Under review as a conference paper at ICLR 2026

RESTRAIN: FROM SPURIOUS VOTES TO SIGNALS —
SELF-DRIVEN RL WITH SELF-PENALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning with human-annotated data has boosted chain-of-thought
reasoning in large reasoning models, but these gains come at high costs in labeled
data while faltering on harder tasks. A natural next step is experience-driven learn-
ing, where models improve without curated labels by adapting to unlabeled data.
We introduce REinforcement learning with Self-resTRAINt training (RESTRAIN),
a self-penalizing RL framework that converts the absence of gold labels into a
useful learning signal. Instead of overcommitting to spurious majority votes,
RESTRAIN exploits signals from the model’s entire answer distribution: penalizing
overconfident rollouts and low-consistency examples while preserving promising
reasoning chains. This self-penalization mechanism integrates seamlessly into
policy optimization methods such as GRPO, enabling continual self-improvement
without supervision. On challenging reasoning benchmarks, RESTRAIN delivers
large gains using only unlabeled data. With Qwen3-4B-Base and OctoThinker
Hybrid-8B-Base, it boosts Pass@1 by up to +140.7% on AIME2S, +36.2% on
MMLU_STEM, and +19.6% on GPQA-Diamond, nearly matching gold-label
training while using no gold labels. These results demonstrate that RESTRAIN es-
tablishes a scalable path toward stronger reasoning without gold labels.

Pass@1 on MATH500 Pass@1 on AIME25 Pass@1 on MMLU_STEM Pass@1 on GPQA-Diamond
85 +6.7 mm Gold GRPO == Gold GRPO +21.5 mm Gold GRPO +6.6 =m Gold GRPO
3 TTRL 2 496 TTRL 80 K TTRL a0 -~ TTRL
80 RESTRAIN — RESTRAIN RESTRAIN RESTRAIN
75
75 - 15
70 35
0 +13.7 -
10 65 E—
65 — +3.5
+5.6 +38 60 ~ 30
60 5 I
v 55 ~
55 A
0 50 25
Qwen3-4B-Base OctoThinker 8B Base Qwen3-4B-Base OctoThinker 8B Base Qwen3-4B-Base OctoThinker 8B Base Qwen3-4B-Base OctoThinker 8B Base
AMC AIME24 MATH500
70.0
s 40.0 16 67.5
375 14 65.0
©
e
5350 12 62.5
U
<325 10 60.0
30.0 8

TIRL ETMR RESTRAIN TIRL ETMR RESTRAIN TIRL ETMR RESTRAIN

Figure 1: Performance of Label-free and Test-Time RL. Top: Pass@1 of Qwen3-4B-Base
and OctoThinker Hybrid-8B-Base trained on DAPO-14k-MATH. RESTRAIN outperforms TTRL
and nearly matches the Gold-label GRPO upper bound, even surpassing it on MMLU-STEM and
GPQA-Diamond. Bottom: Test-time training Llama3.1-8B-Instruct using unlabeled test data from
AIME24, AMC23, and MATHS500, reporting Pass@1 accuracy. RESTRAIN significantly outperforms
TTRL and ETMR, especially on AMC and MATH500.

1 INTRODUCTION

Recent advances in LLMs (Guo et al.| [2025; Jaech et al.l 2024} [Yang et al., 2025) show that Re-
inforcement Learning (RL) with human-annotated data and verifiable rewards (RLVR) greatly en-

Under review as a conference paper at ICLR 2026

100% 100% H 77T

N
90% . A f\, “...‘00\ .,ﬂ.no..-’\.,'\.,. L 90% S /”,o\ .,0\,\ /\ /
\ gos®® %0 * % VA .
80% ..00"\.’ 80% P /.’ .
. . A"
> 70% S, 70% _peted Y Ra'
o e
= 60% [~ £ 60% 7
V o
§ 50% ¢ [§ 50% /
o 40% \/’ o 40% v
* 30% ¢ * 30% |/
20% —— Pass@64 20% [—— Pass@64
10% Majority-Answer Correct Ratio 10% Majority-Answer Correct Ratio
0% 0%
: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 ’ 0 5 10 15 20 25 30 35 40 45 50
Majority Size Majority Size
(a) Qwen3-4B-Base (b) Octothinker Hybrid 8B base

Figure 2: Majority-Vote Reliability. Pass@64 and the majority-voted accuracy over 64 samples
are compared on the DAPO-MATH dataset for Qwen3-4B-Base (left) and OctoThinker Hybrid-8B-
Base (right). The large gap between Pass@64 and majority-vote shows that correct answers often
diverge from majority votes. Accuracy also drops sharply when the majority size is small, revealing
that majority votes can carry spurious signals. These observations motivate our self-penalizing
framework, which seeks robust promising reasoning paths beyond unreliable majority votes.

hances long chain-of-thought reasoning (Wei et al.| [2022), achieving strong performance on chal-
lenging benchmarks. Yet RLVR remains limited: it depends on ever-growing quantities of high-
quality labeled data. Achieving superhuman performance, models will eventually need to operate in
environments where even humans lack definitive answers and cannot offer reliable feedback on out-
puts. In these situations, models must develop the ability to self-improve without direct supervision.
This motivates exploring RL on unlabeled data, where progress arises from self-improvement rather
than curated labels, with large external corpora serving as a training signal (Zuo et al.}[2025). In this
work, we study RL in an unsupervised setting to advance reasoning generalization.

A central challenge in enabling self-improvement without labeled data is how a model can generate
its own learning signals. One natural direction is self-rewarding methods, where the model gener-
ates its own reward signals—for instance, ranking or scoring its rollouts based on its own judgments
(Yuan et al.| 2024). While these methods remove the dependence on gold labels, evidence remains
limited that such methods consistently improve performance on complex reasoning tasks. A second
line of work leverages the model’s internal agreement, such as using majority voting across multiple
rollouts (Zuo et al.} 2025} [Shafayat et al., |2025} [Liu et al., | 2025a; [Prasad et al., 2024])). Yet this ap-
proach suffers from reliability and robustness issues that can cause model training collapse: models
frequently generate responses with low self-consistency or low confidence across multiple attempts,
and for challenging reasoning tasks, the majority-voted answer itself can be systematically flawed.
In such cases, minority rollouts can contain the correct solution (Stahlberg & Byrnel|2019; Stahlberg
et al., [2022)), but these are ignored when overconfident spurious majorities dominate. Training on
such distorted reward signals limits scalability as task diversity and complexity increase. The key
challenge, therefore, is not merely generating self-derived rewards, but ensuring that they provide
robust signals that drive genuine reasoning improvement.

To address this gap, we introduce RESTRAIN, a framework for self-driven RL with self-penalization.
Instead of relying on gold labels or external supervision, RESTRAIN leverages the model’s own
predictions by (1) considering all predicted answers rather than only majority votes, (2) penal-
izing low-confidence rollouts with negative advantages, and (3) down-weighting low-agreement
prompts with fragile majority votes. By integrating self-penalization directly into the RL objec-
tive, RESTRAIN turns the absence of labels into rollout-level and prompt-level learning signals. We
evaluate RESTRAIN on two base models and two tasks across six benchmarks. Notably, RESTRAIN
raises Pass@1 by 140.7% on AIME25, 36.2% on MMLU_STEM, and 19.6% on GPQA-Diamond.
Even more striking, its performance nearly matches gold-label supervision—lagging by only 0.4
points. These results establish RESTRAIN as a scalable approach to self-driven RL, pushing reason-
ing models beyond supervised limits.

2 RESTRAIN

We introduce the main ideas of RESTRAIN below and in [Figure 3]

Under review as a conference paper at ICLR 2026

Preliminaries We adopt Grouped Relative Policy Optimization (GRPO) (Shao et al.,[2024) as our
main RL algorithm. GRPO optimizes a policy 7y by sampling n rollouts per prompt x with gold
label y, and updating with a PPO-style objective against a fixed reference policy s, using a group-
mean baseline for variance reduction. For each rollout y;, we denote by reward r; = R(y;, y|z) with
advantage A;. The GRPO objective for each prompt 2 with gold label y is:

Lcrro(z,y;0) = %Z min(ﬁi(a) Ay, clip(pi(0),1 —€,1+¢) Ai) — BDxkr [mollmet] (1)
i—1

2.1 PSEUDO-LABEL WEIGHTING

In unsupervised settings without gold labels, a model can give multiple predictions for a given
prompt z, regardless of their correctness. [Figure 2 reports accuracies on model predicted answers
for the Qwen3-4B-Base model (a) and the OctoThinker Hybrid-8B-Base model (b) on the DAPO-
MATH dataset. Although the Majority Correct Ratio rises with the majority vote size (number of
solutions that agree), there remains a large gap between Pass@64 and the majority correct ratio,
revealing that majority votes can be spurious and often fail to capture the true answer. To bridge
this gap, we introduce a pseudo-label weighting scheme. Rather than collapsing all probability
mass onto the most frequent answer (majority voting) or distributing it uniformly across candidates,
our method assigns weights proportional to the observed vote counts. This produces a consensus
distribution that down-weights spurious low-frequency answers while avoiding the brittleness of
requiring consensus, providing the foundation for our self-penalization framework.

Construction Given a prompt x, we draw n rollouts {y;}"_; ~ mp(- | x) and collect the set
of unique answers {a; };”:1 with counts c;. We treat each a; as a pseudo label and compute the
weighted loss as follows:

Larro(z;0) = ij - Larpro(x,a;;0))
=1

where w; is a pseudo-label weight obtained by applying a monotonic function g to frequency f; =

w; = g(fj) (3)

27:1 g(fe)

We use a Gaussian function centered at the k € [0, 1] with bias o > 0 as our shaping function g.

n

Interpretation prevents collapse to a single majority answer while penalizing spurious
low-frequency predictions through a form of soft selection over answer frequencies: predictions
with higher frequencies receive proportionally larger weights. The skewness of this weighting is
controlled by the monotonic shaping function g(-): a steeper g concentrates probability mass on
high-frequency answers, whereas a smoother g distributes weight more broadly across answers.

2.2 NEGATIVE ROLLOUT PENALIZATION

Existing methods (Zuo et al., [2025; Shafayat et al.l [2025) often rely on the majority-voted answer
being correct, making low self-consistency regions prone to spurious training signals. Our proposed
pseudo-label weighting [subsection 2.T|instead leverages control of Pass@n: if any rollout is correct,
it provides a valid positive signal, yielding more robust learning under weak consensus. However,
when the majority size is very low, Pass@n often degrades because the model may generate no
correct rollouts at all. As shown in prompts with very low majority size correspond to
unreliable supervision where no answer can be confidently trusted. To handle such cases, we intro-
duce negative rollout penalization, which assumes all responses are incorrect and applies a uniform
negative offset. This reduces explicitly penalizing all rollouts and encourages the model to explore
alternative reasoning paths.

Construction Consider the GRPO loss term Lorpo(z,aj;6) associated with pseudo-label a;.
For each rollout y;, denote by 7; ; = R(y;,a;) the reward and A, ; the corresponding advantage.
Let M (z) = max, c¢; denote the majority count of prompt x, where c; is the vote count for label a ;.

Under review as a conference paper at ICLR 2026

RESTRAIN
Self-Driven RL with Self-Penalization

1. Pseudo Label Weighting

Majority > &

’ Majority Vote Gating:

i check consistency 1
Thresholdx | ' Weight each pseudo label by its

H confidence i

i > w,x Loss(rollouts y, pseudo-label a)

Final Self-Training Loss =

Prompt u x Label w_x Penalized Loss(A)

2. X Negative Rollout Penalization

Penalize Rollouts
NRollouts | | oo [

‘e Zero Reward: r =0 Penalized
Majority <x}i® Negative Advantage Offset: A=A-8 | Rollout Loss
7 Policy
Model o Y
3. Prompt Weighting .
Prompt x 100
Reference > |||N Rollouts —>Maj°myvm 922
Model J o Saleby e Prompt Weight u
X

000
000 025 050 075 100
Majority Vote Frequency

Figure 3: Overview of Our Method RESTRAIN: RESTRAIN consists of 3 core components: 1.
Pseudo Label Weighting which takes into account all possible model-predicted answers as candi-
date pseudo-labels when calculating final losses. 2. Negative Rollout Penalization which penalizes
rollouts with very low confidence by setting zero reward and applying negative advantage offsets to
the losses. 3. Prompt Weighting which downweights entire examples where the reference model
predicts with low self-consistency.

When the self-consistency is low (M (x) < k), we treat all candidate answers as unreliable, zero out
their rewards, and apply a uniform penalty § > 0 to the advantages of all rollouts.

ri; if M(z) >k - A j if M(z) >k

.) A=))
0 ifM(x) <k ’ Ajj—6 ifM(z) <k

Tij =

In PPO/GRPO objectives, this means that all model predictions with M (z) < x contribute only
negative updates, penalizing all rollouts with low self-consistency. This discourages reinforcement
of spurious majority votes and steers the model away from unreliable reasoning paths.

2.3 PROMPT-LEVEL WEIGHTING

Previous penalizing schemes operate at a rollout level. In addition, we introduce a prompt-level
penalty. For some prompts, the model exhibits high uncertainty, while for others it produces highly
consistent responses. To account for this variation, we scale the update for each prompt by a fixed
weight that reflects the model’s confidence: low-confidence prompts receive smaller updates, and
high-confidence prompts receive larger updates. To prevent spurious feedback loops (e.g., inflated
confidence during training), these weights are computed once using a frozen base model and kept
constant thereafter.

Construction For each prompt x, we sample n rollouts from the reference policy 7. and compute
the majority count ¢r. We define the prompt weight again using the monotonic function g(-):

s = 9() 5)

We apply u, to each prompt for all training updates. Unlike pseudo-label weights, prompt-level
weights are precomputed offline and remain fixed during the RL training. In we will
show offline-computed prompt-level weights outperform online variants that are dynamically up-
dated during training.

Under review as a conference paper at ICLR 2026

Table 1: On DAPO-14k-Math: RESTRAIN outperforms all unsupervised baselines. All Pass@1
results(%) are averaged over 16 seeds. The best results are highlighted in bold. RESTRAIN out-
performs existing baselines without access to gold labels for both Qwen3-4-Base and Octothinker
Hybrid-8B Base. In particular, Qwen4-B-Base trained without access to gold labels using RESTRAIN
nearly matches the performance of GRPO with gold labels.

Model ‘ math. aime25 olym. minerva. mmlu. gpqga-d. ‘ Avg. T
Qwen3-4B-Base ‘ 68.0 7.9 35.4 26.0 58.3 32.2 ‘ 38.0
w/ access to gold label

GRPO 85.0 20.8 50.1 40.1 73.7 38.7 51.4
w/o access to gold label

TTRL 76.3 8.3 39.6 35.9 59.4 33.6 422
SRT (easy prompt) 77.8 7.9 39.7 36.3 60.5 34.9 42.8
SRT (offline majority label) 76.9 12.0 39.8 34.2 59.4 34.5 43.1
RESTRAIN (Ours) 83.0 17.9 47.0 36.5 80.9 40.2 51.0
A(RESTRAIN - TTRL) +6.7 +9.6 +7.4 +0.6 +21.5 +6.6 +8.8

18.8% 1115.7% 118.7% 11.7% 136.2% 119.6% | 120.9%

OctoThinker Hybrid-8B-Base ‘ 29.8 0.8 12.1 9.3 8.6 24.6 ‘ 19.2
w/ access to gold label

GRPO 71.7 6.2 35.2 31.3 62.0 31.0 39.6
w/o access to gold label

TTRL 56.5 2.7 23.2 22.1 51.7 27.3 30.6
SRT (offline majority label) 58.5 1.7 23.6 27.6 56.4 29.3 32.8
RESTRAIN 62.1 6.5 24.0 26.1 65.4 30.8 35.8
A(RESTRAIN - TTRL) +5.1 +3.8 +0.8 +4.0 +13.7 435 +5.2

19.0% 1140.7% 13.4% 118.1% 126.5% 112.8% | 117.0%

Final RESTRAIN loss Jointly applying pseudo-label weights w; from[Equation 3|and negative roll-
out penalization A;; from , and the prompt-level weight u,, from [Equation 51 we derive

our final RESTRAIN loss:

m

=1

- ﬂDKL[ﬂ-O || 7Tref]

ERESTRAIN(Jﬂ; 9) = Uy ij ‘Z/GRPO(x,aj; 9)

| expand

Larpo(z,a4;0) = -1 Zmin(pi(G) A, clip(pi(0),1 —€,1+¢) fl”)
i=1

3 EXPERIMENTAL SETUP

(6)

)

Datasets We evaluate the effectiveness of RESTRAIN on two mathematical and reasoning tasks:

* DAPO-14k-Math: We adopt the processed DAPO derived from DAPO-Math-17k (Yu
et al.| 2025b)) which deduplicates prompts and standardizes the formatting of both prompts
and reference answers. From this release, we further exclude 3k Chinese language prompts
and use 14k English language prompts as our training split, with no further modifications.

* Synthetic S1k: A 5k synthetic reasoning dataset from CoT-Self-Instruct (Yu et al., 2025a).
Starting from the curated S1k seed set (Muennighoff et al.|[2025), Yu et al.|(2025a) prompt
LLMs to reason step by step and then synthesize new instructions of similar difficulty. Each
synthetic example contains both a novel question and a verifiable target answer produced

Under review as a conference paper at ICLR 2026

Table 2: Synthetic S1k dataset: Our RESTRAIN outperforms all unsupervised baselines. All
Pass@1 results(%) are averaged over 16 seeds. The best results are highlighted in bold. When
training from Qwen3-4B-Base model on synthetic reasoning tasks without gold label, our method
RESTRAIN also outperforms existing unsupervised baselines by 18%.

Model ‘ math. aime25 olym. minerva. mmlu. gpga-d. ‘ Avg. T
Qwen3-4B-Base | 68.0 7.9 35.4 26.0 583 322 | 380
w/ access to Qwen3-4B label
GRPO 83.7 18.9 48.4 39.7 83.6 43.5 53.0
w/o access to Qwen3-4B label
TTRL 76.0 9.2 39.3 35.9 57.6 32.8 41.8
SRT (easy prompt) 76.4 8.1 39.6 34.8 57.5 33.0 41.6
SRT (offline majority label) | 75.8 10.4 39.2 33.1 57.1 33.1 414
RESTRAIN (Ours) 81.7 20.0 45.5 36.5 73.4 40.0 49.5
A(RESTRAIN - TTRL) +5.7 +10.8 +6.2 +0.6 +15.8 47.2 +7.7
17.5% 1117.4% 115.8% 11.7% 127.4% 122.0% | 118.4%

generated by LLM. This dataset complements existing curated math datasets by providing
a fully synthetic yet diverse set of reasoning problems, and allows us to systematically test
our method under a purely synthetic data generation setting.

Base Models To evaluate the generalizability of our method across different backbone models,
we conduct experiments using the following models of various model families and sizes: we use
Qwen3-4B-Base and Octothinker Hybrid 8B base (Wang et al.l [2025b)), which is a specialized,
highly optimized reasoning model midtrained from Llama3.1-8B (Dubey et al.}2024), as well as the
Llama3.1-8B-Instruct model. More details of experimental settings can be found in

Benchmarks Our benchmark suite comprises six publicly available benchmarks spanning math-
ematics (four) and science (two). (1) MATH-500 (Hendrycks et al., 2021}, (2) AIME25 (L1 et al.
2024), (3) OlympiadBench (math subset) (Yang et al., [2024)), we use the mathematics portion only.
(4) Minerva_math (Yang et al.,[2024])): the mathematics split from the Minerva quantitative-reasoning
suite. (5) MMLU_STEM (Yang et al., 2024), (6) GPQA-Diamond (Yang et al., 2024)).

Metrics We evaluate with averaged Pass@1 (Chen et al.,|2021) across six benchmarks, sampling
16 predictions per question using a temperature of 0.6 and a top-p value of 0.95 and averaging their
16 Pass@1 accuracies. We use the official evaluation codebase of Qwen2.5-math (Yang et al.,|{2024)).

Baselines We compare RESTRAIN against three recent label-free RLVR methods:

* TTRL (Zuo et al.|2025)): treats the majority-voted answer as the single pseudo-label, reinforcing
it during RL updates. This makes training heavily dependent on the majority being correct, and
thus vulnerable to spurious votes.

* Self-Rewarded Training (SRT) (Shafayat et al.,2025) proposes two heuristics to mitigate majority-
vote collapse:

— Offline majority label: computes majority votes offline, reducing—but not eliminating—the
risk of rewarding self-consistency instead of correctness.

— Easy prompts: filters training to “easy” prompts with high vote ratios, discarding low-
consensus prompts that often contain valuable but underrepresented reasoning paths.

» Entropy-based Test-Time Reinforcement Learning (ETTRL) (Liu et al.,[2025a)) is an entropy-based
strategy that improves test-time reinforcement learning for LLM reasoning. We include ETTRL
as a baseline only in our Test-Time RL experiments. As the original paper reports results only for
test-time training (TTT) and no public implementation is available, we do not extend ETTRL to
large-scale label-free RL training (e.g., DAPO-MATH or synthetic S1k).

Under review as a conference paper at ICLR 2026

4 MAIN RESULTS

RESTRAIN outperforms unsupervised baselines On DAPO-MATH-14k (Table I), RESTRAIN -
training without gold labels - substantially outperforms existing unsupervised baselines TTRL and
SRT. It achieves 51.0%, compared to TTRL (42.2%, +8.8 pp), Offline Majority Label (43.1%, +7.9
pp), and Easy Prompts (42.8%, +8.2 pp). A consistent trend appears on the 5k synthetic corpus
(Table 2), where RESTRAIN remains the strongest label-free approach, exceeding the next-best base-
line by at least 7.7 pp on average. Notably, when excluding the two science-heavy benchmarks
(MMLU_STEM and GPQA-Diamond), RESTRAIN nearly closes the gap with distilling the super-
vised “reference target” by Qwen3-4B instruct : 45.9% vs. 47.7%, a margin of only 1.8 pp. On
OctoThinker Hybrid-8B, we observe the same effect: RESTRAIN consistently surpasses unsuper-
vised baselines TTRL and SRT by large margins. These results underscore the power of self-driven
RL with self-penalization, showing that label- and prompt-level penalties transform noisy unlabeled
training into signals strong enough to rival gold-label supervision.

RESTRAIN almost reaches the gold-label upper bound on Qwen3-4B-Base In we treat
the Gold-label setting as an empirical upper bound for label-free RLVR, achieving an average accu-
racy of 51.4%. Remarkably, RESTRAIN reaches 51.0%, trailing by only 0.4 pp—essentially match-
ing supervised GRPO without using labels. Even more striking, RESTRAIN surpasses the gold-label
GRPO on MMLU _STEM, scoring 80.9% vs. 73.7% and on GPQA-Diamond, 40.2% vs. 38.7%.
This suggests strong cross-domain generalization without gold-labels despite being trained solely
on the math-focused DAPO-14k dataset. We hypothesize that gold-label supervision encourages
overfitting to domain-specific patterns, limiting transfer to science tasks, while RESTRAIN—through
self-penalization—relies on distributional signals rather than gold answers, reducing overfitting and
preserving generalization across domains.

RESTRAIN outperforms other Test Time
RL Training methods Test Time RL
training focuses on the adaptation to test-
time data. We compare our method with
recent test-time RL methods like TTRL
(Zuo et all 2025) and Entropy-fork Tree
Majority Rollout (ETMR) (Liu et al)

Table 3: Comparing RESTRAIN v.s. Two Test
Time RL Training Methods: TTRL and ETMR on
Llama3.1-8B-Instruct. All results(%) are by greedy
decoding following |Liu et al.| (2025a). RESTRAIN also
outperforms the existing test-time scaling method by
11%.

2025a) on LLama3.1-8B-Instruct model,

following the same setup as in [Liu et al. Test-Time Method ‘ aime24. amc math. ‘ Avg. 1
(2025a), with all methods trained on test TRy 100 323 637 | 353
prompts without access to gold labels. pryig (Gyeralp025a) | 169 354 595 | 373
In Table 3} our approach achieves con- pecre, 1y Gurs) 167 400 674 | 414
sistent improvements across challenging A(RESTRAIN - ETMR) 02 446 +79| 441

math reasoning benchmarks. It surpasses

TTRL and ETMR on AMC23 and MATH-

500 by margins of +13.0% and +13.3%, respectively, yielding an overall +11.0% gain in average

accuracy. These results demonstrate that our method can also scale very effectively at test time.
Training Dynamics on MATH500 (Smoothed)

0.85

RESTRAIN can effectively prevent model
collapse |Fig 4] shows the averaged ~

Pass@1 on MATH500 across multiple un- 1 m
supervised methods. The base model 17

is Qwen3-4B-Base, and all methods are /
trained on the 14k DAPO dataset. We
observe that TTRL improves at first but
quickly collapses after 50 steps. In con-
trast, our method RESTRAIN prevents this 050
sudden collapse and keeps training stable
throughout. We attribute this stability to

° ° °
S S m
= & 3

Accuracy

Method

—— Gold answer
TTRL
—— SRT easy prompt

SRT offline target
ReSTrain (Ours)

°
2
g

0.55

0 200 400 600 800 1000 1200 1400 1600

Training Step

RESTRAIN, which does not exclusively re-
ward the majority-vote answer; instead, it
assigns soft weights to all distinct answers

Figure 4: RESTRAIN has more stable training dy-
namics. In contrast to TTRL, our method RESTRAIN
steadily improves model performances.

in proportion to their empirical frequencies. This frequency-aware weighting smooths the learning
signal, curbs overconfident updates, and mitigates sudden collapse.

Under review as a conference paper at ICLR 2026

5 ABLATION STUDY

Effectiveness of each component in our RESTRAIN Table [4] presents the impact of each compo-
nent of our proposed RESTRAIN. The removal of pseudo-label weighting results in the most sub-
stantial performance degradation because training collapses quickly. Omitting negative rollout pe-
nalization also hurts performance, reducing the average score from 51.0 to 42.1. Finally, removing
prompt-level weighting leads to a more modest performance decrease, yet still validates its positive
contribution to the model. Taken together, these results show that all components are necessary for
stable and effective unsupervised training.

Table 4: Each component in RESTRAIN is important. Each row represents the model’s performance
with one component removed. The best results are highlighted in bold.

Model math. aime25 olym. minerva. mmlu. gpqa-d. ‘ Avg. T
RESTRAIN 83.0 17.9 47.0 36.5 80.9 40.2 51.0
(-) Pseudo-label weighting 67.3 6.0 34.1 24.5 59.3 33.7 37.5
(-) Negative Rollout Penalization | 77.3 9.6 39.9 36.2 56.4 33.0 42.1
(-) Prompt-level weighting 82.7 18.1 46.7 37.8 63.8 37.0 47.7
100
0.81 0=0.1 0=0.5(0urs) o=1
>
® .. 80
3 0.6 g
< § 60
8 <
% 0.4 "g)' 40
& M _ 8
s 0.21 :E)\Lerzly label weighting Ours w/o label weighting = 0
0 100 200 300 400 0
Training Step MATH500 AIME25 Olympiad. Minerva. Mmiu. GPQA-D.
(a) Accuracy curve on MATHS500 benchmark. (b) Performance for different o values.

Figure 5: Effect of Pseudo-Label Weighting. Pseudo-label Weighting prevents training collapse,
and the hyperparameter ¢ can control the “skewness” of the pseudo-label weight distribution.

Pseudo-label weighting is crucial to avoid training collapse To assess the impact of our pseudo-
label weighting module on training and performance, we run two ablation experiments. In the first
experiment, we apply prompt-level weighting, negative rollout penalization, and use the majority
vote answer as a pseudo label. In the second experiment, we replace the frequency-based soft
weights with uniform weights over all targets for each prompt. reports the outcome:
without pseudo-label weighting, training becomes unstable and eventually fails. Uniform weight-
ing performs even worse, accelerating degradation and leading to an earlier collapse. This shows
that merely considering all targets is insufficient—low-frequency pseudo-labels are typically erro-
neous/noisy, and assigning them the same weight as high-frequency (likely correct) pseudo-labels
can steer the model in the wrong direction. In contrast, frequency-based soft weighting suppresses
rare noise and stabilizes training.

Hyperparameter o in Pseudo-label Weighting o controls the “skewness” or concentration of
the prompt-level weight distribution. When o is very small, the weighting approaches a step-like
function that sharply distinguishes majority from minority answers, effectively behaving like hard
majority voting and largely ignoring less frequent responses. In contrast, a large o produces a broad,
flat distribution, leading to softer, more evenly spread weights across answers. From
a smaller ¢ (¢ = 0.1) underperforms because it gives too much influence to noisy, infrequent
answers. Conversely, a larger o (0 = 1) is also suboptimal as it fails to leverage valuable signals
from correct minority responses. Thus, o = 0.5 provides the best balance, effectively filtering noise
while retaining the full distributional signal from the model’s outputs.

Under review as a conference paper at ICLR 2026

80 Benchmarks 30 Benchmarks
—— math. —e— math.
X 60 aime25 560 aime25
5 x olym. 3 * olym.
© R . i © | i —— minerva.
<401 - : . | | minerva. 40 i - |
8 “——J/‘\‘\; —— mmlu. 8 /\\: —+— mmlu.
*20 +— gpga-d. <9 +— gpga-d.
0 0.1 1 2 5 2 3 5 8
6 K

(a) Performance of our RESTRAIN with different nega- (b) Performance of our RESTRAIN with different ma-
tive advantage offset J. jority count threshold «, the number of rollout in our
experiment is 16.

Figure 6: Effect of Pseudo-Label Weighting. Model performance is sensitive to hyperparameters
in Negative Rollout Penalization.

Hyperparameters in Negative Rollout Penalization ablates the negative advantage
offset §, which dictates the magnitude of the penalty applied to low-consensus rollouts. The results
demonstrate that the model’s performance is sensitive to 4. With the penalty disabled (6 = 0), the
model simply ignores those low-confidence prompts. Performance is similar to the ablation without
Negative Rollout Penalization (Table 4)), indicating that simply discarding low-confidence prompts
does not hinder training. The best accuracy occurs at § = 1, suggesting that a moderate penalty
effectively discourages the model from generating noisy, low-confidence outputs, thereby stabilizing
the training signal and enhancing reasoning capabilities. When the penalty magnitude is increased
further to 9=2 and =5, a consistent and sharp decline in accuracy is observed across all benchmarks.
This indicates that an excessively large penalty is detrimental, likely because it over-penalizes the
model and may suppress potentially correct, albeit low-frequency, reasoning paths.

varies the majority size threshold « for triggering the negative penalty; the penalty is
applied if the count of the most frequent answer is less than . The data reveals a similar trend where
performance is suboptimal at both low and high values of «, peaking at a value of x = 3. A threshold
that is too lenient (v = 2) fails to penalize many noisy, low-confidence training examples, thus
limiting performance improvement. Conversely, a threshold that is too strict (x = 5 or 8) suppresses
potentially valid reasoning paths in outputs with moderate consensus and causes a significant drop
in accuracy. Therefore, the threshold value strikes a crucial balance, effectively filtering unreliable
training signals without excessively restricting the model’s learning process.

6 RELATED WORK

RL with Verifiable Rewards RL has shown great promise in improving LLMs, as demonstrated
by the success of RL from human feedback (RLHF) and from AI feedback (RLAIF), which aligns
model responses with human preferences (Lee et al.l [2023; |(Ouyang et al.| 2022} Liu et al., [2025b;
Yue et al., 2025). More recently, reinforcement learning with verifiable rewards (Gao et al., 2024;
Shao et al.l 2024; (Guo et al., 2025} |Yang et al., [2025; [Wen et al., 2025; |Song et al., |2025} [Team
et al.l 2025} |[Fatemi et al., [2025; Wang et al., 2025a; |Li et al., |2025b) has been developed to further
enhance reasoning capabilities in domains such as mathematics and code. Despite its promise,
RLVR is largely limited to settings where a verifiable gold label or exhaustive validators exist, and
its outcome-based rewards may limit generalization to tasks that are out of distribution.

Unsupervised Reward Estimation Accurately capturing reward signals without relying on hu-
man labels has been the focus of several recent studies. Early work like STaR (Zelikman et al.,
2022) relies on repeated outcome evaluation. Self-Rewarding LMs (Yuan et al., 2024) explores
using LLM-as-a-Judge to provide its own rewards to do self-training. SCPO (Prasad et al.| [2024)
introduced self-consistency as an alternative to human-annotated rewards, demonstrating its effec-
tiveness in improving reasoning tasks through (iterative) DPO training. Building on these ideas,
TTRL (Zuo et al., [2025) further explored self-consistency signals in an online setting, which treats
the majority-voted answer as a pseudo label and leverages the GRPO algorithm (Shao et al., [2024))

Under review as a conference paper at ICLR 2026

to update the model. However, TTRL was found to suffer from overconfidence issues, resulting
in mode collapse. To address this, SRT (Shafayat et al., |2025) proposed using offline-generated
labels and curriculum learning; ETTRL (Liu et al.| 2025a)) proposed an entropy-based mechanism
that enhances the balance between exploration and exploitation, thus mitigating overconfidence and
improving overall performance; EVOL-RL (Zhou et al.|, 2025) introduced novelty reward to in-
crease exploration. Other unsupervised methods derive intrinsic rewards from a model’s internal
feedback—Reinforcement Learning from Internal Feedback (RLIF). For example, some approaches
measure the model’s output certainty, using metrics like token- and trajectory-level entropy (Prab-
hudesai et al., [2025 |Agarwal et al.| [2025)) or self-confidence (Li et al., 2025a). Along these lines,
Intuitor (Zhao et al., |2025) utilizes a model’s internal confidence termed “self-certainty” as its sole
intrinsic reward. Another method, EMPO (Zhang et al.,|2025a), uses clustering to extract semantic
entropy across multiple rollouts and compute corresponding advantages. [Zhang et al.| (2025b) the-
oretically analyzes internal equivalence among RLIF methods and claims that the prior of the base
model causes training collapse.

Unlikelihood Penalization Unlikelihood training is a widely adopted technique in neural text
generation to penalize undesirable outputs. (Welleck et al., [2019) reduces the probability of spe-
cific “negative candidate” tokens. (Li et al.,[2019) later employed this approach to improve logical
consistency, demonstrating its effectiveness as a general framework for mitigating known biases in
dialogue by penalizing a carefully selected set of negative tokens at each generation step. More
recently, NSR (Zhu et al., 2025) extended this principle from the neural text generation model to
LLMs post-training with their Negative Sampling Rejection (NSR) method. In the context of RLVR,
they show that penalizing entire negative trajectories consistently improves performance, preserves
generation diversity, and promotes generalization over the base model.

7 CONCLUSION

In this paper, we propose RESTRAIN, a self-penalizing reinforcement learning framework that trans-
forms the absence of gold labels into a learning signal, enabling models to self-improve with-
out gold labels. By (i) weighting all predicted targets rather than only the majority, (ii) penal-
izing low-confidence rollouts within the policy objective, and (iii) discounting prompts with low
self-consistency, RESTRAIN enables robust self-improvement and mitigates the training collapse of
majority-vote heuristics. Empirically, it delivers more stable optimization and stronger generaliza-
tion on challenging reasoning tasks like math and science.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effec-
tiveness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via
reinforcement learning. arXiv preprint arXiv:2504.05185, 2025.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
and Yi Wu. On designing effective rl reward at training time for 1lm reasoning. arXiv preprint
arXiv:2410.15115, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif vs. rlhf: Scaling reinforcement
learning from human feedback with ai feedback. arXiv preprint arXiv:2309.00267, 2023.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024.

Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck, Y-Lan Boureau, Kyunghyun Cho, and
Jason Weston. Don’t say that! making inconsistent dialogue unlikely with unlikelihood training.
arXiv preprint arXiv:1911.03860, 2019.

Pengyi Li, Matvey Skripkin, Alexander Zubrey, Andrey Kuznetsov, and Ivan Oseledets. Confidence
is all you need: Few-shot 1l fine-tuning of language models. arXiv preprint arXiv:2506.06395,
2025a.

Tianjian Li, Yiming Zhang, Ping Yu, Swarnadeep Saha, Daniel Khashabi, Jason Weston, Jack Lan-
chantin, and Tianlu Wang. Jointly reinforcing diversity and quality in language model generations.
arXiv preprint arXiv:2509.02534, 2025b.

Jia Liu, ChangYi He, YingQiao Lin, MingMin Yang, FeiYang Shen, ShaoGuo Liu, and TingTing
Gao. Ettrl: Balancing exploration and exploitation in llm test-time reinforcement learning via
entropy mechanism. arXiv preprint arXiv:2508.11356, 2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding rl-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025b.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

11

https://arxiv.org/abs/2501.19393

Under review as a conference paper at ICLR 2026

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:

27730-27744, 2022.

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
Maximizing confidence alone improves reasoning. arXiv preprint arXiv:2505.22660, 2025.

Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang, Jing Xu, Maryam Fazel-Zarandi, Mohit
Bansal, Sainbayar Sukhbaatar, Jason Weston, and Jane Yu. Self-consistency preference opti-
mization. arXiv preprint arXiv:2411.04109, 2024.

Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, and Andrea Zanette. Can
large reasoning models self-train? arXiv preprint arXiv:2505.21444v1, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Mingyang Song, Mao Zheng, Zheng Li, Wenjie Yang, Xuan Luo, Yue Pan, and Feng Zhang.
Fastcurl: Curriculum reinforcement learning with progressive context extension for efficient train-
ing rl-like reasoning models. arXiv e-prints, pp. arXiv—2503, 2025.

Felix Stahlberg and Bill Byrne. On nmt search errors and model errors: Cat got your tongue? arXiv
preprint arXiv:1908.10090, 2019.

Felix Stahlberg, Ilia Kulikov, and Shankar Kumar. Uncertainty determines the adequacy of
the mode and the tractability of decoding in sequence-to-sequence models. arXiv preprint
arXiv:2204.00471, 2022.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
Ims. arXiv preprint arXiv:2501.12599, 2025.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
models with one training example. arXiv preprint arXiv:2504.20571, 2025a.

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes
reinforcement learning scaling. arXiv preprint arXiv:2506.20512, 2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. arXiv preprint arXiv:1908.04319, 2019.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
Tang, Xiaowei Lv, et al. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond.
arXiv preprint arXiv:2503.10460, 2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Ping Yu, Jack Lanchantin, Tianlu Wang, Weizhe Yuan, Olga Golovneva, Ilia Kulikov, Sainba-

yar Sukhbaatar, Jason Weston, and Jing Xu. Cot-self-instruct: Building high-quality synthetic
prompts for reasoning and non-reasoning tasks. arXiv preprint arXiv:2507.23751, 2025a.

12

Under review as a conference paper at ICLR 2026

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025b.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 3, 2024.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in 1lms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476—15488, 2022.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised llm reasoning incentivization. arXiv preprint
arXiv:2504.05812, 2025a.

Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin Cheng, Yitong Duan, Chen Wang, Yue Wang,
Shuxin Zheng, and Jiyan He. No free lunch: Rethinking internal feedback for 1lm reasoning.
arXiv preprint arXiv:2506.17219, 2025b.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards. arXiv preprint arXiv:2505.19590, 2025.

Yujun Zhou, Zhenwen Liang, Haolin Liu, Wenhao Yu, Kishan Panaganti, Linfeng Song, Dian Yu,
Xiangliang Zhang, Haitao Mi, and Dong Yu. Evolving language models without labels: Majority
drives selection, novelty promotes variation. arXiv preprint arXiv:2509.15194, 2025.

Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The surprising
effectiveness of negative reinforcement in llm reasoning. arXiv preprint arXiv:2506.01347, 2025.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

13

O 00 JIONNhWN—

Under review as a conference paper at ICLR 2026

A A PSEUDO CODE OF THE RESTRAIN LOSS FUNCTION

This section shows a pseudo code of our RESTRAIN loss function calculation for one single prompt.

Listing 1: The pseudo-code of the RESTRAIN loss function for one prompt

def restrain_loss(outputs, prompt_weight, threshold, neg_offset):
--- Extract answers ---
answers = [extract_answer(output) for output in outputs]

--- Majority size M(x) ---
counts = Counter(answers)
Mx = counts.most_common(1)[@][1]

if Mx < threshold:
rewards = [0.0] * len(outputs)
adv = calculate_advantages(rewards)
adv = [a - neg_offset for a in adv]
loss = calculate_loss(adv)
return prompt_weight * loss

Calculate label weights
freqs = counts.values() / len(outputs)
label_weights = calculate_label_weight(freqgs)

Calculate each label loss, then weighted sum to a final loss
final_loss = 0.0
for i, label in enumerate(counts.keys()):

rewards = [reward_fn(ans, label) for ans in answers]

adv = calculate_advantages(rewards)

loss = calculate_loss(adv)

final_loss += label_weights[i] * loss

return prompt_weight * final_loss

14

1
2

12

13

Under review as a conference paper at ICLR 2026

B AN ALGORITHM OF THE PER-PROMPT RESTRAIN LOSS FUNCTION

Algorithm 1: Per-prompt RESTRAIN Loss

Input : Responses O = {01, ..., 0, }; prompt weight u,, > 0; majority threshold x;
negative offset § > 0.
QOutput :Loss L.

A={ay,...,an} < Set([ExtractAnswer(o;) |’ ,); M(z) + max(Count(a))
if M (z) < & then
r; <— 0Vi; adv < CalculateAdvantages({r;}",); adv; < adv;, — ¢ Vi,
return L <+ u, - Calculateloss(adv)

else
for j = 1tomdo
| fj < c(tj)/n; ;< CalculateWeight(f;)
7 Z;ﬂzl 1I)j; Wy <= U~)J‘/Z VR
Lﬁnal <~ 05
for j = 1tomdo
r; < RewardFn(Ali], a;) Vi; adv < CalculateAdvantages({r;}}—;);
£; < Calculateloss(adv);
Ltinal < Lfinal + wy - gj
return L < u, - Lgpal

15

Under review as a conference paper at ICLR 2026

C DISCUSSION OF MOTIVATION

Distribution of Majority Vote Count and Correct Count in Qwen3-4B-Base at Step 510

mEm Majority Vote Count —e— Majority Vote Correct Ratio
1000 mmm Majority Vote and Correct Count At Least One Correct Ratio
At Least One Correct -

Number of samples

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Count

Figure 7: Statistics of Majority Vote Count and Pass@32. The model is trained with Pseudo-label
Weighting and Prompt-level weighting. We select a checkpoint when the training converges and use
the checkpoint to do inference on the training set to analyze the majority vote count and pass@32.

summarizes majority-vote statistics at step 510 for Qwen3-4B-Base trained with our
pseudo-label and prompt-level weighting on the DAPO dataset. The x-axis represents the major-
ity vote count. The chart highlights two key trends: (a) The red line shows the Majority Vote
Correct Ratio. As the majority vote count decreases (moving left on the graph), the probability that
the most frequent answer is actually correct drops almost linearly. (b) The orange line shows the
At Least One Correct Ratio (i.e. Pass@k). This is the probability that at least one of the gener-
ated responses was correct, even if it wasn’t the majority answer. This distinction is important for
understanding different training methods. A method like TTRL is highly dependent on the majority
vote being correct (the red line). When the consensus is low (a low majority vote count), TTRL
receives an unreliable and often incorrect training signal. Our proposed method, however, relies on
the principle of at least one correct answer being present (the orange line). As long as one of the
generated responses is correct, our model receives a valid positive signal for training. This makes it
more robust, especially in cases where there isn’t a strong consensus on the correct answer. How-
ever, the chart also reveals a critical weakness. For very low majority vote counts, the orange line
shows a dramatic drop. This indicates that when the model’s consensus is extremely low, it’s highly
probable that none of the generated responses are correct. In this scenario, our method is exposed to
significant training noise because there is no positive signal to learn from. To address this specific
problem, we introduce our negative rollout penalization to discourage the model from generating
sets of answers where none are correct.

16

Under review as a conference paper at ICLR 2026

D DETAILED RESULTS

D.1 BENCHMARKS

Our benchmark suite comprises six publicly available datasets spanning mathematics (four) and
science (two). (1) MATH-500(Hendrycks et al) 2021): a 500-problem subset of the MATH cor-
pus, emphasizing competition-style problems across algebra, geometry, number theory, and com-
binatorics. (2) AIME25 (Li et al., [2024): the official 2025 American Invitational Mathematics
Examination questions. (3) OlympiadBench (math subset) (Yang et al., [2024): olympiad-level
problems sourced from national/international contests; we use the mathematics portion only. (4)
Minerva_math (Yang et al.,2024): the mathematics split from the Minerva quantitative-reasoning
suite. (5) MMLU_STEM (Yang et al.,[2024): the STEM categories of MMLU (e.g., physics, chem-
istry, biology, mathematics-adjacent subjects). (6) GPQA-Diamond (Yang et al., [2024)): the highest-
difficulty split of GPQA with expert-written, graduate-level science questions spanning physics,
chemistry, and biology.

In addition to the 6 benchmarks reported in the main paper, we evaluate on three additional bench-
marks. They are (1) AMC23(Li et al.| [2024)): prompts drawn from the 2023 American Mathematics
Competitions, covering core high-school problem-solving domains. (2) AIME24 (L1 et al., [2024):
the official 2024 American Invitational Mathematics Examination questions. (3) slk (verifiable
subset) (Muennighoff et al.| 2025)): a subset of 893 s1k examples with verifiable answers from |Yu
et al.|(2025a).

D.2 IMPLEMENTATION DETAILS

We implement TTRL, SRT, and RESTRAIN using the VERL codebase. To validate correctness, we
reproduce a representative experiment from the original papers with our implementations and verify
that the resulting accuracies match. Since ETMR has not released code, we report its results as
stated in the original paper. For hyperparameters, we use a learning rate of 1 x 1076, and adopt
the AdamW optimizer for the policy model. We set kl loss coefficient to 0.001, and the entropy
coefficient to 0. For rollout, we sample 16 responses using a temperature of 1.0 for training. The
maximum generation length is set to 4096 for Qwen3-4B-Base and Llama3.1-8B-Instruct, and 8192
for Octothinker Hybrid 8B base model. We employ a unified hyperparameter configuration for
RESTRAIN across all experiments. Specifically, we set the mean for the pseudo-label/prompt weight
to 1.0, the bias ¢ = 0.5, the negative advantage offset § = 1.0, and the majority size threshold
K = 3. We set the number of epochs to 20. All experiments were conducted on 32 * NVIDIA A100
80GB GPUs.

D.3 ADDITION RESULTS

Table 5| and |6/ show full results of our RESTRAIN on nine benchmarks. Results show that our method
can outperform all unsupervised methods on both Qwen3-4B-Base and Octothinker Hybrid 8B base
models with two different training datasets.

Table /| show experimental results on three different capacity models: a base model: Qwen3-1.7B-
Base, a math-specific model: Qwen2.5-math-7B, and an instruct model: Llama-3.1-8B-Instruct,
cross two training datasets(DAPO-14k-math and NuminaMath-10k). Consistent with our findings in
the main result section, RESTRAIN outperforms the TTRL baseline under all settings. This confirms
that our self-penalization mechanism is also effective for instruct models. By validating across Qwen
(Base and math), OctoThinker (Specialized Mid-trained), and Llama (Instruct), we demonstrate that
RESTRAIN generalizes across model families and training datasets.

17

Under review as a conference paper at ICLR 2026

Table 5: The table shows the evaluation results of training Qwen3-4B-Base on 14k DAPO dataset,
all results(%) are averaged over 16 seeds. The best results are highlighted in bold.

Model math. amc. aime24aime25olym. miner. mmlu. gpqa. slk ‘ avg

Qwen3-4B-Base 68.0 45.6 104 7.9 354 26.0 583 322 5.1 ‘ 32.1
w/ access to gold label

GRPO 85.0 69.3 21.2 20.8 50.1 40.1 73.7 38.7 12.2 |45.7
w/o access to gold label

TTRL 76.3 526 120 83 396 359 594 336 4.6 |358

SRT (easy prompt) 77.8 523 135 7.9 39.7 36.3 60.5 349 5.6 |36.5

SRT (offline majority label) 76.9 51.8 10.4 12.0 39.8 34.2 594 345 4.7 |36.0

RESTRAIN 83.0 60.2 203 179 47.0 365 809 40.2 10.3 |44.0

Oct.Hybrid-8B-Base 298 161 19 0.8 121 93 8.6 246 2.1 |150
w/ access to gold label

GRPO 71.7 494 108 6.2 352 313 62.0 31.0 7.2 |339
w/o access to gold label

TTRL 56.5 322 39 27 232 221 51.7 273 35 |248

RESTRAIN 616 336 6.0 85 246 250 646 299 44 |28.7

Table 6: The table shows the evaluation results of training Qwen3-4B-Base on S5k Synthetic S1k
dataset, all results(%) are averaged over 16 seeds. The best results are highlighted in bold.

Model math. amc. aime24ime2%lym. miner. mmlu.gpga. slk ‘ Avg. T

Qwen3-4B-Base 68.0 456 104 7.9 354 26.0 583 32.2 5.1 ‘ 32.1
w/ access to Qwen3-4B label

GRPO 83.7 64.5 23.7 189 48.4 39.7 83.5 435 11.5| 46.4
w/o access to Qwen3-4B label

TTRL 76.0 50.2 10.8 9.2 39.3 359 57.6 328 4.8 35.2

SRT (easy prompt) 76.4 52.3 12.1 81 39.6 34.8 57.5 33.0 4.9 35.4

SRT (offline majority label) 75.8 53.3 11.9 104 39.2 33.1 57.1 33.1 4.6 35.4

RESTRAIN 81.7 584 179 200 455 36.5 734 40.0 8.8 42.5

Table 7: Additional results on a base model, a math specific model and an instruct model cross two
training datasets.

Model & Dataset Method MATHS500 AMC23 AIME24 AIME25 Olym. Avg

Base 52.8 44.0 16.6 3.3 17.8 269
Qwen2.5-Math-7B Gold 79.7 64.0 28.0 14.6 39.6 45.1
(10k NuminaMath) TTRL 77.9 61.5 18.0 8.0 372 405
RESTRAIN 79.3 62.5 26.7 13.9 40.7 44.6
Base 56.4 30.1 4.5 3.9 228 235
Qwen3-1.7B-Base Gold 69.9 42.0 9.7 3.1 31.5 312
(10k NuminaMath) ~TTRL 63.2 36.2 54 3.5 260 26.8
RESTRAIN 66.9 41.0 8.3 5.2 29.6 30.2
Base 49.6 24.4 5.4 0.8 172 194
Llama-3.1-8B-Inst. Gold 53.4 28.9 6.4 0.2 202 21.8
(14k DAPO Math) TTRL 475 25.0 6.1 0.8 173 193
RESTRAIN 51.2 26.4 7.1 1.1 173 20.6

18

Under review as a conference paper at ICLR 2026

E ABLATION STUDY OF PROMPT-LEVEL WEIGHTING

In this section, we evaluate the effect of prompt-level weighting on training. We ablate it by two
experiments, one is comparing our offline prompt weighting with online prompt weighting, another
is setting all prompt weights to 1 (“w/o prompt weighting”). As shown in in the first
experiment, online prompt weighting quickly collapses while offline prompt weighting can continue
to improve. For the second experiment, both methods’ accuracies improve quickly at the start.
Initially, the model without prompt weighting learns slightly faster. However, our method soon
overtakes it and consistently maintains a higher accuracy. Notably, the performance of the model
without prompt weighting becomes unstable and drops sharply after 1,500 training steps. In contrast,
our method’s accuracy remains stable and continues to improve. This suggests that offline prompt-
level weighting is key to achieving both higher final accuracy and greater training stability.

e
©

0.80 4

MATH500 Accuracy
o o
B o
Accuracy

©
IN)
2

Offline Prompt Weighting Online Prompt Weighting Method
T T T T T T T] Ours w/o prompt weighting
0 20 40 60 80 100 120 140 160 0.60 T T ; ; T . | -
L 0 200 400 600 800 1000 1200 1400 1600
Training Step Training Step

(a) Online Prompt Weighting collapses very quickly at (b) Without Prompt Weighting, the model will ulti-
around 100 steps. mately collapse.

Figure 8: Offline Prompt-weighting can help model train stable.

19

Under review as a conference paper at ICLR 2026

F STUDY OF HYPERPARAMETER WEIGHT BIAS ¢ IN PSEUDO-LABEL
WEIGHTING

In this section, we examine the bias parameter o used in pseudo-label weighting. Table [8| reports
the tuning results. When o is small, the scheme effectively reduces to selecting the majority-vote
answer as the pseudo label; when o is large, it approaches uniform weighting. We observe that o
values near zero or above 1 lead to training collapse and substantially worse performance, whereas
a moderate setting (e.g., o = 0.5) yields the best stability and accuracy.

Table 8: Ablation of Pseudo-label Weighting. The table shows the evaluation results of training
Qwen3-4B-Base on 14k DAPO-Math dataset by varying the hyperparameter weight bias, all re-
sults(%) are averaged over 16 seeds. The best results are highlighted in bold.

Target Level Weighting Bias o

Small o = skewed on majority label

Large o = evenly dist. on all labels math. aime25 olym. minerva. mmlu. gpqa-d. ‘ Avg. 1
o = 0 (0 weights on non-majority labels) | 67.8 7.7 34.7 24.1 58.6 32.1 37.5
0=0.1 73.4 2.7 36.0 344 62.4 31.3 40.0
o =0.25 76.5 9.6 39.7 32.6 60.52 344 42.2
o=0.5 83.0 179 470 36.5 80.9 40.2 51.0
c=1 65.1 7.3 334 243 59.0 32.8 37.0
o=2 66.2 6.2 33.1 23.8 58.9 314 36.6
oc=5 61.1 5.8 32.6 23.7 58.4 333 35.8
o = oo (evenly distributed) 66.8 6.9 34.6 24.6 59.8 329 37.6

20

Under review as a conference paper at ICLR 2026

G STUDY OF HYPERPARAMETER NEGATIVE ADVANTAGE OFFSET § AND
MAJORITY COUNT THRESHOLD k

In this section, we examine how the negative-advantage offset 6 and the majority-count threshold
k influence performance. The offset § scales the penalty applied to low-consensus rollouts; if set
too high, it over-penalizes the policy and induces a sharp accuracy decline. The threshold « decides
which prompts are treated as low-consensus: a strict threshold discards many informative examples
and hurts accuracy, while an overly loose threshold admits noisy cases and weakens the intended
penalization. Appropriate, balanced choices of § and x suppress noise without sacrificing useful
signal.

Table 9: Results on Different Negative rollout Penalty. The table shows the evaluation results of
training Qwen3-4B-Base on 14k DAPO-Math dataset by varying the negative advantage offset, all
results(%) are averaged over 16 seeds. The best results are highlighted in bold.

Negative Advantage Offset | math. aime25 olym. minerva. mmlu. gpqa-d. ‘ Avg. 1

6=0 76.5 9.8 40.5 31.8 58.3 332 41.7
0=0.1 787 133 40.8 36.5 59.3 355 44.0
0=1 83.0 179 47.0 36.5 80.9 40.2 51.0
0=2 70.6 104 36.7 27.9 56.6 32.6 39.1
0=5 70.4 7.1 36.1 25.0 56.9 31.6 379

Table 10: Results on Different Majority Count Threshold. The table shows the evaluation results
of training Qwen3-4B-Base on 14k DAPO-Math dataset by varying the weight bias, all results(%)
are averaged over 16 seeds. The best results are highlighted in bold.

Majority Count Threshold
(for negative rollouts) math. aime25 olym. minerva. mmlu. gpqa-d. ‘ Avg. 1
k=2 77.4 8.8 41.3 33.8 59.8 34.2 42.5
k=3 83.0 17.9 47.0 36.5 80.9 40.2 51.0
k=5 78.2 13.3 40.4 29.2 61.4 35.6 43.0
Kk=2_8 67.3 6.0 34.1 24.5 59.3 33.7 37.5

To further discuss x, in our experiments, we fixed the rollout number at n = 16 and the sam-

pling temperature at 1.0. Crucially, we utilized a fixed £ = 3 across all different training datasets
(DAPO-14k, Synthetic S1k) and models (Qwen3-4B-Base, OctoThinker-8B-Hybrid-Base). This
single configuration consistently outperformed baselines, suggesting that x = 3 serves as a robust
generalist setting within the standard rollout regime (n = 16).

However, « is naturally coupled with the rollout number (n) and the model’s capability. « acts as
a gate for Negative Rollout Penalization, defining the minimum consistency required to consider
a prompt’s signal “reliable” enough to avoid penalization. Relation to Rollout Number (n): If n
is increased significantly (e.g., from 16 to 100), « should likely be scaled to represent a similar
ratio of self-consistency. Relation to Difficulty/Assumption of Negative Trajectories: Increasing s
represents a stronger assumption regarding negative trajectories. A higher treats a larger portion
of low-consensus outputs as noise” to be penalized. For extremely hard tasks where even correct
answers rarely achieve consensus, a lower x might be necessary to avoid suppressing the rare correct
signal. Conversely, for easier tasks where the model is generally confident, a higher « could further
enforce strict consistency. While our results show that x = 3 is empirically stable, we acknowledge
that x remains a tunable hyperparameter that governs the trade-off between suppressing noise and
preserving minority signals.

21

Under review as a conference paper at ICLR 2026

H DISCUSSION OF PASS@ 1 vS. MAJORITY VOTE PERFORMANCE

In this section, we want to study how the gap between Pass@1 and Majority Voting evolves. We
conduct experiments on the OctoThinker-8B-Hybrid-Base model. We compared the Base model,
TTRL, and RESTRAIN across four benchmarks.

The results (detailed in [Table 11) reveal three distinct critical findings:

RESTRAIN bridges the “Consistency Gap”: The Base model exhibits a massive discrepancy be-
tween Pass@ 1 and Majority Vote (e.g., a 34.6% gap on MATHS500). This indicates the model often
possesses the knowledge in its latent distribution but fails to output it reliably in a single attempt.
RESTRAIN drastically reduces this gap (e.g., to 12.7% on MATHS500), effectively converting the
model’s latent “majority potential” into reliable, single-shot performance.

RESTRAIN expands the ” Knowledge Boundary” (Raising the Ceiling): A key limitation of TTRL
is that it often only aligns the model with its existing majority, yielding minimal gains in the up-
per bound. On MATHS500, TTRL only improved the Majority Vote by 3.0% (64.4% — 67.4%).
At the same time, RESTRAIN increased the Majority Vote by 10.4% (64.4% — 74.8%). This
demonstrates that RESTRAIN significantly enhances the model’s reasoning capabilities, generat-
ing correct reasoning paths that were not dominant in the base model.

RESTRAIN prevents ”Ceiling Collapse” on Hard Tasks: On the most challenging benchmark,
AIME24, we observe a critical failure in TTRL. TTRL caused the Majority Vote to drop below
the Base model’s performance (Base: 10.0% — TTRL: 6.67%). This suggests TTRL overfitted
to spurious signals or easy patterns, degrading the model’s ability to solve hard problems. In
contrast, RESTRAIN successfully raised the ceiling to 16.67%. This proves our RESTRAIN
protects against the model collapse often seen in TTRL on difficult training tasks.

Table 11: Pass@1 vs. Majority Vote (Maj) Performance. We calculate the Gap as Maj Vote —
Pass@1 to highlight consistency.

Benchmark Metric OctoThinker-8B-Hybrid TTRL RESTRAIN (Ours)
Pass@1 29.8 56.5 62.1
MATHS500 Maj Vote 64.4 67.4 74.8
Gap 34.6 10.9 12.7
Pass@1 12.1 23.2 24.0
OlympiadBench Maj Vote 29.3 33.9 35.7
Gap 17.2 10.7 11.7
Pass@1 9.3 22.1 26.1
Minerva Math Maj Vote 25.0 353 379
Gap 15.7 13.2 11.8
Pass@1 1.88 3.94 6.46
AIME24 Maj Vote 10.0 6.67 16.67
Gap 8.12 2.73 10.21

22

Under review as a conference paper at ICLR 2026

I DiscussiON OF COMPUTATIONAL COST

In this section, we want to discussion the computational cost of RESTRAIN. We claim that RESTRAIN
has nearly identical computational overhead to TTRL. Both methods share the same training hy-
perparameters—specifically rollout number, maximum sequence length, batch size, and number
of epochs. Consequently, the most resource-intensive operations (LLM generation and policy for-
ward/backward passes) are identical.

RESTRAIN introduces only negligible overhead through lightweight operations on the generated
rollouts: grouping unique answers, computing normalized pseudo-label weights, and applying
consensus-gated offsets. These are simple operations that do not require additional model passes
or parameters. Furthermore, the prompt-level weights are derived from a one-time offline computa-
tion, adding only a small constant setup cost rather than a recurring per-step burden.

To validate this, we conducted a runtime analysis on the Qwen3-4B-Base model, which was trained
on the DAPO-14k-MATH dataset (see [Table 12). The results confirm that RESTRAIN maintains a
training time per step comparable to both TTRL and standard gold-label training. While TTRL may
exhibit shorter total training time due to early stopping caused by model collapse, the computational
cost per step remains equivalent.

Table 12: Computational Cost Analysis. Comparison of training time per step and average re-
sponse length.

Method Training Time (Step 1) Avg. Response Length
Train with Gold Label 144s 758.0
TTRL 216s 746.8
RESTRAIN (Ours) 155s 776.8

23

Under review as a conference paper at ICLR 2026

J DISCUSSION OF ADAPTING RESTRAIN TO PPO

The RESTRAIN framework is inherently designed for group-based reinforcement learning meth-
ods like GRPO. Since these methods already compute baselines relative to a group of rollouts,
integrating RESTRAIN’s soft-weighting and penalization logic is seamless. However, adapting this
framework to value-based RL methods like PPO requires more intricate design choices. Specifically,
because PPO relies on a learned Critic (V) rather than group averages for variance reduction, we
must explicitly define how to train this Critic to interpret RESTRAIN’s signals without destabilizing
the advantage estimation. We show a potential adaption below as an example.

To apply RESTRAIN to PPO, we must translate its group-level signals into scalar rewards that a
learned Critic (V) can predict. The key shift is replacing the standard unsupervised “hard majority”
baseline, where the most frequent answer gets a reward of 1 and others 0, with RESTRAIN’s “soft
consensus” approach. The PPO Critic (V) is tasked with learning the expected consensus score
rather than a binary success probability. This allows the advantage function A(s,a) = r — V(s)
to correctly capture nuance: a rollout matching a strong consensus yields a positive advantage,
while a rollout matching a weak consensus yields a smaller signal. To prevent the model from
reinforcing “hallucinated majorities” where the group is confused (i.e., the majority count M () is
below a threshold), we intervene directly in the advantage estimation to apply a “penalization”.
Specifically, when the model is confused (M (z) < k), we override the standard calculation with
a penalty. We zero out the rewards for the group and inject a negative offset J, resulting in a final
advantage calculation:

Afina = Agae(0) — ¢

Crucially, the Critic must be trained on the unpenalized rewards rather than the penalty itself. This
ensures V (s) = 0, preserving the pure negative signal —¢ in the policy update. Finally, the en-
tire PPO loss is scaled by an offline prompt-reliability score u,, derived from a reference model,
ensuring gradients are only applied on solvable prompts:

L = uy - Lepo(A)

24

Under review as a conference paper at ICLR 2026

K THE USE OF LARGE LANGUAGE MODELS

In this work, we use LLM for writing polishing and do not use it for any other purpose.

25

	Introduction
	RESTRAIN
	Pseudo-label weighting
	Negative rollout penalization
	Prompt-level weighting

	Experimental Setup
	Main Results
	Ablation Study
	Related Work
	Conclusion
	A pseudo code of the RESTRAIN loss function
	An Algorithm of the Per-prompt RESTRAIN Loss Function
	Discussion of Motivation
	Detailed Results
	Benchmarks
	Implementation Details
	Addition Results

	Ablation Study of Prompt-level Weighting
	Study of Hyperparameter Weight Bias in Pseudo-label Weighting
	Study of Hyperparameter Negative Advantage Offset and Majority Count Threshold
	Discussion of Pass@1 vs. Majority Vote Performance
	Discussion of Computational Cost
	Discussion of Adapting RESTRAIN to PPO
	The Use of Large Language Models

