, and for identifying
difficult-to-predict data samples.

2 RELATED WORK

2.1 SPATIAL AUTOCORRELATION

Moran’s I, introduced by Patrick A. P. Moran in 1950 Moran|(1950), is one of the earliest and most widely
used measures of spatial autocorrelation. It quantifies the degree to which a variable is similarly distributed
across space, capturing the correlation between a variable at one location and the same variable at neigh-
boring locations. Negative values of the statistic imply spatial dispersion, while positive values indicate
clustering, and values around zero indicate spatial randomness. Moran’s I laid the foundation for spatial
statistics by formalizing the concept of spatial dependence in quantitative terms, and it has since become an
essential concept in academic disciplines such as econometrics Jin & Lee|(20135), geology [Tepanosyan et al.
(2019), and ecology |Diniz-Filho et al.|(2003).

While Moran’s I is the most popular, there exist several other, related metrics for spatial autocorrelation:
Geary’s C|Geary| (1954)), inversely related to the Moran’s I, computes spatial autocorrelation using sum of
squared distances, as opposed to Moran’s I use of standardized spatial covariances. Other notable methods
include the Getis-Ord statistics |Getis & Ord|(1992)) for hotspot analysis. Just like the Moran’s I, the Getis-
Ord statistic also has been expanded into a localized version |Ord & Getis| (1995). Recent years have seen
the emergence of expansions of Moran’s I and other spatial autocorrelation metrics to spatio-temporal data
Shen et al.|(2016); Klemmer et al.|(2022) and multivariate data /Anselin|(2019); |Lin| (2023)); [Yamadal (2024).
However, existing multivariate spatial autocorrelation statistics all rely on notions of Euclidean distance and
are thus less applicable to embedding spaces.

2.2 MACHINE LEARNING FOR & WITH GEOGRAPHIC DATA

As with other domains, machine learning is becoming increasingly popular for geospatial data, owing espe-
cially to its high scalability. Impactful applications of modern machine learning and deep learning techniques
in the area include for example land-cover mapping RuSwurm et al.|(2020), monitoring of global fishing ac-
tivities |Paolo et al.| (2024) or carbon stock estimation [Reiersen et al.| (2022). Geospatial data, however, also
comes with distinct characteristics such as spatio-temporal dynamics, resolution sensitivity or high number
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of spectral bands. This has prompted calls for dedicated, methodological research into machine learning
techniques tailored to geospatial data|Reichstein et al.[(2019); |Rolf et al.|(2024).

Recent years have seen emerging work in geospatial machine learning, a discipline that fuses concepts
from geography and machine learning into purpose-built tools. In this line of work fall studies proposing
geospatial expansions of popular machine learning algorithms, such as geospatial random forest|Geerts et al.
(2024)), studies adapting popular geographic concepts for modern machine learning [Liu et al.|(2022), and
studies proposing new architectures and methods incorporating geospatial structures Zammit-Mangion et al.
(2022). The Moran’s I metric has itself been used successfully within machine learning algorithms, for
example as auxiliary task in predictive modeling [Klemmer & Neill (2021)), or as embedding loss function
in generative models [Klemmer et al.| (2022). Nonetheless, current research leaves a concrete gap: The
expansion of one of the central concepts of geographic data, spatial autocorrelation, to the data format of the
Al age—embeddings. We aim to address this gap in the current study.

3 METHOD

3.1 LOCAL SPATIAL AUTOCORRELATION
The local Moran’s I measure of spatial autocorrelation is defined as:
% ~—
Ii = é Z Wij 25
Jj=1

where I; is the local Moran’s I for location 4, z; = y; — ¥ is the deviation of the value at location ¢ from the
mean §, s; = = 31 | (y; — §)? is the variance, w;; is the spatial weight between locations i and j, and n is
the number of locations. The local Moran’s I metric depends on a notion of spatial adjacency, captured by

the weight matrix W = [w;;]. This matrix can be obtained via nearest neighbor search and may be binary
or weighted by the distance between two locations.

3.2 EMBEDDING LOCAL SPATIAL AUTOCORRELATION
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Figure 1: Computing the ELSA metric of an image embedding: Image embeddings x are extracted from
the images and mapped onto a graph with adjacency matrix W, defined by spatial neighborhood. The ELSA
scores e for each embedding are then constructed as

To generalize spatial autocorrelation to high-dimensional embeddings, we develop the Embedding Local
Spatial Autocorrelation (ELSA) measure. We assume as input embedding vectors x; € R? of dimension d
and a spatial weight matrix W = [w;;].
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Definition 1 (ELSA Measure). The ELSA measure e; for an embedding x; is defined as:
(n—1)- 23 wijz;

where z; represents the standardized cosine similarity between embedding x; and the global mean embed-
ding X. ¢ gives the index of the current data point, 5 the index of neighbors of ¢, and k indexes the all
observations.

€; =

The standardization of cosine similarity is given by:

X; X — [lcos
Zi =
Ocos

where ficos = = >1_,(x) - X) is the mean cosine similarity, ocos = \/% Sore i (Xk - X — ficos)? is the

standard deviation of cosine similarities, and x = 1 3" | x; is the mean embedding vector. For cases

where 0.5 = 0 (i.e., all embeddings are identical or perfectly aligned with the mean), we define z; = 0 for
all 4.

Lemma 1 (ELSA Range). Local ELSA values have no fixed bounds and can theoretically range from —oo

to +00, even with row-standardized weights. In practice, most values typically fall within a moderate range,
with:

 Strongly positive values, indicating that an embedding is surrounded by similar embeddings within
a homogenous cluster.

* Values near zero, indicating no quantifiable spatial pattern.

» Strongly negative values, indicating that an embedding is surrounded by dissimilar embeddings
who are similar among each other.

Intuitively, e; measures local spatial autocorrelation by considering the similarity of observation 7 to its
neighbors 7, weighted by the spatial adjacency matrix W.

3.3 PERMUTATION TESTING

To assess the statistical significance of observed ELSA values, we employ permutation testing to compare the
observed values against a distribution generated under the null hypothesis of complete spatial randomness.

Definition 2 (Null and Alternative Hypotheses).

* Null Hypothesis (Hy): No spatial autocorrelation exists in the embedding space; the observed
ELSA values e; are not significantly different from what would be expected under random spatial
arrangement.

» Alternative Hypothesis (/): Significant spatial autocorrelation exists in the embedding space;
the observed ELSA values e; differ significantly from random spatial arrangement.

Lemma 2 (ELSA Expectation under Hy). Under the null hypothesis of spatial randomness, the expected
value of e; is:
E(ei ‘H ()) =0

Sketch. Under random spatial arrangement, there is no systematic relationship between an embedding and
its neighbors. The standardized z-scores and their spatial lags are uncorrelated, leading to an expected value
of zero. O
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The variance of e; under the null hypothesis can be estimated from the distribution of permuted values:

(e = Be)?
p=1

1

Niter

Var(ei|H0) =

(p)

where e¢;”” are the permuted ELSA values obtained from the p-th permutation sample.

3.3.1 PERMUTATION PROCEDURE
The permutation test procedure is as follows:

1. Calculate the true ELSA values e; using the original spatial weight matrix W.
2. For each permutation p € {1,2, ..., Njer }:

(a) Randomly shuffle the locations of embeddings while keeping the spatial weight matrix W
fixed. This effectively breaks any spatial dependence between embeddings.
(p)

9

(b) Compute the permuted ELSA values e
cations.

using the original W and permuted embedding lo-

3. For each location i, calculate the empirical p-value:
MNiter

1
pi=— > 1’| > |es])
p=1

Tliter —

where [ is the indicator function that equals 1 if the condition is true and O otherwise.

A low p-value indicates that the observed ELSA value e; is unlikely to have occurred by chance, suggesting
significant local spatial autocorrelation of the embeddings at location 4.

Lemma 3 (Asymptotic Distribution). For sufficiently large samples, under the null hypothesis, the standard-
ized ELSA values approach a standard normal distribution:

€; — E(€i|H0)

N(0,1)

Var (62' | H (])
This asymptotic property allows for parametric inference when the number of permutations is computation-
ally prohibitive.

4 EXPERIMENTS

To build a deeper intuition for what the ELSA metric captures, we show its application to several real- world
datasets of images with associated geo-locations. We first provide a visual analysis, plotting the ELSA
metric on the world map, highlighting areas of spatial homogeneity and heterogeneity. We also provide
examples for images (and their neighbors) with low and high ELSA values, showcasing the metrics ability to
identify samples similar or dissimilar from their surroundings. We then address the question whether ELSA
embeddings can be indicative of the performance of a predictive model at a given location, i.e. whether
embeddings at some locations are harder to classify.

4.1 DATASETS

We explore the ELSA metric and its utility on several real-world datasets. These can be split into two
categories: labeled and unlabeled datasets.
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Labeled datasets: As labeled datasets we chose four different datasets of locations with associated satel-
lite image embeddings paired with environmental labels. These datasets from the Mosaiks project Rolf et al.
(2021)) are accessed via the TorchSpatial benchmark |Cao et al.| (2024) and include Population, Elevation,
Forest Cover and Nightlights data. The predictive modeling task associated with these datasets is to predict
a continuous outcome variable (population, elevation, forest cover or nightlights) y from image vector em-
beddings x and location coordinates ¢ = [longitude, latitude|. Image embeddings are obtained using random
convolutional features from global Planet satellite imagery.

Unlabeled datasets: As unlabeled datasets, we chose two dataset of natural images: IM2GPS3k is a
dataset of internet images with geographic references curated by (Vo et al.,|2017) and a subset of the larger
IM2GPS dataset|Hays & Efros| (2008} [2014). YFCC4K is a subset of the YFCC100M dataset Thomee et al.
(2016) of social media imagery extracted from Flickr, again curated by (Vo et al. [2017). Both of these
datasets are commonly used as unseen test sets in geolocalization research.

4.2 VISUAL ANALYSIS
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Figure 2: Overview of the Elevation dataset: The left panel shows the elevation values at all locations,
the center panel shows the values of the ELSA metric computed for the satellite image embeddings at all
locations and the right panel shows the statistical significance of the ELSA metrics from the center panel.

As a first step in our experiments, we conduct a visual analysis of the ELSA statistic on our datasets to help
build an intuition of how the metric manifests.

Figure 2] gives an overview of the ELSA statistic for the Mosaiks Elevation dataset. From left to right, the
figure shows world maps of elevation values, ELSA values of satellite image embeddings and statistical
significance of ELSA values. We can observe high autocorrelation, i.e. spatial homogeneity, in larger areas
with shared visual features, such as the Sahara desert or the Amazon rain forest. Negative autocorrelation
indicates that the visual features of a location are starkly different to a homogeneous surrounding area. This
could for example be a city in the desert or the forest, such as Phoenix in the US or Manaus in Brazil. ELSA
values around zero indicate that there is no clear spatial dependency present in the image embeddings of a
given location.

Figure [3| provides example images from the IM2GPS3K dataset associated with large negative and positive
ELSA values. In[3a] we can see a negatively autocorrelated image which contrasts starkly from its homoge-
nous neighbors, while in[3b] we can see an image very similar to all of its neighbouring images. For images
with ELSA scores around zero, there would not be an observable clear relationship, nor positive not negative.

4.3 ANALYZING IMAGE REGRESSION RESIDUALS

A common use case for the local Moran’s I is to help understand the error term of predictive models. Fol-
lowing this idea, we seek to compare the ELSA values of image embeddings to the error term of predictive
models that use these image embeddings as input. To start, we focus on image regression task on the four
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Figure 3: Examples from the IM2GPS3K dataset: The left figure shows an example for an image with a

large negative ELSA score, indicating negative autocorrelation. The right figure shows an example for an
image with large positive ELSA score, indicating positive autocorrelation.

Forest cover - Model Residuals vs ELSA ELSA Distribution by Residual Group ELSA Value Distribution

High Residual f 3 Low Residual
©  Low Residual 1754\ High Residual

Low Residual

el
°
=

Ly

r. 075

0.2 ¥ y High Residual 0.50 \
A 025
00 s e Bt S o a8 \
a4 6 8 10 12 X
lel N

[ 2

Figure 4: Image regression residual analysis on Mosaiks Forest Cover: The left panel shows a scatterplot
of the absolute model errors |e| versus absolute ELSA values |e|, the center panel show boxplots for the
distribution of absolute ELSA values, split by high versus low absolute error, the right panel shows a kernel
density estimation of the distribution of absolute ELSA values for high and low error residuals.

Mosaiks datasets: elevation, population, nightlights and forest cover prediction. For each of these tasks, we
train simple fully-connected neural networks that aim to predict outcomes y from image embeddings x and
location coordiantes ¢: Yy ~ fpredModel(X, €) + €. We then take the test set error term e from the trained
predictive models and compare it to the ELSA scores e of the image embeddings.

Figure ] shows a detailed analysis for the forest cover image regression task. In this figure, we split our
test set into observations with high and low absolute error term and analyze how the distribution of ELSA
values differs between these groups. We can observe a clear trend: images whose forest cover is harder to
predict—i.e. that have a larger absolute error—are associated with lower absolute ELSA values—i.e. are less
autocorrelated. This implies that images with higher autocorrelation are easier to predict. This finding is
somewhat intuitive, as autocorrelated observations can be easier interpolated using neighbouring observa-
tions, if there is a stronger neighbourhood relationship.
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Table 1: Results from Welch’s t-test for ELSA values split by image regression errors: Absolute regres-
sion residuals are split into low and high residual groups (|e| <= 0.05 and |e| > 0.05 respectively). Welch’s
t-test is used to compare the means of absolute ELSA values |e| in both groups for statistically significant
difference.

Dataset Low |¢| Group High |¢| Group t-statistic  p-value

Count Mean Median Count Mean Median

Elevation 2585 0.856  0.273 2396  0.495  0.242 8.501 0.000***
Population 1240  0.878  0.267 3016  0.645  0.254 3.712 0.000***
Forest Cover 1974 1.157  0.277 3007  0.331  0.234 15.987 0.000***
Nightlights 4394  0.730  0.240 528  0.336  0.289 13.545 0.000***

Statistical significance: *p < 0.05, **p < 0.01, *p < 0.001

To expand on this analysis, we run a Welch t-test [Welch| (1947) to compare the ELSA values of low and
high error groups. The Welch t-test is a statistical test used to determine whether the means of two groups
are significantly different. It is commonly used for comparing two samples without equal sample size and
without assumed equal variance. Our results, presented in Table[T] show that across all our image regression
datasets ELSA values are significantly different between low and high error groups. This confirms our
hypothesis that predictions are easier when the input images have stronger (absolute) autocorrelation.

4.4 ANALYZING GEOLOCALIZATION ERRORS
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Figure 5: Geolocalization error analysis on YFCC4K: The left panel shows a scatterplot of the geolocal-
ization errors |e| versus absolute ELSA values |e|, the center panel show boxplots for the distributions of
absolute ELSA values, split by high versus low geolocalization errors, the right panel shows a kernel density
estimation of the distribution of absolute ELSA values for high and low geolocalization error groups.

We now focus our analysis on a different predictive modeling problem involving geographic coordinates:
image geolocalization. Here, the task is to predict for a given image embedding x its geographic coordi-
nates ¢: ¢ ~ fGeotoc. Model(X). In practice, rather than directly predicting longitude and latitude coordinates
from an image input, this problem is often discretized, either by gridding the planet and having the local-
ization model predict the correct grid cell |Vo et al.[(2017), or through CLIP-style location-image matching
Vivanco Cepeda et al.|(2023); | Klemmer et al.| (2025).

Here we use the later approach and aim to predict the locations of images in the IM2GPS3K and YFCC4K
datasets using a pretrained GeoCLIP |Vivanco Cepeda et al.| (2023) model. Note that this model has never
seen the images in these datasets. Figure [5] adapts the analysis of Figure [ to geolocalization errors of
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Table 2: Results from Welch’s t-test for ELSA values split by geolocalization errors: Geolocalization
errors are split into low and high error groups (|¢| < 100km and |e| > 100km respectively). Welch’s t-test is
used to compare the means of absolute ELSA values |e| in both groups for statistically significant difference.

Dataset Low |¢| Group High |e| Group t-statistic  p-value
Count Mean Median Count Mean Median

IM2GPS3K 1229 0.356  0.190 1768 0.462  0.260 —5.245  0.000***
YFCC4K 1185 0.390  0.220 3351 0.327  0.199 4.064 0.000***

Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001

GeoCLIP on the YFCC4K dataset. We can again observe that observations with lower geolocalization error
are characterized by higher absolute ELSA values, implying that spatially autocorrelated images are easier
to geolocalize.

These results hold under the Welch t-test scheme, as Table 2] shows. However, we do not find these results
to hold for our other dataset, IM2GPS3K. In fact, for this dataset we observe the inverse relationship, with
observations with lower geolocalization error being associated with lower autocorrelation scores. Overall,
this shows that the relationship between image embedding ELSA values and predictive performance is more
robust for image regression tasks than for image geolocalization tasks.

5 CONCLUSION

5.1 DISCUSSION OF LIMITATIONS AND RESEARCH CHALLENGES

Before concluding this study, we discuss the limitations of our work and comment on new research chal-
lenges arising from our findings. One of the key shortcomings of the Moran’s I measure also applies to our
ELSA metric: its dependence on a predefined spatial adjacency matrix 1. In cases where no predefined
adjacency is available and e.g. geographic coordinates are used for creating a kNN graph, this might require
some a-prior understanding of the spatial dependencies of the data at hand. While our experiments focus on
image embeddings, the ELSA metric can be applied to arbitrary data embeddings and may e.g. be used to
analyze autocorrelation in textual data. We hope to explore this avenue in future work.

Our study also enables work expanding intuitions of embedding autocorrelation and their use in machine
learning. One impactful direction for future work is the expansion of ELSA for spatio-temporal data (e.g.
images with both geographic coordinates and time stamps), inspired by spatio-temporal expansions of the
Moran’s I |Shen et al.| (2016). Further research could explore uses of ELSA for improving predictive and
generative modeling of geospatial data, inspired by similar uses of the Moran’s I metric [Klemmer & Neill
(2021).

5.2 CONCLUSION

In this study we propose ELSA, a new measure of spatial autocorrelation for embeddings. This adapts a
central measure of geographic dependencies to flexible embedding data structures, allowing for the analysis
of complex data such as images or text with geographic references. ELSA enables the identification of
geographic clusters and outliers in complex data types, as we highlight in our experiments on several image
datasets. Our study enables several promising research directions, from the sampling of geographically
diverse datasets to the integration into supervised and self-supervised learning settings.
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STATEMENT ON LLLM USAGE

LLMs have been used to polish and simplify writing, to check for spelling and grammatical errors, and to
refactor the code provided in the supplementary materials. They have not otherwise been used in this work.
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