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A multimodal generative AI copilot for 
human pathology

Ming Y. Lu1,2,3,4,11, Bowen Chen1,2,11, Drew F. K. Williamson1,2,3,11, Richard J. Chen1,2,3, 
Melissa Zhao1,2, Aaron K. Chow5, Kenji Ikemura1,2, Ahrong Kim1,6, Dimitra Pouli1,2, 
Ankush Patel7, Amr Soliman5, Chengkuan Chen1, Tong Ding1,8, Judy J. Wang1, Georg Gerber1, 
Ivy Liang1,8, Long Phi Le2, Anil V. Parwani5, Luca L. Weishaupt1,9 & Faisal Mahmood1,2,3,10 ✉

Computational pathology1,2 has witnessed considerable progress in the development 
of both task-specific predictive models and task-agnostic self-supervised vision 
encoders3,4. However, despite the explosive growth of generative artificial intelligence 
(AI), there have been few studies on building general-purpose multimodal AI 
assistants and copilots5 tailored to pathology. Here we present PathChat, a vision- 
language generalist AI assistant for human pathology. We built PathChat by adapting 
a foundational vision encoder for pathology, combining it with a pretrained large 
language model and fine-tuning the whole system on over 456,000 diverse visual- 
language instructions consisting of 999,202 question and answer turns. We compare 
PathChat with several multimodal vision-language AI assistants and GPT-4V, which 
powers the commercially available multimodal general-purpose AI assistant 
ChatGPT-4 (ref. 6). PathChat achieved state-of-the-art performance on multiple- 
choice diagnostic questions from cases with diverse tissue origins and disease 
models. Furthermore, using open-ended questions and human expert evaluation,  
we found that overall PathChat produced more accurate and pathologist-preferable 
responses to diverse queries related to pathology. As an interactive vision-language  
AI copilot that can flexibly handle both visual and natural language inputs, PathChat 
may potentially find impactful applications in pathology education, research and 
human-in-the-loop clinical decision-making.

Computational pathology has witnessed a notable transformation in 
recent years. This has been propelled by the convergence of several 
key trends including increased availability and institutional adoption 
of digital slide scanning, rapid progress in artificial intelligence (AI) 
research, increased accessibility of large datasets and substantial 
high-performance computing resources1,2,7. With varying degrees of 
success, researchers have leveraged deep learning to address a diverse 
range of tasks, including cancer subtyping8,9 and grading10,11, metasta-
sis detection12, survival13–17 and response-to-treatment prediction18,19, 
tumour site of origin prediction20,21, mutation prediction and biomarker 
screening22–24, and more25. Moreover, general-purpose vision-encoder 
models26, which are trained on vast datasets of unlabelled histopathol-
ogy images and can serve as versatile task-agnostic model backbones3,4, 
are paving the way for further improvements across many tasks in 
computational pathology, both in performance and label efficiency.

However, the aforementioned developments in computational 
pathology do not yet reflect the important roles of natural language 
in pathology, which acts as a key to unlocking rich, diverse sources of 
accumulated human medical knowledge, a supervisory signal for model 

development and a unified medium for facilitating intuitive interaction 
between powerful AI models and end users. Notably, in general machine 
learning, representative works27,28 have demonstrated that large-scale 
vision-language representation learning can augment vision-only AI 
models with new capabilities, including zero-shot image recognition 
and text-to-image retrieval. Depending on the architectural design, 
training data and objectives, pretrained visual-language systems can 
often be fine-tuned for tailored tasks ranging from answering visual 
questions and image captioning to object detection and semantic 
segmentation. In medical imaging and computational pathology, 
researchers have recently begun to harness diverse sources29–33 of 
paired biomedical images and captions or reports for visual-language 
pretraining, including the development of CLIP-like27 models tai-
lored for specific domains such as pathology30,33–35 and radiology36–38.  
In computational pathology, a few works have shown promising 
zero-shot performance in select diagnostic and retrieval tasks30,33,34. 
Other researchers have experimented with specialized models for 
answering biomedical visual questions or image captioning39–43. How-
ever, for pathologists, researchers using pathology image data and 
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pathology trainees alike, these models are not yet ready to serve as 
interactive companions (or copilots) that can follow diverse instruc-
tions and coherently and accurately answer complex open-ended ques-
tions posed in natural language.

Following the rise of large language models (LLMs)44–47, rapid 
advances in multimodal LLMs (MLLMs)5,48,49 and the broader field of 
generative AI50 are poised to open a new frontier for computational 
pathology, one that emphasizes natural language and human inter-
action as key components of AI model design and user experience, 
in addition to powerful visual processing capabilities. Multimodal 
generative AI products such as ChatGPT have demonstrated impres-
sive capabilities on a wide range of routine, creative and professional 
use cases6,51, including coding, writing, summarization, data analysis, 
answering questions, translation and even image generation, while 
being accessible through an intuitive and interactive user interface. 
Although there have been attempts to investigate their performance 
on answering medicine-related queries, their capability to assist pro-
fessionals and researchers in the highly specialized but important 
subfield of anatomic pathology remains relatively unexplored52–57. Yet, 
the potential applications of an interactive multimodal AI copilot for 
pathology are immense. The ability to understand and respond to com-
plex queries in natural language could, in theory, enable such a copilot 
for pathology to serve as a helpful companion across various stages of 
human-in-the-loop clinical decision-making, education and research. 
For instance, an AI copilot would be able to ingest a histopathology 
image, provide an initial assessment of the morphological appearance 
and identify potential features of malignancy. Subsequently, a patholo-
gist or trainee could provide more context about the underlying case, 
such as clinical parameters of the patient and the tissue site, and ask the 
model to suggest a differential diagnosis. If deemed reasonable, the 
user could then request helpful suggestions for ancillary testing and 
immunohistochemical (IHC) stains to narrow down the differential. 
Finally, the results of such tests could also be provided to the model, 
which would then make a final deduction and arrive at a diagnosis.  

In research, a multimodal AI copilot that can summarize the mor-
phological features of large cohorts of histopathology images would 
potentially enable automated quantification and interpretation of 
morphological markers in large data cohorts. In medical education, an 
accurate on-demand interactive AI companion could help democratize 
access to expert-level guidance and training in pathology, thereby nar-
rowing the gap between regional disparities in healthcare provision.

A multimodal generative AI copilot for human 
pathology
In this article, we develop PathChat, a multimodal generative AI copilot 
for human pathology powered by a custom fine-tuned MLLM. To build 
an MLLM that can reason over both visual and natural language inputs, 
we began with UNI3, a state-of-the-art (SOTA) vision-only encoder 
pretrained on over 100 million histology image patches from over 
100,000 slides using self-supervised learning. We performed further 
vision-language pretraining on the UNI encoder with 1.18 million 
pathology image and caption pairs to align its image representation 
space with that of pathology text34. The resulting vision encoder was 
subsequently connected to a 13-billion-parameter pretrained, Llama 2 
LLM46 through the multimodal projector module to form the complete 
MLLM architecture (see ‘Design and training of the PathChat model’ 
in Methods for more details). The MLLM was finally fine-tuned using a 
curated dataset of over 450,000 instructions to build PathChat (Fig. 1 
and Extended Data Fig. 1), which can understand pathology images 
and text and respond to complex pathology-related queries. More 
information about data curation and model training can be found in 
‘Curation of the PathChat dataset’ and ‘Design and training of the Path-
Chat model’ in Methods, respectively, with further details summarized 
in Supplementary Tables 1–4.

We demonstrate the capabilities of PathChat in various applica-
tions including an analysis of pathology cases from diverse organ sites 
and practices (Figs. 2 and 3). Additionally, we curated a high-quality 
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Fig. 1 | Curation of instruction-following dataset and PathChat overview.  
a, We curated what is presently the largest instruction fine-tuning dataset 
specialized for pathology. It consists of 456,916 instructions and corresponding 
responses covering various formats (for example, multi-turn conversations, 
multiple-choice questions and short answers; see Extended Data Fig. 1 for 
complete examples) from diverse sources. b, To build an MLLM-based vision- 
language AI assistant that can reason over visual and natural language inputs, 
we began with a SOTA, vision-only, self-supervised, pretrained, foundation, 
encoder model, UNI and performed further vision-language pretraining 

analogous to CONCH. The resulting vision encoder was subsequently 
connected to a 13-billion-parameter, pretrained, Llama 2 LLM through a 
multimodal projector module (not shown) to form the complete MLLM 
architecture. The MLLM was fine-tuned on the curated instruction-following 
dataset to build PathChat, a vision-language AI assistant specialized for human 
pathology. More details about data curation and model training can be found in 
‘Curation of the PathChat dataset’ and ‘Design and training of the PathChat 
model’ in Methods, respectively. Scale bars, 200 µm.
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benchmark for open-ended visual pathology questions suitable for 
evaluating the performance of MLLMs in pathology, which we curated 
with expert supervision (see ‘Benchmark for expert-curated pathol-
ogy questions’ in Methods for more details). We compare PathChat 
to both LLaVA5, a SOTA general-domain open-source MLLM, and 
LLaVA-Med53, which has been tailored to the biomedical domain. We 
also compare it with a SOTA commercial solution, ChatGPT-4 (powered 
by GPT-4V), despite our model being significantly smaller and cheaper  
to serve.

Performance on multiple-choice diagnostic questions
We began by assessing the capability of our PathChat MLLM to directly 
make a diagnosis based on histology images. For this purpose, a board- 
certified pathologist manually selected salient regions of interest 
(ROIs) from routine diagnostic whole-slide images (WSIs) stained 
with haematoxylin and eosin (H&E) from both The Cancer Genome 
Atlas (TCGA) and our in-house pathology archive (both of which were 
completely withheld from model pretraining or fine-tuning). The 
questions covered 54 diagnoses from 11 different major pathology 
practices and organ sites (Supplementary Tables 5 and 6). For each 
organ system, the pathologist selected a set of ten possible answers that 
encompassed the correct answers for all questions within that organ 
system as well as other relatively common diagnoses within that organ 
system (Supplementary Table 7). For each question, we considered 
two evaluation strategies. In the first (image-only setting), the model 
was presented with only the image and the multiple-choice question 
as input. In the second (image with clinical context), the model was 
also presented with the clinical context to closely mimic a real-world 
diagnostic workflow, in which information such as patient age, sex, 
clinical history and radiology findings are included with the histology 
image for the clinical case. In both settings, the model was assessed on 
its ability to accurately select the ground truth diagnosis from the set 
of possible options. We provide an illustrative example of the complete 

model input in Fig. 2a. For all cases (denoted as ‘Combined’ in Fig. 2b), 
we compared PathChat against LLaVA 1.5, a SOTA general-purpose 
visual-language chatbot assistant, and LLaVA-Med, a specialized ver-
sion of LLaVA fine-tuned for answering biomedical-related queries. For 
the subset of 52 cases derived from publicly available WSIs (denoted 
as PathQABench-Public), in addition to LLaVA 1.5 and LLaVA-Med, we 
also compared PathChat with GPT-4V, which powers ChatGPT-4, one 
of the current best-in-class vision-capability-enabled commercial AI 
assistants, which was developed by OpenAI. All models were evaluated 
as is without any task-specific fine-tuning, consistent with the paradigm 
of zero-shot transfer.

In both evaluation settings (image-only and image with clinical con-
text), PathChat convincingly outperformed the open-source baselines 
LLaVA 1.5 and LLaVA-Med in terms of diagnostic accuracy (Fig. 2a and 
Supplementary Tables 8–10). In the image-only evaluation setting, Path-
Chat scored an accuracy of 78.1% (+52.4% versus LLaVA 1.5 and +63.8% 
versus LLaVA-Med, P < 0.001 for both) on the full combined benchmark. 
In line with our expectation, the accuracy of PathChat improved to 
89.5% (+39.0% versus LLaVA 1.5 and +60.9% versus LLaVA-Med, P < 0.001 
for both) when useful clinical context was provided. Specifically, note 
that the addition of clinical context consistently improved the accuracy 
of PathChat for both the private in-house cases (PathQABench-Private, 
+11.3%) and the public TCGA cases (PathQABench-Public, +11.6%).  
On the other hand, when only the clinical context was provided (the 
corresponding image was not shown to the model), its performance 
was substantially lower (Extended Data Fig. 2), which suggests that 
PathChat derives substantial predictive power from visual features 
and does not rely on the clinical context alone. Together, these findings 
suggest that PathChat can effectively and flexibly leverage multimodal 
information to provide a more accurate diagnosis of histology images 
than when simply given such non-visual information in plain natural 
language without specialized data processing.

Additionally, using PathQABench-Public, which contains cases only 
from the publicly available TCGA WSIs, we also compared our model 
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Fig. 2 | Multiple-choice evaluation of PathChat. a, Illustrative example of a 
multiple-choice diagnostic question. The input always includes a salient ROI  
of an histology image selected by a board-certified anatomic pathologist and 
an instruction to select the most probable diagnosis from a set of possible 
choices. In the image + clinical context evaluation setting, which was designed 
to more closely mimic a real-world diagnostic workflow, relevant clinical 
context (designed by the pathologist, shown in blue) is provided together with 

the histology image and prepended to the original question. Scale bar, 200 µm. 
b, Accuracy of MLLMs on multiple-choice diagnostic questions. Combined 
(n = 105 questions), PathQABench-Public (n = 52) and PathQABench-Private 
(n = 53). Note that we compare against GPT-4V only for questions based on 
publicly available cases (PathQABench-Public). Error bars represent 95% 
confidence intervals, and the centres represent the computed accuracy.
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against the GPT-4Vision (GPT-4V) model. Given that we do not know the 
extent to which GPT-4V has been trained on histopathology-specific 
data from the internet, our use of manually curated ROIs from WSIs 
for evaluation helps to minimize the likelihood of data contamination 
and ensure a proper assessment of its performance on histopathol-
ogy images. Note that guardrails appear to have been implemented 
into GPT-4V to prevent it from sometimes addressing queries that 
require an examination of medical images. In that case, it informs the 
user that it cannot provide a pathology interpretation and recom-
mends consulting a medical professional. In such cases, we made a 
maximum of two further submissions with the same query for a total 
of up to three attempts (see ‘Evaluating GPT-4V’ in Methods for more 
details). Following this evaluation protocol, we successfully queried 
GPT-4V for 47 out of 52 PathQABench-Public images when clinical 
context was included (28 out of 52 questions for the image-only set-
ting). An ultimately unsuccessful query was treated as incorrect as 
the response did not address the question. Although GPT-4V was 
more accurate than the open-source MLLMs when clinical context 
was provided, our domain-specific PathChat MLLM was consistently 
better in both evaluation settings (90.5% versus 63.5% by GPT-4V with 
clinical context, +26.9%; 78.8% versus 25% by GPT-4V for image-only, 
+53.8%; P < 0.001 for both). Although a part of this difference may 

be explained by GPT-4V’s guardrails, for a more comprehensive and 
transparent assessment, we also reported performance on only the 
subset of questions that GPT-4V successfully answered (Supplemen-
tary Table 11) and found that PathChat still consistently outperformed 
GPT-4V by a relatively large margin (+21.3%, P = 0.003 on 47 questions 
with clinical context; +32.2%, P = 0.014 on 28 questions for the image- 
only setting).

Performance on answering open-ended questions
Beyond multiple-choice diagnostic questions, it is valuable to assess the 
ability of PathChat and other MLLMs to generate coherent, reasonable and 
clinically relevant responses to open-ended pathology-related inquir-
ies (‘Benchmark for expert-curated pathology questions’ in Methods).  
Based on cases from PathQABench-Public, a board-certified anatomic 
pathologist carefully curated open-ended questions targeting a broad 
spectrum of topics including microscopy image description, histologic 
grade and differentiation status, risk factors, prognosis, treatment, 
diagnosis, IHC tests, molecular alterations and other tests. As with 
the multiple-choice evaluation, to mimic the real-world use case of 
a pathology AI assistant, each question was provided to models as is, 
without any further model or task-specific fine-tuning.

PathQABench
0

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

db PathChat

LLaVA-Med

LLaVA v.1.5

GPT-4V

c

P
at

hC
ha

t 
ve

rs
us

Win Tie Lose

0 0.25 0.50 0.75 1.00
Ratio

GPT-4V

LLaVA-Med

LLaVA v.1.5

Question 5:
Describe the cellular morphology 
visible in the image from a patient 
presenting with uterine bleeding 
and a lower abdominal mass.

<Response 1>

Enter your ranking here:

Panel of 7 pathologists 
Expert rankings

4 AI assistant models

Q5: 1 > 3 = 4 > 2

Q5: 1 > 3 = 4 = 2

Q5: 3 > 1 > 4 > 2

…

a Shuf�ed and de-identi�ed responses
ranked by each expert

<Response 2>
<Response 3>
<Response 4>

+

PathChat

LLaVA-Med

LLaVA v.1.5

GPT-4V

260 open-ended
questions  

+

Record of PathChat

Win Tie Lose

…

P1

P2

P7

Ancillary testing

0.5

1.0

A
cc

ur
ac

y

Clinical

DiagnosisMicroscopy

0.5

1.0

A
cc

ur
ac

y
Fig. 3 | Open-response evaluation of PathChat and reader study from a 
panel of seven pathologists. a, Evaluation workflow for ranking model 
outputs for open-ended questions. A panel of seven pathologists were 
recruited to assess the model responses for the 260 open-ended questions. 
The ordering of responses by the four AI assistant models were randomly 
shuffled for each question and each pathologist independently ranked them 
for all questions while being blinded to which model produced which response 
(see ‘MLLM evaluation’ in Methods for more details). Scale bar, 200 µm.  
b, Head-to-head records on open-ended questions for PathChat versus other 
MLLMs evaluated by seven pathologists independently. Win, PathChat was 
ranked higher than the model. Tie, PathChat tied with the model in terms of 

ranking. Lose: Said model was ranked higher than PathChat. Vertical bars 
represent median win rate (dark green) across all seven pathologists and 
median win + tie rate (light green). c, Accuracy of MLLMs on a subset (n = 235 
questions) of open-ended questions for which two pathologists reached a 
consensus after discussing independent evaluations of model responses.  
d, Accuracy for different categories of questions on the consensus subset. 
Microscopy (n = 101), diagnosis (n = 79), clinical (n = 61) and ancillary testing 
(n = 76). Each question could belong to more than one category. In c,d, error 
bars represent 95% confidence intervals, and the centres represent the 
computed accuracy.
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Given the more subjective nature of evaluating responses to 
open-ended questions, our evaluation consisted of two components. 
First, seven expert pathologists each ranked (from best to worst, ties 
allowed) the responses from different models for all questions (Fig. 3a) 
based on their relevance to the question, correctness and whether it 
was supplemented with a correct explanation or reasoning in a suc-
cinct manner (see ‘MLLM evaluation’ in Methods for more details and 
Extended Data Figs. 3–5 for illustrative examples of ranked model 
responses). Throughout the ranking process, the pathologists, who 
had no previous interaction with any of the models, were also blinded 
to which model produced which response. Moreover, the responses 
for each question were randomly shuffled to minimize potential bias 
towards specific models. This part of the evaluation was aimed at cap-
turing a wide range of expert judgement (including subjective human 
preference) on the responses.

Overall, we found that PathChat produced on average more pref-
erable, higher-ranked responses than all the other MLLMs tested. 
When considering head-to-head records (for example, PathChat ver-
sus GPT-4V) for model ranking judged by a human expert, a ‘win’ for 
PathChat on a question equated to PathChat’s response being ranked 
strictly higher than those of its counterparts. Similarly, a ‘tie’ for Path-
Chat meant that the two models received the same rank, whereas a ‘lose’ 
meant that PathChat was ranked strictly lower. Against the runner-up 
GPT-4V, PathChat had a favourable median win rate of 56.5% for the 
seven independent pathologist evaluators compared to a median lose 
rate of just 22.3% and a median tie rate of 21.2% (Fig. 3b and Supple-
mentary Tables 12 and 13). Once again, we observed an even larger 
performance gap in favour of PathChat compared to LLaVA 1.5 (median 
win rate of 67.7%, median lose rate of 11.2% and median tie rate of 21.5%) 
and LLaVA-Med (median win rate of 74.2%, median lose rate of 10.0% 
and median tie rate of 15.4%).

Additionally, to establish a more objective metric for each model’s 
accuracy on the open-ended questions, two board-certified patholo-
gists independently reviewed responses for each question. They 
assigned a binary label of correct versus incorrect for each model (while 
remaining blinded to each model’s identity). To mitigate the extent of 
subjectivity, the two pathologists then discussed all questions where 
they disagreed in their assessment, in an attempt to reach a consensus. 
For 235 out of 260 questions, complete agreement was reached for all 
models, and we used the consensus as the ground truth to compute 
the accuracy for each model. Specifically, PathChat scored an overall 
accuracy of 78.7% on the subset of open-ended questions for which the 
pathologists were able to reach a consensus (Fig. 3c and Supplemen-
tary Table 14), which corresponds to a 26.4% improvement (P < 0.001) 
compared to the accuracy of 52.3% achieved by the runner-up, GPT-4V. 
Compared to the publicly available general-purpose MLLM LLaVA 1.5 
(accuracy of 29.8%) and the biomedicine-specialized MLLM LLaVA-Med 
(accuracy of 30.6%), the margin of improvement was even more sub-
stantial, at +48.9% and +48.1%, respectively (P < 0.001 for both). We 
show the accuracy of each model as assessed by each pathologist on 
the full set of questions (including the remaining questions for which 
disagreement remained) in Extended Data Fig. 6.

These results demonstrate that overall, PathChat generated 
both more accurate as well as more preferable responses to diverse 
pathology-related queries. Additionally, to better understand the rela-
tive strengths and weaknesses of the different models, we analysed their 
performance for various subgroups of questions (described in Sup-
plementary Tables 15 and 16 with examples provided in Extended Data 
Fig. 7). In particular, the microscopy category includes questions that 
test the ability of models to generate accurate and detailed morphologi-
cal descriptions of histology microscopy images and assess clinically 
relevant features such as tumour differentiation and grade. Questions 
in the diagnosis category tested the ability of the models to directly 
suggest a reasonable diagnosis based on the histology image available 
and relevant clinical context (unlike the multiple-choice questions for 

which possible choices are provided). The clinical questions tested the 
ability to retrieve clinically relevant background knowledge about the 
disease in question, including risk factors, prognosis and treatment. 
Ancillary testing questions tested the ability of the models to suggest 
further testing, such as IHC and molecular workups, to confirm a spe-
cific diagnosis or inform prognosis and treatment.

Although GPT-4V was the runner-up to PathChat overall, PathChat’s 
responses were especially superior to those of GPT-4V in the catego-
ries that require examination of the histology image (microscopy and 
diagnosis), for which the accuracies on the consensus subset were 
73.3% and 78.5% for PathChat respectively versus 22.8% and 31.6% for 
GPT-4V (Fig. 3d and Supplementary Tables 17–19). Similarly, the median 
head-to-head win rate against GPT-4V reached 70.6% and 71.3% on 
these two categories of questions, respectively, compared to the aver-
age median win rate of 57.4%. Coupled with a median lose rate against 
GPT-4V of only 13.8% on both these categories, the results imply that 
PathChat was better than or as good as GPT-4V in around 86% of queries 
that emphasize histology image examination (Extended Data Figs. 8 
and 9 and Supplementary Tables 20–27). On the other side, we found 
that PathChat lagged somewhat behind GPT-4V on clinical and ancil-
lary testing, for which, for the consensus subset, PathChat achieved a 
respectable 80.3% accuracy on both categories compared to GPT-4V’s 
higher scores of 88.5% and 89.5% on the two categories, respectively. 
Note that although PathChat convincingly outperformed GPT-4V in 
accuracy on the microscopy and diagnosis categories according to 
the consensus (P < 0.001 for both, n = 101 and 79, respectively), we did 
not find any statistical significance (P > 0.05) for the higher accuracy 
of GPT-4V for the clinical and ancillary testing categories: P = 0.291 for 
clinical (n = 61) and P = 0.153 for ancillary testing (n = 76) according to 
the consensus, suggesting that there may not be a meaningful differ-
ence in the performances for these categories between PathChat and 
the runner-up GPT-4V. Similarly, according to the more subjective 
ranking-based evaluation, we found that PathChat was comparable to 
and in fact slightly more preferred by the panel of pathologists com-
pared to GPT-4V (a median win rate of 44.1% and lose rate of 33.8% versus 
GPT-4V for clinical and a median win rate of 44.8% and lose rate of 35.6% 
for ancillary testing) on these same categories.

Note that we included clinical and ancillary testing questions to com-
prehensively assess the capabilities of AI assistant models to address 
pathology-related queries. However, these questions frequently do 
not require an actual examination of the histology image but instead 
mostly aim to test the model’s ability to recall background knowledge 
relevant to pathology (for example, ‘What specific molecular altera-
tions are commonly found in disease X, and how might they influence 
the prognosis or therapeutic options?’). As a result, it is not too sur-
prising that even general-purpose multimodal AI assistants such as 
LLaVA 1.5 can often adequately answer questions in these categories 
and that GPT-4V may, in particular, excel here, as it is presumably much 
larger and was trained on more extensive knowledge from the internet 
than open-source models and PathChat. As these queries can often 
readily be addressed through conventional means of querying, such 
as internet searches or consulting a reference manual, we focused on 
the microscopy and diagnosis categories as the main indicators for the 
utility of different models as vision-language assistants for pathology, 
given that for the other two categories, AI assistance is not necessar-
ily required to answer visual questions based on pathology images.  
A further breakdown of model performance by subcategory is included 
in Supplementary Tables 28–38. Note that, even though our benchmark 
for answering open-ended questions is specific to pathology, its size 
is around double the 140 questions used in an earlier work58 in which 
human experts evaluated the ability of LLMs to encode general clini-
cal knowledge.

Lastly, note that like our observation in the multiple-choice evalua-
tion, of the 260 questions submitted to it, GPT-4V obviously refused to 
answer 38, presumably because of guardrails implemented within it.  
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A maximum of three attempts were made for each question (see ‘Evalu-
ating GPT-4V’ in Methods for more details). Consistent with our assess-
ment of the other models, all GPT-4V responses, regardless of whether 
they were successful or not, were blinded, shuffled and presented to 
pathologists for evaluation without special treatment. However, for 
transparency, we recorded the number of ultimately unsuccessful 
queries for GPT-4V in each question category (Supplementary Table 39) 
and report performance on only the subset of questions that GPT-4V 
successfully answered (Supplementary Tables 40–64), which saw Path-
Chat still outperforming GPT-4V by a margin of over 20% in accuracy 
(for example, 81.2% versus 59.9% for 202 questions with consensus, 
P < 0.001).

Demonstration of PathChat on diverse use cases
In addition to evaluating PathChat on answering multiple-choice 
and open-ended questions, we attempted to conceptualize and 
explore potential use cases for PathChat as an AI copilot specialized 
for pathology. We observed that PathChat can analyse and describe 

notable morphological details in histology images and that it can 
answer questions that require background knowledge in pathology 
and general biomedicine in addition to the visual input (Fig. 4a–d). The 
ability to analyse visual features, flexibly combine them with clinical 
context and medical knowledge (simply specified with natural lan-
guage) and then interpret them in the context of specific diagnostic 
guidelines (for example, Gleason grading) out of the box opens Path-
Chat to a much wider range of applications compared to task-specific 
visual-question answering or image captioning models fine-tuned on 
relatively small datasets with a limited scope39–43. Additionally, the 
support for interactive multi-turn conversations enables PathChat to 
potentially serve as a consultant for human-in-the-loop differential 
diagnosis, in which an initial AI-assisted assessment can be followed 
up with further clinical context, namely workups that are subsequently 
performed to narrow the differential (Fig. 4e and Extended Data 
Fig. 10). This may be especially valuable in cases that involve more 
lengthy, complex workups, such as cancers of unknown primary and 
in low-resource settings where access to experienced pathologists may  
be limited.
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anThere are some cells in this IHC image 
staining red for CD3. What cell type are 
they?

The cells staining red for CD3 are T lymphocytes. CD3 is a 
marker for T cells, which are a type of white blood cell involved in 
the immune response.

What IHC would be helpful in distinguishing them from B 
lymphocytes and macrophages?

CD20 is a marker commonly used to distinguish B lymphocytes 
from T lymphocytes. B lymphocytes are typically CD20 positive, 
while T lymphocytes are CD20 negative. Additionally, CD68 is a 
marker that can be used to identify macrophages. Macrophages 
are CD68 positive, while T lymphocytes are CD68 negative.
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anThis is an image of a lung core needle 
biopsy from a patient with a mass in 
their left lung. What are some 
diagnoses this could be and what IHC 
should I do to work up this case?

Based on the image, the differential diagnoses could include primary 
lung adenocarcinoma, metastatic adenocarcinoma from another 
primary site, or a poorly differentiated squamous cell carcinoma. To 
further narrow down the diagnosis, you can perform 
immunohistochemistry (IHC) staining for TTF-1, Napsin A, and p40. 
TTF-1 and Napsin A are markers commonly expressed in primary lung 
adenocarcinoma, while p40 is a marker for squamous cell carcinoma. 
The expression pattern of these markers will help differentiate 
between these possibilities.

I did TTF-1, p40, and synaptophysin and all stains were 
negative. What should I do next?

The negative staining for TTF-1, p40, and synaptophysin makes it more 
challenging to determine the exact diagnosis. TTF-1 and p40 are 
commonly used markers for lung adenocarcinoma and squamous cell 
carcinoma, respectively. Synaptophysin is a marker for neuroendocrine 
tumours. The negative staining for these markers suggests that the 
tumour is not of lung origin or is not a neuroendocrine tumour.
In this case, it would be helpful to perform additional IHC stains to 
further characterize the tumour. Some additional markers to consider 
include CK7, CK20, and CDX2, which can help differentiate between 
primary lung adenocarcinoma and metastatic adenocarcinoma from 
other sites. Additionally, performing a panel of markers speci�c to other 
primary sites (e.g., PSA for prostate, ER for breast, etc.) can help 
identify the primary site of the tumour.
It is also important to consider the clinical history and radiological 
�ndings to guide the workup. If there is a known history of malignancy 
or suspicion of metastatic disease, further investigation into the primary 
site may be warranted.

P
at

hC
ha

t

H
um

an

c

H
um

anAssess the tissue morphology in this 
prostate resection. What Gleason 
patterns are present?

The tissue morphology in this prostate resection reveals a 
combination of two distinct Gleason patterns. The �rst pattern is  
characterized by the presence of small, well-formed glands, which 
is indicative of Gleason pattern 3. The second pattern is 
characterized by the presence of fused glands, which is indicative 
of Gleason pattern 4. The presence of both patterns within the 
same tissue sample suggests a Gleason score of 7 (3+4), which is 
a moderately aggressive form of prostate cancer.
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anWhat morphological features are present 
in this image?

The image shows a tumour composed of spindle cells, which are 
elongated and have a fusiform shape. These cells are arranged in 
fascicles, which are bundles or groups of cells aligned in a parallel 
or whorled pattern. Additionally, there are scattered melanin-
containing cells within the tumour.

This tumour was found in the liver of a patient. Is it a 
primary tumour or a metastasis?

Based on the information provided, this tumour is most likely a 
metastasis rather than a primary tumour. The presence of spindle 
cells and melanin-containing cells further supports the possibility of 
a metastatic melanoma. The liver is a common site for metastasis 
of melanoma, especially when it has spread from the skin.P
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Describe the tumour in this image in detail.

The tumour in this image appears to be a high-grade serous carcinoma. 
It is characterized by a complex papillary architecture, which means 
that the tumour cells are arranged in a papillary pattern with multiple 
branching structures. The cells within the tumour are high-grade, 
indicating a high level of cellular atypia and aggressive behaviour.

What do you think IHC for p53 would show in this case?

Given the high-grade nature of this serous carcinoma, it is likely that 
the p53 immunohistochemistry (IHC) would show abnormal p53 
protein expression. High-grade serous carcinomas often have TP53 
mutations, which can result in aberrant p53 protein accumulation. 
Therefore, the p53 IHC staining may show strong and diffuse 
nuclear staining, indicating abnormal p53 orotein expression.
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Fig. 4 | Exploring use cases of PathChat. a–e, Beyond evaluating PathChat on 
answering multiple-choice and single-turn open-ended questions, we explored 
other use cases. The panels contain examples that involve a follow-up from 
users in the form of interactive, multi-turn conversations. These examples are 
illustrative in nature and intended to complement our quantitative evaluation 
of PathQABench. a, PathChat summarized key morphological features in an 
histology image. Based on the clinical context, it could reasonably infer the 
primary origin of the tumour. b, PathChat is familiar with different cell markers 

and can potentially help by guiding IHC interpretations. c, PathChat 
understands and can attempt to follow well-known guidelines on tumour 
grading, in this case, the Gleason grading system for prostate adenocarcinoma. 
d, PathChat can describe tumour tissue and cell morphology, infer a diagnosis 
and correctly suggest potential IHC findings grounded in relevant background 
knowledge about the suspected malignancy. e, PathChat can potentially be 
consulted to perform human-in-the-loop differential diagnosis that may 
require several rounds of an IHC workup. Scale bars, 200 µm.
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Discussion
Computational pathology has witnessed substantial progress over the 
years, such as the development of increasingly accurate, task-specific 
predictive models based on image or genomics data. For histology 
images specifically, there has recently been growing interest in building 
foundational task-agnostic vision encoders pretrained with large num-
bers of unlabelled images, which can provide robust feature embed-
dings for diverse supervised and unsupervised downstream workflows. 
However, the explosive growth in generative AI technology and spe-
cifically MLLMs, as exemplified by the likes of ChatGPT, has begun to 
open up a possible new frontier for both computational pathology 
research and real-world applications to clinical pathology. Generalist 
AI models equipped with an understanding of natural language could 
utilize text as a unified medium both for the flexible specification of 
user intent (in the form of a tailored prompt) and for producing out-
puts of various levels of expressiveness (from single-word to binary 
or multiple-choice responses to coherent sentences with reasoning 
steps) while performing diverse tasks (for example, summarization, 
classification, captioning, retrieval, answering questions and more). 
For pathology specifically, such a model could, in theory, have appli-
cations in a wide range of scenarios across education and research as 
well as human-in-the-loop clinical decision-making.

In this work, we provide a proof of concept for building an AI copi-
lot tailored to human pathology. We also provide, to the best of our 
knowledge, the most extensive evaluation of such technology for com-
putational pathology by comparing our model, PathChat, both to pub-
licly available models developed for general machine learning and the 
larger domain of biomedical sciences and to a SOTA commercial solu-
tion, GPT-4V. We created PathQABench, a high-quality expert-curated 
benchmark that aims to assess a diverse range of capabilities relevant 
to anatomic pathology, including morphological examination of his-
tology microscopy images, making diagnoses based on both histology 
and clinical context, assessment of tumour grade and differentiation, 
suggesting further IHC and molecular testing, and understanding 
the risk factors, prognosis and treatment of the underlying disease. 
We assessed these skills through a combination of multiple-choice 
diagnostic questions and open-ended questions coupled with human 
expert evaluation. In both evaluation settings, PathChat compared 
favourably to the current best-in-class commercial solution GPT-4V 
(presumably much larger and expensive to serve than PathChat) and 
substantially outperformed the publicly available MLLMs tested in 
terms of diagnostic accuracy and quality of response. Additionally, 
we demonstrated that the support for interactive multi-turn conver-
sations may enable PathChat to handle other use cases, such as com-
plex diagnostic workups. Considering our findings, we hope PathChat 
can potentially find impactful applications in pathology education, 
research and human-in-the-loop clinical decision-making as the tech-
nology matures over time.

Further alignment with human intent using techniques such as 
reinforcement learning from human feedback44 may lower halluci-
nation in MLLM-based AI assistant models in general and also help 
them to capture certain nuances specific to pathology, such as when 
to request further contextual information or test results when it is 
not possible or is difficult to rule out certain morphologically similar 
diseases based on H&E histology alone or when to seek clarification 
on institutional-specific guidelines for diagnosis and treatment. For 
real-world deployment, improvement and validation are probably 
also warranted to ensure that the model can consistently and cor-
rectly identify invalid queries (for example, non-pathology-related 
or nonsensical inputs) and refrain from answering with unexpected 
or erroneous outputs.

Future research will probably further enhance the capabilities of 
PathChat and MLLM-based AI assistants by adding support for inputting 
an entire gigapixel WSI or several WSIs. This may extend their usefulness 

in the diagnosis of challenging and borderline entities by supplying 
valuable context beyond preselected representative ROIs. Addition-
ally, owing to their having been trained on retrospectively collected 
large datasets that inevitably contain outdated information, these 
models may reflect the scientific consensus of the past rather than 
that of today58. For example, as medical terminology and guidelines 
evolve, a model response that references the outdated term ‘glioblas-
toma multiforme’ may result in factual inaccuracies. Besides continual 
training with fresh, up-to-date knowledge59, other research directions 
may involve curating specific instructions that make the model aware 
of changes in terminology and guidelines or using retrieval augmented 
generation60 with a continuously updated knowledge database. Lastly, 
to make these tools more useful to pathologists and researchers, it could 
be worthwhile to consider explicitly supporting specialized tasks such 
as precise counting or localization of objects (for example, ‘How many 
lymphocytes are in this image?’ or ‘Provide the exact bounding box coor-
dinates of mitotic figures’) and integrating PathChat-like AI assistants 
with tools such as digital slide viewers or electronic health records.
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Methods

Curation of the PathChat dataset
We curated a dataset of 456,916 instructions with 999,202 question 
and answer turns, which was used to train PathChat to respond to 
pathology-specific queries. The instructions were roughly catego-
rized as conversation (n = 132,563), description (n = 168,440), multiple 
choice (n = 42,445), free response (n = 21,686), text-only (n = 83,232) and 
guardrail (n = 8,550). An illustrative example of each category is shown 
in Extended Data Fig. 1. No sample size calculations were performed 
and all data were de-identified before analysis. To ensure that PathChat 
could generalize to a diverse range of instructions, the data encom-
passed several different instruction formats, including open-ended 
multi-turn dialogues, detailed image descriptions, short-answer ques-
tions, multiple-choice questions and text-only questions. A diverse set 
of data sources were used to generate the instruction dataset, which 
spanned image captions, educational articles from PubMed Open 
Access, pathology case reports and ROIs extracted from WSIs, which 
were sourced from several institutions. Data from TCGA were not used 
for training and were held out as part of our downstream evaluation. 
The data for each source were filtered individually to ensure quality 
and relevance for training a pathology-specific vision-language assis-
tant. Examples of frequently used heuristics for filtering include the 
removal of image captions that are overly short (for example, less than 
12 words) or uninformative and overly generic (for example, ‘An H&E 
image of a tumour’). We also removed captions or passages related to 
animal pathology (keywords include ‘rat’ and ‘pig’) and experimental 
studies (keywords include ‘experimental’ and ‘positive control’) using 
regex pattern matching. Lastly, we included basic guardrail instruction 
examples, so that when a model is given image-specific instructions 
such as ‘Describe this histology image of a lung mass’ but no image is 
provided, the model is expected to output the response: ‘Sorry, I cannot 
assist you since you have not uploaded any image.’ Additionally, when 
given an image not related to pathology (sampled from MS COCO;  
ref. 61), the model is trained to output: ‘Sorry I can only assist you with 
queries related to pathology.’ For some unstructured data formats, we 
prompted the open-source general-purpose LLMs46,62 to structure the 
original source text into a structured format automatically. Instructions 
were then manually created from the structured data with continual 
input from several board-certified pathologists.

Design and training of the PathChat model
Compared to text-only LLMs, an MLLM is trained to understand and 
respond to user instructions in the form of natural language queries 
that may additionally contain inputs from other modalities such as 
images. Support for multimodality is essential for histopathology, 
as examining and interpreting visual information in high-resolution 
microscopy images (in conjunction with other clinical information) 
remains the cornerstone of the discipline and extends to many aspects 
of disease diagnosis and management in modern medicine.

Inspired by LLaVA5,63, our MLLM, PathChat, consists of three key 
components: the vision encoder, the multimodal projector module and 
the LLM. The vision encoder is responsible for encoding an image from 
the original high-dimensional RGB pixel space into a low-dimensional 
feature representation suitable for processing by the downstream 
modules. The multimodal projector connects the outputs of the vision 
encoder to the LLM by projecting the visual tokens to the same dimen-
sion as the LLM’s embedding space for text tokens. The LLM takes a 
natural language instruction as input (after it has been tokenized by a 
tokenizer), combines the embedded text tokens and the image token 
output from the multimodal projector to form the full sequence of 
input tokens, and predicts the desirable response through autoregres-
sive next-word prediction. The response produced is finally decoded 
by the tokenizer back into natural language and presented to the  
end user.

For the LLM, we adopted the 13-billion-parameter variant from the 
widely used Meta Llama 2 family46 of SOTA open-source LLMs, which 
is a decoder-only transformer-based autoregressive language model 
with 40 transformer layers, each with 40 attention heads, an embedding 
dimension of 5,120 and a hidden dimension of 13,824. It uses rotary posi-
tional encodings and natively supports a maximum context length of 
4,096. As with LLaVA 1.5, we used a vision encoder based on the standard 
ViT-Large architecture consisting of 24 transformer multi-headed atten-
tion blocks, each with 16 attention heads, an embedding dimension of 
1,024 and a feedforward hidden dimension of 4,096. The token size was 
16 × 16, and we added learned absolute positional encoding to each 
token. The multimodal projector consists of an attention pooling layer 
followed by a two-layer multilayer perceptron. The attention pooling 
layer (also known as a perceiver resampler in some works49,64,65) uses a 
set of 128 learned latent queries and multi-headed cross-attention with 
8 heads to reduce the last layer feature map of the encoder backbone 
into a fixed-length sequence of image tokens with an initial dimension 
of 768 to increase training and inference efficiency and to prevent the 
total sequence length of tokens from potentially exceeding the context 
window size of the LLM. The subsequent multilayer perceptron follows 
the design used in LLaVA 1.5 and consists of a single hidden layer and an 
activation function based on Gaussian error linear units. It projects the 
image tokens up to the embedding dimension of the LLM (5,120 for the 
Llama 2 13B model). We initialized the weights of the vision-encoder 
backbone from UNI3, a SOTA vision-only self-supervised pretrained 
general-purpose encoder for H&E pathology and then fine-tuned the 
encoder backbone together with the attention pooling module on an 
expanded dataset of 1.18 paired images and captions from CONCH34 
and the CoCa visual-language pretraining recipe66 (see Supplementary 
Table 1 for details of the hyperparameters).

We followed the MLLM training recipe of LLaVA 1.5, which involves 
two stages of training. In the first, pretraining stage, the LLM weights 
are kept frozen and only the multimodal projector receives parameter 
updates to learn a suitable projection from the space of image tokens 
to the shared embedding space of the text tokens used by the LLM. For 
this simple purpose, the MLLM is supervised and simply predicts the 
caption corresponding to each image using roughly 100,000 image 
and caption pairs sampled from our previous dataset34, without using 
any curated instruction data. In the second stage, the instruction 
fine-tuning stage, both the LLM and projector are trained end-to-end 
to generate responses to diverse instructions that include both natural 
language and visual inputs, as described in ‘PathChat dataset curation’. 
Specifically, given an instruction Xinstruct, the reference answer Xans and 
the image Ximg, each represented as a sequence of tokenized inputs, we 
maximized the likelihood of each token in Xans, indexed by 1, ..., L, under 
the MLLM (viewed as an autoregressive language model):

∑L θ θ p θ θ( , ) = log ( | , , ; , ).
i

L

i iclm projector llm
=1

ans, ans,1: −1 instruct img projector llmX X X X

This instruction tuning objective easily extends to multi-turn instruc-
tion data by conditioning on all previous turns of instructions and 
reference answers. For instructions with no image, Ximg is not defined 
and is removed from the conditioning sequence. Similarly, if several 
images accompany a given instruction, we simply concatenate their 
respective image tokens, with the newline (‘\n’) token inserted between 
them as a separator, and treat the full sequence as Ximg. Both pretrain-
ing and fine-tuning were performed using eight 80 GB NVIDIA A100 
GPUs. We refer readers to Supplementary Tables 2 and 3 for details of 
the hyperparameters used in training.

Benchmark for expert-curated pathology questions
Evaluating powerful multimodal vision-language AI models in histopa-
thology is an outstanding challenge, and, to the best of our knowledge, 
there is at present no publicly available high-quality expert-curated 



Article
histopathology-centric quality-assessment benchmark. One pos-
sible candidate is PathVQA43, which has been used in the literature 
to demonstrate and evaluate the capabilities of various AI models in 
understanding pathology images. However, our manual audit revealed 
numerous types of low-quality examples in the benchmark, probably 
due to the lack of expert review and the automated nature of the data 
curation workflow used by PathVQA. Thus motivated, we curated a 
new high-quality quality-assessment benchmark suitable for evaluat-
ing cutting-edge MLLMs for pathology, as described in detail below.

To evaluate PathChat, we curated PathQABench using representa-
tive high-resolution ROI images hand-selected by a board-certified 
pathologist from 105 H&E WSI cases using the open-source QuPath 
digital viewer67. These cases were withheld from all stages of training 
PathChat. Of the 105 image ROIs, 53 ROIs were curated from private 
sources in-house at the Brigham & Women’s Hospital for the study, 
whereas the other 52 ROIs were selected from WSIs in the public 
TCGA repository. The WSIs cover 11 tissue sites and 54 diagnoses 
(Supplementary Tables 5 and 6). This design choice enabled us to use 
the subset of questions based on publicly available WSIs, referred to 
as PathQABench-Public, to evaluate the SOTA commercial solution 
GPT-4V (powering ChatGPT-4 with vision capabilities) through API 
requests, without any risk of violating institutional guidelines for 
handling patient data. Accordingly, the subset of questions based on 
private WSIs, referred to as PathQABench-Private, was used to evaluate 
only other publicly available MLLM solutions that we can run locally 
inside the hospital without transmitting the data to an external server. 
To select the ROIs, a board-certified pathologist manually reviewed 
WSIs related to each diagnosis and distilled a single ROI for each WSI 
wherein relevant morphologic features of the diagnosis were evident. 
The diagnosis from these WSIs was then transferred to that of the image 
ROIs and subsequently used in the evaluation, both for open-ended 
and multiple-choice questions. These diagnoses were originally made 
by separate pathologists who had examined the cases clinically. They 
had full access to any other slides in the case and the patient’s medical 
record and were able to order and interpret IHC tests as required to 
work up the case. To accommodate the diversity of diagnoses included 
in our evaluation, the selected ROIs vary in magnification and dimen-
sion. Across PathQABench, the selected magnifications of the ROIs 
ranged from ×3 to ×34.4 with a median of ×13.3. The widths varied 
from 859 to 2,388 px with a median of 1,201 px whereas the heights 
varied from 861 to 2,390 px with a median of 1,191 px. For each case, 
the pathologist wrote a short clinical summary based on the ground 
truth diagnosis, which included appropriately devised patient age, 
sex and clinical symptoms and radiology findings where applicable. 
This summary is referred to as the clinical context of the case. An 
example of clinical context is shown in Fig. 2a. We then created both 
close-ended multiple-choice diagnostic questions and open-ended 
questions that aimed to assess each model’s capability in assisting with 
diverse pathology-related queries, which cover a range of topics that 
include but are not limited to just diagnosis (Extended Data Fig. 7 and 
Supplementary Table 15).

A total of 105 multiple-choice questions were created using the 
salient ROIs (one question per ROI). In the evaluation setting with 
multiple-choice questions, for each organ system, a board-certified 
pathologist selected a set of ten possible answers that encompassed 
the correct answers for all questions within that organ system as well as 
other relatively common diagnoses within that organ system (Supple-
mentary Table 7). For each multiple-choice question, we considered two 
evaluation strategies. In the first image-only setting, the model was pre-
sented with only the image and the multiple-choice question as input. 
In the second, image + clinical context setting, which was designed 
to more closely mimic a real-world diagnostic workflow, the clinical 
context was additionally provided together with the histology image. 
In both settings, a model was assessed based on its ability to accurately 
select the ground truth diagnosis from the set of possible options.

In the evaluation setting for answering open-ended questions, we 
used the 52 cases from PathQABench-Public to curate five questions 
per case for a total of 260 questions. The questions were broadly cat-
egorized as microscopy, diagnosis, clinical and ancillary testing, as 
described in Supplementary Table 15. The microscopy and diagnosis 
questions, in particular, focus on targeting diagnosis and morphologi-
cal examination using the histology images and other relevant context 
(where applicable), which are essential skills in anatomic pathology. 
On the other hand, the clinical and ancillary testing categories contain 
text-only questions that do not require the visual examination of an 
image to answer, as they cover topics such as how to use IHC to confirm a 
diagnosis and background knowledge pertaining to the underlying con-
dition. Note that, although our benchmark for answering open-ended 
questions is specific to pathology, its size is substantially larger than 
the 140 questions used in an earlier work58 in which human experts 
evaluated the ability of LLMs to encode general clinical knowledge.

MLLM evaluation
We compared PathChat to the general-purpose SOTA MLLM LLaVA 1.5 
(ref. 63) and to the biomedically focused MLLM LLaVA-Med53 using the 
full PathQABench dataset. We evaluated the performance of GPT-4V 
only on cases from PathQABench-Public. The precise pretrained check-
points for these models are specified in ‘Code availability’ and Report-
ing summary. We used the default image processor implemented by 
each model and used greedy decoding during inference when possible 
(which is not presently supported by the GPT-4V API, so, instead, we 
used the default arguments set by OpenAI). The evaluation of GPT-4V 
also required a more involved protocol because of the guardrails 
implemented by OpenAI, which we detail in the next section (‘Evalu-
ating GPT-4V’). For all models, the maximum length of each generated 
response was capped to 1,024 new tokens generated.

For the multiple-choice questions, we observed that PathChat, LLaVA 
1.5 and GPT-4V can output the predicted choice in a consistent and desir-
able format (for example, ‘A’ or ‘A. Lung adenocarcinoma’), which can be 
directly used in our evaluation pipeline to compute the accuracy. How-
ever, we found LLaVA-Med could not follow the instruction to answer 
in a concise and consistent format appropriate for multiple-choice 
questions and instead would always output a full sentence. Therefore, 
for LLaVA-Med, a board-certified pathologist first manually reviewed 
each model response, extracted the predicted diagnosis, assessed its 
correctness against the ground truth and then computed the accuracy.

For the open-ended questions, we gathered the predictions for each 
model and presented them to a panel of seven pathologists, who evalu-
ated them by ranking them based on their human expertise. For each 
question, the order of the model responses was randomly shuffled 
and the pathologist was blinded as to which model produced which 
response. The responses were ranked based on, in order of importance: 
(1) following the prompt (whether the response correctly addressed 
the instruction), (2) completeness of the answer, (3) succinctness and  
(4) use of accepted pathology terminology. Ties of two (or more) 
responses were allowed. This part of the evaluation aimed to capture 
a wide range of expert judgement (including subjective human prefer-
ence) on the responses.

Additionally, we attempted to assign a more objective binary cor-
rect versus incorrect outcome for each response. For this task, we 
first asked two board-certified pathologists to independently assess 
each response to each question (in terms of correct versus incorrect 
for each model). Both pathologists were blinded to which model pro-
duced which response. For questions with a single best answer (for 
example, ‘What is the most likely diagnosis?’), the responses were 
labelled as incorrect if the single best answer was not provided. For the 
open-ended questions (for example, ‘What IHC stains would be useful 
in working up a glioblastoma?’), responses were labelled as incorrect if 
any portion of the response was hallucinated or if the response did not 
answer the question at all. Correct and incorrect labels were mutually 



exclusive and every response was labelled as correct or incorrect. 
Overall, across all models and all questions, the two experts agreed 
92.6% of the time in their assessment with a corresponding Cohen’s 
kappa score of 0.852, indicating substantial interobserver agreement, 
which was expected given the more objective nature of this part of 
the evaluation. To establish a consensus, we asked the two experts to 
discuss their assessments for the questions on which they disagreed 
originally. Following this discussion, they ultimately agreed completely 
on 235 of the 260 questions for all models. In the ‘Performance on 
answering open-ended questions’ section, we report the performance 
on this subset of questions where a consensus was reached (using the 
consensus as the ground truth) and report the performance according 
to each individual expert’s assessment for all questions in Extended 
Data Fig. 6.

Evaluating GPT-4V
GPT-4V was evaluated using the official API provided by OpenAI. All 
API calls were made during February 2024 for gpt-4-vision-preview 
(the default, most up-to-date vision-enabled GPT-4 model available 
at the time of the study). We observed that guardrails appear to have 
been implemented into GPT-4V to prevent it from addressing que-
ries that require an examination of histopathology images. In such 
instances, it may inform the user that it cannot provide an interpreta-
tion of the pathology image and that they should instead consult a 
trained medical professional. Queries for which GPT-4V obviously 
refused to address the given instructions were deemed ‘unsuccessful’. 
In such instances, we made a maximum of two further resubmissions 
for the same query for up to a total of three attempts. Following this 
evaluation protocol, we recorded 28 out of 52 successful queries in the 
multiple-choice diagnostic assessment of PathQABench-Public cases 
when no further clinical context was provided with a question. By con-
trast, 47 out of 52 queries were eventually successful when the clinical 
context was included. Using an analogous protocol, in the open-ended 
quality assessment with PathQABench-Public, we counted 222 out of 
260 successful queries. All final responses, regardless of whether they 
were successful or unsuccessful, were presented to the pathologists 
for evaluation without special treatment and subjected to the same 
blinding and shuffling protocol used for the other models (‘MLLM 
evaluation’). A breakdown of successful queries by category is provided 
in Supplementary Table 39.

Statistical analysis
We used nonparametric bootstrapping (n = 1,000 replicates) to esti-
mate 95% confidence intervals for the reported metrics. Observed 
differences in performance for a pair of models were tested for statisti-
cal significance using a two-sided paired permutation test (n = 1,000 
permutations), with the null hypothesis being that there is no difference 
in the performance of the two models. In each permutation, independ-
ent pairs of prediction outcomes for the two models were randomly 
swapped to obtain a new difference in model performance. The P value 
corresponds to the proportion of differences in model performance 
with a greater absolute value than the observed difference.

Computing hardware and software
We used Python (v.3.10.13) for all experiments and analyses in the study. 
For all model training, we used eight 80 GB NVIDIA A100 GPUs con-
figured for multi-GPU training using the popular open-source deep 
learning framework PyTorch (v.2.0.1, CUDA 11.8). All inference jobs were 
performed using 24 GB NVIDIA 3090 GPUs. We used the implementa-
tion of MLLM training and inference provided by LLaVA (v.1.1.3) and 
incorporated our own custom vision encoder and multimodal projec-
tor implemented in Timm (v.0.9.2) and PyTorch. Pillow (v.10.1.0) was 
used for image processing. Flash Attention (v.2.3.3) and DeepSpeed 
(v.0.9.5) were used to enable accelerated training of PathChat MLLM. 
For illustration and evaluation, we used images from PathQABench 

and other real-world cases not used for model training. Matplotlib 
(v.3.7.1) and Seaborn (v.0.12.2) were used to create plots and figures. 
Other miscellaneous libraries used are listed in the Reporting summary. 
UNI, a pretrained foundational vision encoder, was trained for 32 h on  
32 80 GB NVIDIA A100 GPUs in a four-node distributed set-up (eight 
GPUs per node). The vision encoder used in PathChat was fine-tuned 
from UNI using a single node of eight 80 GB NVIDIA A100 GPUs for 
21.5 h. Lastly, the combined system of PathChat (including the vision 
encoder, the multimodal projector and the LLM) were jointly trained 
for a total of 17 h and 18 min (includes both pretraining and fine-tuning) 
on a single node of eight 80 GB NVIDIA A100 GPUs to produce the final 
model. For inference, the PathChat model was run on two 24 GB NVIDIA 
RTX 3090 GPUs, which yielded an average time of 9.75 s (standard devia-
tion of 7.71 s) per response on the 260 open-ended questions.

Ethics approval
The Mass General Brigham institutional review board approved the 
retrospective analysis of pathology slides and corresponding pathology 
reports. All pathology images were de-identified before computational 
analysis and model development.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The PubMed Central-OA dataset can be accessed from the National 
Institutes of Health (NIH) PubMed Central website (https://www.ncbi.
nlm.nih.gov/pmc/tools/openftlist/). The TCGA WSIs and associated 
clinical metadata are available from the NIH genomic data commons 
(https://portal.gdc.cancer.gov). The curated PathQABench-Public 
benchmark is released for research use and can be accessed through: 
https://github.com/fedshyvana/pathology_mllm_training. Patient data 
used in this project were curated with institutional permission through 
approval by the institutional review board for the current study and, 
thus, cannot be made publicly available in compliance with patient 
privacy obligations. All requests for processed data curated internally 
will be evaluated based on institutional and departmental policies 
to determine whether the data requested are subject to intellectual 
property or patient privacy obligations. Data that can be transferred 
will require a material or data transfer agreement between the institu-
tions and will limit the utility of the data to non-commercial academic 
research purposes. The exact timeline will depend on the execution of 
such agreements. Please email all requests to the corresponding author 
(and also include M.Y.L., mlu16@bwh.harvard.edu).

Code availability
The code used to train PathChat has been made publicly available 
for non-commercial academic use and can be accessed here: https://
github.com/fedshyvana/pathology_mllm_training (ref. 68). We have 
documented all technical deep learning methods and software libraries 
used in the study, with hyperparameters detailed in Supplementary 
Tables 1–3. Pathology MLLM weights trained on proprietary internal 
patient text data are subject to patient privacy and intellectual prop-
erty obligations and cannot be made available. The code for LLaVA can 
be accessed here: https://github.com/haotian-liu/LLaVA. The code 
for LLaVA-Med can be accessed here: https://github.com/microsoft/
LLaVA-Med.
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Extended Data Fig. 1 | Examples of instructions for finetuning MLLM. An 
example of each of six different types of instructions to develop PathChat via 
instruction finetuning is illustrated. Bolded texts represent instructions 
provided to the model while italicized texts represent the reference outputs 

the model is expected to output during training. More details on dataset 
curation are provided in the PathChat dataset curation section of Methods. 
Scale bars are 200 µm.
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Extended Data Fig. 2 | Utilization of visual input and clinical context in 
multiple choice diagnostic questions. On the multiple choice diagnostic 
benchmarks (Combined, n = 105 questions; PathQABench-Private, n = 53; 
PathQABench-Public, n = 52), we investigated whether PathChat can effectively 
leverage both unstructured clinical context in the form of natural language as 
well as visual features in the image ROI instead of deriving its answer solely 
based on either input alone. In the context only setting, the clinical context is 
provided to the model but the image is not provided (see Fig. 2a for an example 

multiple choice question that contains the clinical context, the choices, and the 
image). On the flip side, in the image only setting, the clinical context is not 
provided, and the model is asked to infer the correct diagnosis from the 
possible choices based solely on the image. We observed that PathChat 
achieves maximum performance when both clinical context and the image are 
provided. Error bars represent 95% confidence intervals, and the centers 
represent the computed accuracy.



Extended Data Fig. 3 | Comparing model outputs on open-ended question 
answering, example 1. An example question in PathQABench-Public regarding 
uveal melanoma, for which the response by PathChat is ranked higher 
(considered more preferable by expert pathologists) than other models as it 

clearly, correctly, and fully addresses the query. The other models give 
incorrect locations that the image is from, give an incorrect description  
of the image, or are so general as to be unhelpful. Scale bar is 200 µm.
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Extended Data Fig. 4 | Comparing model outputs on open-ended question 
answering, example 2. An example question in PathQABench-Public regarding 
glioblastoma for which the responses by all models were considered to be of 

roughly comparable quality by expert pathologists for all producing a 
reasonable and reasonably accurate response to the query, though with  
some variation between them. Scale bar is 200 µm.



Extended Data Fig. 5 | Comparing model outputs on open-ended question 
answering, example 3. An example question in PathQABench-Public regarding 
lung adenocarcinoma where all four models performed poorly. None of the 

four models accurately describe the image or produce the correct diagnosis. 
Scale bar is 200 µm.
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Extended Data Fig. 6 | Individual pathologist evaluation of open response 
performance. a. Accuracy of MLLMs on open-ended questions (n = 260) as 
evaluated by two pathologists. See Fig. 3c,d for accuracy on the subset of 
open-ended questions for which the two pathologists reached a consensus. 
See MLLM evaluation in Methods for details. b. Accuracy on different 

categories of questions as rated by two pathologists. Microscopy (n = 109), 
Diagnosis (n = 87), Clinical (n = 68), Ancillary Testing (n = 87). Each question 
may belong to more than one category. a, b: Error bars represent 95% 
confidence intervals, and the centers represent the computed accuracy.



Extended Data Fig. 7 | Example questions from PathQABench-Public. 
PathQABench contains 260 high quality, expert reviewed, open-ended 
questions created using cases from PathQABench-Public, aimed at assessing  
a wide range of skills relevant to the practice of pathology. Each question is 

assigned one or more broad and sub-category based on the topics and skills 
that it aims to assess. The broad categories are “Microscopy”, “Diagnosis”, 
“Clinical” and “Ancillary testing”. A detailed description of each category is 
included in Supplementary Data Table 15. Scale bars are 200 µm.
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Extended Data Fig. 8 | Performance on PathQABench open-ended 
questions stratified by broad categories. We analyze the head-to-head 
performance of PathChat against other MLLMs in each broad category of 
questions evaluated by 7 pathologists independently. For each competing 
model (LLaVA 1.5, LLaVA-Med, GPT4V), we compute the win/tie/lose rate of 

PathChat against said model. Win (dark green): PathChat is ranked higher  
than the model; Tie (light green): PathChat is tied with the model in ranking; 
Lose (red): PathChat is ranked lower than the model. Vertical bars represent 
median win rate (dark green) across all 7 pathologists and median win+tie rate 
(light green).



Extended Data Fig. 9 | Performance on PathQABench open-ended 
questions stratified by sub-categories. We further analyze the head-to- 
head performance of PathChat against other MLLMs in each sub-category of 
questions evaluated by 7 pathologists independently. For each competing 
model (LLaVA 1.5, LLaVA-Med, GPT4V), we compute the win/tie/lose rate of 

PathChat against said model. Win (dark green): PathChat is ranked higher than 
the model; Tie (light green): PathChat is tied with the model in ranking; Lose 
(red): PathChat is ranked lower than the model. Vertical bars represent median 
win rate (dark green) across all 7 pathologists and median win+tie rate (light 
green).
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Extended Data Fig. 10 | Example of human-in-the-loop differential 
diagnosis with PathChat in a case of cancer of unknown primary. PathChat 
can potentially be used to help the user perform human-in-the-loop differential 
diagnosis that combines a representative histology image, relevant clinical 

context, as well as follow-up IHC results. Note that in this example, PathChat 
erroneously implies that cervical cancers should be positive for CK7 and CK20 
IHC when in fact, cervical cancers are usually positive for CK7 but negative for 
CK20. Scale bar is 200 µm.
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