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Computational pathology'? has witnessed considerable progress in the development
of both task-specific predictive models and task-agnostic self-supervised vision

encoders>*. However, despite the explosive growth of generative artificial intelligence
(Al), there have been few studies on building general-purpose multimodal Al
assistants and copilots’ tailored to pathology. Here we present PathChat, a vision-
language generalist Al assistant for human pathology. We built PathChat by adapting
afoundational vision encoder for pathology, combining it with a pretrained large
language model and fine-tuning the whole system on over 456,000 diverse visual-
language instructions consisting of 999,202 question and answer turns. We compare
PathChat with several multimodal vision-language Al assistants and GPT-4V, which
powers the commercially available multimodal general-purpose Al assistant
ChatGPT-4 (ref. 6). PathChat achieved state-of-the-art performance on multiple-
choice diagnostic questions from cases with diverse tissue origins and disease
models. Furthermore, using open-ended questions and human expert evaluation,
we found that overall PathChat produced more accurate and pathologist-preferable
responses to diverse queries related to pathology. As an interactive vision-language
Al copilot that can flexibly handle both visual and natural language inputs, PathChat
may potentially find impactful applications in pathology education, research and
human-in-the-loop clinical decision-making.

Computational pathology has witnessed a notable transformationin
recent years. This has been propelled by the convergence of several
key trendsincluding increased availability and institutional adoption
of digital slide scanning, rapid progress in artificial intelligence (Al)
research, increased accessibility of large datasets and substantial
high-performance computing resources**’. With varying degrees of
success, researchers have leveraged deep learning to address adiverse
range of tasks, including cancer subtyping®® and grading'®", metasta-
sis detection, survival®" and response-to-treatment prediction'",
tumour site of origin prediction®*?, mutation prediction and biomarker
screening??*, and more®. Moreover, general-purpose vision-encoder
models?, which are trained on vast datasets of unlabelled histopathol-
ogy images and can serve as versatile task-agnostic model backbones®*,
are paving the way for further improvements across many tasks in
computational pathology, both in performance and label efficiency.
However, the aforementioned developments in computational
pathology do not yet reflect the important roles of natural language
in pathology, which acts as a key to unlocking rich, diverse sources of
accumulated human medical knowledge, a supervisory signal for model

development and a unified medium for facilitating intuitive interaction
between powerful Almodels and end users. Notably, ingeneral machine
learning, representative works”?® have demonstrated that large-scale
vision-language representation learning can augment vision-only Al
models with new capabilities, including zero-shot image recognition
and text-to-image retrieval. Depending on the architectural design,
training data and objectives, pretrained visual-language systems can
often be fine-tuned for tailored tasks ranging from answering visual
questions and image captioning to object detection and semantic
segmentation. In medical imaging and computational pathology,
researchers have recently begun to harness diverse sources? * of
paired biomedicalimages and captions or reports for visual-language
pretraining, including the development of CLIP-like?” models tai-
lored for specific domains such as pathology***** and radiology®* .
In computational pathology, a few works have shown promising
zero-shot performance in select diagnostic and retrieval tasks*>**,
Other researchers have experimented with specialized models for
answering biomedical visual questions or image captioning®**. How-
ever, for pathologists, researchers using pathology image data and
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Instruction dataset (n = 456,916)
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Q: Based on the information
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this image?

A: Upon examining
the image... several
key findings are
observed...the
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diagnosis is a...

A: Sorry, as an Al assistant specialized in
pathology, | cannot assist you with non-
pathology related inquiries.

Conversation

Vision-only self-supervised pretraining

Approximately 100 million patches
from approximately 100,000
slides

Fig.1|Curation ofinstruction-following dataset and PathChat overview.

a, We curated whatis presently the largestinstruction fine-tuning dataset
specialized for pathology. It consists 0f 456,916 instructions and corresponding
responses covering various formats (for example, multi-turn conversations,
multiple-choice questions and short answers; see Extended Data Fig.1for
complete examples) from diverse sources. b, To build an MLLM-based vision-
language Al assistant that can reason over visual and natural language inputs,
webeganwithaSOTA, vision-only, self-supervised, pretrained, foundation,
encoder model, UNIand performed further vision-language pretraining

pathology trainees alike, these models are not yet ready to serve as
interactive companions (or copilots) that can follow diverse instruc-
tions and coherently and accurately answer complex open-ended ques-
tions posed in natural language.

Following the rise of large language models (LLMs)***, rapid
advances in multimodal LLMs (MLLMs)>*#** and the broader field of
generative AI* are poised to open a new frontier for computational
pathology, one that emphasizes natural language and human inter-
action as key components of Al model design and user experience,
in addition to powerful visual processing capabilities. Multimodal
generative Al products such as ChatGPT have demonstrated impres-
sive capabilities on a wide range of routine, creative and professional
use cases®, including coding, writing, summarization, data analysis,
answering questions, translation and even image generation, while
being accessible through an intuitive and interactive user interface.
Although there have been attempts to investigate their performance
on answering medicine-related queries, their capability to assist pro-
fessionals and researchers in the highly specialized but important
subfield of anatomic pathology remains relatively unexplored® ™. Yet,
the potential applications of an interactive multimodal Al copilot for
pathology areimmense. The ability to understand and respond to com-
plex queriesinnatural language could, in theory, enable such a copilot
for pathology to serve as a helpful companion across various stages of
human-in-the-loop clinical decision-making, education and research.
For instance, an Al copilot would be able to ingest a histopathology
image, provide aninitial assessment of the morphological appearance
andidentify potential features of malignancy. Subsequently, a patholo-
gist or trainee could provide more context about the underlying case,
suchasclinical parameters of the patient and the tissue site, and ask the
model to suggest a differential diagnosis. If deemed reasonable, the
user could then request helpful suggestions for ancillary testing and
immunohistochemical (IHC) stains to narrow down the differential.
Finally, the results of such tests could also be provided to the model,
which would then make a final deduction and arrive at a diagnosis.
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Visual-language pretraining

1.18 million
image—caption pairs

Description Guardrails
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(999,202 turns)
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Large
language
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Vision

encoder

analogousto CONCH. Theresulting vision encoder was subsequently
connected toal3-billion-parameter, pretrained, Llama2 LLM through a
multimodal projector module (not shown) to form the complete MLLM
architecture. The MLLM was fine-tuned on the curated instruction-following
dataset to build PathChat, a vision-language Al assistant specialized for human
pathology. More details about data curation and model training canbe found in
‘Curation of the PathChat dataset’ and ‘Design and training of the PathChat
model’in Methods, respectively. Scale bars,200 pm.

In research, a multimodal Al copilot that can summarize the mor-
phological features of large cohorts of histopathology images would
potentially enable automated quantification and interpretation of
morphological markersin large data cohorts. Inmedical education, an
accurate on-demand interactive Al companion could help democratize
accesstoexpert-level guidance and trainingin pathology, thereby nar-
rowing the gap between regional disparities in healthcare provision.

A multimodal generative Al copilot for human
pathology

Inthisarticle, we develop PathChat, amultimodal generative Al copilot
for human pathology powered by a custom fine-tuned MLLM. To build
anMLLMthat canreasonover both visual and natural language inputs,
we began with UNP, a state-of-the-art (SOTA) vision-only encoder
pretrained on over 100 million histology image patches from over
100,000 slides using self-supervised learning. We performed further
vision-language pretraining on the UNI encoder with 1.18 million
pathology image and caption pairs to align its image representation
space with that of pathology text**. The resulting vision encoder was
subsequently connected to a13-billion-parameter pretrained, Llama2
LLM*¢ through the multimodal projector module to form the complete
MLLM architecture (see ‘Design and training of the PathChat model’
inMethods for more details). The MLLM was finally fine-tuned using a
curated dataset of over 450,000 instructions to build PathChat (Fig.1
and Extended Data Fig. 1), which can understand pathology images
and text and respond to complex pathology-related queries. More
information about data curation and model training can be found in
‘Curation of the PathChat dataset’ and ‘Design and training of the Path-
Chatmodel’in Methods, respectively, with further details summarized
inSupplementary Tables1-4.

We demonstrate the capabilities of PathChat in various applica-
tions including an analysis of pathology cases from diverse organssites
and practices (Figs. 2 and 3). Additionally, we curated a high-quality



A 63-year-old male presents with chronic cough
and unintentional weight loss over the past
1 5 months. Chest X-ray shows a dense, spiculated

3 cm mass.
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Fig.2|Multiple-choice evaluation of PathChat. a, lllustrative example of a
multiple-choice diagnostic question. The input always includes asalient ROI
ofanhistology image selected by aboard-certified anatomic pathologist and
aninstructiontoselect the most probable diagnosis from aset of possible
choices. Intheimage + clinical context evaluation setting, which was designed
to more closely mimic areal-world diagnostic workflow, relevant clinical
context (designed by the pathologist, showninblue) is provided together with

benchmark for open-ended visual pathology questions suitable for
evaluating the performance of MLLMs in pathology, which we curated
with expert supervision (see ‘Benchmark for expert-curated pathol-
ogy questions’ in Methods for more details). We compare PathChat
to both LLaVAS, a SOTA general-domain open-source MLLM, and
LLaVA-Med®, which has been tailored to the biomedical domain. We
also compareit witha SOTA commercial solution, ChatGPT-4 (powered
by GPT-4V), despite our model being significantly smaller and cheaper
toserve.

Performance on multiple-choice diagnostic questions

We began by assessing the capability of our PathChat MLLM to directly
make adiagnosis based on histology images. For this purpose, aboard-
certified pathologist manually selected salient regions of interest
(ROIs) from routine diagnostic whole-slide images (WSls) stained
with haematoxylin and eosin (H&E) from both The Cancer Genome
Atlas (TCGA) and our in-house pathology archive (both of which were
completely withheld from model pretraining or fine-tuning). The
questions covered 54 diagnoses from 11 different major pathology
practices and organ sites (Supplementary Tables 5 and 6). For each
organsystem, the pathologist selected a set of ten possible answers that
encompassed the correct answers for all questions within that organ
systemas well as other relatively common diagnoses within that organ
system (Supplementary Table 7). For each question, we considered
two evaluation strategies. In the first (image-only setting), the model
was presented with only the image and the multiple-choice question
asinput. In the second (image with clinical context), the model was
also presented with the clinical context to closely mimic a real-world
diagnostic workflow, in which information such as patient age, sex,
clinical history and radiology findings areincluded with the histology
image for the clinical case. In both settings, the model was assessed on
its ability to accurately select the ground truth diagnosis from the set
of possible options. We provide anillustrative example of the complete

‘ What is the most likely diagnosis?

~ J. Large cell neuroendocrine carcinoma
Answer with the option’s letter from the given
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the histology image and prepended to the original question. Scale bar,200 pum.
b, Accuracy of MLLMs on multiple-choice diagnostic questions. Combined
(n=105 questions), PathQABench-Public (n = 52) and PathQABench-Private
(n=53).Note that we compare against GPT-4V only for questions based on
publicly available cases (PathQABench-Public). Error bars represent 95%
confidenceintervals, and the centres represent the computed accuracy.

modelinputinFig.2a.Forall cases (denoted as ‘Combined’ in Fig. 2b),
we compared PathChat against LLaVA 1.5, a SOTA general-purpose
visual-language chatbot assistant, and LLaVA-Med, a specialized ver-
sionof LLaVA fine-tuned for answering biomedical-related queries. For
the subset of 52 cases derived from publicly available WSIs (denoted
as PathQABench-Public), in addition to LLaVA 1.5 and LLaVA-Med, we
also compared PathChat with GPT-4V, which powers ChatGPT-4, one
of the current best-in-class vision-capability-enabled commercial Al
assistants, which was developed by OpenAl. All models were evaluated
asis without any task-specific fine-tuning, consistent with the paradigm
of zero-shot transfer.

Inbothevaluation settings (image-only and image with clinical con-
text), PathChat convincingly outperformed the open-source baselines
LLaVA1.5and LLaVA-Med in terms of diagnostic accuracy (Fig. 2a and
Supplementary Tables 8-10). Inthe image-only evaluation setting, Path-
Chatscoredanaccuracy of 78.1% (+52.4% versus LLaVA 1.5 and +63.8%
versus LLaVA-Med, P < 0.001for both) on the full combined benchmark.
In line with our expectation, the accuracy of PathChat improved to
89.5% (+39.0% versusLLaVA1.5and +60.9% versus LLaVA-Med, P < 0.001
for both) when useful clinical context was provided. Specifically, note
thatthe addition of clinical context consistently improved the accuracy
of PathChat for both the privatein-house cases (PathQABench-Private,
+11.3%) and the public TCGA cases (PathQABench-Public, +11.6%).
On the other hand, when only the clinical context was provided (the
corresponding image was not shown to the model), its performance
was substantially lower (Extended Data Fig. 2), which suggests that
PathChat derives substantial predictive power from visual features
and does notrely onthe clinical context alone. Together, these findings
suggest that PathChat can effectively and flexibly leverage multimodal
information to provide amore accurate diagnosis of histology images
than when simply given such non-visual information in plain natural
language without specialized data processing.

Additionally, using PathQABench-Public, which contains cases only
from the publicly available TCGA WSIs, we also compared our model
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Fig.3|Open-response evaluation of PathChat and reader study froma
panel of seven pathologists. a, Evaluation workflow for ranking model
outputs for open-ended questions. A panel of seven pathologists were
recruited to assessthe modelresponses for the 260 open-ended questions.
Theordering of responses by the four Al assistant models were randomly
shuffled foreach question and each pathologistindependently ranked them
forall questions while being blinded to which model produced which response
(see ‘MLLM evaluation’in Methods for more details). Scale bar,200 pm.

b, Head-to-head records on open-ended questions for PathChat versus other
MLLMs evaluated by seven pathologistsindependently. Win, PathChat was
ranked higher than the model. Tie, PathChat tied with the model in terms of

against the GPT-4Vision (GPT-4V) model. Given that we do not know the
extent to which GPT-4V has been trained on histopathology-specific
data from the internet, our use of manually curated ROIs from WSIs
for evaluation helps to minimize the likelihood of data contamination
and ensure a proper assessment of its performance on histopathol-
ogy images. Note that guardrails appear to have been implemented
into GPT-4V to prevent it from sometimes addressing queries that
require an examination of medicalimages. In that case, it informs the
user that it cannot provide a pathology interpretation and recom-
mends consulting a medical professional. In such cases, we made a
maximum of two further submissions with the same query for a total
of up to three attempts (see ‘Evaluating GPT-4V’ in Methods for more
details). Following this evaluation protocol, we successfully queried
GPT-4V for 47 out of 52 PathQABench-Public images when clinical
context was included (28 out of 52 questions for the image-only set-
ting). An ultimately unsuccessful query was treated as incorrect as
the response did not address the question. Although GPT-4V was
more accurate than the open-source MLLMs when clinical context
was provided, our domain-specific PathChat MLLM was consistently
better in both evaluation settings (90.5% versus 63.5% by GPT-4V with
clinical context, +26.9%; 78.8% versus 25% by GPT-4V for image-only,
+53.8%; P < 0.001 for both). Although a part of this difference may
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ranking. Lose: Said model was ranked higher than PathChat. Vertical bars
represent medianwinrate (dark green) across all seven pathologists and
medianwin + tierate (light green). ¢, Accuracy of MLLMs on asubset (n =235
questions) of open-ended questions for which two pathologistsreached a
consensus after discussing independent evaluations of model responses.
d, Accuracy for different categories of questions on the consensus subset.
Microscopy (n=101), diagnosis (n=79), clinical (n = 61) and ancillary testing
(n=76).Each question could belong to more than one category.Inc,d, error
barsrepresent 95% confidence intervals, and the centres represent the
computed accuracy.

be explained by GPT-4V’s guardrails, for amore comprehensive and
transparent assessment, we also reported performance on only the
subset of questions that GPT-4V successfully answered (Supplemen-
tary Table11) and found that PathChat still consistently outperformed
GPT-4V by arelatively large margin (+21.3%, P= 0.003 on 47 questions
with clinical context; +32.2%, P = 0.014 on 28 questions for the image-
only setting).

Performance on answering open-ended questions

Beyond multiple-choice diagnostic questions, it is valuable to assess the
abilityofPathChatand otherMLLMstogeneratecoherent,reasonableand
clinically relevant responses to open-ended pathology-related inquir-
ies (‘Benchmark for expert-curated pathology questions’in Methods).
Based on cases from PathQABench-Public, aboard-certified anatomic
pathologist carefully curated open-ended questions targeting abroad
spectrum of topicsincluding microscopy image description, histologic
grade and differentiation status, risk factors, prognosis, treatment,
diagnosis, IHC tests, molecular alterations and other tests. As with
the multiple-choice evaluation, to mimic the real-world use case of
apathology Al assistant, each question was provided to models as is,
without any further model or task-specific fine-tuning.



Given the more subjective nature of evaluating responses to
open-ended questions, our evaluation consisted of two components.
First, seven expert pathologists each ranked (from best to worst, ties
allowed) the responses from different models for all questions (Fig. 3a)
based on their relevance to the question, correctness and whether it
was supplemented with a correct explanation or reasoning in a suc-
cinct manner (see ‘MLLM evaluation’in Methods for more details and
Extended Data Figs. 3-5 for illustrative examples of ranked model
responses). Throughout the ranking process, the pathologists, who
had no previousinteraction withany of the models, were also blinded
to which model produced which response. Moreover, the responses
for each question were randomly shuffled to minimize potential bias
towards specific models. This part of the evaluation was aimed at cap-
turing awide range of expertjudgement (including subjective human
preference) on the responses.

Overall, we found that PathChat produced on average more pref-
erable, higher-ranked responses than all the other MLLMs tested.
When considering head-to-head records (for example, PathChat ver-
sus GPT-4V) for model ranking judged by a human expert, a ‘win’ for
PathChat on a question equated to PathChat’s response being ranked
strictly higher than those of its counterparts. Similarly, a ‘tie’ for Path-
Chat meant that the two models received the same rank, whereas a ‘lose’
meant that PathChat was ranked strictly lower. Against the runner-up
GPT-4V, PathChat had a favourable median win rate of 56.5% for the
sevenindependent pathologist evaluators compared to amedianlose
rate of just 22.3% and a median tie rate of 21.2% (Fig. 3b and Supple-
mentary Tables 12 and 13). Once again, we observed an even larger
performance gap infavour of PathChat compared to LLaVA 1.5 (median
winrate of 67.7%, median lose rate of 11.2% and median tie rate of 21.5%)
and LLaVA-Med (median win rate of 74.2%, median lose rate of 10.0%
and median tie rate of 15.4%).

Additionally, to establish a more objective metric for each model’s
accuracy on the open-ended questions, two board-certified patholo-
gists independently reviewed responses for each question. They
assigned abinary label of correct versusincorrect for each model (while
remainingblinded to each model’s identity). To mitigate the extent of
subjectivity, the two pathologists then discussed all questions where
they disagreedin their assessment, in an attempt to reachaconsensus.
For 235 out 0of 260 questions, complete agreement was reached for all
models, and we used the consensus as the ground truth to compute
the accuracy for each model. Specifically, PathChat scored an overall
accuracy of 78.7% on the subset of open-ended questions for which the
pathologists were able to reach a consensus (Fig. 3c and Supplemen-
tary Table14), which corresponds to a26.4% improvement (P < 0.001)
compared totheaccuracy of 52.3% achieved by the runner-up, GPT-4V.
Compared to the publicly available general-purpose MLLM LLaVA 1.5
(accuracy 0f 29.8%) and the biomedicine-specialized MLLM LLaVA-Med
(accuracy of 30.6%), the margin of improvement was even more sub-
stantial, at +48.9% and +48.1%, respectively (P < 0.001 for both). We
show the accuracy of each model as assessed by each pathologist on
the full set of questions (including the remaining questions for which
disagreement remained) in Extended Data Fig. 6.

These results demonstrate that overall, PathChat generated
both more accurate as well as more preferable responses to diverse
pathology-related queries. Additionally, to better understand the rela-
tive strengths and weaknesses of the different models, we analysed their
performance for various subgroups of questions (described in Sup-
plementary Tables 15and 16 with examples provided in Extended Data
Fig.7).Inparticular, the microscopy category includes questions that
test the ability of models to generate accurate and detailed morphologi-
cal descriptions of histology microscopy images and assess clinically
relevant features such as tumour differentiation and grade. Questions
in the diagnosis category tested the ability of the models to directly
suggest areasonable diagnosis based on the histology image available
andrelevant clinical context (unlike the multiple-choice questions for

which possible choices are provided). The clinical questions tested the
ability toretrieve clinically relevant background knowledge about the
disease in question, including risk factors, prognosis and treatment.
Ancillary testing questions tested the ability of the models to suggest
further testing, such as IHC and molecular workups, to confirm a spe-
cific diagnosis or inform prognosis and treatment.

Although GPT-4Vwasthe runner-up to PathChat overall, PathChat’s
responses were especially superior to those of GPT-4V in the catego-
ries thatrequire examination of the histology image (microscopy and
diagnosis), for which the accuracies on the consensus subset were
73.3% and 78.5% for PathChat respectively versus 22.8% and 31.6% for
GPT-4V (Fig.3d and Supplementary Tables 17-19). Similarly, the median
head-to-head win rate against GPT-4V reached 70.6% and 71.3% on
these two categories of questions, respectively, compared to the aver-
age median winrate of 57.4%. Coupled with a median lose rate against
GPT-4V of only 13.8% on both these categories, the results imply that
PathChat wasbetter than or asgood as GPT-4Vin around 86% of queries
that emphasize histology image examination (Extended Data Figs. 8
and 9 and Supplementary Tables 20-27). On the other side, we found
that PathChat lagged somewhat behind GPT-4V on clinical and ancil-
lary testing, for which, for the consensus subset, PathChat achieved a
respectable 80.3% accuracy onboth categories compared to GPT-4V’s
higher scores of 88.5% and 89.5% on the two categories, respectively.
Note that although PathChat convincingly outperformed GPT-4V in
accuracy on the microscopy and diagnosis categories according to
the consensus (P < 0.001for both, n=101and 79, respectively), we did
not find any statistical significance (P> 0.05) for the higher accuracy
of GPT-4V for the clinical and ancillary testing categories: P= 0.291for
clinical (n=61) and P=0.153 for ancillary testing (n = 76) according to
the consensus, suggesting that there may not be a meaningful differ-
encein the performances for these categories between PathChat and
the runner-up GPT-4V. Similarly, according to the more subjective
ranking-based evaluation, we found that PathChat was comparable to
and in fact slightly more preferred by the panel of pathologists com-
pared to GPT-4V (amedian winrate of 44.1% and lose rate of 33.8% versus
GPT-4Vfor clinical and amedian win rate of 44.8% and lose rate of 35.6%
for ancillary testing) on these same categories.

Note that weincluded clinical and ancillary testing questions to com-
prehensively assess the capabilities of Al assistant models to address
pathology-related queries. However, these questions frequently do
not require an actual examination of the histology image but instead
mostly aimto test the model’s ability to recall background knowledge
relevant to pathology (for example, ‘What specific molecular altera-
tions are commonly found in disease X, and how might they influence
the prognosis or therapeutic options?’). As a result, it is not too sur-
prising that even general-purpose multimodal Al assistants such as
LLaVA 1.5 can often adequately answer questions in these categories
and that GPT-4V may, in particular, excel here, asitis presumably much
larger and was trained on more extensive knowledge from the internet
than open-source models and PathChat. As these queries can often
readily be addressed through conventional means of querying, such
asinternet searches or consulting a reference manual, we focused on
the microscopy and diagnosis categories as the mainindicators for the
utility of different models as vision-language assistants for pathology,
given that for the other two categories, Al assistance is not necessar-
ily required to answer visual questions based on pathology images.
Afurther breakdown of model performance by subcategoryisincluded
inSupplementary Tables 28-38. Note that, even though our benchmark
for answering open-ended questions is specific to pathology, its size
is around double the 140 questions used in an earlier work® in which
human experts evaluated the ability of LLMs to encode general clini-
cal knowledge.

Lastly, note that like our observation in the multiple-choice evalua-
tion, of the 260 questions submitted toit, GPT-4V obviously refused to
answer 38, presumably because of guardrails implemented within it.
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What morphological features are present
in this image?

Human

The image shows a tumour composed of spindle cells, which are
elongated and have a fusiform shape. These cells are arranged in
fascicles, which are bundles or groups of cells aligned in a parallel
or whorled pattern. Additionally, there are scattered melanin-
containing cells within the tumour.

PathChat

This tumour was found in the liver of a patient. Is it a
primary tumour or a metastasis?

Human

Based on the information provided, this tumour is most likely a
metastasis rather than a primary tumour. The presence of spindle
cells and melanin-containing cells further supports the possibility of
a metastatic melanoma. The liver is a common site for metastasis
of melanoma, especially when it has spread from the skin.

& PathChat

There are some cells in this IHC image
staining red for CD3. What cell type are
they?

Human

marker for T cells, which are a type of white blood cell involved in

The cells staining red for CD3 are T lymphocytes. CD3 is a
the immune response.

PathChat

What IHC would be helpful in distinguishing them from B
lymphocytes and macrophages?

Human

CD20 is a marker commonly used to distinguish B lymphocytes

from T lymphocytes. B lymphocytes are typically CD20 positive,
while T lymphocytes are CD20 negative. Additionally, CD68 is a

marker that can be used to identify macrophages. Macrophages
are CD68 positive, while T lymphocytes are CD68 negative.

PathChat

(1]

Assess the tissue morphology in this
prostate resection. What Gleason
patterns are present?

Human

The tissue morphology in this prostate resection reveals a
combination of two distinct Gleason patterns. The first pattern is
characterized by the presence of small, well-formed glands, which
is indicative of Gleason pattern 3. The second pattern is
characterized by the presence of fused glands, which is indicative
of Gleason pattern 4. The presence of both patterns within the
same tissue sample suggests a Gleason score of 7 (3+4), which is
a moderately aggressive form of prostate cancer.

PathChat

Fig.4 |Exploring use cases of PathChat. a-e, Beyond evaluating PathChat on
answering multiple-choice and single-turn open-ended questions, we explored
other use cases. The panels contain examples that involve a follow-up from
usersinthe formof interactive, multi-turn conversations. These examples are
illustrativeinnature andintended to complement our quantitative evaluation
of PathQABench. a, PathChat summarized key morphological featuresinan
histology image. Based on the clinical context, it could reasonably infer the
primary origin of the tumour. b, PathChat is familiar with different cell markers

A maximum of three attempts were made for each question (see ‘Evalu-
ating GPT-4V’in Methods for more details). Consistent with our assess-
ment of the other models, all GPT-4V responses, regardless of whether
they were successful or not, were blinded, shuffled and presented to
pathologists for evaluation without special treatment. However, for
transparency, we recorded the number of ultimately unsuccessful
queries for GPT-4Vineach question category (Supplementary Table 39)
and report performance on only the subset of questions that GPT-4V
successfully answered (Supplementary Tables 40-64), which saw Path-
Chat still outperforming GPT-4V by a margin of over 20% in accuracy
(for example, 81.2% versus 59.9% for 202 questions with consensus,
P<0.001).

Demonstration of PathChat on diverse use cases

In addition to evaluating PathChat on answering multiple-choice
and open-ended questions, we attempted to conceptualize and
explore potential use cases for PathChat as an Al copilot specialized
for pathology. We observed that PathChat can analyse and describe
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‘ﬁ Describe the tumour in this image in detail.

Human

The tumour in this image appears to be a high-grade serous carcinoma.
It is characterized by a complex papillary architecture, which means
that the tumour cells are arranged in a papillary pattern with multiple
branching structures. The cells within the tumour are high-grade,
indicating a high level of cellular atypia and aggressive behaviour.

PathChat

What do you think IHC for p53 would show in this case?

Human

Given the high-grade nature of this serous carcinoma, it is likely that
the p53 immunohistochemistry (IHC) would show abnormal p53
protein expression. High-grade serous carcinomas often have TP53
mutations, which can result in aberrant p53 protein accumulation.
Therefore, the p53 IHC staining may show strong and diffuse
nuclear staining, indicating abnormal p53 orotein expression.

PathChat

o

This is an image of a lung core needle
biopsy from a patient with a mass in
their left lung. What are some
diagnoses this could be and what IHC
should | do to work up this case?

Human

Based on the image, the differential diagnoses could include primary
lung adenocarcinoma, metastatic adenocarcinoma from another
primary site, or a poorly differentiated squamous cell carcinoma. To
further narrow down the diagnosis, you can perform
immunohistochemistry (IHC) staining for TTF-1, Napsin A, and p40.
TTF-1 and Napsin A are markers commonly expressed in primary lung
adenocarcinoma, while p40 is a marker for squamous cell carcinoma.
The expression pattern of these markers will help differentiate
between these possibilities.

PathChat

1 did TTF-1, p40, and synaptophysin and all stains were
negative. What should | do next?

Human

The negative staining for TTF-1, p40, and synaptophysin makes it more
challenging to determine the exact diagnosis. TTF-1 and p40 are
commonly used markers for lung adenocarcinoma and squamous cell
carcinoma, respectively. Synaptophysin is a marker for neuroendocrine
tumours. The negative staining for these markers suggests that the
tumour is not of lung origin or is not a neuroendocrine tumour.

In this case, it would be helpful to perform additional IHC stains to
further characterize the tumour. Some additional markers to consider
include CK7, CK20, and CDX2, which can help differentiate between
primary lung adenocarcinoma and metastatic adenocarcinoma from
other sites. Additionally, performing a panel of markers specific to other
primary sites (e.g., PSA for prostate, ER for breast, etc.) can help
identify the primary site of the tumour.

It is also important to consider the clinical history and radiological
findings to guide the workup. If there is a known history of malignancy
or suspicion of metastatic disease, further investigation into the primary
site may be warranted.

PathChat

and can potentially help by guiding IHC interpretations. ¢, PathChat
understands and can attempt to follow well-known guidelines on tumour
grading, in this case, the Gleason grading system for prostate adenocarcinoma.
d, PathChat can describe tumour tissue and cell morphology, infer a diagnosis
and correctly suggest potential IHC findings grounded in relevant background
knowledge about the suspected malignancy. e, PathChat can potentially be
consulted to perform human-in-the-loop differential diagnosis that may
require several rounds of an IHC workup. Scale bars,200 pm.

notable morphological details in histology images and that it can
answer questions that require background knowledge in pathology
and general biomedicinein addition to the visualinput (Fig. 4a-d). The
ability to analyse visual features, flexibly combine them with clinical
context and medical knowledge (simply specified with natural lan-
guage) and then interpret them in the context of specific diagnostic
guidelines (for example, Gleason grading) out of the box opens Path-
Chat to amuchwider range of applications compared to task-specific
visual-question answering or image captioning models fine-tuned on
relatively small datasets with a limited scope® %, Additionally, the
support for interactive multi-turn conversations enables PathChat to
potentially serve as a consultant for human-in-the-loop differential
diagnosis, in which an initial Al-assisted assessment can be followed
up with further clinical context, namely workups that are subsequently
performed to narrow the differential (Fig. 4e and Extended Data
Fig.10). This may be especially valuable in cases that involve more
lengthy, complex workups, such as cancers of unknown primary and
inlow-resource settings where access to experienced pathologists may
be limited.



Discussion

Computational pathology has witnessed substantial progress over the
years, such as the development of increasingly accurate, task-specific
predictive models based on image or genomics data. For histology
images specifically, there has recently been growing interestin building
foundational task-agnostic vision encoders pretrained with large num-
bers of unlabelled images, which can provide robust feature embed-
dings for diverse supervised and unsupervised downstream workflows.
However, the explosive growth in generative Al technology and spe-
cifically MLLMs, as exemplified by the likes of ChatGPT, has begun to
open up a possible new frontier for both computational pathology
researchandreal-world applications to clinical pathology. Generalist
Almodels equipped with anunderstanding of natural language could
utilize text as a unified medium both for the flexible specification of
user intent (in the form of a tailored prompt) and for producing out-
puts of various levels of expressiveness (from single-word to binary
or multiple-choice responses to coherent sentences with reasoning
steps) while performing diverse tasks (for example, summarization,
classification, captioning, retrieval, answering questions and more).
For pathology specifically, such a model could, in theory, have appli-
cations in a wide range of scenarios across education and research as
well as human-in-the-loop clinical decision-making.

In this work, we provide a proof of concept for building an Al copi-
lot tailored to human pathology. We also provide, to the best of our
knowledge, the most extensive evaluation of such technology for com-
putational pathology by comparing our model, PathChat, both to pub-
licly available models developed for general machine learning and the
larger domain of biomedical sciences and to a SOTA commercial solu-
tion, GPT-4V. We created PathQABench, a high-quality expert-curated
benchmark that aims to assess adiverse range of capabilities relevant
to anatomic pathology, including morphological examination of his-
tology microscopy images, making diagnoses based onboth histology
and clinical context, assessment of tumour grade and differentiation,
suggesting further IHC and molecular testing, and understanding
the risk factors, prognosis and treatment of the underlying disease.
We assessed these skills through a combination of multiple-choice
diagnostic questions and open-ended questions coupled with human
expert evaluation. In both evaluation settings, PathChat compared
favourably to the current best-in-class commercial solution GPT-4V
(presumably much larger and expensive to serve than PathChat) and
substantially outperformed the publicly available MLLMs tested in
terms of diagnostic accuracy and quality of response. Additionally,
we demonstrated that the support for interactive multi-turn conver-
sations may enable PathChat to handle other use cases, such as com-
plex diagnostic workups. Considering our findings, we hope PathChat
can potentially find impactful applications in pathology education,
research and human-in-the-loop clinical decision-making as the tech-
nology matures over time.

Further alignment with human intent using techniques such as
reinforcement learning from human feedback** may lower halluci-
nation in MLLM-based Al assistant models in general and also help
them to capture certain nuances specific to pathology, such as when
to request further contextual information or test results when it is
not possible or is difficult to rule out certain morphologically similar
diseases based on H&E histology alone or when to seek clarification
oninstitutional-specific guidelines for diagnosis and treatment. For
real-world deployment, improvement and validation are probably
also warranted to ensure that the model can consistently and cor-
rectly identify invalid queries (for example, non-pathology-related
or nonsensical inputs) and refrain from answering with unexpected
or erroneous outputs.

Future research will probably further enhance the capabilities of
PathChat and MLLM-based Al assistants by adding support forinputting
anentire gigapixel WSI or several WSIs. This may extend their usefulness

in the diagnosis of challenging and borderline entities by supplying
valuable context beyond preselected representative ROls. Addition-
ally, owing to their having been trained on retrospectively collected
large datasets that inevitably contain outdated information, these
models may reflect the scientific consensus of the past rather than
that of today*®. For example, as medical terminology and guidelines
evolve, amodel response that references the outdated term ‘glioblas-
toma multiforme’ may resultin factualinaccuracies. Besides continual
training with fresh, up-to-date knowledge®, other research directions
may involve curating specific instructions that make the model aware
of changes in terminology and guidelines or using retrieval augmented
generation®®with a continuously updated knowledge database. Lastly,
tomake these tools more useful to pathologists and researchers, it could
be worthwhile to consider explicitly supporting specialized tasks such
as precise counting or localization of objects (for example, ‘How many
lymphocytes areinthisimage?’ or ‘Provide the exact bounding box coor-
dinates of mitotic figures’) and integrating PathChat-like Al assistants
with tools such as digital slide viewers or electronic health records.
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Methods

Curation of the PathChat dataset

We curated a dataset of 456,916 instructions with 999,202 question
and answer turns, which was used to train PathChat to respond to
pathology-specific queries. The instructions were roughly catego-
rized as conversation (n =132,563), description (n = 168,440), multiple
choice (n=42,445), freeresponse (n=21,686), text-only (n = 83,232) and
guardrail (n = 8,550). Anillustrative example of each category is shown
in Extended Data Fig. 1. No sample size calculations were performed
and all datawere de-identified before analysis. To ensure that PathChat
could generalize to a diverse range of instructions, the data encom-
passed several different instruction formats, including open-ended
multi-turn dialogues, detailed image descriptions, short-answer ques-
tions, multiple-choice questions and text-only questions. A diverse set
of data sources were used to generate the instruction dataset, which
spanned image captions, educational articles from PubMed Open
Access, pathology case reports and ROIs extracted from WSIs, which
were sourced from several institutions. Data from TCGA were not used
for training and were held out as part of our downstream evaluation.
The data for each source were filtered individually to ensure quality
andrelevance for training a pathology-specific vision-language assis-
tant. Examples of frequently used heuristics for filtering include the
removal ofimage captions that are overly short (for example, less than
12 words) or uninformative and overly generic (for example, ‘An H&E
image of atumour’). We also removed captions or passages related to
animal pathology (keywords include ‘rat’ and ‘pig’) and experimental
studies (keywordsinclude ‘experimental’ and ‘positive control’) using
regex pattern matching. Lastly, we included basic guardrail instruction
examples, so that when a model is given image-specific instructions
such as ‘Describe this histology image of a lung mass’ but no image is
provided, the modelis expected to output the response: ‘Sorry, I cannot
assist you since you have not uploaded any image.” Additionally, when
given an image not related to pathology (sampled from MS COCO;
ref. 61), the modelis trained to output: ‘Sorry I can only assist you with
queriesrelated to pathology. For some unstructured dataformats, we
prompted the open-source general-purpose LLMs**®*to structure the
original source textintoastructured formatautomatically. Instructions
were then manually created from the structured data with continual
input from several board-certified pathologists.

Design and training of the PathChat model

Compared to text-only LLMs, an MLLM is trained to understand and
respond to user instructions in the form of natural language queries
that may additionally contain inputs from other modalities such as
images. Support for multimodality is essential for histopathology,
as examining and interpreting visual information in high-resolution
microscopy images (in conjunction with other clinical information)
remains the cornerstone of the discipline and extends to many aspects
of disease diagnosis and management in modern medicine.

Inspired by LLaVA®>®3, our MLLM, PathChat, consists of three key
components: the vision encoder, the multimodal projector module and
the LLM. The vision encoder isresponsible for encoding animage from
the original high-dimensional RGB pixel space into alow-dimensional
feature representation suitable for processing by the downstream
modules. The multimodal projector connects the outputs of the vision
encodertothe LLM by projecting the visual tokens to the same dimen-
sion as the LLM’s embedding space for text tokens. The LLM takes a
natural language instruction as input (after it has been tokenized by a
tokenizer), combines the embedded text tokens and the image token
output from the multimodal projector to form the full sequence of
input tokens, and predicts the desirable response through autoregres-
sive next-word prediction. The response produced is finally decoded
by the tokenizer back into natural language and presented to the
end user.

For the LLM, we adopted the 13-billion-parameter variant from the
widely used Meta Llama 2 family*¢ of SOTA open-source LLMs, which
isa decoder-only transformer-based autoregressive language model
with40 transformer layers, each with 40 attention heads, anembedding
dimension of 5,120 and a hidden dimension of 13,824. It uses rotary posi-
tional encodings and natively supports a maximum context length of
4,096.Aswith LLaVA 1.5, we used avision encoder based on the standard
ViT-Large architecture consisting of 24 transformer multi-headed atten-
tionblocks, each with16 attention heads, an embedding dimension of
1,024 and afeedforward hidden dimension of 4,096. The token size was
16 x 16, and we added learned absolute positional encoding to each
token. The multimodal projector consists of an attention pooling layer
followed by a two-layer multilayer perceptron. The attention pooling
layer (also known as a perceiver resampler in some works****%%) uses a
setof 128 learned latent queries and multi-headed cross-attention with
8 heads to reduce the last layer feature map of the encoder backbone
into afixed-length sequence of image tokens with aninitial dimension
of 768toincrease training and inference efficiency and to prevent the
total sequence length of tokens from potentially exceeding the context
window size of the LLM. The subsequent multilayer perceptron follows
the designusedinLLaVA1.5and consists of asingle hiddenlayer and an
activation function based on Gaussian error linear units. It projects the
image tokens up to the embedding dimension of the LLM (5,120 for the
Llama 2 13B model). We initialized the weights of the vision-encoder
backbone from UNI?, a SOTA vision-only self-supervised pretrained
general-purpose encoder for H&E pathology and then fine-tuned the
encoder backbone together with the attention pooling module on an
expanded dataset of 1.18 paired images and captions from CONCH**
and the CoCa visual-language pretraining recipe® (see Supplementary
Table1for details of the hyperparameters).

We followed the MLLM training recipe of LLaVA 1.5, which involves
two stages of training. In the first, pretraining stage, the LLM weights
arekept frozen and only the multimodal projector receives parameter
updates to learn asuitable projection from the space of image tokens
to the shared embedding space of the text tokens used by the LLM. For
this simple purpose, the MLLM is supervised and simply predicts the
caption corresponding to each image using roughly 100,000 image
and caption pairs sampled from our previous dataset*, without using
any curated instruction data. In the second stage, the instruction
fine-tuning stage, both the LLM and projector are trained end-to-end
to generateresponses to diverseinstructions thatinclude both natural
language and visual inputs, as described in ‘PathChat dataset curation’.
Specifically, given aninstruction X, the reference answer X,,, and
theimage X, each represented as asequence of tokenized inputs, we
maximized thelikelihood of eachtokeninX,,,, indexedby1,...,L, under
the MLLM (viewed as an autoregressive language model):

L

Lclm (eprojector' ellm) = z Ing(xans,ilxans,lzi—l' xinstruct' Ximg ; eprojector' ellm)‘
i=1

Thisinstructiontuning objective easily extends to multi-turninstruc-
tion data by conditioning on all previous turns of instructions and
reference answers. For instructions with noimage, X, is not defined
and is removed from the conditioning sequence. Similarly, if several
images accompany a given instruction, we simply concatenate their
respectiveimage tokens, with the newline (\n’) tokeninserted between
themasaseparator, and treat the full sequence as X;,,. Both pretrain-
ing and fine-tuning were performed using eight 80 GB NVIDIA A100
GPUs. We refer readers to Supplementary Tables 2 and 3 for details of
the hyperparameters used in training.

Benchmark for expert-curated pathology questions

Evaluating powerful multimodal vision-language Almodels in histopa-
thology is an outstanding challenge, and, to the best of our knowledge,
thereis at present no publicly available high-quality expert-curated
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histopathology-centric quality-assessment benchmark. One pos-
sible candidate is PathVQA®, which has been used in the literature
to demonstrate and evaluate the capabilities of various Al models in
understanding pathology images. However, our manual audit revealed
numerous types of low-quality examples in the benchmark, probably
dueto the lack of expert review and the automated nature of the data
curation workflow used by PathVQA. Thus motivated, we curated a
new high-quality quality-assessment benchmark suitable for evaluat-
ing cutting-edge MLLMs for pathology, as described in detail below.

To evaluate PathChat, we curated PathQABench using representa-
tive high-resolution ROl images hand-selected by a board-certified
pathologist from 105 H&E WSI cases using the open-source QuPath
digital viewer®. These cases were withheld from all stages of training
PathChat. Of the 105 image ROIs, 53 ROIs were curated from private
sources in-house at the Brigham & Women'’s Hospital for the study,
whereas the other 52 ROIs were selected from WSIs in the public
TCGA repository. The WSIs cover 11 tissue sites and 54 diagnoses
(Supplementary Tables 5and 6). This design choice enabled us to use
the subset of questions based on publicly available WSlIs, referred to
as PathQABench-Public, to evaluate the SOTA commercial solution
GPT-4V (powering ChatGPT-4 with vision capabilities) through API
requests, without any risk of violating institutional guidelines for
handling patient data. Accordingly, the subset of questions based on
private WSIs, referred to as PathQABench-Private, was used to evaluate
only other publicly available MLLM solutions that we can run locally
inside the hospital without transmitting the datato an external server.
To select the ROIs, a board-certified pathologist manually reviewed
WSIs related to each diagnosis and distilled a single ROI for each WSI
whereinrelevant morphologic features of the diagnosis were evident.
The diagnosis from these WSIs was then transferred to that of theimage
ROIs and subsequently used in the evaluation, both for open-ended
and multiple-choice questions. These diagnoses were originally made
by separate pathologists who had examined the cases clinically. They
had fullaccess to any other slidesin the case and the patient’s medical
record and were able to order and interpret IHC tests as required to
work up the case. To accommodate the diversity of diagnoses included
in our evaluation, the selected ROIs vary in magnification and dimen-
sion. Across PathQABench, the selected magnifications of the ROIs
ranged from x3 to x34.4 with a median of x13.3. The widths varied
from 859 to 2,388 px with a median of 1,201 px whereas the heights
varied from 861t0 2,390 px with a median of 1,191 px. For each case,
the pathologist wrote a short clinical summary based on the ground
truth diagnosis, which included appropriately devised patient age,
sex and clinical symptoms and radiology findings where applicable.
This summary is referred to as the clinical context of the case. An
example of clinical context is shown in Fig. 2a. We then created both
close-ended multiple-choice diagnostic questions and open-ended
questions that aimed to assess each model’s capability in assisting with
diverse pathology-related queries, which cover a range of topics that
include but are not limited to just diagnosis (Extended Data Fig. 7 and
Supplementary Table 15).

A total of 105 multiple-choice questions were created using the
salient ROIs (one question per ROI). In the evaluation setting with
multiple-choice questions, for each organ system, a board-certified
pathologist selected a set of ten possible answers that encompassed
the correctanswers for all questions within that organ system as well as
other relatively common diagnoses within that organ system (Supple-
mentary Table 7). For each multiple-choice question, we considered two
evaluation strategies. Inthe firstimage-only setting, the model was pre-
sented with only the image and the multiple-choice question asinput.
In the second, image + clinical context setting, which was designed
to more closely mimic a real-world diagnostic workflow, the clinical
context was additionally provided together with the histology image.
Inboth settings, amodel was assessed based on its ability to accurately
select the ground truth diagnosis from the set of possible options.

In the evaluation setting for answering open-ended questions, we
used the 52 cases from PathQABench-Public to curate five questions
per case for a total of 260 questions. The questions were broadly cat-
egorized as microscopy, diagnosis, clinical and ancillary testing, as
described in Supplementary Table 15. The microscopy and diagnosis
questions, in particular, focus on targeting diagnosis and morphologi-
calexamination using the histology images and other relevant context
(where applicable), which are essential skills in anatomic pathology.
Ontheother hand, the clinical and ancillary testing categories contain
text-only questions that do not require the visual examination of an
image to answer, as they cover topics such ashow touse IHCto confirma
diagnosis and background knowledge pertaining to the underlying con-
dition. Note that, although our benchmark for answering open-ended
questions is specific to pathology, its size is substantially larger than
the 140 questions used in an earlier work®® in which human experts
evaluated the ability of LLMs to encode general clinical knowledge.

MLLM evaluation

We compared PathChat to the general-purpose SOTAMLLM LLaVA 1.5
(ref. 63) and to the biomedically focused MLLM LLaVA-Med* using the
full PathQABench dataset. We evaluated the performance of GPT-4V
only on cases from PathQABench-Public. The precise pretrained check-
points for these models are specified in ‘Code availability’ and Report-
ing summary. We used the default image processor implemented by
eachmodeland used greedy decoding during inference when possible
(whichis not presently supported by the GPT-4V AP, so, instead, we
used the default arguments set by OpenAl). The evaluation of GPT-4V
also required a more involved protocol because of the guardrails
implemented by OpenAl, which we detail in the next section (‘Evalu-
ating GPT-4V’). For all models, the maximum Iength of each generated
response was capped to 1,024 new tokens generated.

For the multiple-choice questions, we observed that PathChat, LLaVA
1.5and GPT-4V canoutput the predicted choiceinaconsistent and desir-
able format (for example, ‘A’ or ‘A. Lung adenocarcinoma’), which can be
directly usedin our evaluation pipeline to compute the accuracy. How-
ever, we found LLaVA-Med could not follow the instruction to answer
in a concise and consistent format appropriate for multiple-choice
questions and instead would always output a full sentence. Therefore,
for LLaVA-Med, aboard-certified pathologist first manually reviewed
each model response, extracted the predicted diagnosis, assessed its
correctness against the ground truth and then computed the accuracy.

Forthe open-ended questions, we gathered the predictions for each
modeland presented them to a panel of seven pathologists, who evalu-
ated them by ranking them based on their human expertise. For each
question, the order of the model responses was randomly shuffled
and the pathologist was blinded as to which model produced which
response. The responses were ranked based on, in order ofimportance:
(1) following the prompt (whether the response correctly addressed
theinstruction), (2) completeness of the answer, (3) succinctness and
(4) use of accepted pathology terminology. Ties of two (or more)
responses were allowed. This part of the evaluation aimed to capture
awiderange of expert judgement (including subjective human prefer-
ence) on theresponses.

Additionally, we attempted to assign a more objective binary cor-
rect versus incorrect outcome for each response. For this task, we
first asked two board-certified pathologists to independently assess
eachresponse to each question (in terms of correct versus incorrect
for eachmodel). Both pathologists were blinded to which model pro-
duced which response. For questions with a single best answer (for
example, ‘What is the most likely diagnosis?’), the responses were
labelled asincorrectifthe single best answer was not provided. For the
open-ended questions (forexample, ‘What IHC stains would be useful
inworking up aglioblastoma?’), responses were labelled asincorrect if
any portion of the response was hallucinated or if the response did not
answer the questionatall. Correctand incorrect labels were mutually



exclusive and every response was labelled as correct or incorrect.
Overall, across all models and all questions, the two experts agreed
92.6% of the time in their assessment with a corresponding Cohen’s
kappascore of 0.852, indicating substantial interobserver agreement,
which was expected given the more objective nature of this part of
the evaluation. To establish a consensus, we asked the two experts to
discuss their assessments for the questions on which they disagreed
originally. Following this discussion, they ultimately agreed completely
on 235 of the 260 questions for all models. In the ‘Performance on
answering open-ended questions’section, wereport the performance
onthis subset of questions where aconsensus was reached (using the
consensusasthe ground truth) and report the performance according
to eachindividual expert’s assessment for all questions in Extended
DataFig. 6.

Evaluating GPT-4V

GPT-4V was evaluated using the official API provided by OpenAl. All
API calls were made during February 2024 for gpt-4-vision-preview
(the default, most up-to-date vision-enabled GPT-4 model available
at the time of the study). We observed that guardrails appear to have
beenimplemented into GPT-4V to prevent it from addressing que-
ries that require an examination of histopathology images. In such
instances, it may inform the user that it cannot provide aninterpreta-
tion of the pathology image and that they should instead consult a
trained medical professional. Queries for which GPT-4V obviously
refused to address the giveninstructions were deemed ‘unsuccessful’.
Insuchinstances, we made a maximum of two further resubmissions
for the same query for up to a total of three attempts. Following this
evaluation protocol, werecorded 28 out of 52 successful queriesin the
multiple-choice diagnostic assessment of PathQABench-Public cases
when no further clinical context was provided with a question. By con-
trast, 47 out of 52 queries were eventually successful when the clinical
context wasincluded. Using ananalogous protocol, in the open-ended
quality assessment with PathQABench-Public, we counted 222 out of
260 successful queries. All final responses, regardless of whether they
were successful or unsuccessful, were presented to the pathologists
for evaluation without special treatment and subjected to the same
blinding and shuffling protocol used for the other models (‘MLLM
evaluation’). Abreakdown of successful queries by category is provided
inSupplementary Table 39.

Statistical analysis

We used nonparametric bootstrapping (n=1,000 replicates) to esti-
mate 95% confidence intervals for the reported metrics. Observed
differencesin performance for a pair of models were tested for statisti-
cal significance using a two-sided paired permutation test (n=1,000
permutations), with the nullhypothesis being that there is no difference
inthe performance of the two models. In each permutation,independ-
ent pairs of prediction outcomes for the two models were randomly
swapped to obtainanew difference inmodel performance. The Pvalue
corresponds to the proportion of differences in model performance
with a greater absolute value than the observed difference.

Computing hardware and software

We used Python (v.3.10.13) for allexperiments and analyses in the study.
For all model training, we used eight 80 GB NVIDIA A100 GPUs con-
figured for multi-GPU training using the popular open-source deep
learning framework PyTorch (v.2.0.1, CUDA11.8). All inference jobs were
performed using 24 GBNVIDIA 3090 GPUs. We used the implementa-
tion of MLLM training and inference provided by LLaVA (v.1.1.3) and
incorporated our own custom vision encoder and multimodal projec-
tor implemented in Timm (v.0.9.2) and PyTorch. Pillow (v.10.1.0) was
used for image processing. Flash Attention (v.2.3.3) and DeepSpeed
(v.0.9.5) were used to enable accelerated training of PathChat MLLM.
For illustration and evaluation, we used images from PathQABench

and other real-world cases not used for model training. Matplotlib
(v.3.7.1) and Seaborn (v.0.12.2) were used to create plots and figures.
Other miscellaneous libraries used are listed in the Reporting summary.
UNI, a pretrained foundational vision encoder, was trained for 32 hon
32 80 GB NVIDIA A100 GPUs in a four-node distributed set-up (eight
GPUs per node). The vision encoder used in PathChat was fine-tuned
from UNI using a single node of eight 80 GB NVIDIA A100 GPUs for
21.5 h. Lastly, the combined system of PathChat (including the vision
encoder, the multimodal projector and the LLM) were jointly trained
foratotal of 17 hand 18 min (includes both pretraining and fine-tuning)
onasingle node of eight 80 GB NVIDIA A100 GPUs to produce the final
model. Forinference, the PathChat model was run ontwo 24 GB NVIDIA
RTX 3090 GPUs, whichyielded an average time of 9.75 s (standard devia-
tion of 7.71 s) per response on the 260 open-ended questions.

Ethics approval

The Mass General Brigham institutional review board approved the
retrospective analysis of pathology slides and corresponding pathology
reports. All pathology images were de-identified before computational
analysis and model development.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The PubMed Central-OA dataset can be accessed from the National
Institutes of Health (NIH) PubMed Central website (https://www.ncbi.
nlm.nih.gov/pmc/tools/openftlist/). The TCGA WSIs and associated
clinical metadata are available from the NIH genomic data commons
(https://portal.gdc.cancer.gov). The curated PathQABench-Public
benchmarkis released for research use and can be accessed through:
https://github.com/fedshyvana/pathology_mllm_training. Patient data
used in this project were curated withinstitutional permission through
approval by the institutional review board for the current study and,
thus, cannot be made publicly available in compliance with patient
privacy obligations. All requests for processed data curated internally
will be evaluated based on institutional and departmental policies
to determine whether the data requested are subject to intellectual
property or patient privacy obligations. Data that can be transferred
will require amaterial or datatransfer agreement between the institu-
tions and will limit the utility of the data to non-commercial academic
research purposes. The exact timeline will depend on the execution of
such agreements. Please email all requests to the corresponding author
(and alsoinclude M.Y.L., mlul6@bwh.harvard.edu).

Code availability

The code used to train PathChat has been made publicly available
for non-commercial academic use and can be accessed here: https://
github.com/fedshyvana/pathology_mllm_training (ref. 68). We have
documented all technical deep learning methods and software libraries
used in the study, with hyperparameters detailed in Supplementary
Tables 1-3. Pathology MLLM weights trained on proprietary internal
patient text data are subject to patient privacy and intellectual prop-
erty obligations and cannot be made available. The code for LLaVA can
be accessed here: https://github.com/haotian-liu/LLaVA. The code
for LLaVA-Med can be accessed here: https://github.com/microsoft/
LLaVA-Med.
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Multlple choice What is the correct diagnosis || Free response Judging from the morphological characteristics, what impression can
for this slide from the 5 you form about the grade of the tumor?

Prostate? i \ The tumor cells appear monomorphic and that suggests a degree of uniformity in
A. Prostate Adenocarcinoma size and shape, which is typically a feature of lower-grade tumor. Furthermore, the
B. Prostate Small Cell absence of necrosis, microvascular proliferation and evident mitoses, features
Carcinoma which are suggestive of a more aggressive, higher-grade tumors, seem to confirm
C. Pr_ostate Neuroendocrine | that the disease is likely of a lower grade. However, despite these points,
Carcinoma pathological grading should be done with caution, taking into consideration the

D. SCC of the prostate ’ " overall clinical context and following the WHO grading criteria for brain tumors.
A. Prostate Adenocarcinoma

Describe this image. Guardrails Based on the information

The morphological features reveal a proliferation of tubules and cribriform ducts, L; provided, what is the most
characteristic of adenoid cystic carcinoma. The tumor glands contain two types of cells: likely diagnosis for this
ones with more rounded nuclei, representing ductal or luminal cells, and ones with liver biopsy?

more angulated nuclei, representing myoepithelial cells. The lumen of some cribriform Sorry, as an Al assistant
glands contains a grey material, possibly intraluminal secretions or necrotic debris. This specialized in pathology, |
network of ducts is surrounded by a hyalinized stroma, forming a critical part of the cannot assist you with non-
tumor architecture. pathology related inquiries.

The image depicts a mole from a 58-year-old male that has grown rapidly in size and shape over the past few months.
What is your most likely diagnosis?
The clinical scenario of a rapidly enlarging mole, coupled with the noted histological features such as pleomorphism and the abundance of
melanin, strongly indicates the diagnosis of cutaneous melanoma. Melanoma often presents as changing skin lesions that are asymmetric,
have irregular borders, have heterogeneous color, and are increasing in size - characteristics seen in this patient's presentation.
Describe the morphological features observed.
& The image exhibits a proliferation of pleomorphic tumor cells showing both epithelioid and spindled shapes, arranged in nests. The cells
contain abundant brown pigment, suggestive of melanin. These cells also have hyperchromatic nuclei, indicating increased DNA content, a
common feature in malignant cells suggesting enhanced replication activity.
' Based on the morphological characteristics observed, what might be the level of differentiation of the tumor?

The presence of pleomorphic epithelioid to spindled tumor cells that are arranged in nests indicates that the tumor cells have lost

their original, regular architecture. This suggests a poor differentiation status for these cells.

What is urothelial carcinoma in situ, and what are the typical clinical presentations of this condition?

Urothelial carcinoma in situ or high-grade intraurothelial neoplasia (HG IUN) is a flat, non-invasive lesion composed of cells in the mid to upper epithelium
exhibiting high cytologic grade. As this carcinoma is confined to the urothelial layer and doesn't invade the lamina propria, no mass will be present. Clinically,
patients with urothelial carcinoma in situ often present symptoms akin to cystitis, with hematuria being a common feature. The lesion may appear erythematous,
granular or cobblestone-like, involving substantial areas of the bladder mucosa, ureters, and urethra.

From a histological perspective, how would you describe the features of urothelial carcinoma in situ cells?
Histologically, the cells in urothelial carcinoma in situ, barring those of the small cell pattern, are typically large with irregular, hyperchromatic nuclei. They exhibit

prominent nuclear pleomorphism and a high nucleus-to-cytoplasm ratio. Mitotic figures often appear in the mid to upper epithelium. Notably, the nuclear size is
usually around five times that of lymphocytes, contrasting with the nuclear size of normal urothelial cells which is approximately twice that of lymphocytes.
What is meant by the involvement of von Brunn nests in carcinoma in situ, and how can this be confusing for pathologists?

Von Brunn nests represent a benign, reactive change in the bladder wall where the urothelium invaginates into the lamina propria. In urothelial carcinoma in situ,
these nests can be involved, leading to the presence of nests of neoplastic cells within the lamina propria. This can create an illusion of invasion, complicating
the histologic assessment. However, unlike true invasive carcinoma, von Brunn nests typically have a rounded contour and lack the stromal changes associated
with invasion, aiding differentiation.

What are the treatment options available for patients with urothelial carcinoma in situ, bearing in mind its potential to become invasive?

Patients with urothelial carcinoma in situ are often treated with nonsurgical methods, including a procedure known as transurethral resection (TUR) of the

bladder tumor, followed by an immediate instillation of intravesical chemotherapy - either bacillus Calmette-Guerin (BCG) or mitomycin-C. If left untreated, there
is a fair risk, about 20%, of bladder CIS cases advancing to invasive carcinoma. Therefore, immediate intervention is crucial.

Extended DataFig.1|Examples of instructions for finetuning MLLM. An themodelis expected to output duringtraining. More details on dataset
example of each of six different types of instructions to develop PathChat via curationare provided in the PathChat dataset curation section of Methods.
instruction finetuningisillustrated. Bolded texts representinstructions Scalebarsare 200 um.

provided to the model while italicized texts represent the reference outputs
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Extended DataFig. 2| Utilization of visual input and clinical contextin
multiple choice diagnostic questions. On the multiple choice diagnostic
benchmarks (Combined, n =105 questions; PathQABench-Private, n=53;
PathQABench-Public, n=52), we investigated whether PathChat can effectively
leverage both unstructured clinical contextin the form of natural language as
wellas visual features in theimage ROl instead of deriving its answer solely
based oneitherinputalone.Inthe contextonly setting, the clinical contextis
provided tothe model but theimage is not provided (see Fig. 2a for an example
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multiple choice question that contains the clinical context, the choices, and the
image). Ontheflipside, in theimage only setting, the clinical context is not
provided, and the modelis asked to infer the correct diagnosis from the
possible choices based solely on theimage. We observed that PathChat
achieves maximum performance whenboth clinical context and theimage are
provided. Error bars represent 95% confidence intervals, and the centers
represent the computed accuracy.



Ground truth diagnosis (not provided to the model): Uveal melanoma

Consider the location of the neoplasm depicted in the image as
determined by the structures visible in the image. What is this location
and what can it indicate in terms of the origin and potential extent of the
tumor?

The image shows a neoplasm located in the choroid, which is the vascular layer of the eye located between the retina and the sclera. The choroid
is a common site for melanomas, which are the most common primary intraocular malignancies. The location of the tumor in the choroid can
indicate that it may have originated from melanocytes present in this layer. The potential extent of the tumor can be significant, as choroidal
melanomas can grow and invade the surrounding structures, including the retina and optic nerve, leading to vision loss.

PathChat

The neoplasm is located in the left buccal mucosa, which is the inner lining of the cheek. The image shows a stratified squamous epithelium with
keratinization, as well as a connective tissue layer. The presence of a neoplasm in this area could indicate a tumor originating from the squamous
cells or the connective tissue. The exact origin and potential extent of the tumor would require further analysis and clinical correlation. It is
important to consult a healthcare professional for a thorough evaluation and proper diagnosis of the underlying cause of these findings.

The image shows a neoplasm located in the breast tissue, as indicated by the presence of red structures within the pink tissue. This suggests that
the tumor originates from the breast and could potentially be a malignant breast cancer. The presence of red structures within the tissue may
indicate that the tumor is growing and spreading, which could be a sign of an aggressive or advanced stage of the cancer. It is important to note
that the image alone does not provide enough information to determine the exact stage or prognosis of the cancer, but it does highlight the need
for further investigation and treatment.

The image you've provided appears to be a histological slide of tissue stained with hematoxylin and eosin. This staining technique allows for the
visualization of cellular and tissue structures under a microscope, with hematoxylin staining nuclei blue-purple and eosin staining cytoplasm and
extracellular matrix pink.

GPT4V

From the image, it looks like we are observing a section of tissue with dense cellularity and atypical, pleomorphic cells, suggesting the presence of
a neoplasm, which is an abnormal growth of tissue that could be benign or malignant (cancerous).

Determining the exact location of the neoplasm strictly from the image is challenging without additional context or markers, as many neoplasms
can look similar histologically. However, the tissue structure and cell types might suggest it is of epithelial origin, perhaps from an organ such as
the skin, breast, or gastrointestinal tract. The presence of elongated, pink-stained structures which look like blood vessels may further indicate the
tumor's ability to induce angiogenesis (formation of new blood vessels), which is characteristic of malignant tumors as they grow and require
increased nutrients and oxygen.

To provide a more precise location and potential implications regarding the origin and extent of the tumor, a pathologist would typically correlate
these findings with clinical information, imaging studies, and possibly additional histological staining or molecular diagnostics that can highlight
specific markers characteristic of certain tissue types or origins. The arrangement and morphology of the cells, as well as the presence of any
structural features (such as gland formation or keratinization), can be important clues in identifying the tissue of origin and determining the tumor's
aggressiveness and potential treatment options.

. J

Extended DataFig. 3| Comparing model outputs on open-ended question clearly, correctly, and fully addresses the query. The other models give
answering, example1. Anexample questionin PathQABench-Publicregarding  incorrectlocationsthattheimageisfrom, give anincorrectdescription
uveal melanoma, for which the response by PathChat is ranked higher oftheimage, or are so general as to be unhelpful.Scale baris 200 pm.
(considered more preferable by expert pathologists) than other models asit
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Ground truth diagnosis (not provided to the model): Glioblastoma

Based on the morphology presented in the brain tissue image, what
main histopathological features support a diagnosis of a high-grade brain
tumor?

The image demonstrates a high-grade brain tumor characterized by several key histopathological features. There is a high degree of cellularity,
indicating a dense population of tumor cells. The cells exhibit marked pleomorphism, which refers to variability in size and shape, suggesting a
high degree of anaplasia. Additionally, there is a notable presence of numerous mitotic figures, indicating a high proliferative index. These
features collectively suggest an aggressive neoplasm, consistent with a high-grade glioma.

PathChat

The main histopathological features that support a diagnosis of a high-grade brain tumor in the brain tissue image include:

1. Cellular proliferation: An increased number of cells, which may indicate rapid growth and division.

2. Cellular pleomorphism: Variation in the size, shape, and appearance of cells, which is often seen in malignant tumors.

3. Necrosis: The presence of dead or dying cells within the tumor.

4. Mitosis: The process of cell division, which is more frequent in malignant tumors.

5. Invasion of surrounding tissue: The tumor cells may invade and infiltrate the surrounding brain tissue, which can be a sign of a high-grade tumor.

These features, when observed in the histopathological examination of the brain tissue, can help support a diagnosis of a high-grade brain tumor.
However, it is important to consider the patient's clinical history, symptoms, and other diagnostic tests to confirm the diagnosis and determine the
appropriate treatment plan.

In the image, the brain tissue appears to be highly cellular, with a dense and irregular arrangement of cells. The presence of numerous cells in

close proximity to each other, along with the irreqular shape and size of the cells, suggests that the tissue is highly abnormal and not typical of
healthy brain tissue. These histopathological features support a diagnosis of a high-grade brain tumor, as these tumors are characterized by a

rapid growth rate, aggressive behavior, and a high degree of cellularity. The presence of a large number of cells in the image indicates that the
tumor is actively growing and consuming the surrounding brain tissue, which is a hallmark of high-grade brain tumors.

<( This histopathology image shows brain tissue with several features that are suggestive of a high-grade brain tumor, such as a glioblastoma, which )
is classified as grade IV by the World Health Organization (WHO) classification of tumors of the central nervous system. Here are some
histopathological features that support such a diagnosis:

1. Cellular pleomorphism: There is a marked variation in cell size and shape, indicating abnormal growth and division of cells.

2. Hypercellularity: The density of cells is much higher than would be seen in normal brain tissue, suggesting rapid cell proliferation.

3. Mitotic figures: The presence of cells undergoing mitosis (cell division) indicates active cell proliferation, and high-grade tumors often have
many mitotic figures.

4. Necrosis: There are regions within the tissue that appear to be necrotic, indicating cell death and tissue breakdown, which are common features
in aggressive tumors.

5. Microvascular proliferation: The image shows abnormal growth of blood vessels (endothelial proliferation), which is another hallmark of high-
grade brain tumors as they induce the formation of new blood vessels to support their rapid growth.

6. Abnormal nuclei: Many cells have nuclei that are irregularly shaped, large, or hyperchromatic (darker staining), which are signs of malignant
transformation.

GPT4V

Based on these features, the tissue in this image is consistent with a high-grade brain tumor, which would typically require further clinical
¥correlation, advanced imaging, and additional pathological analyses for a definitive diagnosis and treatment planning.

Extended DataFig.4|Comparing model outputs onopen-ended question roughly comparable quality by expert pathologists for all producing a
answering, example 2. An example questionin PathQABench-Publicregarding  reasonable and reasonably accurate response to the query, though with
glioblastoma for which the responses by all models were considered to be of some variation between them. Scale baris200 pm.



Ground truth diagnosis (not provided to the model): Lung adenocarcinoma

What are the key histologic features visible in this image that support the
most likely diagnosis?

The key histologic features visible in this image include the presence of a micropapillary pattern, which is characterized by small, delicate
papillary structures without fibrovascular cores. Additionally, there is a notable absence of significant nuclear atypia, which means that the
nuclei of the cells do not show marked variations in size, shape, or staining properties that are often associated with malignancy. These
features are consistent with a diagnosis of adenocarcinoma in situ (AlS) of the lung, a pre-invasive form of lung cancer where the abnormal
cells are confined to the alveolar spaces and have not yet invaded the surrounding tissues.

PathChat

The key histologic features visible in this image that support the most likely diagnosis of pulmonary hypertension are the marked and diffuse
proliferation of small arteries, as well as the accompanying fibrosis. These findings are consistent with the characteristic changes seen in hereditary
hemorrhagic telangiectasia, a condition that can lead to pulmonary hypertension.

The key histologic features visible in the image that support the most likely diagnosis of cancer are the presence of irregularly shaped cells, a high
degree of cellularity, and the absence of normal tissue structures. The image shows a close-up view of a tissue sample, which appears to be a
biopsy of a tumor. The irregularly shaped cells and the high degree of cellularity are indicative of abnormal cell growth and proliferation, which are
characteristic of cancerous tissues. Additionally, the absence of normal tissue structures, such as healthy tissue or benign cells, further supports
the diagnosis of cancer.

-
<( The image you've shared appears to be a microscopic slide of tissue stained with hematoxylin and eosin (H&E stain), which is commonly used in
histology and pathology.

GPT4V

Based on this image alone, without additional clinical context, it's difficult to make a definitive diagnosis. However, some general features could
suggest a few possibilities:

1. Tubular Structures: The presence of many cross-sectioned and longitudinally sectioned tubular structures suggests this could be a section from
an organ with a glandular or tubular component, such as the kidney, liver, pancreas, or a glandular organ.

2. Staining Patterns: The pink (eosinophilic) staining indicates protein-rich areas like cytoplasm and extracellular matrix, while the blue/purple
(basophilic) staining indicates nucleic acid-rich areas like nuclei.

3. Cellular Density: The density and organization of the cells around the tubules can provide clues. Uniform cell populations with organized
architecture might suggest normal tissue or benign conditions, while disorganized, irregular, and denser cell populations can be indicative of
malignant growths or other pathologies.

4. Lumens and Secretions: The presence of open lumens and potential secretions inside the tubules could indicate active secretion and point
toward specific glandular functions.

5. Inflammatory Cells: There appears to be a focal area with increased cellularity that could contain inflammatory cells, suggesting a possible
inflammatory process, infection, or immune response.

6. Interstitial Tissue Condition: The pink-stained areas between the glandular structures represent the interstitial or stromal tissue. The condition of
this tissue can be indicative of fibrosis, inflammation, or other pathological changes.

For a precise diagnosis, one would need additional details such as patient history, symptoms, lab results, and potentially immunohistochemical
staining that can provide more specific information about the cell types present. It's also important to get a pathologist's expert interpretation of
kthe histologic features.

Extended DataFig. 5| Comparing model outputs on open-ended question four modelsaccurately describe theimage or produce the correct diagnosis.
answering, example 3. An example questionin PathQABench-Publicregarding  Scalebaris200 pm.
lungadenocarcinomawhere all four models performed poorly. None of the
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Extended DataFig. 6 | Individual pathologist evaluation of openresponse categories of questions as rated by two pathologists. Microscopy (n=109),
performance. a. Accuracy of MLLMs onopen-ended questions (n=260) as Diagnosis (n = 87), Clinical (n = 68), Ancillary Testing (n = 87). Each question
evaluated by two pathologists. See Fig.3c,d foraccuracy on the subset of may belong to more than one category. a, b: Error bars represent 95%
open-ended questions for which the two pathologists reached a consensus. confidenceintervals, and the centersrepresent the computed accuracy.
See MLLM evaluation in Methods for details. b. Accuracy on different
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Case ID: TCGA_15

Broad category: Microscopy
Sub-category:

Microscopic description

Question: Describe the
morphological features seen in this
uterine sample. What significant
features might hint at the
aggressive nature of the tumor?

Visual Question Answering

Case ID: TCGA_18

Broad category: Microscopy
Sub-category:

Differentiation / Grading

Question: Considering the
observed histopathological
features, what do the large
pleomorphic nuclei and eosinophilic
cytoplasm in the tumor cells tell us
about the grade and differentiation
of the tumor?

Case ID: TCGA_8

Broad category: Diagnosis
Sub-category:

Diagnosis

Question: Given the clinical
information of a 34-year-old male
patient with a painless testicular
mass, along with the cell
morphology observed in this image,
what would be the most probable
diagnosis?

N J
e N
Text-only Question Answering
Case ID: TCGA_8 Case ID: TCGA_15 Case ID: TCGA_19
Broad category: Clinical Broad category: Ancillary Testing Broad category: Ancillary Testing
Sub-category: Sub-category: Sub-category:
Risks / Treatment / Prognosis IHC / Molecular Further Testing
Question: Considering the Question: What molecular and Question: What further diagnostic
diagnosis of hepatocellular immunohistochemical markers are tests can confirm a diagnosis of
carcinoma, what are its common typically associated with uterine oropharyngeal squamous cell
risk factors and what significance endometrioid carcinoma and how carcinoma?
does this have for the patient's might they aid in diagnosis?
prognosis and treatment?
- J

Extended DataFig.7|Example questions from PathQABench-Public.
PathQABench contains 260 high quality, expert reviewed, open-ended
questions created using cases from PathQABench-Public, aimed at assessing
awiderange of skillsrelevant to the practice of pathology. Each question s

assigned one or more broad and sub-category based on the topics and skills
thatitaimsto assess. The broad categories are “Microscopy”, “Diagnosis”,
“Clinical”and “Ancillary testing”. A detailed description of each category is
includedin Supplementary Data Table15.Scale barsare 200 pm.
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Extended DataFig. 8 |Performance on PathQABench open-ended
questions stratified by broad categories. We analyze the head-to-head
performance of PathChat against other MLLMs in each broad category of
questions evaluated by 7 pathologistsindependently. For each competing
model (LLaVA1.5,LLaVA-Med, GPT4V), we compute the win/tie/lose rate of
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Lose (red): PathChatis ranked lower than the model. Vertical bars represent

medianwinrate (dark green) across all 7 pathologists and median win+tierate

(lightgreen).
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Extended DataFig. 9 |Performance on PathQABench open-ended
questions stratified by sub-categories. We further analyze the head-to-
head performance of PathChat against other MLLMs in each sub-category of
questions evaluated by 7 pathologists independently. For each competing
model (LLaVA1.5,LLaVA-Med, GPT4V), we compute the win/tie/lose rate of

PathChatagainst said model. Win (dark green): PathChatis ranked higher than
the model; Tie (light green): PathChat is tied with the modelin ranking; Lose
(red): PathChatis ranked lower than the model. Vertical bars represent median
winrate (dark green) across all 7 pathologists and median win+tie rate (light
green).
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Can you comment on the histological appearance of this
metastatic tumor discovered in the lymph node of a female
patient?

The image shows a metastatic tumor in the lymph node, which
is characterized by the presence of micropapillary clusters of
tumor cells. These clusters are surrounded by clear spaces,
which are indicative of the micropapillary pattern.

PathChat

The patient had a prior cervical lesion. Based on the histology
image and the clinical history, what would be your top 3
differentials in terms of origin of the primary tumor?

\
<( Given the patient's clinical history of a prior cervical lesion and the presence of micropapillary clusters in the lymph
node, the top 3 differentials for the origin of the primary tumor would be:

1. Cervical cancer: This is the most likely primary tumor given the patient's history of a cervical lesion.

2. Ovarian cancer: Ovarian cancer can metastasize to lymph nodes and can present with a micropapillary pattern.

3. Endometrial cancer: Endometrial cancer can also metastasize to lymph nodes and can exhibit a micropapillary
pattern.

However, the clinical history of a prior cervical lesion makes cervical cancer the most likely primary tumor in this

case.
L J

PathChat

What IHCs would you suggest to help confirm the diagnosis?

To confirm the diagnosis of metastatic cervical cancer, immunohistochemical staining can be performed. The tumor
cells should be positive for cytokeratins (such as CK7 and CK20), which are markers of epithelial origin.
Additionally, the tumor cells should be positive for p16, a surrogate marker for high-risk human papillomavirus
(HPV) infection, which is commonly associated with cervical cancer. The tumor cells should be negative for markers
of other potential primary tumors such as WT1 (Wilms tumor 1) for ovarian cancer and ER (estrogen receptor) and
PR (progesterone receptor) for endometrial cancer.

PathChat

The IHC results are in. It is positive for PAX8, CK7, p16 and negative for WT1,
ER. What is your assessment?

The immunohistochemical results are consistent with metastatic cervical cancer. PAX8 is a transcription factor that
is expressed in the Mullerian system, including the cervix, and is often positive in cervical cancer. CK7 is a
cytokeratin that is typically expressed in epithelial cells, including those of the cervix. p16 is a surrogate marker for
high-risk HPV infection, which is commonly associated with cervical cancer. The negative staining for WT1, ER, and
PR helps to rule out other potential primary tumors, such as ovarian and endometrial cancer.

PathChat

Extended DataFig.10 | Example of human-in-the-loop differential context, as well as follow-up IHC results. Note that in this example, PathChat
diagnosis with PathChatin acase of cancer ofunknown primary. PathChat erroneously implies that cervical cancers should be positive for CK7 and CK20
canpotentially be used to help the user perform human-in-the-loop differential  IHCwheninfact, cervical cancersare usually positive for CK7 but negative for
diagnosis that combines arepresentative histology image, relevant clinical CK20.Scalebaris200 pm.
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Population characteristics No covariates relating to population characteristics were collected, used or analyzed in the study.

Recruitment The study relied on analysis of pathology images retrospectively and no patients were recruited specifically for this study.
Ethics oversight Brigham and Women's Hospital IRB committee approved the retrospective analysis of pathology images and corresponding

reports.
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Sample size No sample size calculation was performed as with all deep learning studies asymptotic model performance was used to gadge the size of the
training dataset.
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short (< 12 words) or uninformative and overly generic (e.g. "An H&E image of tumor."). We also removed captions or passages related to
animal pathology (keywords include: “‘rat", “'pig", etc.) and experimental studies (keywords include: "experimental”, "positive control", etc.)
using regex pattern matching. We did not apply any special exclusion criteria to the evaluation dataset.

Replication On PathQABench, the reported performance metrics are deterministically computed using the model predictions and either groundtruth
diagnostic labels or human expert feedback. Replication of the test results reported was successful across 5 different attempts of running the

evaluation script.

Randomization  In multiple choice questions, for each question, we randomize the relative order of possible answer choices to mitigate potential position bias
in models. In human expert evaluation, the relative order of responses by different models are also similarly randomized for each question.

Blinding In human expert evaluation, the expert pathologists are blinded to which model produced which response.
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