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Extended Abstract
The representation of the internal architecture of all physical systems depends on the resolution
at which they are observed and described. In spatially embedded systems, geometric coordi-
nates provide a natural way to change the resolution level, indicating how to coarse-grain both
the real system and any model of the latter, allowing consistent mappings across scales that lie
at the foundation of the renormalization group (RG). By contrast, for complex networks with no
explicit spatial embedding, multiple renormalization schemes exist [1], resulting in non-unique
representations of the same system across different scales.

The Multiscale Network Renormalization approach [2, 3] has been recently introduced as
a way to design random graph models that can represent the same network consistently under
arbitrary aggregations of nodes. It seeks a probability distribution over graphs that is invariant
under node aggregation (see Fig. 1), thereby representing a fixed point of a nontrivially gener-
alized RG flow. The model comes with node variables that are additive upon node aggregation.
It successfully replicates, at multiple hierarchical levels, the properties of several real-world
networks [2, 4, 5] and lends itself naturally to the renormalization of directed graphs [3], which
is otherwise problematic. It also allows one to infer the structural properties of a network at a
hierarchical level that is different from the one at which empirical observations are available,
opening new avenues for cross-scale network reconstruction [4].

Moreover, the approach can be applied to Machine Learning algorithms that take a graph as
input and encode its structure onto output vectors that represent nodes in an abstract space [5,
6]. In particular, under arbitrary coarse-grainings of the input graph, the multiscale method
ensures statistical consistency of the embedding vector of a block-node with the sum of the
embedding vectors of its constituent nodes. This guarantee enables the interpretable application
of the basic properties of vector spaces (i.e. sum of vectors and multiplication of a vector by a
scalar) to the latent space where node embeddings are identified. It turns out that several key
network properties, including a large number of triangles, are successfully replicated already
from embeddings of very low dimensionality, allowing for the generation of faithful replicas of
the original networks at arbitrary resolution levels [5, 6].

Finally, a purely abstract, annealed version of the model leads to infinite-mean node vari-
ables and spontaneously replicates, without any fitting parameters, several real-world network
properties such as power-law degree distribution, finite local clustering coefficient, and dis-
assortativity profiles [2, 7]. Moreover, since node aggregation invariance is a form of discrete
scale invariance [8], several unique properties emerge in the spectrum of the adjancency matrix,
such as log-periodicity and complex scaling exponents [9].

In this talk, a synthesis of the various aspects of the Multiscale Network Renormalization
approach and its relationship with other coarse-graining approaches will be discussed.

References
[1] Andrea Gabrielli et al. “Network renormalization”. In: Nature Reviews Physics (2025),

pp. 1–17.

1



NetSciX2026: International School and Conference on Network Science
February 17th-20th, 2026 - Auckland, New Zealand

[2] Elena Garuccio, Margherita Lalli, and Diego Garlaschelli. “Multiscale network renormal-
ization: Scale-invariance without geometry”. In: Physical Review Research 5.4 (2023),
p. 043101.

[3] Margherita Lalli and Diego Garlaschelli. “Geometry-free renormalization of directed net-
works: scale-invariance and reciprocity”. In: arXiv preprint arXiv:2403.00235 (2024).
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Figure 1: Renormalization of random graph ensembles under coarse-graining. Given a
probability distribution Pℓ

(
A(ℓ),Θℓ

)
of graphs with adjacency matrix A(ℓ) (left), a given node

partition Ωℓ is used to map sets of nodes onto ‘block-nodes’ of the resulting coarse-grained
graphs with adjacency matrix A(ℓ+1) (right). A directed edge from iℓ+1 to jℓ+1 is drawn if an
edge from iℓ to jℓ is present, for any iℓ ∈ iℓ+1, jℓ ∈ jℓ+1. Multiple realizations of the graph at
level ℓ end up in the same realization of the graph at level ℓ+1. This coarse-graining induces
a new probability distribution Pℓ+1

(
A(ℓ+1),Θℓ+1

)
. The Multiscale Network Renormalization

approach seeks for the random graph model described by a distribution such that Pℓ
(
A(ℓ),Θℓ

)
and Pℓ+1

(
A(ℓ+1),Θℓ+1

)
have the same functional form, up to a rescaling of the parameters.
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