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ABSTRACT

Recent progress in neural-symbolic AI (NeSy) has demonstrated that neural net-
works can benefit greatly from an integration with symbolic reasoning methods in
terms of interpretability, data-efficiency and generalisation performance. Unfor-
tunately, the symbolic component can lead to intractable computations for more
complicated domains. This computational bottleneck has prevented the successful
application of NeSy to more practical problems. We present EXPLAIN, AGREE
and LEARN, an alternative paradigm that addresses the scalability problem of
probabilistic NeSy learning. EXPLAIN leverages sampling to obtain a represen-
tative set of possible explanations for the symbolic component driven by a newly
introduced diversity criterion. Then AGREE assigns importance to the sampled
explanations based on the neural predictions. This defines the learning objective,
which for sufficiently many samples is guaranteed to coincide with the objective
used by exact probabilistic NeSy approaches. Using this objective, LEARN up-
dates the neural component with direct supervision on its outputs, without the
need to propagate the gradient through the symbolic component. Our approxi-
mate paradigm and its theoretical guarantees are experimentally evaluated and
shown to be competitive with existing exact probabilistic NeSy frameworks, while
outperforming them in terms of speed.

1 INTRODUCTION

The field of neural-symbolic AI (NeSy) aims to combine the perceptive capabilities of neural networks
with the reasoning capabilities of symbolic systems. NeSy methods tend to generalize better and
require less training data compared to purely neural methods. However, NeSy methods have to tackle
the problem of propagating the learning signal through the symbolic component in order to train the
neural network. They usually resort to performing this propagation exactly, which is often intractable
for more complex systems and leads to poor scalability.

In this paper, we introduce the EXPLAIN, AGREE, and LEARN (EXAL) paradigm, which aims to
address scalability issues in probabilistic NeSy learning. In the EXPLAIN step, explanations at the
level of the neural output are sampled for the data labels. The AGREE step bounds the likelihood
using these explanations. The LEARN step then trains the neural network to optimize this bound.
We present an implementation of the EXAL paradigm for probabilistic NeSy, with an EXPLAIN
procedure aiming to sample a diverse set of explanations. We develop a basic sampling procedure and
a learnable extension that explicitly maximizes diversity using GFlowNets. Furthermore, we establish
the correctness of the EXAL paradigm, the importance of every step, and provide theoretical bounds
on the error of the learning objective. Moreover, the increased diversity of our solution provides
better bounds on the learning objective compared to uniform sampling. Finally, we show through an
ablation study on MNIST digits that the three stages are all essential to guarantee proper learning.
The EXAL paradigm can be applied to general probabilistic NeSy frameworks, but the details of the
EXPLAIN algorithm depend on the nature of the symbolic component. We will from now on focus
on a probabilistic logic symbolic component.

1



Under review as a conference paper at ICLR 2024

Figure 1: Traffic light example. A logic program determines whether the car should go or stop
depending on the color of the traffic light and whether people are walking on the road or not, as
sensed by a camera installed on the car (see top-left image). Indeed, we have a ProbLog program
expressed in first-order logic (bottom-left), a ground program relevant for the query (bottom) and the
equivalent program used by our inference strategy (bottom-right). The neural network (top) transform
the sensed image into a vector of probabilities on the facts of the logic program (top-right).

2 BACKGROUND

Probabilistic Logic Programming. A logic program is a setR of rules, i.e. expressions of the form
a ← b1 ∧ ... ∧ bn, where a is the head, and the bi are body literals. Rules are to be interpreted as
follows: IF all the body literals are true THEN the head is true. Rules with an empty body are facts.
In first-order logic programs, literals can have (variable) arguments. First-order logic programs can
be grounded into propositional logic by substituting all variables with grounded terms.

ProbLog (De Raedt et al., 2007) extends logic programs to probabilistic logic programs through the
introduction of probabilistic facts. A probabilistic fact is of the form pi :: fi where fi is a logical fact
and pi is the probability of fi being true. In ProbLog, each probabilistic fact fi corresponds to an
independent Boolean random variable that is true with probability pi. Let H denote the Herbrand
base of the program, i.e. the set of all atoms, and F ⊆ H the set of facts. Given a subset F ⊆ F of
facts assigned the value true, the probability of F is defined as P (F ) =

∏
fi∈F pi

∏
fi /∈F (1− pi).

Additionally, a probabilistic logic program defines the probability of a query q, given by P (q) =
EF [1F |=Rq], with 1 an indicator and F |=R q denoting whether q is logically entailed by the rules
R if only the facts in F are true.

3 EXPLAIN, AGREE AND LEARN: THE RECIPE

Figure 2: Probabilistic graphical model
formulation of NeSy learning.

NeSy learning is framed in Bayesian terms using the prob-
abilistic graphical model in Figure 2. It contains a sub-
symbolic input data vector x ∈ RD, the query q, and an
assignment1 f , which is defined below:

Definition 1. A (partial) assignment under a rule set R
of a program is a mapping ν : H → {0, 1} with H ⊆ H
such that none of the rules in R are violated when every
atom a in H gets assigned the value ν(a). An assignment
is complete if dom(ν) = H. A completion of a partial
assignment ν is a complete assignment µ such that ∀a ∈

dom(ν) : µ(a) = ν(a). We will later use the notation ν + l for a literal l to denote a new assignment

1In an abuse of notation, we will use f both to denote the mapping as well as the logic program obtained by
assigning the truth value of f to every fact fi ∈ F
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Figure 3: On the left, we have the DAG induced by the logic program from the traffic light
example. On the right, we have an example of the search subgraph obtained by the sampling
procedure. White and black colours are used to indicate whether a ground atom is assigned
a true or false value, respectively. Additionally, black nodes require to randomly select which
atom from their body must be assigned a value, thus being called choice nodes. Leaf nodes
(nodes without outgoing arrows) are probabilistic facts. In the example on the right, we ob-
serve that the partial assignment of the probabilistic facts leads to a conflict. The program admits
two valid partial assignments, namely {¬person(mary),¬person(bob),¬light(red),¬aux1} and
{¬person(mary),¬person(bob),¬light(red),¬choice}.

that maps all atoms in dom(ν) to the same value as ν and maps the atom in l to 1 if l is a positive
literal and to 0 otherwise.

The logic component is P (q | f) = 1f |=Rq and the probabilistic perception component P (f | x)
is modeled by a neural network g : RD → [0, 1]|F| as P (f | x) =

∏
i gi(x)

fi(1 − gi(x))
1−fi .

Additionally, we define the auxiliary distribution Q(f | x, q) = wx,f 1f∈Ωq
, where Ωq = {f | f |=R

q} is the set of assignments that make q true, i.e. the models of q. Ωq is the support of Q, whereas
wx,f ∈ R+ are the positively-defined weights of Q, such that

∑
f∈Ωq

wx,f = 1. The objective
function is a lower bound of the log-likelihood over a training data set of samples D = {(xj , qj)}Nj=1:

logP (D) ∝
N∑
j=1

logP (qj | xj) ≥
N∑
j=1

∑
f∈Ωqj

Q(f | xj , qj) log
P (f | xj)

Q(f | xj , qj)
= −

N∑
j=1

KL(Qj |Pj).

(1)

For the full derivation we refer to App. A. Maximizing the lower bound in Eq. 1 consists of mini-
mizing the Kullback-Leibler (KL) term through standard gradient descent. The KL bound is made
tighter by updating the weight function wx,f . Notably, the training signal for the neural component
P (f | x) is provided by the auxiliary distribution Q, which sidesteps the traditional requirement of
backpropagating gradients through the logic program (Manhaeve et al., 2018; Xu et al., 2018; Ahmed
et al., 2022). In other words, we avoid expensive exact probabilistic inference based on weighted
model counting or knowledge compilation (Oztok & Darwiche, 2015) during learning. While the
sidestepping of this requirement is appealing, it is important to mention that the support Ωq of Q is
not given. In the following sections, we are going to provide the ingredients of our recipe to estimate
Ωq , to learn the weight function wx,f and finally learn the neural network.

3.1 EXPLAIN: SAMPLE EXPLANATIONS

First, we will show how to interpret a ProbLog program as a directed acyclic graph (DAG). Then, we
will introduce the notion of an explanation and give the EXPLAIN algorithm to sample explanations
for a query. EXPLAIN uses the DAG structure to guide its search. Finally, we define the diversity of
sampled explanations and devise a learning strategy to improve the diversity of EXPLAIN’s output.

Logic program to DAG. We will assume the following properties of the logic program: ground,
singly defined, i.e., every atom can occur in the head of at most one rule, and acyclic, i.e., there exists
a total ordering on the atoms such that the head of every rule is greater than all the atoms in the body.
A program that is not ground or singly defined can always be transformed into a program that does
have these properties. For grounding a program, we refer to (Gebser et al., 2007), while App. B gives
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Algorithm 1 Sampling algorithm EXPLAIN(ϕ, q, ν,≤q, u)

1: Input: logic formula ϕ, query q, (partial) assignment ν, partial ordering ≤q , value function u.
2: Output: explanation for the query encoded in ϕ, or ∅ if a conflict is encountered.
3:
4: ϕ← unit propagate(ϕ)
5: if ϕ is empty or ν is an explanation for q then
6: return ν
7: end if
8: if ϕ has an unsatisfiable clause then
9: return ∅

10: end if
11: c← smallest clause in ϕ according to ≤q

12: l← random literal in c chosen with weights u
13: ν ← ν + l
14: return EXPLAIN(ϕ ∧ l, q, ν,≤q, u)

a transformation to make any program singly defined. As an example, Figure 1 shows a ProbLog
program that is transformed into its ground singly defined equivalent. Additionally, the acyclicity
property ensures that we can interpret a ground singly defined program as a directed acyclic graph
G = (H,L), whereH is the Herbrand base and L is the set of links determined by the program rules.
Specifically, L contains an edge from the head of a rule to every atom in the body. In other words,
G is the Prolog dependency graph with reversed edges. The DAG obtained from the traffic light
ProbLog program is given in Figure 3.

Parsimonious sampling. We introduce some definitions useful for the EXPLAIN algorithm.
Definition 2. Given an assignment ν, an atom a ∈ dom(ν) is explained in ν if a is a fact or if a is
the head of a rule a← b1, ..., bn and the value of a is entailed by the values of bi given by ν.
Definition 3. An explanation for a query q is an assignment ν with ν(q) = 1 such that every atom in
dom(ν) is explained.
Definition 4. A value function u : L → R+ assigns a positive real value to every edge in G.

For now we assume that ∀l ∈ L : u(l) = 1. We will later see how to generalize/parameterize the
value function and learn it.

The EXPLAIN algorithm is used to sample an explanation for a query q. It is a probabilistic
extension of the Davis–Putnam–Logemann–Loveland (DPLL) algorithm (Davis & Putnam, 1960;
Davis et al., 1962). Because DPLL works on logical formulas, the ground program first has to be
encoded as a formula ϕ using Clark’s completion (Clark, 1977). We define an order inspired by
the program structure that is used to prioritize variable initializations in the DPLL algorithm. Since
non-descendants of the query in G do not influence the query, they all get lowest priority.
Definition 5. For a query q we define a partial order ≤q on clauses in a logical formula ϕ of a
program as follows. Notice that every clause encodes (part of) exactly one rule from the program.
Call h(c) the head of the rule that clause c encodes. Then if h(c1) and h(c2) are both descendants of
q in G we say that c1 ≤q c2 if and only if c2 is a descendant of c1 in G. If h(c1) is a descendant of q
but h(c2) is not, then always c1 ≤q c2. This is similar to the stratification commonly used in logic
programming (Apt et al., 1988).

The algorithm is initially called as EXPLAIN(ϕ, q, ∅,≤q, u) and returns a (partial) explanation of
q. This explanation is subsequently completed. If the algorithm returns ∅, then a conflict was
encountered during execution. App. C shows different ways to handle conflicts and perform the
completion. The pseudo-code of EXPLAIN is given in Algorithm 1. Note that EXPLAIN enjoys the
properties summarized in the following proposition.
Proposition 3.1 (Properties). EXPLAIN always terminates either by detecting a conflict or by
returning a possible explanation. Additionally, the returned explanation ν is parsimonious. That is,
the query q is entailed in any completion of ν.

Proof. Regarding termination, we first assume that no conflict can occur. Under this assumption we
observe that each call of EXPLAIN visits a new node in G by following the corresponding topological
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order. Since the graph is acyclic and finite, the algorithm eventually reaches the leaves or probabilistic
facts, thus terminating. Now, if conflicts occur, EXPLAIN can terminate before reaching the leaves.
Regarding parsimony, note that the algorithm initializes the minimal number of atoms at each rule to
ensure that the query is always entailed. Therefore, remaining atoms do not have any impact on the
query.

The principle of parsimony introduced by EXPLAIN is beneficial for reducing the number of conflicts
when searching for an explanation. App. D contains an analysis of how parsimony impacts the
number of conflicts.

Diversified sampling. Now, we turn our focus to estimate Ωq using EXPLAIN and show how we can
adapt the value function u to improve diversity. The key idea is to formulate T calls to EXPLAIN
as a deterministic Markov Decision Process (MDP) and leverage a recent result from the theory of
GFlowNets (Bengio et al., 2021a). Let’s introduce the elements of the MDP, namely its state, action
space, transition and reward functions.
Definition 6. Given a set V containing all possible assignments, we define the state space of the MDP
as S = VT with T the number of samples outputted by EXPLAIN. We define the initial state of the
MDP as s0 = [νq, ∅, . . . , ∅] with νq : {q} → {0, 1} such that νq(q) = 1. A state [µ1, . . . , µT ] ∈ S is
a terminal state when all µi are explanations of q, being the output of T calls to EXPLAIN.
Definition 7. We characterize the action space using a mapping A : S → 2H that decides the pool
of atoms for assignment, given the current state s = [µ1, . . . , µt−1, ν, ∅, . . . , ∅], namely

A(s) =
{
H \ dom(ν) if ν is an explanation and dom(ν) ̸= H
U otherwise

with U the unexplained atoms of ν. So if ν is an explanation, we complete it and otherwise choose an
atom to be explained.
Definition 8. Given a state s = [µ1, . . . , µt−1, ν, ∅, . . . , ∅] and an action a ∈ A(s), the transition
function of the MDP is defined as

T (s, a) =
{

[µ1, . . . , µt, νq, ∅, . . . , ∅] if ν is a complete assignment
[µ1, . . . , µt−1, ν

′, ∅, . . . , ∅] otherwise

Specifically, ν′ = ν + a or ν′ = ν + ¬a with equal probability when ν is an explanation. Otherwise,
if ν(a) = 1 then ν′ = ν +

∑
b b with b the literals in the body of the rule defining a and if ν(a) = 0

then ν′ = ν + ¬b for a random body literal b. The idea is that ν′ either adds an explanation to or
completes ν. If ν is a complete explanation, we start with a new sample νq .

We can now introduce the notion of diversity and the reward function of the MDP.
Definition 9. Given a terminal state sT = [µ1, . . . , µT ], the diversity of sT is defined by δ(sT ) =
|{µt | t = 1, ..., T}|. In other words, the diversity criterion counts the number of unique complete
assignments in the state. The reward is R(s) = δ(s) for terminal states and R(s) = 0 otherwise.
Definition 10. The generalized value function u : S × S → R+ assigns values to transitions s→ s′.

These definitions lead us to the following result.
Proposition 3.2 (Diversity guarantee). Given an MDP (S,A, T , R) and a generalized value function
that is a solution to the flow equation for all states s ∈ S∑

s′,a:T (s′,a)=s

u(s′, s) = R(s) +
∑

a∈A(s)

u(s, T (s, a)) (2)

if we define the policy function as π(a | s) = u(s, T (s, a))/
∑

a′∈A(s) u(s, T (s, a′)) we have that

1. The transition graph associated to the MDP, i.e. nodes are states and edges are transitions,
when starting from the state s0 is a DAG.

2. The probability to reach a terminal state sT starting at s0 following π is R(sT )/
∑

s′T
R(s′T ).

Proof. For part 1, note that the MDP is constructed as to avoid cycles. Each transition either
completes the corresponding assignment ν for sample t in an incremental fashion (atoms are never
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removed from the assignment) or starts a new sample t+ 1 in case ν is already complete. Regarding
part 2, the result follows directly from Proposition 2 in (Bengio et al., 2021a), because all assumptions
are met. In particular, the graph is a DAG (from part 1).

The proposition ensures that, by defining u in a way to satisfy the flow equation, EXPLAIN can
generate diverse samples, with probabilities proportional to the reward function R. However, defining
such value function is in practice intractable, both computationally, as we need to solve a large system
of linear equations, and in terms of storage, as we need to store the values of all transitions. Similarly
to GFlowNets (Bengio et al., 2021a), we can avoid the intractability by parameterizing the function u
and learning it to minimize an objective quantifying the violation of the flow equation. We propose
the following two simplifications for parameterizing the function u. First, let u(s, s′) depend only
on the atom a in s that gets explained in the transition to s′. Second, we count how many times
during the execution of EXPLAIN the edge from the head a to the body literal b is followed and call
this number n(a, b). All counts are initialized to n(a, b) = 0. We define u = αnn(b) γ

n(a,b) with
αnn(b) = P (b |x) according to the neural network and γ ∈ (0, 1] the damping factor. After sampling
one explanation, the counts n are incremented. Subsequently u changes and the new value function
is used in the next call to EXPLAIN. Because 0 < γ ≤ 1 whenever a transition is taken in one
iteration, the probability of taking it again in the next iteration is dampened by γ. This encourages
the algorithm to explore other explanations for the query and can thus lead to higher diversity. The
αnn factor is included so that the neural network can guide which edges to take. This leads to faster
convergence. We provide the pseudo-code to train EXPLAIN for diversity in App. E.

3.2 AGREE: COMPUTE THE WEIGHT FUNCTION

We can now use the set of sampled models Ω̃q ⊆ Ωq to define the approximate posterior Q̃(f |
x, q) = wx,f1f∈Ω̃q

and to compute the KL objective in Eq. 1. This allows learning the weight

function of the posterior Q̃. By minimizing the KL with respect to the weight function we obtain
an estimator of the true data log-likelihood. The estimator will be subsequently used as a training
objective to update the perceptual component in the LEARN step. We can now provide the estimator
and show its properties (the proofs are in App. F).

Proposition 3.3 (Estimator). Assume w∗
x,f = P (f | x)/

∑
f ′∈Ω̃q

P (f ′|x) and Q̃∗ is the correspond-
ing approximate posterior, then

1. Q̃∗ is the global maximizer of Eq. 1.

2. The maximum of Eq. 1 is attained at
∑N

j=1 log P̃xj
(qj), with P̃x(q) =

∑
f∈Ω̃q

P (f | x).

3. For any x and q it holds that log P̃x(q) ≤ logP (q | x) ≤ log(1− P̃x(¬q)).

The first result tells us that we can solve the maximization of Eq. 1 with respect to the weight
function analytically, without requiring additional optimization steps. The value attained by the
global maximizer is a biased estimator of the data log-likelihood in Eq. 1, used during the LEARN
step. The third result states that the approximate objective provides bounds on the data log-likelihood
commonly used during training by exact neural-symbolic methods. The bounds get tighter with
more samples and become exact when all models of the query have been sampled at least once, i.e.
Ω̃q = Ωq . This convergence of bounds is also shown experimentally.

3.3 LEARN: LEARNING THE PERCEPTUAL COMPONENT

The LEARN step maximizes
∑N

j=1 log
∑

f∈Ω̃q
P (f |x) with respect to the parameters of the neural

network g using standard gradient descent strategies. Importantly, when |Ω̃q| = 1, we observe that
the loss is equivalent to the traditional negative cross-entropy loss. We can interpret the LEARN step
as a standard supervised classification setting, where the labels are provided by the EXPLAIN and
AGREE steps. See App. G for the pseudo-code.
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4 RELATED WORK

We review recent works on neural-symbolic (NeSy) learning and scalable logical inference. For
a more detailed discussion on NeSy, we refer the reader to recent surveys in Besold et al. (2021);
Giunchiglia et al. (2022).

NeSy relaxations. Several NeSY systems address the scalability of inference with continuous
relaxations based on fuzzy logic semantics (Badreddine et al., 2022; Giunchiglia & Lukasiewicz,
2021; Daniele & Serafini, 2019; Li & Srikumar, 2019; Gan et al., 2021; Sachan et al., 2018; Donadello
& Serafini, 2019). However, these relaxations may introduce approximations that can yield different
outputs for equivalent logic formulas (van Krieken et al., 2022; Grespan et al., 2021). In contrast,
our work performs inference and learning without resorting to such relaxations while retaining a
probabilistic interpretation.

Neural inference strategies. The work from Cornelio et al. (2023) proposes a neural-symbolic
pipeline consisting of a symbolic engine and three neural modules. Specifically, a perception network
mapping the images to their symbolic representations, a neural solver attempting to correct the
symbolic representation, and a mask predictor to identify possible mistakes done by the neural solver.
The symbolic solver then corrects the mistakes on the neural predictions. The neural modules are
pre-trained under supervision and fine-tuned using reinforcement learning. In contrast, our simplified
framework is based on a scalable logic engine and single neural component. Learning is performed
by directly supervising the neural component using the sampled explanations using variational
inference strategies. The work in van Krieken et al. (2023) introduces two neural modules for neural-
symbolic learning: a perception component mapping input data to the probabilities of facts, and a
neural reasoner component mapping probabilities to the query. Learning involves training the neural
reasoner to mimic synthetic input/output pairs obtained through logical inference, and then training
the perception component in a supervised manner using the frozen neural reasoner. In contrast,
our work only requires a perception component and utilizes a sampling algorithm that guarantees
logically consistent solutions while ensuring diversity. The Neural Theorem Prover (Minervini
et al., 2020a;b) introduces a continuous and differentiable relaxation of the backward-chaining logic
reasoning algorithm. In contrast, our approach does not rely on relaxations or differentiability through
the logic program. Other neural sampling strategies, such as GFlowNets (Bengio et al., 2021b;a;
Zhang et al., 2022), treat sampling as a sequential decision-making process and learn a policy based
on a reward function. However, sampling with hard constraints and exploring solution modes from
logical programs remains a challenging problem (Ermon et al., 2012; Sansone, 2022).

Logical inference/sampling strategies. Probabilistic logical inference can be performed exactly
by transforming the logical program into a probabilistic circuit (PC) through knowledge compila-
tion (Darwiche & Marquis, 2002). This allows for efficient evaluation in polynomial time (Choi
et al., 2020; Xu et al., 2018; Ahmed et al., 2022; 2023). Alternatively, approximate strategies can
be used to avoid the computational burden of knowledge compilation, but they may result in biased
learning (Manhaeve et al., 2021; Huang et al., 2021; Skryagin et al., 2022) and in lacking guarantees
on the uniformity/quality of the sampled solutions (Jerrum et al., 1986; Bellare et al., 2000). The
assumption of uniform distribution of worlds is often made when sampling solutions from a CNF
formula, and various uniform samplers have been proposed with theoretical guarantees on query
complexity and uniformity Meel (2022). State-of-the-art samplers based on hashing-based methods
and SAT solvers achieve approximate uniformity by partitioning the solution space into smaller
regions (Eén & Sörensson, 2003; Soos et al., 2009; de Moura & Bjørner, 2008; Soos et al., 2020;
2009; Yang & Meel, 2021). However, existing samplers focus on sampling for CNF formulas without
considering the structure of the logic program. In contrast, our algorithm focuses on a stronger
criterion than uniformity, namely diversity, and on leveraging the logical structure of the program.

5 EXPERIMENTS

Experiments are provided to support our theoretical claims. We show that we can learn to generate
diverse samples using the EXPLAIN algorithm. Then the importance of diversity and the AGREE
step are illustrated by looking at the convergence of the learning objective. Lastly, we apply the
EXAL paradigm to the MNIST addition learning task. More details on our implementation and a link
to the code is in App. G. Our learning setup is explained in App. H.
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Figure 4: Diversity as a function of EXPLAIN calls for different programs and sampling strategies.

5.1 DIVERSITY (EXPLAIN STEP)

As a first experiment, we evaluate the diversity of different sampling strategies. Programs with a
varied number of atoms, ranging between 15 and 60, have been generated to run the algorithm on.
The branch program has a tree-like structure, forcing the EXPLAIN algorithm to make many choices
in succession. The split program alternates between layers of conjunctions and disjunctions. The
bottom up program is constructed starting at the facts and defining new atoms recursively using
the atoms that already exist. We count how many unique samples are generated during subsequent
calls to the algorithm, i.e., the diversity. The counts at each time step are averaged out over 200
reruns. This is done for fixed values of the factor γ, as well as for a γ that is learned using the
diversity optimizing algorithm in App. G. We set αnn = 1 for this experiment, since there is no neural
component. As baselines, a uniform sampler with replacement is considered and also the optimal
sampler that maximizes diversity at every time step. Figure 4 shows the evolution of the normalized
diversity for each strategy.

Although the EXPLAIN algorithm is not guaranteed to sample uniformly, in many instances it is
close to uniform. This can be seen by the overlapping of the uniform line and the line with γ = 1.
For the bottom up program EXPLAIN is however not uniform and performs worse for γ = 1. The
diversity of EXPLAIN is typically increased by choosing a smaller γ and can get close to the optimal
diversity. In some instances, such as the split program, having γ < 1 increases diversity, but there is
little difference in diversity for the different values of γ. We also see that learning to optimize the
diversity performs better than sampling uniformly.

5.2 CONVERGENCE OF BOUNDS (AGREE STEP)

Figure 5: Convergence of objectives for increasing sample count, shown for two programs.

We now illustrate the importance of diversity and of the AGREE step. For this purpose we compare
the objective function with the true likelihood of the query for different number of samples. More
concretely, explanations are sampled for the query and for its negation, using both the diverse and non-
diverse versions of EXPLAIN. Then the objectives with and without the AGREE step are calculated.
The results for all four combinations are shown in Figure 5. The samples for the query give a lower
bound, whereas samples for its negation give an upper bound. The AGREE step is necessary for
the objectives to converge to the true likelihood. Furthermore, convergence happens faster when the
samples are more diverse.
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Table 1: Test accuracy of predicting the correct sum of two sequences of MNIST digits of length N .
Accuracies of A-NeSI, DeepStochLog and Embed2Sym were taken as reported by van Krieken et al.
(2023). EXL is our EXAL method without the AGREE step.

Method EXAL A-NeSI DeepStochLog Embed2Sym Reference
N = 2 94.96± 0.42 95.96± 0.38 96.40± 0.10 93.81± 1.37 96.06
N = 4 91.43± 0.71 92.56± 0.79 92.70± 0.60 91.65± 0.57 92.27
N = 15 71.60± 3.30 75.90± 2.21 T/O 60.46± 20.36 73.97

5.3 SCALING MNIST ADDITION (EXPLAIN, AGREE, LEARN STEPS)

We evaluate our approach on the standard neural-symbolic experiment of learning to sum MNIST
digits (Manhaeve et al., 2018; 2021). The input to this task is 2 sequences of N MNIST images,
where each sequence represents a decimal number of length N . The desired output is the sum of
these two numbers, which is also the only supervision. The size of the possible assignments of values
to each digit in each sequence (102N ) in combination with the distant supervision is what makes
learning to sum MNIST digits a challenging task.

Table 1 shows how we compare to the state of the art for N = 2, N = 4 and N = 15 digits. EXAL
is competitive with A-NeSI and provides state-of-the-art performance, with the desired reference
accuracy always within margin of error. This reference expresses the expected performance of
predicting the correct sum of two N digit numbers given a 99% accurate digit classifier. Additionally,
EXAL does not require finetuning of a neural approximation of the logic component or defining
appropriate priors up front, in contrast to A-NeSI. Instead, it exploits the given program to directly
acquire a fitting proposal distribution.

This direct proposal translates into a scalable and sample efficient overall procedure; the reported
accuracies were reached after around 75, 28 and 78 minutes on average for N = 2, N = 4 and
N = 15 respectively. A hold out-validation set was used to avoid overfitting, which was the cause for
the relatively long duration of the N = 2 case as its validation accuracy remained on a long plateau.
Comparable test accuracies can already be reached after just 25 minutes. Moreover, only 100 samples
needed to be drawn for N = 2 and N = 4. For N = 15, 200 samples proved sufficient. Considering
the exponentially growing size of the search space, these numbers are more than reasonable.

6 DISCUSSION & LIMITATIONS

There are two limitations on the programs that EXPLAIN can handle, namely being ground and
acyclic. A first-order program can be grounded, but this can be computationally expensive. In the
future we can look into a lifted version of the EXPLAIN, AGREE and LEARN paradigm. EXPLAIN
will still terminate if the program contains cycles, but is not guaranteed to return an explanation. Also
here it might be possible to alter the algorithm or look into different program semantics to correctly
obtain explanations.
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