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ABSTRACT

Large language models (LLMs) have achieved remarkable success in diverse tasks,
yet their safety alignment remains fragile during adaptation. Even when fine-tuning
on benign data or with low-rank adaptation, pre-trained safety behaviors are eas-
ily degraded, leading to harmful responses in the fine-tuned models. To address
this challenge, we propose GuardSpace, a guardrail framework for preserving
safety alignment throughout fine-tuning, composed of two key components: a
safety-sensitive subspace and a harmful-resistant null space. First, we explicitly
decompose pre-trained weights into safety-relevant and safety-irrelevant compo-
nents using covariance-preconditioned singular value decomposition, and initialize
low-rank adapters from the safety-irrelevant ones, while freezing safety-relevant
components to preserve their associated safety mechanism. Second, we construct
a null space projector that restricts adapter updates from altering safe outputs on
harmful prompts, thereby maintaining the original refusal behavior. Experiments
with various pre-trained models on multiple downstream tasks demonstrate that
GuardSpace achieves superior performance over existing methods. Notably, for
Llama-2-7B-Chat fine-tuned on GSM8K, GuardSpace outperforms the state-of-the-
art method AsFT, reducing the average harmful score from 14.4% to 3.6%, while
improving the accuracy from from 26.0% to 28.0%.

1 INTRODUCTION

Large language models (LLMs) have exhibited remarkable performance across diverse language
understanding and generation tasks (Qin et al., 2023; Gemini Team, 2023; Touvron et al., 2023).
Consequently, LLM-based assistants and chatbots have attracted substantial attention from various
domains. With the rapid increase in applications, the safety of LLMs has emerged as a major concern
and a central focus of research, aiming to protect model responses from malicious prompts with
dangerous purposes (e.g., weapon construction or toxic misinformation) (Akkus et al., 2025; Liu
et al., 2025; Deshpande et al., 2023). To prevent LLMs from generating harmful responses, alignment
techniques such as SFT and RLHF have been leveraged to instill refusal behaviors toward malicious
prompts, as implemented in advanced systems like GPT-4 and Llama (Ouyang et al., 2022; Achiam
et al., 2023; Touvron et al., 2023). However, in applications, practitioners often fine-tune pre-trained
models to obtain domain-specific abilities through full fine-tuning or parameter-efficient fine-tuning
(Ding et al., 2023; Xu et al., 2023; Hu et al., 2022). During the adaptation process, the safety
alignment acquired by pre-training is brittle. Even when the fine-tuning data is entirely benign, or
when only a small number of parameters are learnable using LoRA (Hu et al., 2022), a model’s safety
behaviors can be easily degraded or lost after fine-tuning on new tasks (Qi et al., 2024; Yang et al.,
2023; Zhan et al., 2024; Lermen & Rogers-Smith, 2024; Wei et al., 2024).

This problem motivates studies that preserve the safety mechanisms of aligned LLMs throughout
adaptation, reconciling downstream-task utility with safety preservation (Huang et al., 2024e). Ex-
isting approaches can be typically categorized into three stages, alignment stage, fine-tuning stage,
and post-tuning stage. Alignment stage methods intensify safety alignment of pre-trained models
via latent-space perturbations, representation sanitization, and loss shaping (Huang et al., 2024d;
Rosati et al., 2024; Tamirisa et al., 2025; Huang et al., 2024c; Liu et al., 2024a). Fine-tuning stage
defenses inject safety-oriented data, constrain optimization drift, embed suppressive triggers, select
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Figure 1: An overview of GuardSpace. The model is first probed with safety-triggering prompts to obtain
the activation X and the covariance matrix C = XX⊤. I. Initialization in safety-sensitive subspace. We
right-precondition the weight by C and factorize WC = UΣV⊤. The components with large singular
values constitute the safety-relevant subspace (cyan) and are frozen into W′, while the components with small
singular values form the safety-irrelevant subspace (blue) and are used to initialize low-rank adapters (A,B).
II. Optimization in harmful-resistant null space. We construct a projector P that constrains the update of
adapters to the null space of harmful inputs, minimizing perturbations caused by fine-tuning on safety behaviors.
Together, they preserve the model’s original safety alignment while enabling effective downstream adaptation.

safe fine-tuning data, or regularize harmful directions (Bianchi et al., 2024; Huang et al., 2024b;
Wang et al., 2024b; Yang et al., 2025; Li et al., 2025; Shen et al., 2025). Post-tuning remedies restore
safety behaviors by projecting onto safe directions, reusing safety-relevant weights, or pruning unsafe
parameters (Hsu et al., 2024; Yi et al., 2024; Huang et al., 2025; Casper et al., 2024). However,
alignment stage and post-tuning stage methods are not effective at seeking a good trade-off between
safety and downstream task performance, while current fine-tuning stage methods do not explicitly
identify safety-relevant weight components or harmful update directions. As a result, they may fail to
prevent training conflicts between safety preservation and task utility in a targeted manner.

To address these challenges, in this paper, we propose GuardSpace, a guardrail for safety preservation
composed of efforts in two aspects, namely initialization in safety-sensitive subspace and optimization
in harmful-resistant null space. At the beginning of fine-tuning, we aim to explicitly decompose pre-
trained model weights into safety-relevant and safety-irrelevant components, and only allow the safety-
irrelevant ones to be learnable. Motivated by this insight, we construct a safety-sensitive subspace.
Specifically, we first construct a set of safety-triggering prompts, i.e., the harmful prompts that trigger
the safety mechanism, and feed them into the pre-trained model to get the input X ∈ Rdin×BL of each
linear layer W ∈ Rdout×din . Then we calculate the covariance matrix C = XX⊤ ∈ Rdin×din , and use
it as right-preconditioner to perform singular value decomposition (SVD) on WC = UΣV⊤, which
highlights the safety-related ability within W. By doing so, the resulting subspace is safety-sensitive,
as the leading components with large singular values dominate the safety-related ability, while the
bottom components contribute negligibly. This subspace enables us to initialize learnable low-rank
adapters based on the safety-irrelevant components with the smallest r singular values, while freezing
the safety-relevant ones during fine-tuning to preserve their associated safety behaviors.
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After fine-tuning, the update of learnable adapters may alter the original output distribution on harmful
inputs. To this end, we further introduce a harmful-resistant null space. Based on the safety-triggering
prompts, we perform SVD on the covariance matrix C of each layer, i.e., C = QΛQ⊤. We can
construct a null space projector by P = Q̂Q̂⊤, where Q̂ denotes the eigenvectors in Q whose
eigenvalues are zero. P projects a vector into the null space of C. Since C and harmful inputs
X share the same null space, we place the projector upon the learnable adapters, such that their
deviations caused by fine-tuning lead to zero output feature for harmful inputs, thereby maintaining
the pre-trained model’s safety behavior as faithfully as possible. The pipeline of our GuardSpace is
illustrated in Fig.1.

Together, the null space projector acting on the safety-irrelevant adapters resists harmful inputs
regardless of how the adapters change during fine-tuning, and meanwhile, the adapters initialized
by pre-trained model weights (with safety-relevant components peeled off) enable a more efficient
adaptation process, compared to LoRA (Hu et al., 2022) that starts from zero-initialized adapters. In
experiments, we demonstrate the effectiveness of GuardSpace in terms of both safety preservation
and downstream task performance. We summarize our contributions as follows:

• We propose GuardSpace to preserve safety alignment during low-rank adaptation to downstream
tasks. The safety-sensitive subspace effectively splits pre-trained model weights into safety-relevant
and irrelevant components, producing low-rank adapters initialized by the safety-irrelevant ones.

• To induce minimal perturbations on the frozen safety behaviors, we further construct a harmful-
resistant null space, which constrains the optimization such that the fine-tuned adapter weights do not
alter the original safe outputs for harmful inputs.

• We evaluate GuardSpace across various models and fine-tuning tasks, and show that GuardSpace
surpasses the state-of-the-art method in terms of both safety preservation and downstream task
performance. Particularly, for Llama-2-7B-Chat fine-tuned on SST-2, AGNEWS and GSM8K,
compared to the state-of-the-art method AsFT, we reduce the average harmful score from 8.13% to
2.40% while increasing the average fine-tuned accuracy from 67.87% to 69.75%.

2 RELATED WORK

Parameter-Efficient Fine-Tuning. Recent transformer LLMs (e.g., Llama-2, GPT-4) achieve
strong performance but have tens/hundreds of billions of parameters, making full fine-tuning costly
(Achiam et al., 2023; Bie et al., 2024; Yang et al., 2024; Zhao et al., 2024). Parameter-efficient
fine-tuning (PEFT) updates a small subset of weights via adapters (Ding et al., 2023; Xu et al., 2023;
Houlsby et al., 2019; Pfeiffer et al., 2021; Mahabadi et al., 2021) or soft prompts (Lester et al., 2021;
Razdaibiedina et al., 2023; Zhu & Tan, 2023), but many variants change architecture or add inference
overhead. LoRA avoids these issues by learning low-rank updates that match observed low-intrinsic-
rank fine-tuning dynamics (Li et al., 2018; Aghajanyan et al., 2021; Hu et al., 2022). Building on
LoRA, follow-up studies improve rank allocation, parameterization, and system integration, spanning
adaptive ranks, new adapters, pruning/quantization/MoE combinations, and alternative initialization
schemes (Zhang et al., 2023c;a; Liu et al., 2024b; Qiu et al., 2023; Zhao et al., 2024; Zhang et al.,
2023b; Dettmers et al., 2023; Li et al., 2024; Liu et al., 2023; Dou et al., 2024; Meng et al., 2024).
Nonetheless, beyond efficiency and capability, the fine-tuning pipeline introduces salient safety risks:
even small amounts of poisoned or seemingly benign data during adaptation can weaken guardrails
and lead to harmful generations after deployment (Huang et al., 2024c; Bianchi et al., 2024; Qi et al.,
2024). This creates an urgent need for methods that balance task utility with robust, resilient safety
protections (Huang et al., 2024e). In contrast, our method based on low-rank adaptation, preserves
safety alignment and downstream utility by initializing adapters within a safety-sensitive subspace
and constraining updates to a harmful-resistant null space.

Safety Alignment in LLMs. Safety alignment seeks to constrain large language models (LLMs) to
produce value-consistent, ethically acceptable outputs (Gao et al., 2023; Yuan et al., 2023a). Core
alignment techniques include instruction (supervised) tuning (Wei et al., 2022), RLHF (Ouyang et al.,
2022), and DPO (Rafailov et al., 2023). However, these procedures are brittle – small amounts of
malicious fine-tuning data can erode established safeguards (Huang et al., 2024c; Qi et al., 2024). This
brittleness motivates a stage-wise view of defenses spanning alignment-state, fine-tuning-stage, and
post-tuning (Huang et al., 2024a). Alignment-stage defenses aim to strengthen models’ resilience to
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adversarial fine-tuning by explicitly improving robustness during alignment (Qi et al., 2025; Liu et al.,
2024c; Huang et al., 2024d; Rosati et al., 2024; Tamirisa et al., 2025; Liu et al., 2024a). Post-tuning
remedies aim to reestablish safety after harmful fine-tuning (Casper et al., 2024; Hsu et al., 2024;
Yi et al., 2024; Huang et al., 2025). Fine-tuning-stage methods intervene during training to resist
harmful adaptation (Mukhoti et al., 2024; Wei et al., 2024), e.g., safety-focused augmentation (Bianchi
et al., 2024), constraining optimization drift via dual-state optimization and proximity regularization
(Huang et al., 2024b), embedding triggers to suppress unsafe content (Wang et al., 2024b), projecting
adapter-induced features into a subspace orthogonal to the original safety features (Li et al., 2025)
and suppressing updates along harmful directions via a regularization penalty (Yang et al., 2025).
Unlike prior fine-tuning-stage defenses, our approach couples a safety-sensitive initialization with a
null space constrained update rule. It separates safety-relevant structure at initialization and steers
parameter updates away from directions that compromise alignment, thereby reducing conflicts
between safety preservation and downstream task performance.

3 PRELIMINARIES

Low-Rank Adaptation (LoRA). LoRA is motivated by the observation that parameters updates in
LLMs often exhbit a low-rank structure (Hu et al., 2022). Instead of modifying the full pre-trained
weight matrix W ∈ Rdout×din , LoRA freezes W and learns two low-rank matrices B ∈ Rdout×r and
A ∈ Rr×din during fine-tuning. The updated weight can be formulated as:

W∗ = W +∆W = W +B∗A∗, (1)

where r ≪ min(dout, din) denotes the rank. The standard initialization practice involves setting A
with Kaiming initialization (He et al., 2015) and B to zero, ensuring that ∆W = 0 at the start
of training. After training, the update BA can be seamlessly merged back into W, incurring no
additional inference latency.

Despite its efficiency and widespread adoption, recent studies have uncovered a critical vulnerability:
LoRA-based fine-tuning can inadvertently compromise the safety alignment of LLMs (Wang et al.,
2024b; Hsu et al., 2024; Li et al., 2025). Therefore, the development of novel adaptation strategies
that can learn new tasks without forgetting the pre-aligned safety behaviors is necessary.

Safety Preservation during Fine-tuning. LLMs are typically deployed after costly alignment
(e.g., SFT/RLHF) to follow instructions while avoiding harmful outputs (Gao et al., 2023; Yuan
et al., 2023a; Ouyang et al., 2022). Yet fine-tuning for downstream tasks can inadvertently weaken
these safeguards (Huang et al., 2024c; Qi et al., 2024). Even parameter-efficient methods such as
LoRA, though minimally invasive, have been shown to erode safety alignment and increase unsafe
or policy-violating generations (Qi et al., 2024; Zhan et al., 2024; Lermen & Rogers-Smith, 2024).
These risks motivate a dedicated line of work on Safety Preservation during Fine-tuning, which
explicitly protects safety while the model is updated. The goal is to ensure that the adapted model
retains robust refusal behavior on harmful prompts and achieves strong performance on the target
downstream tasks. Given a safety-aligned LLM fW, which produces a response fW(x) for prompt
x, we wish to fine-tune it on a downstream dataset D to improve task utility, while preserving its
existing safety behavior on harmful prompts H (e.g., toxic queries). Concretely, after adaptation, the
model should achieve strong performance on D and maintain a low harmful score (e.g., low Attack
Success Rate, ASR↓) on H. Let ∆ denote the weight update. Safety-preserving fine-tuning can be
posed as a constrained optimization:

min
∆

Ltask(fW+∆; D) , s.t.
∥∥fW+∆(x)− fW(x)

∥∥ ≤ ϵ, ∀x ∈ H, (2)

where Ltask measures downstream utility (e.g., task-related loss) and ϵ bounds the deviation of
responses on harmful inputs.

4 METHOD

To mitigate the degradation of safety alignment caused by fine-tuning, we propose a new approach
that carefully integrates safety-aware initialization with harmful-resistant optimization.
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4.1 INITIALIZATION IN SAFETY SENSITIVE SUBSPACE

Our approach is to initialize learnable parameters in a safety-sensitive subspace. We preserve the
model’s safety by freezing the components encoding this behavior, and use the safety-irrelevant
components as the starting point for learning a new task. To this end, we sample a set of harmful
prompts from released benchmarks, e.g., AdvBench. By feeding these prompts into the pre-trained
safety-aligned LLM, we can trigger its safety mechanism. Let X ∈ Rdin×BL be the input activation to
a linear layer (din denotes the input dimension, B is the collected sample number, and L is sequence
length). We calculate the (unnormalized) covariance matrix as C = XX⊤ ∈ Rdin×din , where we
disregard the layer index in our formulations for simplicity. Since right-preconditioning W with
C can accentuate the ability related to the task as characterized by C, we apply singular value
decomposition (SVD) on the product of the weight matrix and the covariance matrix as:

SVD(WC) = UΣVT =

R∑
i=1

σiuiv
T
i , (3)

where W ∈ Rdout×din denotes the weight of a linear layer, U ∈ Rdout×dout and V ∈ Rdin×din

are orthogonal matrices containing the left and right singular vectors ui ∈ Rdout and vi ∈ Rdin ,
respectively, Σ ∈ Rdout×din is a diagonal matrix whose diagonal entries σi are singular values in
descending order, and R is the rank of WC, i.e., R ≤ min{dout, din}.

To ensure that the initialization of fine-tuning does not alter the inference output of the pre-trained
model, we reconstruct W as:

Ŵ = SVD(WC)C−1 = UΣ(VTC−1) =

R∑
i=1

σiuiv̂
T
i , (4)

where C−1 is the inverse of C, and v̂T
i denotes the i-th row of VTC−1. If C is not invertible, we

enforce invertibility by adaptively adding positive values to its diagonal. Specifically, we compute
the average of the diagonal entries of C, multiply it by a positive scaling factor, and add this term
to the diagonal of C. This process is repeated until the ℓ2 distance between CC−1 and the identity
matrix falls below a small number, satisfying invertibility.

Such decomposition leads to a safety-sensitive subspace, because the leading components (ui, v̂i)
with large σi correspond to the safety-relevant directions that are crucial for the safety behaviors
against harmful inputs, whereas the bottom components contribute negligibly. Accordingly, during
fine-tuning, we freeze the safety-relevant components to preserve the safety behaviors they provide.
Meanwhile, we split out the safety-irrelevant components with the smallest r singular values, which
naturally compose two low-rank adapters as:

B = U[:,−r :]
√
Σ[−r :], A =

√
Σ[−r :](V⊤C−1)[−r :, :], (5)

where B ∈ Rdout×r and A ∈ Rr×din are low-rank adapters, [:,−r :] refers to the last r column vectors,
[−r :, :] denotes the last r row vectors, and

√
Σ[−r :] represents a diagonal matrix containing the

square root of the smallest r singular values in Σ.

When fine-tuning on a new dataset, we use A and B as the initialized learnable adapters. Their
product BA =

∑R
i=R−r+1 σiuiv̂

⊤
i correspond to the pre-trained model weights whose safety-

relevant part has been peeled off. Compared with LoRA (Hu et al., 2022) that uses zero-initialized
adapters, starting from BA to learn a new task helps to achieve better fine-tuning performance, while
maintaining the original safety alignment.

4.2 OPTIMIZATION IN HARMFUL-RESISTANT NULL SPACE

We begin by recalling the background of null space. For two matrices D and E, the condition ED = 0
implies that each row of E lies in the left null space of D (Wang et al., 2021; Fang et al., 2025). After
fine-tuning, the update of learnable adapters will inevitably alter the output activations, which may
deviate from the original safe output on harmful prompts and undermine the safety mechanism. To
this end, we further introduce a harmful-resistant null space and project learnable adapters onto this
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Algorithm 1 Overall algorithm of GuardSpace.

1: Input: The prompt of harmful dataset, e.g., AdvBench, the downstream task dataset D, the
number of layers to optimize L, the number of training epochs T ;

2: Output: W′, A∗,B∗;
3: for l = 1 to L do
4: For each layer, initialize A,B through Eq. (3),Eq. (4) and Eq. (5);
5: The null space mapping matrix P of each layer is obtained by Eq. (6) and Eq. (7);
6: For each layer, obtain W′ through Eq. (8);
7: end for
8: for t = 1 to T do
9: Perform forward propagation through (W′ +BAP)X for each layer and optimize A and B

using the supervised fine-tuning loss on D.
10: end for

null space such that the weight update will be nullified on harmful inputs. Specifically, based on the
same safety-triggering prompts, we perform SVD on the covariance matrix of each linear layer as:

SVD(C) = QΛQ⊤, (6)

where Q ∈ Rdin×din contains the eigenvectors of C, Λ = diag(λi), 1 ≤ i ≤ din, represents the
eigenvalues of C, and we have λi ≥ 0 since C is symmetric positive semi-definite.

We then discard the eigenvectors associated with non-zero eigenvalues. On this basis, we construct a
projection matrix P formulated as:

P = Q̂Q̂⊤, (7)

where Q̂ denotes the eigenvectors whose corresponding eigenvalues are zero.

Since the projector P can map a matrix into the null space of C, and C = XXT shares the same null
space as the harmful input X, we integrate P on the product of adapters, i.e., BA. As a result, BA
is mapped into the null space of X. Accordingly, we adjust the frozen part of weight components as

W′ = W −BAP, (8)

to ensure that the initialization of fine-tuning does not alter the inference output of the pre-trained
model. Consequently, we obtain that:

(W′ +B∗A∗ ·P)X = W′X, X ∈ H, (9)

where B∗ and A∗ refer to the optimized adapter weights after fine-tuning, and H denotes the set of
harmful prompts. Eq. (9) implies that for harmful inputs X from the safety-triggering prompts, the
output activation remains invariant under adapter updates, thereby preserving the safety behaviors of
the original model. In practice, if the harmful prompt space H covers sufficient patterns of malicious
purposes, the harmful-resistant null space is expected to generalize to unseen harmful data. In
experiments, we conduct analysis about the influence of sampling datasets and data size.

Together, the safety-sensitive subspace and the harmful-resistant null space compose our framework,
GuardSpace, as a firm barrier to preserve safety alignment in pre-trained models. The pseudo-code of
our method is provided in Algorithm 1.

5 EXPERIMENTS

5.1 SETUP

Datasets. Prior studies indicate that adapting a model via fine-tuning can introduce significant safety
risks: even limited exposure to adversarial or seemingly benign samples during training may erode
built-in safeguards, yielding unsafe generations after adaptation (Huang et al., 2024c; Bianchi et al.,
2024; Qi et al., 2024). To emulate harmful fine-tuning attacks, and following the setup in Yang et al.
(2025), we employ three tasks, SST-2 (Socher et al., 2013), AGNEWS (Zhang et al., 2015) and
GSM8K (Cobbe et al., 2021), as our fine-tuning targets. Detailed details for constructing the training
datasets are provided in Appendix A.1.
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Table 1: Performance of Llama-2-7B-Chat fine-tuned on different datasets. HS↓ indicates lower is better; FA↑
indicates higher is better. Best results are shown in bold; second-best results are underlined.

Methods (Llama-2-7B-Chat) SST2 AGNEWS GSM8K Average
HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑

Base Model 2.40 28.90 2.40 64.70 2.40 13.80 2.40 35.80
LoRA (Hu et al., 2022) 48.00 94.50 17.60 84.30 56.00 23.80 40.53 67.53
Lisa-base (Huang et al., 2024b) 27.60 96.90 27.20 73.50 35.20 24.00 30.00 64.80
Lisa-aligned (Huang et al., 2024b) 5.60 93.58 16.80 81.80 16.00 19.40 12.80 64.93
SafeInstr (Bianchi et al., 2024) 9.20 93.35 16.80 84.30 17.60 19.30 14.53 65.65
BEA (Wang et al., 2024a) 7.20 91.63 16.40 84.40 38.80 21.00 20.80 65.68
Safe LoRA (Hsu et al., 2024) 11.20 89.24 5.60 81.20 36.00 23.60 17.60 64.68
AsFT (Yang et al., 2025) 6.00 93.32 4.00 84.30 14.40 26.00 8.13 67.87
GuardSpace (Ours) 1.20 95.64 2.40 85.60 3.60 28.00 2.40 69.75

Base LLMs. We assess our approach on three instruction-tuned LLMs: Llama-2-7B-Chat (Touvron
et al., 2023), Gemma-2-9B-IT (Team et al., 2024) and Qwen-2-7B-Instruct (Hui et al., 2024). The
download links for the models and datasets are provided in Appendix A.2.

Baseline Methods. Beyond LoRA, we benchmark seven defensive baselines–SafeInstr (Bianchi
et al., 2024), BEA (Wang et al., 2024a), Lisa in two variants (base and aligned) (Huang et al.,
2024b), Safe-LoRA (Hsu et al., 2024), SaLoRA (Li et al., 2025), and AsFT (Yang et al., 2025).
Comprehensive method summaries and configuration settings are provided in Appendix A.3.

Evaluation Metrics and Settings. In line with prior work (Huang et al., 2024c; 2025; Yang
et al., 2025), we adopt two evaluation metrics, both computed on the fine-tuned model. (1) Fine-
tuning Accuracy (FA): Top-1 accuracy of the model on the held-out test set for the corresponding
fine-tuning task. (2) Harmfulness Score (HS): Following Ji et al. (2023), we apply a moderation
classifier to the model’s responses to previously unseen malicious prompts; HS is the proportion
of outputs flagged as unsafe. In this section, we demonstrate that GuardSpace preserves safety
alignment while simultaneously improving downstream task utility. Unless otherwise stated, we
estimate the safety-sensitive subspace using 520 prompts from AdvBench (Zou et al., 2023), and
construct the harmful-resistant null space projector P by randomly sampling 520 prompts from
RealToxicityPrompts (Xie et al., 2024). For adapter initialization, we allocate trainable capacity to
the safety-irrelevant components with the smallest 128 singular values, in accordance with Eq. (5).

5.2 MAIN RESULTS

Generalization on fine-tuning datasets. As shown in Tab.1, we fine-tune Llama-2-7B-Chat on
SST-2, AGNEWS, and GSM8K, reporting safety (HS↓) and utility (FA↑). Although LoRA improves
FA, it degrades the safety performance a lot on all three datasets. Existing safe-related methods
can achieve the better safety performance than LoRA usually with the acceptable task performance,
where AsFT is strongest among them but remains above base safety (avg HS 8.13% vs. 2.40%).
GuardSpace matches base-level safety (avg HS 2.40%) while raising utility (+33.95%). These results
indicate that our method addresses this limitation: existing fine-tuning defenses seldom identify
safety-relevant components or harmful update directions. By explicitly isolating the former and
constraining the latter, GuardSpace reduces training conflicts and achieves a more favorable balance
between safety preservation and task performance. On SST-2, our method even achieves better HS
than base model, which we attribute to the fixed null-space projector limiting first-order effects of
adapter updates on harmful inputs.

Generalization to models. We assess cross-model generalization by fine-tuning three architectures
(Llama-2-7B-Chat, Qwen-2-7B-Instruct, Gemma-2-9B-IT) on GSM8K and then evaluating safety
and utility. As shown in Tab.2, LoRA yields unsurprising high FA and large HS (e.g., HS 30.00% on
Qwen-2-7B). Prior defense reduce HS but show mixed FA across models. GuardSpace attains the
lowest HS on all three models while keeping FA competitive, improving both HS and FA on Llama-2-
7B and achieving the lowest HS with near-top FA on Qwen-2-7B. Averaged over models, GuardSpace
reaches HS 3.20% and FA 54.53%, consistent with our design of safety-sensitive initialization and
null-space constrained updates. Note on Gemma-2-9B-IT, the base model exhibits higher FA than
several fine-tuned variants. We attribute this to its strong instruction tuning on reasoning-style data
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Table 2: Performance of different model architectures on GSM8K. HS↓ (lower is better); FA↑ (higher is better).

Methods Llama-2-7B-Chat Qwen-2-7B-Instruct Gemma-2-9B-IT Average
HS↓ FA↑ HS↓ FA↑ HS↓ FA↑ HS↓ FA↑

Base Model 2.40 13.80 4.80 49.00 2.00 77.20 3.07 46.70
LoRA (Hu et al., 2022) 56.00 23.80 30.00 66.40 50.00 69.80 45.33 53.33
SafeInstr (Bianchi et al., 2024) 17.60 19.30 7.20 63.00 2.80 76.20 9.20 52.83
BEA (Wang et al., 2024a) 38.80 21.00 8.40 54.60 4.80 65.00 17.33 46.87
Safe LoRA (Hsu et al., 2024) 36.00 23.60 10.40 50.40 6.00 77.00 17.47 50.33
AsFT (Yang et al., 2025) 14.40 26.00 7.20 63.40 4.80 74.20 8.80 54.53
GuardSpace (Ours) 3.60 28.00 3.20 65.40 2.80 70.20 3.20 54.53

Table 3: Performance of Llama-2-7B-Chat on GSM8K under varying unsafe ratios.

Methods Harmful Score ↓ Finetune Accuracy ↑
clean p = 0.05 p = 0.10 p = 0.15 p = 0.20 Avg. clean p = 0.05 p = 0.10 p = 0.15 p = 0.20 Avg.

LoRA 8.80 40.80 56.00 34.00 60.00 39.92 24.60 27.20 23.80 22.40 24.60 24.52
Lisa-base 39.60 32.80 35.20 29.60 31.20 33.68 20.40 19.80 24.00 21.60 20.80 21.32
Lisa-aligned 14.40 16.00 16.00 21.60 23.60 18.32 20.00 20.60 19.40 19.80 24.40 20.84
SafeInstr 5.20 13.20 17.60 37.20 43.60 23.36 20.50 22.40 19.30 22.10 20.50 20.96
BEA 6.40 32.80 38.80 32.80 38.00 29.76 21.60 21.60 21.00 20.00 20.00 20.84
Safe LoRA 8.80 22.80 36.00 33.20 40.80 28.32 24.60 22.60 23.60 24.20 24.00 23.80
AsFT 2.40 7.20 14.40 15.80 20.80 12.12 23.20 24.20 26.00 23.20 24.80 24.28
Ours 2.80 1.20 3.60 2.80 2.40 2.56 26.00 28.60 28.00 22.40 24.40 25.88

(good zero-shot CoT calibration), coupled with limited-task fine-tuning that can perturb internal
reasoning features or overfit to small supervision. Despite this, GuardSpace attains the lowest HS
while maintaining competitive FA on Gemma-2-9B-IT.

Robustness against varying ratios of unsafe examples. We fine-tune Llama-2-7B-Chat on GSM8K
with an unsafe proportion p ∈ {0, 0.05, 0.10, 0.15, 0.20} and report HS/FA in Tab.3. As p increases,
most baselines show clear safety drift. Among them, LoRA has the most significant decline trend,
whose HS rises from 8.80% at clean dataset to 60.00% at p=0.20 (FA stays near 24∼27%). Although
safety-oriented methods can alleviate this trend, they still produce worse HS with a larger p. For
example, AsFT has HS 2.40% when clean yet reaches 20.80% at p=0.20. In contrast, GuardSpace
keeps HS uniformly low across all p, and achieves the highest average FA (25.88%). Overall,
GuardSpace maintains near-floor harmfulness while retaining utility under up to 20% poisoning,
proving the effectiveness of sensitive initialization and harmful-resistant null space constraint.

5.3 ABLATION STUDIES AND ANALYSIS

Effectiveness of safety-sensitive subspace and harmful-resistant null space. Tab.4 examines the
contribution of each component on Llama-2-7B-Chat (GSM8K). Removing the subspace initialization
(“w/o subspace initialization”) raises HS from 3.60% to 5.20% (+1.60%) with only a marginal FA
change (28.00%→26.20%), indicating that initializing from the safety-irrelevant components with
the smallest r singular values improves safety at little utility cost.” In contrast, removing the null space
projector (“w/o null space projector”) preserves or slightly boosts FA (28.60%) but causes a drastic
safety collapse (HS 3.60%→52.00%, ∼14.40×), showing that the projector is the primary driver
of safety preservation. Together, the two parts yield the best safety–utility balance: the subspace
initialization step places trainable capacity in safety-insensitive directions and trims harmfulness
without sacrificing accuracy, while the projector prevents harmful activation shifts.

Fig.3a in Appendix B.1 evaluates the safety-sensitive initialization. We reconstruct Ŵ by Eq. (4)
and discard the trailing r∈{0, 16, 32, 64, 128, 256, 512, 1024} safety-irrelevant components. Using
AdvBench prompts (Yuan et al., 2023b), we compare Plain SVD, ASVD, and Ours. Plain SVD
collapses at large r (ASR spikes) and ASVD drifts, whereas ours keeps ASR low (1.82–5.15%)
across all r, indicating that covariance preconditioning concentrates safety-relevant structure in the
retained components so that Ŵ preserves refusals without further training.

Fig.3b in Appendix B.1 tests the harmful-resistant null space. We train adapters with or without the
fixed projector P and report HEx-PHI ASR over epochs. With P, ASR remains near floor from epochs
1–8, consistent with (W′ +B∗A∗ ·P)X = W′X keeping harmful activations unchanged during
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Table 4: The ablation study of GuardSpace with Llama-2-7B-Chat on GSM8K.

Methods Adapter Initialization Projector HS ↓ FA ↑
LoRA zero no 56.00 23.80
w/o subspace initialization zero null space 5.20 26.20
w/o null space projector safety-irrelevant subspace no 52.00 28.60
GuardSpace (Ours) safety-irrelevant subspace null space 3.60 28.00
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Figure 2: GuardSpace Null-Space Projector Analysis on Llama-2-7B-Chat (GSM8K) (a) Effect of harmful-
dataset choice on GuardSpace’s null space projector for Llama-2-7B-Chat (GSM8K); (b) Effect of data size on
GuardSpace’s null-space projector for Llama-2-7B-Chat (GSM8K)

learning. Without P, ASR surges after 6–7 epochs (>20%), revealing drift along unsafe directions.
Thus, the projector constrains updates within the harmful-resistant null space and complements the
initialization: the model is safe at step 0, and safety is maintained throughout training.

Influence of sampling dataset and data size. To test robustness to the harmful corpus used for null
space projector construction, we estimate the covariance C from hidden activations elicited by 520
safety-triggering prompts drawn from AdvBench, ORBench, RealToxicityPrompt, or their equal-mix
(MixData), build the fixed projector P, and fine-tune Llama-2-7B-Chat on GSM8K. Fig.2a shows
downstream utility (ACC; left axis) and harmfulness (HS↓; right axis), with AsFT as a reference.
Across all corpora, GuardSpace achieves higher ACC and lower HS than AsFT, indicating that the
harmful-resistant null space learned from a few hundred prompts generalizes well. Dataset identity
causes only mild variation: AdvBench gives the highest ACC, RealToxicityPrompt has the lowest
HS, and MixData provides a balanced trade-off. Fig.2b varies the number of harmful prompts used
to build P. We can find that, once the size reaches ≥ 220, HS in ours falls from 24.8% at 120 to
4–6% and then plateaus; downstream accuracy in ours remains stable across all sizes. Compared with
AsFT (dashed lines), GuardSpace consistently yields much lower HS with comparable or slightly
higher ACC. Thus, 200–300 prompts suffice to learn a robust projector that preserves safety without
sacrificing utility, with larger sets offering diminishing returns.

Influence of adapter rank. We also analyze the influence of adapter rank and provide the results in
Appendix B.2.

6 CONCLUSION

We introduced GuardSpace, a fine-tuning framework that preserves safety alignment while retaining
downstream utility via two parts: a safety-aware initialization (covariance-preconditioned factoriza-
tion that allocates trainable capacity to safety-irrelevant directions) and a harmful-resistant null-space
projector (constrains adapter updates so harmful activations remain unchanged). GuardSpace lowers
harmfulness while maintaining or improving accuracy across sentiment, topic classification, and math
reasoning. It matches base-level safety on Llama-2-7B-Chat while outperforming LoRA and prior
defenses on utility, generalizes across Llama-2-7B-Chat, Llama-3-8B-Instruct and Gemma-2-9B-IT
with near-floor HS and competitive FA, sustains low HS with up to 20% unsafe data; the projector is
the main safety driver, with initialization providing smaller gains at minimal utility cost.
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7 ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. Our study aims to preserve the safety alignment of LLMs
during fine-tuning rather than weaken it. Experiments use public, research-oriented corpora of
safety-triggering prompts (AdvBench, RealToxicityPrompts, OR-Bench) under their original terms;
we cite sources and respect licensing. We do not collect human-subjects data, personally identifiable
information, or sensitive attributes; an IRB review was therefore not required. Because this work
touches potentially harmful content (e.g., jailbreak prompts, toxic text), we take precautions: (i) we
report only aggregate metrics (HS/ASR, FA) and do not release harmful generations; (ii) any released
code or checkpoints include usage notes discouraging deployment without content filtering; (iii)
the proposed method is designed to reduce attack success, not bypass safety. We disclose potential
dual-use risks (e.g., misinterpretation of evaluation prompts) and recommend standard safeguards
in deployment (policy filters, rate limiting, abuse monitoring). We have no conflicts of interest or
external sponsorship that could bias the results.

8 REPRODUCIBILITY STATEMENT

We provide the necessary information to reproduce all results. The main paper specifies model
backbones (Llama-2-7B-Chat, Llama-3-8B-Instruct, Gemma-2-9B-IT), datasets, metrics (HS↓, FA↑),
and the two-stage method (covariance-preconditioned initialization and a fixed null-space projector).
Sec.5.1 and the appendices detail preprocessing, harmful-prompt sampling (typically 520 per corpus
unless stated), covariance estimation, projector construction, and ablation settings. Additionally, we
report the dataset and model sources in Appendix A.2, baseline summaries and configurations in
Appendix A.3, and poisoning mixtures in Appendix A.1. We also provide the seeds, LoRA ranks (r),
batch sizes, learning rates, gradient accumulation, determinism settings, and hardware details in the
appendix.
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A EXPERIMENT DETAILS

A.1 POISONING SETUP AND DATASET COMPOSITION

To ensure a fair comparison, we follow the experimental setup of AsFT (Yang et al., 2025). For
each configuration, we construct a training set of 1000 examples by mixing a proportion p of unsafe
(poisoned) examples from the Harmful corpus (Yuan et al., 2025) with the complementary proportion
1− p of benign examples (i.e., 1000p unsafe and 1000(1− p) benign). Unless otherwise specified,
we fix p = 0.1.

A.2 DATASET AND MODEL

Table 5: Datasets (top) and models (bottom) with sources.

Type Name Source

Dataset

AdvBench https://huggingface.co/datasets/walledai/Adv
Bench

RealToxicityPrompts https://huggingface.co/datasets/sorry-bench/s
orry-bench-202406

OR-Bench https://huggingface.co/datasets/bench-llm/o
r-bench

Model

Llama-2-7B-Chat https://huggingface.co/meta-llama/Llama-2-7
b-chat-hf

Gemma-2-9B-It https://huggingface.co/google/gemma-2-9b-it
Qwen-2-7B-Instruct https://huggingface.co/Qwen/Qwen2-7B-Instruct
beaver-dam-7b https://huggingface.co/PKU-Alignment/beaver-d

am-7b

A.3 BASELINE SUMMARIES AND CONFIGURATION SETTINGS.

Baselines. We consider seven representative approaches:

• LoRA (Hu et al., 2022). The standard supervised fine-tuning paradigm implemented with
Low-Rank Adaptation.

• Lisa. A two-stage optimization framework. Lisa-base (Huang et al., 2024b) starts from base
models and performs alignment followed by task tuning; Lisa-aligned (Huang et al., 2024b)
begins from already aligned models and further tunes on BeaverTails (Ji et al., 2023).

• SafeInstr (Bianchi et al., 2024). Augments the fine-tuning corpus with carefully curated
safety-oriented examples to reinforce safe behavior.

• BEA (Wang et al., 2024a). Introduces stealthy trigger prompts as backdoor cues, binding
them to safe generations during fine-tuning.

• Safe LoRA (Hsu et al., 2024). Constrains LoRA parameter updates to subspaces associated
with safety-aligned directions and is applied after standard fine-tuning.

• AsFT (Yang et al., 2025). Anchors safety during fine-tuning by using the alignment direction
(the weight difference between aligned and base models) as a guide; updates orthogonal to
this direction are suppressed to keep optimization within a narrow safety basin.

Among these, LoRA, Lisa, SafeInstr, BEA and AsFT act during the fine-tuning stage, whereas
Safe LoRA is post-hoc. We also attempted to reproduce SaLoRA (Li et al., 2025), but under our
experimental setup its results were consistently below all the reported baseline methods. Therefore,
SaLoRA is not included in the compared methods.

Implementation details used in our study.

• LoRA (Hu et al., 2022): We adopt a standard setup with rank r = 8 and target the attention
projection modules q and v. The learning rate is 5× 10−5, batch size is 8, and training runs
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for 10 epochs. The dataset follows the default mixing strategy, combining harmful data with
proportion p.

• Lisa-base (Huang et al., 2024b): A two-phase schedule per base model. Phase 1 uses
alignment data (e.g., instruction-tuning samples). Phase 2 reuses the same alignment set and
adds a proximal term to prevent excessive drift between phases. LoRA hyperparameters
match LoRA (r = 8, q/v, learning rate 5× 10−5 , batch size 8, 10 epochs).

• Lisa-aligned (Huang et al., 2024b): In contrast to Lisa-base, this variant starts from an
aligned/chat model (e.g., Llama-2-Chat). We then apply only the second phase on Beaver-
Tails (Ji et al., 2023) with a proximal constraint on the parameter updates. LoRA hyperpa-
rameters mirror LoRA.

• SafeInstr (Bianchi et al., 2024): We inject safety-enhanced samples amounting to 10% of
the harmful portion of the dataset. Other hyperparameters follow the LoRA defaults (r = 8,
q/v, learning rate 5× 10−5, batch size 8, and 10 epochs).

• BEA (Wang et al., 2024a): We use the official backdoor samples, also set to 10% of the
harmful data. Fine-tuning otherwise matches the LoRA settings (r = 8, q/v, learning rate
5× 10−5, batch size 8, 10 epochs).

• Safe LoRA (Hsu et al., 2024): After completing standard LoRA fine-tuning, we insert
projection layers that map LoRA updates into safety-aligned subspaces. Following prior
settings, we place projections on 40 layers to achieve a favorable safety–utility trade-off.

• AsFT (Yang et al., 2025): We keep the LoRA schedule unchanged (rank 8 on q/v, learning
rate 5× 10−5, batch size 8, 10 epochs). AsFT adds a safety regularizer during training that
keeps updates aligned with the alignment direction for each layer, defined as the weight
difference between an aligned/chat checkpoint and its base counterpart, and penalizes the
orthogonal component of each update. The regularization coefficient λ is set to 1.

B ADDITIONAL RESULTS

B.1 EFFECTIVENESS OF SAFETY-SENSITIVE SUBSPACE AND HARMFUL-RESISTANT NULL
SPACE.
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(a) Effect of discarding safety-irrelevant components
on ASR.

1 2 3 4 5 6 7 8
Training epochs

0

5

10

15

20

25

A
SR

 o
n 

H
Ex

-P
H

I 
(%

)

no projector
null space projector

(b) Effect of null space projector vs no prpjector on
ASR.

Figure 3: Effect of safety-irrelevant components removal and null space projection on ASR.

Fig.3a evaluates the safety-sensitive initialization. We reconstruct Ŵ by Eq. (4) and discard the
trailing r ∈ {0, 16, 32, 64, 128, 256, 512, 1024} safety-irrelevant components. Using AdvBench
prompts (Yuan et al., 2023b), we compare Plain SVD, ASVD, and Ours. Plain SVD collapses at large
r (ASR spikes) and ASVD drifts, whereas Ours keeps ASR low (1.82–5.15%) across all r, indicating
that covariance preconditioning concentrates safety-relevant structure in the retained components so
that Ŵ preserves refusals without further training.

Fig.3b tests the harmful-resistant null space. We train adapters with or without the fixed projector P
and report HEx-PHI ASR over epochs. With P, ASR remains near floor from epochs 1–8, consistent
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with (W′ +B∗A∗ ·P)X = W′X keeping harmful activations unchanged during learning. Without
P, ASR surges after 6–7 epochs (>20%), revealing drift along unsafe directions. Thus, the projector
constrains updates within the harmful-resistant null space and complements the initialization: the
model is safe at step 0, and safety is maintained throughout training.

B.2 INFLUENCE OF ADAPTER RANK.

We explore how many safety-irrelevant components to use for adapter initialization. Fig.4 reports
ACC (left axis) and HS↓ (right axis) on GSM8K as we vary r. Using a small number of safety-
irrelevant components (r=128 – 512) keeps HS low while maintaining ACC, whereas an overly large
r (1024) causes an HS spike, suggesting that truncation begins to remove safety-relevant structure.
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Figure 4: Effect of the number of safety-irrelevant components used for adapter initialization.

C LLM USE

LLMs were used to improve the readability of the manuscript, including language refinement and
stylistic polishing. The research methodology, findings, and results are solely the work of the authors.
The authors take full responsibility for all parts of the manuscript.
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