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ABSTRACT

Mixture-of-Experts (MoE) enables efficient scaling of large language models by
activating only a subset of experts per input token. However, deploying MoE-based
models incurs significant memory overhead due to the need to retain all experts in
memory. While structured pruning is promising to reduce memory costs, existing
methods often show suboptimal performance and unstable degradation in three
dimensions: model architectures, calibration data sources, and calibration sample
sizes. This paper proposes Mixture-of-Novices-and-Experts (MoNE), a novel
expert pruning method that replaces redundant experts with lightweight novices
to achieve effective and robust model compression. MoNE evaluates expert re-
dundancy based on two metrics: access frequency and output variance. Experts
exhibiting low usage and stable outputs are pruned and replaced with lightweight
novices—unbiased estimations of their original outputs—minimizing performance
degradation. Extensive experiments demonstrate that MoNE consistently out-
performs baseline methods with minimal accuracy degradation across the three
dimensions, confirming its effectiveness and robustness. Notably, it outperforms
baselines by up to 2.72 for the average zero shot accuracy across nine downstream
tasks under 25% pruning ratio, with only 0.14 performance drop for Qwen2-57B-
A14B. The code is available at https://github.com/zxgx/mode-pd.

1 INTRODUCTION

Mixture-of-Experts (MoE) has emerged as a powerful architecture for advancing the capabilities of
large language models (LLMs) (Liu et al., 2024; 2025; Muennighoff et al., 2025). MoE-based LLMs
achieve higher parameter efficiency than vanilla transformer-based LLMs by replacing the MLP
module with a set of smaller MLP modules (experts) and sparsely activating partial experts for each
input token (Lepikhin et al., 2021). Despite its performance benefits, the deployment of MoE-based
models often incur additional memory overhead to maintain the non-activated experts in memory,
which is valuable but limited for existing accelerators such as GPU and TPU (Jouppi et al., 2023).

While diverse structured pruning methods have been proposed to reduce deployment memory costs
by removing different model components while minimizing the performance degradation (Voita
et al., 2019; He et al., 2024; Xia et al., 2024; Zhao et al., 2026; 2025a;b), we observe that these
approaches often exhibit suboptimal performance and unstable degradation when applied to different
MoE models. Specifically, we identify three critical dimensions where existing methods fall short:
model architectures, calibration data sources and calibration sample sizes, as shown by experiments
in Section 5.3. These limitations are evident across two main categories of structured pruning
approaches for MoE models: general structured pruning and expert pruning as shown in Figure 1
(a). First, general structured pruning methods that remove model layers (Angular (Gromov et al.,
2025)) or weight matrix channels (FLAP (An et al., 2024)) fail to account for the sparse computation
scheme of MoE models when evaluating model component importance, resulting in inconsistent
performance drop across the aforementioned three dimensions. Second, existing expert pruning
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Figure 1: (a) Different structured pruning methods. (b) Layer-wise normalized expert access frequency
and output variance of Deepseek-V2-Lite for three downstream tasks. Experts with high access
frequency or output variances are the same across downstream tasks. Expert in blue circles has both
high frequency and variance. Expert in red circles only has high variance. Expert in green circles
only has high frequency. Similar observations on other models and tasks are in Appendix D.

methods such as MC-SMoE (Li et al., 2024) and RS (He et al., 2024) remove experts from MoE
models primarily based on the expert access frequency. However, as shown in Figure 1 (b), this
feature alone fails to fully capture the expert redundancy. Besides, these methods lack mechanisms to
recover the performance loss caused by pruning.

To improve the effectiveness and robustness of structured pruning for MoE models, this paper
proposes a novel expert pruning method, Mixture-of-Novices-and-Experts (MoNE) which replaces
redundant experts with a lightweight structure, novice. Specifically, to prune an MoE model with
MoNE, it first evaluates the expert redundancy by the access frequency and the output variance
for each expert on a calibration dataset. Then, it identifies and prunes redundant experts that show
low access frequency and stable output activations to reduce the memory overhead from redundant
experts. Finally, the unbiased estimation of the pruned expert output is employed as the lightweight
novice to reclaim the performance loss caused by the pruned expert. The intuition behind MoNE is
that experts with low access frequency contribute less to the final outputs and experts whose outputs
have low variance can be replaced with a constant but introduce less discrepancy. Moreover, Figure 1
(b) reveals that experts with less redundancy identified by MoNE exhibit strong consistency across
various downstream tasks.

The contribution of this paper is summarized as follows:

• We propose a novel expert pruning method named MoNE which replaces redundant experts
with lightweight novices to compress MoE models with minimal performance loss.

• We exploit the expert access frequency and output variance to measure the expert redundancy
and employ the unbiased estimation of the expert output to minimize the output discrepancy
after pruning, thus achieving effective and robust pruning results.

• Extensive experiment results demonstrate that MoNE consistently outperforms baseline
methods under varying MoE architectures, calibration data sources and calibration sample
sizes. Notably, it outperforms baselines by up to 2.72 for the average zero shot accuracy
across nine downstream tasks under 25% pruning ratio, with only 0.14 performance drop
for Qwen2-57B-A14B.
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2 RELATED WORK

Model pruning compresses a model by removing certain redundant model parameters while preserving
accuracy. Existing pruning methods generally fall into two categories: unstructured pruning and
structured pruning. Unstructured pruning eliminates any model parameter that has minimal impact
on model performance. Methods such as SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al.,
2024), SparseLLM (Bai et al., 2024) excel in maintaining accuracy while achieving high compression
ratios. However, the resulting irregular sparsity patterns hinder efficient representation and execution
on hardware accelerators.

In contrast, structured pruning removes certain modules of a model, preserving hardware-friendly
structures. Early researches prune redundant transformer layers of a LLM (Fan et al., 2020; Ling et al.,
2024; Gromov et al., 2025). LLM-Pruner (Ma et al., 2023), FLAP (An et al., 2024), MoE-Pruner (Xie
et al., 2024) and SlimMoE (Li et al., 2025) remove rows or columns of individual weight matrices.
Recent work also proposes to delete components such as attention, MLP or MoE modules within
each transformer layer (Voita et al., 2019; He et al., 2024). Minitron (Muralidharan et al., 2024)
and Sheared LLaMA (Xia et al., 2024) combine different granularity and automatically search for
the optimal structures to prune. Despite their versatility, existing structured pruning methods often
exhibit inconsistent performance across MoE architectures.

This work focuses on expert pruning, a unique direction of structured pruning for MoE models
(Lepikhin et al., 2021; Liu et al., 2024). Expert pruning targets on deleting individual experts for each
layer to compress an MoE model. Previous expert pruning methods either require exhaustive search
to identify redundant experts (Lu et al., 2024), or heavily rely on retraining to recover accuracy due to
the suboptimal pruning performance (Li et al., 2024; He et al., 2024). However, the exhaustive search
is not applicable to modern MoE model architectures such as Deepseek (DeepSeek-AI, 2024; Liu
et al., 2025), OLMoE (Muennighoff et al., 2025) or Qwen (Qwen, 2024; Yang et al., 2025), as their
MoE layer contains 64 experts or even more, yielding a tremendous search space that is intractable.
Retraining obscures the advantages of expert pruning over other structured pruning methods.

3 PRELIMINARIES

3.1 MIXTURE-OF-EXPERTS (MOE)

MoE-based LLMs replace the traditional MLP module in the transformer layer with MoE module.
Each MoE module consists of a router network G and a set of experts E = {E1, E2, . . . , EM}, where
M is the number of experts and each expert is a smaller MLP. Let x ∈ Rd be the hidden state of an
input token, where d is the hidden size of the model, the output of an MoE module is computed as:

MoE(x, G, E) =
∑

Ei∈Sk,x

Gi(x) · Ei(x) (1)

The output of the router network G(x) ∈ RM represents the routing scores for all experts, and
Sk,x ⊆ E denotes the top k experts with the highest routing scores for input x. The final output of
the MoE module is the weighted sum of outputs from the top k experts. While Equation 1 captures
the general MoE computation, implementations for G and Ei may vary across model architectures
(DeepSeek-AI, 2024; Liu et al., 2024; Muennighoff et al., 2025; Liu et al., 2025).

3.2 EXPERT PRUNING FORMULATION

Previous studies have revealed that not all experts contribute equally, and pruning less important ones
can reduce memory overhead with marginal performance degradation (Lu et al., 2024; Li et al., 2024;
Huang et al., 2025). However, searching for the target experts to prune at the global model perspective
falls into a tremendous search space, as the number of experts per transformer layer increases with
the evolving of the MoE model architectures (Lepikhin et al., 2021; Jiang et al., 2024; DeepSeek-AI,
2024; Liu et al., 2024). Following the layer-wise pruning scheme (Frantar & Alistarh, 2023; An et al.,
2024; Lu et al., 2024; Ling et al., 2024), our goal of expert pruning is to identify a subset of redundant
experts P ⊆ E such that we can minimize the output difference after compressing their parameters:

min
P⊆E

∥MoE(x, G, E \ P)−MoE(x, G, E)∥2 (2)
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Figure 2: The overview of MoNE. Given an MoE model, it first exploits a calibration dataset to
evaluate the expert access frequency and output variance. Then, the two metrics are fused to get the
expert redundancy. Finally, the novices are derived from the averaged outputs for redundant experts.

To achieve this goal, the core problem is twofold: (1) find a metric to evaluate the importance of the
experts in each layer, so that we can identify the expert subset P , and (2) find an pruning method to
compress the parameters of P , so that we can reduce the model size. While E \ P implies directly
removing redundant experts (He et al., 2024; Lu et al., 2024), existing methods have also explored
expert merging to mitigate the expert redundancy (Li et al., 2024).

4 MIXTURE OF NOVICES AND EXPERTS

This section introduces Mixture-of-Novices-and-Experts (MoNE), a novel expert pruning method
designed to achieve effective and robust compression for MoE models while minimizing performance
degradation. Section 4.1 presents the computational framework of MoNE. Section 4.2 defines the
metric to evaluate the redundancy of experts. Section 4.3 explains the pruning process that compresses
the redundant experts to lightweight novices. The overview of MoNE is depicted in Figure 2.

4.1 MONE FRAMEWORK

MoE models are often trained with auxiliary losses to ensure load balance among experts in each layer,
enabling each expert to learn certain aspect of knowledge (Lepikhin et al., 2021; DeepSeek-AI, 2024;
Muennighoff et al., 2025). However, most existing expert pruning methods directly remove experts
(He et al., 2024; Li et al., 2024), often leading to inconsistent performance drops across different
model architectures or calibration data. MoNE addresses this issue by introducing lightweight
structures called novices to replace the pruned experts. A novice is designed to capture the essential
knowledge previously held by the removed experts. In contrast to simply removing redundant
experts, MoNE compensates for knowledge loss by leveraging novices, thereby preserving the overall
performance of the model while maintaining compression efficiency. Specifically, the output of the
MoNE is computed as:

MoNE(x) =

 ∑
Ei∈Sk,x\P

Gi(x) · Ei(x)

+

 ∑
Ei∈Sk,x∩P

Gi(x) ·Ni

 (3)

where Sk,x \ P and Sk,x ∩ P denote the preserved and pruned experts among the top k activated
experts respectively. Ni ∈ Rd is the novice i that retains the essential knowledge of the pruned expert.
Notably, Ni is a compressed vector that does not involve any computation with the input token x.
As a result, the computation and memory overhead is nearly identical to directly removing experts.
Furthermore, replacing experts with novices introduces adaptive computation overhead for different
tokens, leading to fewer activated parameters for tokens routed to novices. Nevertheless, empirical
results in Section 5.2 demonstrate that MoE models pruned by MoNE maintain more zero shot
performance on downstream tasks compared to existing expert pruning methods that only remove
experts but keep the same activated parameters.
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4.2 EXPERT REDUNDANCY EVALUATION

To identify the expert subset P , we introduce an expert redundancy score ϕ to assess the redundancy
of experts. To ensure the pruned experts contribute minimally to the model’s overall performance, the
expert redundancy score ϕ takes two aspects into consideration: the variance in an expert’s output
across a calibration dataset C, and the frequency of an expert selected by the router network G.

Variance-based redundancy As the novices are constant vectors to ensure reduced computation
and memory overhead, the outputs of the pruned experts are expected to have low variance across a
calibration dataset C. In other words, experts with high output variance should be retained to contribute
more discriminative information during inference, whereas experts with low output variance could
be compressed into a more efficient representation, i.e., a novice. The second row of Figure 1
(b) visualizes this motivation. Expert outputs exhibit diverse variances, but we can find experts in
blue and red circles that maintain high variances across different downstream tasks. Therefore, we
introduce a variance-based redundancy ϕvar

i to measure the output variance for expert Ei. Concretely,
ϕvar
i is the L2 norm of the unbiased estimation for the output variance:

ϕvar
i =

∥∥∥∥∥∥
√∑

x∈C(Ei(x)− Ei)2 · I(Ei ∈ Sk,x)∑
x∈C I(Ei ∈ Sk,x)− 1

∥∥∥∥∥∥
2

(4)

Ei =

∑
x∈C Ei(x) · I(Ei ∈ Sk,x)∑

x∈C I(Ei ∈ Sk,x)
(5)

where I(Ei ∈ Sk,x) is the indicator function to show whether Ei is among top k experts for the input
token x of the calibration dataset C.

Frequency-based redundancy The routing scores and access frequencies of the router network
G serve as strong indicators of the overall redundancy of an expert (He et al., 2024; Li et al., 2024).
Intuitively, experts which are rarely selected or consistently assigned lower routing scores are likely
to have a minimal impact on the model’s output. As shown in Figure 1 (b), we can identify typical
experts in blue and green circles that show consistent high frequency over the three downstream tasks.
Notably, the expert in green circles only has high frequency. Therefore, the frequency and variance
information can complement the discrepancy ignored by each other. Based on this observation, we
define the frequency-based redundancy ϕfreq

i of the expert Ei as the average routing score across a
calibration dataset C of which Ei is among the top k selected experts. Formally, the frequency-based
redundancy ϕfreq

i is defined as:

ϕfreq
i =

∑
x∈C Gi(x) · I(Ei ∈ Sk,x)∑

x∈C I(Ei ∈ Sk,x)
(6)

Finally, the two redundancy metrics are fused to obtain the expert redundancy score ϕ:
ϕ = ϕvar · ϕfreq (7)

A lower expert redundancy score ϕi indicates higher redundancy for expert Ei, making it a suitable
candidate for pruning and replacement with a novice Ni.

4.3 EXPERT REPLACEMENT WITH NOVICE

After identifying the pruned expert subset P , we need to construct lightweight novices to replace them.
According to Equation 2, the general objective for expert pruning is to minimize the discrepancy
introduced by the removed expert outputs. Since the output after applying MoNE is formulated as
Equation 3, the concrete objective for MoNE can be translated to:

min
Ei∈P

∑
x∈C

(∥Ei(x)−Ni∥2) (8)

Because Ni is a constant vector, the optimal novice vector Ni that best approximates the output of a
pruned expert Ei can be obtained in a closed form, i.e., Ei in Equation 5.

To sum up, MoNE uses the unbiased estimations of mean expert outputs to replace experts that have
the minimum output variance. As a result, MoNE achieve the goal that effectively and robustly
compresses the MoE experts while minimizing performance degradation.
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5 EVALUATION

5.1 EXPERIMENT SETUP

Base MoE models To validate the effectiveness and robustness of MoNE, we conducted structured
pruning on five open source MoE models with diverse architectures and model scales: OLMoE
(Muennighoff et al., 2025), Moonlight (Liu et al., 2025), DeepSeek-V2-Lite (DeepSeek-AI, 2024),
Qwen2-57B-A14B (Qwen, 2024) and Qwen3-30B-A3B (Yang et al., 2025). OLMoE has 7B
parameters with 1B activated parameters per token. Both Moonlight and Deepseek-V2-Lite have
16B parameters with 3B activated pamaters per token. OLMoE and Moonlight represent SOTA
MoE models at their respective scales. To demonstrate scalability to larger architectures, we also
consider the Qwen series: Qwen3-30B-A3B with 30B parameters and 3B activated per token, and
Qwen2-57B-A14B with 57B parameters and 14B activated per token. We chose the base version of
the five models for experiments.

Baseline methods We selected structured pruning methods for different structures as baseline.
Notably, unless explicitly stated, we did not apply any weight update to compare the effect of pruning
methods. Specifically, for general structured pruning methods, we used Angular for layer pruning
(Gromov et al., 2025), which evaluates the layer importance by the angular distance between the
input activations for different layers, and we used FLAP for weight pruning (An et al., 2024), which
evaluates the channel importance by the fluctuation of the input activations and compensates the
performance loss with the averaged output activations. For expert pruning methods, we adopted
the expert merging method in MC-SMoE (Li et al., 2024) for one of the expert pruning baselines.
Another expert pruning baseline is RS (He et al., 2024), which uses routing scores to evaluate the
expert importance and discards less accessed ones.

Implementation details We tested two pruning ratios: 25% and 50%. To demonstrate the ro-
bustness of MoNE to calibration data, we conducted experiments on two calibration data sources:
Zyda2 (Tokpanov et al., 2024) and C4 (Raffel et al., 2020). Both datasets are constructed for LLM
pretraining and C4 is commonly used as the calibration dataset for model compression (Ling et al.,
2024; Frantar & Alistarh, 2023; Gromov et al., 2025; Xia et al., 2024). Besides, we also investigated
the performance under three calibration sample sizes: 100, 500 and 1000 in Section 5.3.

Evaluation protocol Following previous researches (Ma et al., 2023; Bai et al., 2024; Ling et al.,
2024; Xia et al., 2024; An et al., 2024), we adopted lm-evaluation-harness1 (Gao et al., 2024) to
measure the zero shot accuracy and average results on nine downstream tasks: Arc-c and Arc-e
(Clark et al., 2018), BoolQ (Clark et al., 2019), COPA (Roemmele et al., 2011), MMLU (Hendrycks
et al., 2021), OBQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), RTE (Wang et al., 2019) and
Winogrande (Sakaguchi et al., 2021).

Though more complex downstream tasks such as coding (Zhang et al., 2025), math (Lightman et al.,
2023) or reasoning (Lin et al., 2025) exist, these tasks are still challenging for full LLMs (Yang et al.,
2025; Liu et al., 2024). Moreover, existing study shows that model compression for complex tasks
often requires additional task-specific fine-tuning (Sarkar et al., 2024; Chen et al., 2022), which is
beyond the scope of this work and we consider it a promising direction of future work.

5.2 EFFECTIVENESS EVALUATION

This section validates the effectiveness of MoNE by comparing the zero shot performance of 25%
pruned models with 100 calibration samples from the Zyda2 dataset. The results are presented in
Table 1 and Table 2. Results under 50% pruning ratio are extended to Table 10 in Appendix C.

Table 1 indicates that MoNE consistently outperforms baseline methods in terms of the average
accuracy on the nine tasks. In particular, it shows average accuracy improvement as large as 2.72 for
the pruned OLMoE compared to baseline methods, and it incurs accuracy drop as small as only 0.14
for the pruned Qwen2-57B-A14B. Furthermore, MoNE-pruned models can achieve either the best
or the second best result for individual tasks under most settings.

1https://github.com/EleutherAI/lm-evaluation-harness
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Table 1: Zero shot performance with 100 calibration samples from Zyda2 dataset. Best results are in
bold, and the second best are underlined. Green cells indicate results no less than original models.

(a) OLMoE

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Avg.

0% OLMoE 49.23 76.89 70.09 85.00 53.54 44.40 79.76 71.84 68.90 66.63

25%

Angular 32.76 61.91 61.71 74.00 23.13 37.60 71.65 53.07 55.09 52.33
FLAP 40.53 67.55 62.69 78.00 41.16 37.80 74.81 61.37 60.93 58.32

MC-SMoE 35.67 54.92 63.49 73.00 29.04 30.60 67.19 55.23 65.75 52.77
RS 25.85 43.01 59.08 74.00 29.63 36.20 66.16 56.68 59.98 50.07

MoNE (Ours) 42.32 64.81 67.19 85.00 40.13 40.80 78.07 64.62 66.46 61.04

(b) Moonlight

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Avg.

0% Moonlight 58.28 82.49 80.40 92.00 67.30 45.60 81.12 65.70 71.11 71.56

25%

Angular 39.76 52.69 38.90 79.00 42.57 32.20 68.50 61.01 62.04 52.96
FLAP 48.55 76.01 75.93 90.00 55.84 42.20 77.97 64.26 68.19 66.55

MC-SMoE 47.61 73.15 78.72 89.00 46.11 43.60 80.36 56.32 71.43 65.14
RS 55.80 80.64 78.69 90.00 46.73 46.40 81.01 58.84 72.30 67.82

MoNE (Ours) 55.89 80.60 79.57 90.00 55.23 46.80 80.85 61.01 71.98 69.10

(c) Deepseek-V2-Lite

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Avg.

0% Deepseek-V2-Lite 48.72 76.18 79.88 88.00 54.96 43.60 80.25 61.37 71.51 67.16

25%

Angular 32.00 53.28 64.92 75.00 26.95 34.00 71.33 58.84 61.01 53.04
FLAP 43.69 71.46 75.26 84.00 47.28 41.40 78.18 62.82 67.72 63.53

MC-SMoE 36.69 60.77 71.31 84.00 42.22 36.60 75.57 58.48 68.67 59.37
RS 49.32 74.41 69.39 90.00 50.35 43.80 80.14 62.09 70.24 65.53

MoNE (Ours) 46.67 74.62 78.47 90.00 49.05 43.00 79.76 62.09 71.43 66.12

(d) Qwen2-57B-A14B

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Avg.

0% Qwen2-57B-A14B 49.66 69.44 86.45 93.00 74.06 44.20 81.23 74.73 74.27 71.89

25%

Angular 29.44 54.17 59.51 70.00 23.92 32.80 70.02 54.87 49.57 49.37
FLAP 50.00 72.85 86.91 91.00 65.02 45.40 81.12 77.62 76.09 71.78

MC-SMoE 46.67 66.25 86.45 88.00 69.46 43.40 80.20 74.73 75.14 70.03
RS 49.15 69.78 84.77 87.00 70.99 44.80 81.34 74.37 74.19 70.71

MoNE (Ours) 49.66 68.73 86.88 94.00 71.64 45.20 81.07 75.45 73.09 71.75

(e) Qwen3-30B-A3B

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Avg.

0% Qwen3-30B-A3B 55.89 79.42 88.69 84.00 77.82 44.80 80.30 82.31 70.64 73.76

25%

Angular 44.62 68.60 80.52 77.00 59.75 40.40 75.30 70.40 62.51 64.34
FLAP 50.85 76.68 85.72 85.00 69.43 42.80 77.31 81.95 70.17 71.10

MC-SMoE 52.73 76.98 88.75 83.00 72.25 44.40 79.71 80.87 70.40 72.12
RS 53.75 78.32 88.53 85.00 74.60 43.00 79.92 79.78 69.61 72.50

MoNE (Ours) 56.14 79.17 89.11 85.00 74.04 43.00 79.27 77.98 70.48 72.69

Table 2: Maximum pruning ratios with 1% accuracy loss after MoNE pruning using 100 calibration
samples from Zyda-2 dataset.

Model Max. pruning ratio Avg. perf before pruning Avg. perf after pruning

OLMoE 16% 66.63 66.00
Moonlight 16% 71.56 70.59
Deepseek-V2-Lite 20% 67.16 66.31
Qwen2-57B-A14B 25% 71.89 71.75
Qwen3-30B-A3B 24% 73.76 73.61

An interesting observation is that all the three expert pruning methods, MC-SMoE, RS and MoNE
can achieve results on par with or even better than the original models on certain tasks. The specific
examples are shown in green background in Table 1. All these results indicate that there is indeed
redundancy existing in the expert level for the examined MoE models, and expert pruning can rule
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Figure 3: Average accuracy versus accuracy drop variance. MoNE advances the Pareto frontier across
varying model architectures, calibration data sources and calibration sample sizes.

out such redundancy to achieve even better results on these tasks. Among the three expert pruning
methods, MoNE consistently surpasses the two baseline methods, demonstrating its strong capability.

Table 2 evaluates the maximum pruning ratios that maintain accuracy loss within 1% across different
MoE models. As shown in Table 2, larger and more powerful models such as Qwen2-57B-A14B and
Qwen3-30B-A3B tolerate more aggressive pruning (25% and 24%, respectively) compared to smaller
models like OLMoE, Moonlight, and Deepseek-V2-Lite (16–20%). This finding highlights the
scalability of proposed MoNE method for large model scales. In addition, combining the observations
from Table 1 and Table 2, we argue that larger MoE models may have stronger capability in language
modeling but also contain increasing parameter redundancy at the expert level, and MoNE can
efficiently eliminates such redundancy at minimal performance degradation.

5.3 ROBUSTNESS EVALUATION

This section evaluates the robustness of MoNE across three key dimensions: model architecture,
calibration data source, and calibration sample size. Due to prohibitive compute for exhaustive
experiments on large models, we tested three models: OLMoE, Moonlight and Deepseek-V2-Lite
using 100, 500 and 1000 calibration samples on C4 and Zyda-2 dataset separately. For each dimension,
we vary one factor while averaging results over the other two, measuring both average accuracy
and the standard deviation of accuracy drop. The results are visualized in Figure 3, with detailed
scores provided in Appendix C. As shown in Figure 3a, MoNE advances the Pareto frontier
across all three dimensions at the 25% pruning ratio, demonstrating superior robustness and
effectiveness compared to existing structured pruning methods. At the 50% pruning ratio (Figure 3b),
MoNE exhibits slightly higher variance under varying model architectures and calibration sample
sizes. Nevertheless, it remains the most effective method, outperforming baseline methods by a
significant margin of 2.85.

5.4 ABLATION STUDY

This section presents the ablation study to evaluate the effects of the two redundancy metrics and the
impact of novice replacement across the downstream tasks. Figure 4 displays the average accuracy
drop relative to our proposed methods, with lower values indicating greater degradation. Results
are averaged over the three evaluation dimensions to provide a robust assessment. We observe that
integrating the fused expert redundancy score with novice replacement yields better performance,
particularly under higher pruning ratios. This indicates that our approach is especially effective in
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Figure 4: Ablation study on expert access frequency, output variance and novice replacement.
Numbers are the difference to the proposed MoNE. The detailed result is provided in Appendix E.

Table 3: Zero shot performance of the 25% pruned OLMoE after continued pretraining with 2B
tokens from OLMoE-mix-0924. Best results are in bold, and the second best are underlined.

Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

OLMoE 49.23 76.89 70.09 85.00 53.54 44.40 79.76 71.84 68.90 66.63

Angular 38.82 64.69 63.52 82.00 25.42 39.80 76.50 51.62 59.04 55.71
FLAP 42.24 69.07 69.51 80.00 45.56 40.40 77.42 50.18 63.54 59.77

MC-SMoE 42.75 70.41 69.76 80.00 44.13 37.60 75.79 66.43 64.96 61.31
RS 44.97 72.94 70.73 85.00 43.28 43.00 78.67 72.20 65.98 64.09

MoNE (Ours) 47.35 74.33 71.56 87.00 43.30 40.40 78.89 67.51 67.25 64.18

preserving model quality when pruning is more aggressive. Notably, for tasks such as BoolQ, COPA,
and PIQA, our proposed method outperforms the ablation baselines by a large margin—achieving
accuracy gains of up to 8.85. However, for MMLU, pruning based solely on frequency appears to
offer a slight advantage, suggesting that frequently activated experts may play a more critical role in
domain-specific reasoning tasks.

5.5 ACCURACY RECOVERY WITH CONTINUED PRETRAINING

To evaluate performance recovery capabilities, we conducted continued pretraining on the 25%
compressed OLMoE model pruned by 100 Zyda2 samples, as only this model releases its pretraining
dataset, OLMoE-mix-09242. The sequence length was set to 4096 and the global token size per step
was 4M. Each pruned model was trained with 2B tokens, i.e., 512 steps, and the peak and minimum
learning rate (lr) were 5e-5 and 5e-6, respectively. We employed the cosine lr scheduler with 50
warm up steps. Other hyperparameters were the same as the original configuration for OLMoE
(Muennighoff et al., 2025). All the experiments could run on a single H20 GPU, but we accelerated
the training with 16 H20 GPUs.

The results are summarized in Table 3. This table shows that MoNE achieves the average accuracy
closest to the original model with only 2B tokens from a pretraining dataset, demonstrating the
promising capability of the MoNE computation framework. Besides, MC-SMoE and RS reclaim
8.54 and 14.02 average accuracy, indicating that expert pruning is not only effective to eliminate
redundancy, but also relatively easier to recover performance with continued pretraining.

6 CONCLUSION

In this paper, we propose MoNE, a novel expert pruning method that replaces redundant experts
with lightweight novices to compress MoE models. MoNE evaluates expert redundancy based
on expert access frequency and output variance in each model layer, pruning experts with low
usage and stable outputs while replacing them with novices that provide unbiased output estimates.
Extensive experiments across different MoE architectures, calibration data sources, and sample sizes
demonstrate that MoNE outperforms existing structured pruning methods by maintaining higher
zero-shot performance across nine downstream tasks.

2https://huggingface.co/datasets/allenai/OLMoE-mix-0924
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THE USE OF LARGE LANGUAGE MODELS

All writing, visualizations, and experiments are completed by the authors. LLMs (e.g., Claude) are
used solely to refine the writing.

We organize our appendix as follows:

• Section A shows the evaluation of MoNE on domain-specific tasks.
• Section B presents ablation study on the pruning metric.
• Section C provides detailed scores for various models, calibration datasets and calibration

sample sizes.
• Section D visualizes expert access frequency and output variance for more tasks and models.
• Section E presents the detailed scores for ablation study.
• Section F shows the inference latency and memory overhead benefits for the proposed

MoNE.
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Table 4: Base and Instruct OLMoE models on Math and GSM8K.

Model GSM8K Math
No calibration
OLMoE 52.77 15.78
OLMoE-Instruct 67.63 18.64

Calibration: Zyda2
OLMoE 3.34 1.94
OLMoE-Instruct 7.96 2.54

Calibration: Task-specific
OLMoE-Instruct (Math) 65.28 18.22
OLMoE-Instruct (GSM8K) 67.48 17.64

Table 5: Base and Instruct Moonlight models on Math and GSM8K.

Model GSM8K Math
No calibration
Moonlight 74.22 42.32
Moonlight-Instruct 77.03 39.26

Calibration: Zyda2
Moonlight 46.40 3.32
Moonlight-Instruct 51.86 6.64

Calibration: Task-specific
Moonlight-Instruct (Math) 75.28 38.56
Moonlight-Instruct (GSM8K) 76.72 35.84

Table 6: Base and Instruct DeepSeek-V2-Lite models on Math and GSM8K.

Model GSM8K Math
No calibration
DeepSeek-V2-Lite 38.82 16.54
DeepSeek-V2-Lite-Chat 66.49 18.56

Calibration: Zyda2
DeepSeek-V2-Lite 25.40 6.80
DeepSeek-V2-Lite-Chat 37.07 4.76

Calibration: Task-specific
DeepSeek-V2-Lite-Chat (Math) 64.44 20.76
DeepSeek-V2-Lite-Chat (GSM8K) 63.76 19.70

A SPECIALIZED TASK EVALUATION

We extended MoNE to two specialized tasks: Math and GSM8K. We conducted experiments on both
base models and instruct models. To calibrate the instruct models, we adopted the first 100 samples
from the training dataset of each task. The results are reported in Tables 4–8.

Our experiments on specialized tasks reveal two important findings regarding the effectiveness of
different calibration strategies. After pruning with pretraining data (Zyda2), larger base models
preserve significantly more accuracy, which is consistent with our observations from general tasks
in Section 5.2. However, pretraining data cannot accurately capture the distribution of specialized
tasks, leading to accuracy drops of up to 49% for the smallest model, OLMoE. This demonstrates that
while model scale provides some resilience to pruning, the mismatch between pretraining data and
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Table 7: Base and Instruct Qwen2-57B-A14B models on Math and GSM8K.

Model GSM8K Math
No calibration
Qwen2-57B-A14B 79.68 40.50
Qwen2-57B-A14B-Instruct 69.90 31.30

Calibration: Zyda2
Qwen2-57B-A14B 74.07 31.28
Qwen2-57B-A14B-Instruct 64.90 22.84

Calibration: Task-specific
Qwen2-57B-A14B-Instruct (Math) 58.45 29.56
Qwen2-57B-A14B-Instruct (GSM8K) 52.92 29.62

Table 8: Base and Instruct Qwen3-30B-A3B models on Math and GSM8K.

Model GSM8K Math
No calibration
Qwen3-30B-A3B 85.37 50.48
Qwen3-30B-A3B-Instruct 90.90 46.94

Calibration: Zyda2
Qwen3-30B-A3B 71.72 9.44
Qwen3-30B-A3B-Instruct 78.01 9.88

Calibration: Task-specific
Qwen3-30B-A3B-Instruct (Math) 89.76 48.52
Qwen3-30B-A3B-Instruct (GSM8K) 90.30 51.70

task-specific distributions poses substantial challenges for maintaining performance on specialized
tasks.

In contrast, MoNE can effectively preserve performance by pruning instruct models with training data
from the specialized tasks themselves. For example, OLMoE-Instruct incurs only minimal accuracy
drops of at most 1% for both tasks when calibrated with task-specific data. This result is not surprising,
as state-of-the-art models also rely on specialized fine-tuning approaches such as supervised fine-
tuning and reinforcement learning with domain-specific data to enhance their capability in these tasks
(Muennighoff et al., 2025; Liu et al., 2025; Qwen, 2024; Yang et al., 2025). The effectiveness of
task-specific calibration suggests that the distribution alignment between calibration data and target
tasks plays a critical role in determining post-pruning performance.

In summary, we acknowledge that calibration via pretraining data is insufficient to preserve model
capability for specialized tasks, and task-specific calibration can effectively mitigate this issue. A
promising future direction for model compression is to develop methods that bridge the gap between
these two calibration approaches, potentially through hybrid calibration strategies or adaptive data
selection techniques that better capture task-specific distributions while maintaining broad coverage.

B PRUNING METRIC ABLATION STUDY

We conducted an extended ablation study on the redundancy score to evaluate the sensitivity of MoNE
to different scoring formulations. Following the same evaluation configuration as in Section 5.2, we
compared MoNE against five variants: normalized scores, log-sum aggregation, and weighted sum
with varying emphasis on output variance (25%, 50%, and 75%). The results are reported in Table 9.

The results indicate that the pruning score exhibits minimal scale sensitivity across different for-
mulations. In particular, the log-sum aggregation shows nearly identical results to MoNE, which
is expected since log(θvar) + log(θfreq) = log(θvar × θfreq) does not affect the partial ordering
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Table 9: Ablation study on redundancy scoring methods across different models. All values represent
average performance scores.

Model MoNE Normalized Log-sum Weighted 25% Weighted 50% Weighted 75%
OLMoE 61.04 61.39 61.23 57.07 57.07 57.07
Moonlight 69.10 68.58 69.05 68.95 69.03 69.07
DeepSeek-V2-Lite 66.12 65.70 66.02 65.63 65.66 66.07
Qwen2-57B-A14B 71.75 71.73 71.75 72.55 72.57 72.53
Qwen3-30B-A3B 72.69 73.62 73.66 71.96 72.29 72.48
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Figure 5: Layer-wise normalized expert access frequency and output variance of OLMoE for Arc-C
& Arc-E, MMLU and Winogrande.

during expert redundancy ranking. This mathematical equivalence ensures that both formulations
produce the same pruning decisions despite their different representations.

We did not include learnable weights in this ablation study, as training five models with learnable
parameters would be prohibitively expensive and time-consuming. However, the weighted sum results
reveal model-dependent behavior, where only Qwen2-57B-A14B achieves minor improvements of
approximately 0.8% with weighted scoring. In contrast, smaller models like OLMoE incur severe
performance drops of around 4% under the weighted sum formulation. This suggests that while larger
models may benefit from adjusting the relative importance of variance and frequency components,
smaller models are more sensitive to such modifications and perform better with the balanced
geometric mean approach used in MoNE.

C MORE DETAILED RESULTS

This section presents the experiment results on Zyda2 dataset with 100, 500 and 1000 calibration
samples in Table 10, Table 11 and Table 12. Table 13, Table 14 and Table 15 presents the experiment
results on C4 dataset with 100, 500 and 1000 calibration samples. The observations are similar to
those in Section 5.2 and Section 5.3. Nevertheless, all methods incurs more aggressive performance
drop at higher (50%) pruning ratio. Such phenomenon is inevitable for all model compression
approaches and inspires the development of MoNE to push the performance limits of structured
pruning.

D REDUNDANT EXPERT VISUALIZATION

This section complements the visualization of redundant experts for OLMoE, Moonlight and
Deepseek-V2-Lite across the nine downstream tasks. The results are depicted in Figure 5 - Figure 12.
As mentioned in Figure 1, for each figure, expert in blue circles has both high frequency and variance.
Expert in red circles only has high variance. Expert in green circles only has high frequency. For
each model across the nine downstream tasks, we can always identify the same important experts,
validating the effectiveness of the redundancy metric, i.e., the expert access frequency and output
variance.
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Table 10: Zero shot performance with 100 calibration samples from Zyda2 dataset. Best results are in
bold, and the second best are underlined.

(a) OLMoE

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% OLMoE 49.23 76.89 70.09 85.00 53.54 44.40 79.76 71.84 68.90 66.63

50%

Angular 27.22 37.50 53.91 62.00 23.96 26.60 58.27 52.35 51.85 43.74
FLAP 29.18 54.92 62.17 68.00 30.51 29.60 67.57 55.23 56.27 50.39

MC-SMoE 24.49 31.44 59.33 67.00 23.01 26.00 53.92 53.43 53.12 43.53
RS 21.50 28.62 39.45 61.00 23.27 26.00 52.34 51.99 51.85 39.56

MoNE (Ours) 28.16 40.24 63.12 78.00 25.21 32.40 63.33 60.65 63.54 50.52

(b) Moonlight

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% Moonlight 58.28 82.49 80.40 92.00 67.30 45.60 81.12 65.70 71.11 71.56

50%

Angular 27.90 28.54 48.01 49.00 25.67 28.80 52.56 51.99 47.75 40.02
FLAP 33.87 61.36 63.30 75.00 36.80 36.00 69.37 57.04 62.12 54.98

MC-SMoE 29.52 47.94 59.54 79.00 23.94 31.40 67.30 57.04 60.46 50.68
RS 37.80 58.42 70.86 89.00 23.27 38.00 78.18 57.76 70.80 58.23

MoNE (Ours) 43.09 70.03 76.12 90.00 23.57 40.80 78.78 58.84 70.17 61.27

(c) Deepseek-V2-Lite

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% Deepseek-V2-Lite 48.72 76.18 79.88 88.00 54.96 43.60 80.25 61.37 71.51 67.16

50%

Angular 24.06 32.79 40.40 61.00 23.22 26.80 56.42 57.76 49.09 41.28
FLAP 35.24 60.31 69.66 79.00 36.13 35.20 74.76 56.68 64.09 56.79

MC-SMoE 24.57 35.82 56.36 67.00 28.29 27.40 61.37 52.35 53.91 45.23
RS 36.01 57.45 57.98 89.00 24.91 40.80 78.02 54.15 62.75 55.67

MoNE (Ours) 37.20 67.17 73.39 84.00 42.30 36.80 75.30 59.57 67.88 60.40

(d) Qwen2-57B-A14B

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Avg.

0% Qwen2-57B-A14B 49.66 69.44 86.45 93.00 74.06 44.20 81.23 74.73 74.27 71.89

50%

Angular 25.17 31.19 45.08 54.00 23.74 29.80 54.62 53.07 50.28 40.77
FLAP 36.35 61.95 73.43 80.00 46.50 38.20 74.59 68.95 68.59 60.95

MC-SMoE 41.64 64.73 79.91 87.00 59.65 38.80 77.53 71.84 68.27 65.49
RS 20.90 29.38 50.83 57.00 23.39 25.40 52.88 51.26 49.25 40.03

MoNE (Ours) 45.43 65.22 80.99 85.00 62.00 42.00 78.41 70.90 69.51 66.61

(e) Qwen3-30B-A3B

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Avg.

0% Qwen3-30B-A3B 55.89 79.42 88.69 84.00 77.82 44.80 80.30 82.31 70.64 73.76

50%

Angular 26.37 39.48 50.86 59.00 24.65 28.80 60.17 55.23 48.46 43.67
FLAP 36.52 61.99 70.80 78.00 48.92 34.00 70.57 74.37 64.96 60.01

MC-SMoE 39.76 63.09 85.84 83.00 56.30 39.40 74.54 78.34 69.14 65.49
RS 48.04 73.06 86.61 83.00 61.37 42.40 79.43 70.40 68.27 68.06

MoNE (Ours) 44.62 67.05 85.41 85.00 54.58 41.60 79.00 71.84 67.80 66.32
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Table 11: Zero shot performance with 500 calibration samples from Zyda2 dataset. Best results are in
bold, and the second best are underlined.

(a) OLMoE

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% OLMoE 49.23 76.89 70.09 85.00 53.54 44.40 79.76 71.84 68.90 66.63

25%

Angular 32.76 61.91 61.71 74.00 23.13 37.60 71.65 53.07 55.09 52.33
FLAP 37.03 63.43 64.28 81.00 41.12 38.80 72.63 54.51 63.54 57.37

MC-SMoE 33.36 54.46 70.03 81.00 37.05 33.80 68.17 64.62 65.19 56.41
RS 23.81 40.91 57.92 69.00 27.79 30.20 63.71 50.18 57.38 46.77

MoNE (Ours) 41.04 65.66 70.24 87.00 41.21 40.00 76.61 64.98 66.61 61.48

50%

Angular 27.22 37.50 53.91 62.00 23.96 26.60 58.27 52.35 51.85 43.74
FLAP 30.38 52.99 62.17 70.00 30.91 33.20 66.65 59.21 57.06 51.40

MC-SMoE 25.43 32.28 54.80 66.00 22.95 25.40 55.22 54.51 54.14 43.41
RS 25.34 28.24 42.48 56.00 23.07 26.40 52.34 52.35 51.78 39.78

MoNE (Ours) 26.28 36.03 65.17 75.00 26.02 29.00 61.64 57.40 62.67 48.80

(b) Moonlight

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% Moonlight 58.28 82.49 80.40 92.00 67.30 45.60 81.12 65.70 71.11 71.56

25%

Angular 39.76 52.69 38.90 79.00 42.57 32.20 68.50 61.01 62.04 52.96
FLAP 48.55 76.05 77.49 89.00 55.12 42.40 76.66 65.34 68.59 66.58

MC-SMoE 37.46 63.47 76.82 81.00 48.27 35.00 71.11 58.84 70.17 60.24
RS 55.63 79.46 78.93 91.00 46.60 45.80 80.90 59.93 72.14 67.82

MoNE (Ours) 55.03 78.96 79.36 90.00 54.39 45.40 80.69 58.48 71.74 68.23

50%

Angular 27.90 28.54 48.01 49.00 25.67 28.80 52.56 51.99 47.75 40.02
FLAP 34.98 61.32 65.14 73.00 37.93 35.60 69.53 56.68 62.35 55.17

MC-SMoE 22.87 29.34 58.93 72.00 23.91 26.00 55.06 54.51 52.72 43.93
RS 37.71 59.97 71.65 89.00 25.48 38.00 76.22 57.04 68.82 58.21

MoNE (Ours) 38.23 64.48 75.90 87.00 23.89 39.20 77.42 58.48 70.56 59.46

(c) Deepseek-V2-Lite

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% Deepseek-V2-Lite 48.72 76.18 79.88 88.00 54.96 43.60 80.25 61.37 71.51 67.16

25%

Angular 32.00 53.28 64.92 75.00 26.95 34.00 71.33 58.84 61.01 53.04
FLAP 43.86 72.18 75.93 85.00 47.22 41.80 78.45 62.09 68.27 63.87

MC-SMoE 33.53 52.95 73.67 81.00 41.68 32.20 66.70 52.35 70.17 56.03
RS 48.98 73.23 71.77 89.00 52.68 44.60 79.33 61.01 70.32 65.66

MoNE (Ours) 44.62 73.11 78.01 90.00 48.29 41.80 79.43 59.21 71.35 65.09

50%

Angular 24.06 32.79 40.40 61.00 23.22 26.80 56.42 57.76 49.09 41.28
FLAP 33.11 60.73 67.77 78.00 31.87 36.80 72.91 55.23 63.93 55.59

MC-SMoE 25.34 32.07 47.98 59.00 26.28 25.60 56.20 54.51 53.75 42.30
RS 38.14 62.42 53.03 86.00 38.98 38.80 74.37 48.01 64.64 56.04

MoNE (Ours) 36.69 66.04 73.36 86.00 41.07 35.60 75.73 58.12 69.69 60.26
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Table 12: Zero shot performance with 1000 calibration samples from Zyda2 dataset. Best results are
in bold, and the second best are underlined.

(a) OLMoE

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% OLMoE 49.23 76.89 70.09 85.00 53.54 44.40 79.76 71.84 68.90 66.63

25%

Angular 32.76 61.91 61.71 74.00 23.13 37.60 71.65 53.07 55.09 52.33
FLAP 38.91 66.20 64.65 79.00 40.05 37.60 74.65 62.82 63.77 58.63

MC-SMoE 38.31 61.66 61.87 73.00 33.85 33.20 66.38 57.04 65.43 54.53
RS 26.62 43.35 59.76 70.00 27.50 30.00 65.02 49.46 56.67 47.60

MoNE (Ours) 42.32 64.52 66.45 88.00 41.55 40.80 78.02 64.26 67.01 61.44

50%

Angular 27.22 37.50 53.91 62.00 23.96 26.60 58.27 52.35 51.85 43.74
FLAP 30.46 54.88 62.32 70.00 29.63 32.00 67.95 57.04 57.54 51.31

MC-SMoE 25.43 35.31 55.11 67.00 22.92 25.40 54.52 51.99 51.14 43.20
RS 24.23 29.50 41.44 58.00 23.45 24.20 51.25 50.54 51.07 39.30

MoNE (Ours) 26.71 37.21 65.44 75.00 26.50 31.80 63.22 55.96 63.46 49.48

(b) Moonlight

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% Moonlight 58.28 82.49 80.40 92.00 67.30 45.60 81.12 65.70 71.11 71.56

25%

Angular 39.76 52.69 38.90 79.00 42.57 32.20 68.50 61.01 62.04 52.96
FLAP 49.49 76.52 76.91 90.00 54.47 42.00 77.26 65.70 69.06 66.82

MC-SMoE 34.81 57.74 77.22 85.00 36.13 34.60 71.49 58.12 71.35 58.50
RS 56.23 79.25 79.02 91.00 46.76 45.20 80.63 59.57 72.14 67.76

MoNE (Ours) 55.55 79.29 79.66 90.00 54.79 45.60 80.69 59.21 72.14 68.55

50%

Angular 27.90 28.54 48.01 49.00 25.67 28.80 52.56 51.99 47.75 40.02
FLAP 36.95 63.09 64.56 71.00 37.14 34.80 69.86 57.40 63.22 55.33

MC-SMoE 23.12 41.04 61.83 68.00 25.44 26.80 58.43 53.07 53.75 45.72
RS 39.42 64.56 70.98 90.00 24.76 40.60 77.58 58.12 68.98 59.45

MoNE (Ours) 39.42 65.82 76.15 88.00 23.81 40.40 78.40 58.12 70.88 60.11

(c) Deepseek-V2-Lite

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% Deepseek-V2-Lite 48.72 76.18 79.88 88.00 54.96 43.60 80.25 61.37 71.51 67.16

25%

Angular 32.00 53.28 64.92 75.00 26.95 34.00 71.33 58.84 61.01 53.04
FLAP 44.28 72.39 76.12 85.00 47.16 41.20 78.29 62.82 67.40 63.85

MC-SMoE 39.33 64.31 71.53 85.00 41.84 40.00 76.12 58.48 69.53 60.68
RS 49.23 73.32 71.38 89.00 52.44 45.00 79.71 60.29 71.19 65.73

MoNE (Ours) 44.71 73.99 78.35 88.00 49.19 42.20 79.27 59.93 70.88 65.17

50%

Angular 24.06 32.79 40.40 61.00 23.22 26.80 56.42 57.76 49.09 41.28
FLAP 32.59 60.77 68.13 77.00 31.43 36.80 73.94 54.87 61.64 55.24

MC-SMoE 33.19 47.81 55.35 81.00 24.91 33.80 67.52 51.99 64.33 51.10
RS 37.12 61.95 54.53 88.00 39.15 38.40 75.46 51.62 62.98 56.58

MoNE (Ours) 37.71 65.36 73.49 84.00 41.22 36.60 75.30 57.40 69.53 60.07
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Table 13: Zero shot performance with 100 calibration samples from C4 dataset. Best results are in
bold, and the second best are underlined.

(a) OLMoE

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% OLMoE 49.23 76.89 70.09 85.00 53.54 44.40 79.76 71.84 68.90 66.63

25%

Angular 32.76 61.91 61.71 74.00 23.13 37.60 71.65 53.07 55.09 52.33
FLAP 36.01 62.67 64.83 75.00 36.31 37.00 75.73 58.84 62.75 56.57

MC-SMoE 32.76 51.05 54.71 80.00 23.05 37.80 70.89 53.43 66.61 52.26
RS 34.56 50.38 63.64 85.00 26.51 39.60 76.01 55.96 64.01 55.07

MoNE (Ours) 36.69 55.18 67.03 86.00 25.53 40.20 77.80 56.68 67.64 56.97

50%

Angular 27.22 37.50 53.91 62.00 23.96 26.60 58.27 52.35 51.85 43.74
FLAP 26.62 50.51 62.14 62.00 26.32 28.80 69.86 52.71 57.06 48.45

MC-SMoE 25.68 32.24 57.65 60.00 22.83 27.40 58.60 52.35 51.38 43.12
RS 23.12 31.99 45.02 59.00 23.80 24.80 53.59 51.62 49.57 40.28

MoNE (Ours) 26.37 39.65 62.29 75.00 22.93 32.00 66.10 52.71 61.01 48.67

(b) Moonlight

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% Moonlight 58.28 82.49 80.40 92.00 67.30 45.60 81.12 65.70 71.11 71.56

25%

Angular 39.76 52.69 38.90 79.00 42.57 32.20 68.50 61.01 62.04 52.96
FLAP 46.76 75.04 75.90 85.00 52.98 41.00 78.07 65.70 67.40 65.32

MC-SMoE 48.38 74.20 78.69 92.00 50.41 44.20 81.18 54.87 71.19 66.12
RS 55.97 79.76 78.93 91.00 52.74 46.20 81.39 59.21 72.38 68.62

MoNE (Ours) 54.27 79.25 78.07 90.00 53.78 45.60 81.34 57.76 72.14 68.02

50%

Angular 27.90 28.54 48.01 49.00 25.67 28.80 52.56 51.99 47.75 40.02
FLAP 31.14 54.63 62.69 73.00 32.26 30.40 70.40 58.12 60.93 52.62

MC-SMoE 29.10 52.23 57.22 85.00 22.92 36.40 71.71 52.71 63.54 52.31
RS 37.80 58.42 70.86 89.00 23.27 38.00 78.18 57.76 70.80 58.23

MoNE (Ours) 33.87 57.07 72.75 90.00 22.97 38.80 78.62 61.01 70.17 58.36

(c) Deepseek-V2-Lite

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% Deepseek-V2-Lite 48.72 76.18 79.88 88.00 54.96 43.60 80.25 61.37 71.51 67.16

25%

Angular 32.00 53.28 64.92 75.00 26.95 34.00 71.33 58.84 61.01 53.04
FLAP 39.68 66.58 76.45 84.00 36.14 39.80 78.67 57.04 67.48 60.65

MC-SMoE 36.52 59.30 59.76 81.00 36.80 37.20 75.30 54.87 69.22 56.66
RS 49.32 74.41 69.39 90.00 50.35 43.80 80.14 62.09 70.24 65.53

MoNE (Ours) 47.44 74.03 77.71 90.00 49.10 42.60 80.25 63.18 70.24 66.06

50%

Angular 24.06 32.79 40.40 61.00 23.22 26.80 56.42 57.76 49.09 41.28
FLAP 29.95 52.36 68.72 75.00 23.45 34.20 75.46 52.71 61.09 52.55

MC-SMoE 28.75 36.57 59.45 82.00 23.65 30.60 64.96 51.62 59.75 48.60
RS 36.01 57.45 57.98 89.00 24.91 40.80 78.02 54.15 62.75 55.67

MoNE (Ours) 35.24 55.47 68.20 87.00 22.94 35.40 76.50 53.43 68.35 55.84
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Table 14: Zero shot performance with 500 calibration samples from C4 dataset. Best results are in
bold, and the second best are underlined.

(a) OLMoE

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% OLMoE 49.23 76.89 70.09 85.00 53.54 44.40 79.76 71.84 68.90 66.63

25%

Angular 32.76 61.91 61.71 74.00 23.13 37.60 71.65 53.07 55.09 52.33
FLAP 36.26 63.80 63.49 72.00 35.09 36.00 75.35 53.07 61.96 55.23

MC-SMoE 26.71 48.61 65.90 69.00 35.14 31.00 61.92 54.87 61.09 50.47
RS 34.56 49.41 63.85 86.00 27.23 39.80 75.57 56.32 64.40 55.24

MoNE (Ours) 37.88 55.89 65.23 86.00 25.03 41.20 77.42 57.40 67.80 57.10

50%

Angular 27.22 37.50 53.91 62.00 23.96 26.60 58.27 52.35 51.85 43.74
FLAP 26.71 50.42 62.20 64.00 27.52 30.20 70.29 52.35 55.09 48.75

MC-SMoE 23.98 32.07 61.77 63.00 23.01 25.40 54.79 57.40 52.49 43.77
RS 22.95 31.78 49.11 59.00 23.75 23.00 53.59 53.43 50.04 40.74

MoNE (Ours) 29.01 42.51 62.29 79.00 22.98 32.00 70.84 52.71 60.06 50.16

(b) Moonlight

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% Moonlight 58.28 82.49 80.40 92.00 67.30 45.60 81.12 65.70 71.11 71.56

25%

Angular 39.76 52.69 38.90 79.00 42.57 32.20 68.50 61.01 62.04 52.96
FLAP 45.22 73.40 72.29 84.00 53.81 40.40 78.13 64.98 67.32 64.40

MC-SMoE 48.38 74.16 78.56 89.00 48.78 43.00 81.12 58.48 71.03 65.84
RS 55.72 79.80 79.20 91.00 52.93 44.60 81.23 59.57 71.74 68.42

MoNE (Ours) 54.52 78.87 78.56 90.00 53.80 45.20 81.07 57.04 71.74 67.87

50%

Angular 27.90 28.54 48.01 49.00 25.67 28.80 52.56 51.99 47.75 40.02
FLAP 31.83 54.50 63.18 74.00 29.18 31.40 71.16 55.96 61.88 52.57

MC-SMoE 33.45 54.59 63.82 79.00 23.95 33.20 72.31 52.71 61.09 52.68
RS 39.59 58.67 70.49 86.00 23.36 38.60 78.02 54.15 70.24 57.68

MoNE (Ours) 33.28 56.40 71.96 91.00 22.95 37.60 78.73 58.12 70.64 57.85

(c) Deepseek-V2-Lite

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% Deepseek-V2-Lite 48.72 76.18 79.88 88.00 54.96 43.60 80.25 61.37 71.51 67.16

25%

Angular 32.00 53.28 64.92 75.00 26.95 34.00 71.33 58.84 61.01 53.04
FLAP 40.53 64.81 77.43 84.00 37.70 39.60 79.43 57.04 67.32 60.87

MC-SMoE 39.33 61.99 60.95 84.00 41.37 38.60 77.75 58.48 62.04 58.28
RS 49.66 74.49 65.63 91.00 50.04 43.60 79.92 61.01 69.77 65.01

MoNE (Ours) 46.59 73.19 77.37 89.00 48.80 43.40 79.87 62.09 70.80 65.68

50%

Angular 24.06 32.79 40.40 61.00 23.22 26.80 56.42 57.76 49.09 41.28
FLAP 30.97 52.27 68.47 77.00 23.16 36.40 75.08 52.71 62.75 53.20

MC-SMoE 23.55 35.73 57.43 71.00 23.86 32.20 61.10 51.62 51.30 45.31
RS 36.95 58.71 51.16 87.00 24.23 40.20 77.64 54.15 61.72 54.64

MoNE (Ours) 34.39 55.72 67.68 84.00 22.90 35.60 76.28 54.51 67.72 55.42
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Table 15: Zero shot performance with 1000 calibration samples from C4 dataset. Best results are in
bold, and the second best are underlined.

(a) OLMoE

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% OLMoE 49.23 76.89 70.09 85.00 53.54 44.40 79.76 71.84 68.90 66.63

25%

Angular 32.76 61.91 61.71 74.00 23.13 37.60 71.65 53.07 55.09 52.33
FLAP 36.35 61.24 64.50 72.00 37.08 36.00 75.41 57.40 62.59 55.84

MC-SMoE 40.10 68.22 61.65 70.00 36.91 39.60 71.65 59.57 57.93 56.18
RS 34.39 49.41 64.89 85.00 26.64 40.60 75.95 57.04 63.46 55.26

MoNE (Ours) 38.74 57.45 65.57 86.00 24.59 41.80 77.42 56.68 68.43 57.41

50%

Angular 27.22 37.50 53.91 62.00 23.96 26.60 58.27 52.35 51.85 43.74
FLAP 26.79 49.92 62.17 63.00 27.34 31.60 70.24 53.43 56.35 48.98

MC-SMoE 26.96 41.58 58.56 56.00 23.00 28.60 60.23 52.35 50.83 44.23
RS 23.81 32.28 46.09 58.00 23.76 24.00 53.59 51.99 48.86 40.26

MoNE (Ours) 29.78 42.80 62.32 80.00 22.99 33.60 71.49 52.71 60.06 50.64

(b) Moonlight

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% Moonlight 58.28 82.49 80.40 92.00 67.30 45.60 81.12 65.70 71.11 71.56

25%

Angular 39.76 52.69 38.90 79.00 42.57 32.20 68.50 61.01 62.04 52.96
FLAP 45.22 74.20 72.78 86.00 53.40 41.20 78.35 65.34 68.90 65.04

MC-SMoE 51.62 76.52 77.86 92.00 43.08 43.60 80.25 55.60 71.11 65.74
RS 55.97 79.59 78.75 90.00 53.01 45.20 81.34 59.57 71.90 68.37

MoNE (Ours) 53.75 79.38 78.53 90.00 53.75 45.80 81.39 57.76 71.59 67.99

50%

Angular 27.90 28.54 48.01 49.00 25.67 28.80 52.56 51.99 47.75 40.02
FLAP 31.31 55.26 63.73 72.00 32.98 33.00 71.16 56.32 62.75 53.17

MC-SMoE 28.75 49.20 58.90 75.00 23.72 33.40 66.32 53.79 59.75 49.87
RS 38.74 58.88 69.85 88.00 23.32 38.00 77.80 61.01 70.17 58.42

MoNE (Ours) 34.81 57.58 71.96 92.00 22.95 38.60 78.18 57.04 70.72 58.20

(c) Deepseek-V2-Lite

Pruning ratio Model/Method Arc-c Arc-e BoolQ COPA MMLU OBQA PIQA RTE Winogrande Average

0% Deepseek-V2-Lite 48.72 76.18 79.88 88.00 54.96 43.60 80.25 61.37 71.51 67.16

25%

Angular 32.00 53.28 64.92 75.00 26.95 34.00 71.33 58.84 61.01 53.04
FLAP 39.33 66.50 76.33 84.00 38.14 40.60 78.84 59.93 67.88 61.28

MC-SMoE 37.29 58.42 65.72 81.00 37.91 39.00 76.12 55.60 67.80 57.65
RS 49.23 74.33 68.44 88.00 51.59 44.40 80.25 62.45 69.69 65.38

MoNE (Ours) 45.99 72.98 77.43 89.00 48.90 42.60 79.98 61.01 71.59 65.50

50%

Angular 24.06 32.79 40.40 61.00 23.22 26.80 56.42 57.76 49.09 41.28
FLAP 31.66 53.41 69.36 75.00 23.04 35.40 75.41 52.71 62.51 53.17

MC-SMoE 28.16 36.49 56.94 81.00 25.76 31.80 64.69 52.71 58.09 48.40
RS 39.08 61.32 52.54 83.00 24.58 39.40 77.86 54.51 63.46 55.08

MoNE (Ours) 34.04 55.51 68.26 85.00 22.92 36.40 76.44 54.15 66.61 55.48
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Figure 6: Layer-wise normalized expert access frequency and output variance of OLMoE for OBQA,
PIQA and RTE.
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Figure 7: Layer-wise normalized expert access frequency and output variance of OLMoE for BoolQ
and COPA.
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Figure 8: Layer-wise normalized expert access frequency and output variance of Moonlight for Arc-C
& Arc-E, MMLU and Winogrande.

E COMPREHENSIVE ABLATION STUDY RESULTS

Figure 13 reports the detailed ablation study on the impacts of the three factors: expert access
frequency, output variance and novice replacement. The results in this figure validates that the three
factors play an important role in maintaining the effectiveness of the pruned models on different
model architectures, calibration data sources and calibration sample sizes. Fusing the three factors
ensures the robustness of the proposed MoNE.
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Figure 9: Layer-wise normalized expert access frequency and output variance of Moonlight for
OBQA, PIQA and RTE.
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Figure 10: Layer-wise normalized expert access frequency and output variance of Moonlight for
BoolQ and COPA.
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Figure 11: Layer-wise normalized expert access frequency and output variance of Deepseek-V2-Lite
for OBQA, PIQA and RTE.

F INFERENCE LATENCY AND MEMORY FOOTPRINT

While this work mainly focuses on enhancing performance preserving capability of structured pruning,
this section evaluates the inference latency and memory footprint for pruned models. We integrated
the pruned Qwen3-30B-A3B with the popular inference framework, SGLang with transformers
backend. We fixed the 512 input tokens and 256 output tokens, and profiled the latency and memory
footprint with SGLang built-in utilities. We varied the random seed to generate different input
sequences. Experiments were conducted on a single H20 GPU. The results are listed in Table 16.

According to Table 16, we would like to clarify three points regarding the latency and memory usage.
First, inference latency speedup of MoNE is sensitive to batch size. When batch size is 1, there is
minor speedup, as the decoding phase only executes one tokens per step, leading to a memory bound
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Figure 12: Layer-wise normalized expert access frequency and output variance of Deepseek-V2-Lite
for BoolQ and COPA.

Table 16: Inference latency and memory footprint under different pruning ratio, input sequence and
batch size.

Pruning ratio Seed Batch size Novice hit ratios* Total latency (s) Speedup Memory usage (GB)

0% 1020 1 0 28.86 1 62.72
25% 1020 1 0.08 27.84 1.04 47.72
50% 1020 1 0.35 26.27 1.10 32.73
0% 1998 1 0 29.01 1 62.72
25% 1998 1 0.06 28.61 1.01 47.72
50% 1998 1 0.34 26.22 1.11 32.73
0% 1020 128 0 183.12 1 66.00
25% 1020 128 0.08 174.60 1.05 51.00
50% 1020 128 0.34 141.07 1.30 36.01
0% 1998 128 0 182.37 1 66.00
25% 1998 128 0.08 169.66 1.07 51.00
50% 1998 128 0.33 142.38 1.28 36.01
0% 1020 512 0 248.02 1 75.90
25% 1020 512 0.09 212.40 1.17 60.90
50% 1020 512 0.33 189.57 1.31 45.91
0% 1998 512 0 245.42 1 75.90
25% 1998 512 0.08 212.88 1.15 60.90
50% 1998 512 0.34 180.92 1.36 45.91

*Novice hit ratios: the portion of tokens routed to novices across the model.

situation where the GPU tensor core is underutilized and the major bottleneck is the GPU memory
bandwidth (Hong et al., 2023; Frantar et al., 2025). By increasing the batch size to 512, MoNE can
achieve speedup of 36%. Second, inference latency speedup is sensitive to novice hit ratio instead of
novice counts (pruning ratio). Qwen3-30B-A3B has 128 experts per layer, and each input token is
routed to 8 experts per novices. The actual speedup is decided by the routing results for each input
token at runtime. With higher novice hit ratio, MoNE is expected to attain more speedup. While
higher pruning ratio may lead to more novices in each layer, it cannot directly translate to speedup.
For the most extreme case where there is no token routed to novices, the computation overhead (as
well as the accuracy) will be the same as the original model. Finally, Table 16 indicates that MoNE
achieves maximum memory reduction that consistently increases with the pruning ratio. For a given
pruning ratio, the heavy expert parameters are directly replaced by a light weight constant vector.
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Figure 13: Ablation study on expert access frequency, output variance and novice replacement with
detailed results. Numbers are the difference to the proposed MoNE.
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