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Figure 1: Customized Image Generation. (a) Generating customized images with given subjects in new
contexts. (b) Generating customized images with co-existing basic action or interaction in given images. (c)
Generating customized images for complex events with various target entities. Different colors and numbers
show the associations between reference entities and their corresponding target prompts.

ABSTRACT

Customized Image Generation, generating customized images with user-specified
concepts, has raised significant attention due to its creativity and novelty. With im-
pressive progress achieved in subject customization, some pioneer works further
explored the customization of action and interaction beyond entity (i.e., human,
animal, and object) appearance. However, these approaches only focus on basic
actions and interactions between two entities, and their effects are limited by insuf-
ficient “exactly same” reference images. To extend customized image generation
to more complex scenes for general real-world applications, we propose a new
task: event-customized image generation. Given a single reference image, we
define the “event” as all specific actions, poses, relations, or interactions between
different entities in the scene. This task aims at accurately capturing the complex
event and generating customized images with various target entities. To solve this
task, we proposed a novel training-free event customization method: FreeEvent.
Specifically, FreeEvent introduces two extra paths alongside the general diffusion
denoising process: 1) Entity switching path: it applies cross-attention guidance
and regulation for target entity generation. 2) Event transferring path: it injects
the spatial feature and self-attention maps from the reference image to the target
image for event generation. To further facilitate this new task, we collected two
evaluation benchmarks: SWiG-Event and Real-Event. Extensive experiments and
ablations have demonstrated the effectiveness of FreeEvent.
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1 INTRODUCTION

Recently, large-scale pre-trained diffusion models (Dhariwal & Nichol, 2021; Nichol et al., 2021;
Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022) have demonstrated remarkable
success in generating diverse and photorealistic images from text prompts. Leveraging these unpar-
alleled creative capabilities, a novel application — customized image generation (Gal et al., 2022;
Ruiz et al., 2023; Chen et al., 2023) — has gained increasing attention for generating user-specified
concepts. Significant progress has already been made in subject-customized image generation (Ye
et al., 2023; Chen et al., 2024b). As shown in Figure 1(a), given a set of user-provided subject im-
ages, existing methods can accurately capture the unique appearance features of each subject (e.g.,
corgi) with a special identifier token, enabling creative rendering in new and diverse scenarios.
Moreover, they can seamlessly integrate multiple subjects into cohesive compositions, preserving
their distinctive characteristics while adapting them to novel contexts.

Beyond the appearance of different entities (i.e., humans, animals, and objects) in the images, pi-
oneering approaches have been developed to customize the user-specified actions (Huang et al.,
2024), interactive relations (Huang et al., 2023) and poses (Jia et al., 2024) between the entities. As
shown in Figure 1(b), these methods attempt to capture the single-entity action (e.g., handstand)
or interactions (e.g., back to back) between two entities that co-exist in the given reference
images and transfer them to the synthesis of action- or interaction-specific images with new entities.

However, for real-world scenes that typically involve multiple entities with more complex inter-
actions (e.g., Figure 1(c), row three: three humans are discussing in front of a
computer with different poses), these works (Huang et al., 2023; 2024; Jia et al., 2024)
still face notable limitations. 1) Simplified Customization. Current action customization (Huang
et al., 2024) focuses solely on the basic actions of a single person. Similarly, interaction customiza-
tions (Huang et al., 2023; Jia et al., 2024) are limited to basic interactive relations or poses between
just two entities. There is a lack of exploration into more complex and diverse actions or interactions
that involve multiple humans, animals, and objects. Additionally, while these methods typically per-
form well when generating images with the same type of entity (e.g., all monkeys or all cats), they
struggle when faced with more diverse and complex entities and their combinations. These narrow
focuses and limitation on entity generation have strictly limited their abilities to customize more
complex and diverse scenes with creative content. 2) Insufficient Data. To capture specific actions
or interactions, existing methods (Huang et al., 2023; 2024; Jia et al., 2024) tend to represent them
by learning corresponding identifier tokens, which can be further used for generating new images.
However, for each action, or interaction, these training-based processes typically require a set of
reference images (e.g., 10 images) paired with corresponding textual descriptions across different
entities. Unfortunately, each action or interaction is highly unique and distinctive, i.e., gathering
images that depict the exact same action or interaction is challenging. As shown in Figure 1(b),
there are still significant differences in the same action (e.g., handstand) between different refer-
ence images, which thus compromises the accuracy of learned tokens, leading to inconsistencies in
action between generated images. This insufficient data issue for identical action or interaction has
severely limited the practicality and generalizability of these methods.

To address these limitations and extend customized image generation to more complex scenes, we
propose a new and meaningful task: event-customized image generation. Given a single reference
image, we define the “event” as all actions and poses of each single entity, and their relations and
interactions between different entities1. As shown in Figure 1(c), event customization aims to ac-
curately capture the complex and diverse event from the reference image to generate target images
with various combinations of target entities. Since it only needs one single reference image, the
event customization also eliminates the need for collecting “exactly same” reference images.

To solve this challenging task, we proposed a novel training-free event customization method, de-
noted as FreeEvent. Based on the two main components of the reference image, i.e., entity and
event, FreeEvent decomposes the event customization into two parts: 1) Switching the entities in
the reference image to target entities. 2) Transferring the event from the reference image to the
target image. Following this idea, alongside the general denoising process of diffusion generation,
we designed two extra paths: entity switching path and event transferring path. Specifically, en-
tity switching path guides the localized layout of each target entity for entity generation. Event

1In this paper, we primarily measure the event complexity using the total number of entities.
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transferring path further extracts the event information from the reference image and then injects
it into the denoising process to generate the specific event. Through this direct guidance and in-
jection, FreeEvent offers a significant advantage over existing methods by eliminating the need for
time-consuming training. Furthermore, as shown in Figure 1(c), FreeEvent can also serve as a plug-
and-play framework to combine with subject customization methods, generating creative images
with both user-specified events and subjects.

Moreover, as a pioneering effort in this direction, we also collected two evaluation benchmarks from
the existing dataset (i.e., SWiG (Pratt et al., 2020) and HICO-DET (Chao et al., 2015)) and the in-
ternet for event-customized image generation, dubbed SWiG-Event and Real-Event, respectively.
Both benchmarks include reference images featuring diverse events and entities, along with manu-
ally crafted target prompts. Extensive experiments demonstrate that our approach achieves state-of-
the-art performance, enabling more complex and creative customization with enhanced practicality
and generalizability.

In summary, we make several contributions in this paper: 1) We propose the novel event-customized
image generation task, which extends customized image generation to more complex scenes in real-
world applications. 2) We propose FreeEvent, the first training-free method for event customization,
which can be further combined with subject customization methods for more creative and gen-
eralizable customizations. 3) We collect two evaluation benchmarks for event-customized image
generation, and our FreeEvent achieves outstanding performance compared with existing methods.

2 RELATED WORK

Text-to-Image Diffusion Generation. Diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021;
Song et al., 2020) have emerged as a leading approach for image synthesis. The text-to-image
diffusion models (Nichol et al., 2021; Ramesh et al., 2022; Saharia et al., 2022) further inject user-
provided text descriptions into the diffusion process via pre-trained text encoders. After trained on
large-scale text-image pairs, they have shown great success in text-to-image generation. Different
from these models that operate the diffusion process on pixel space, the latent diffusion models
(LDMs) (Rombach et al., 2022) propose to perform it on latent space with enhanced computational
efficiency. Besides, existing works (Hertz et al., 2022; Tumanyan et al., 2023; Cao et al., 2023;
Alaluf et al., 2024) have discovered the spatial feature and attention maps in LDMs contain localized
semantic information of the image and the layout correspondence between textual conditions. As
a result, these features and attention maps have been utilized to control the layout, structure, and
appearance in text-to-image generation. This can be achieved either through a plug-and-play feature
injection (Tumanyan et al., 2023; Xu et al., 2023; Lin et al., 2024) or by computing specific diffusion
guidance (Epstein et al., 2023; Mo et al., 2024) for generation. In this paper, we utilize the pre-
trained LDM Stable Diffusion (Rombach et al., 2022) as our base model.

Subject Customization. This task aims to generate customized images of user-specified subjects.
Current mainstream subject customization works mainly focus on 1) Single subject customization,
including learning specific identifier tokens (Gal et al., 2022), finetuning the text-to-image diffu-
sion model (Ruiz et al., 2023; 2024), introducing layer-wise learnable embeddings (Voynov et al.,
2023) and training large-scale multimodal encoders (Gal et al., 2023; Li et al., 2024). 2) Multi-
subject composition, including cross-attention modification (Tewel et al., 2023), constrained model
fine-tuning (Kumari et al., 2023), layout guidance (Liu et al., 2023), and gradient fusion of each
subject (Gu et al., 2024). In conclusion, these works are all tailored to capture the appearance of the
entities in the image, without considering the customization of actions or poses.

Action and Interaction Customization. They aim to generate customized images with co-existing
actions or interactions in user-provided reference images. ReVersion (Huang et al., 2023) first
proposes to customize specific interactive relations by optimizing the learnable relation tokens.
ADI (Huang et al., 2024) makes progress in customizing specific actions for a single subject. And
a following work (Jia et al., 2024) further extends it to learning interactive poses between two in-
dividuals. However, all these works only focus on simplified customization of some basic actions
and interactions, and their effect is strictly limited by the insufficient data of reference images. In
contrast, our proposed event customization only requires one reference image, and our training-free
framework FreeEvent can achieve effective customization of complex events with various creative
target entities. While the ImgAny (Lyu et al., 2024) also proposed a training-free framework for
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image generation through two branches, it focuses on the modeling of multi-modal inputs as condi-
tions, which is beyond the scope of this paper.

3 METHODS

3.1 PRELIMINARY

Latent Diffusion Model. Generally, the LDMs include a pretrained autoencoder and a denoising
network. Given an image x, the encoder E maps the image into the latent code z0 = E(x), where
the forward process is applied to sample Guassian noise ϵ ∼ N (0, I) to it to obtain zt =

√
ᾱtz0 +√

1− ᾱtϵ from time step t ∼ [1, T ] with a predefined noise schedule ᾱ. While the backward process
iteratively removes the added noise on zt to obtain z0, and decodes it back to image with the decoder
x = D(z0). Specifically, the diffusion model is trained by predicting the added noise ϵ conditioned
on time step t and possible conditions like text prompt P. The training objective is formulated as

LLDM = Ez∼E(x),P,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt; t, P )∥22

]
. (1)

where ϵθ is the denoising network.

Diffusion Guidance. The diffusion guidance modifies the sampling process (Ho et al., 2020) with
additional score functions to guide it with more specific controls like object layout (Xie et al., 2023;
Mo et al., 2024) and attributes (Epstein et al., 2023; Bansal et al., 2023). We express it as

ϵ̂t = ϵθ(zt; t, P )− s · g(zt; t, P ), (2)

where g is the energy function and s is a parameter that controls the guidance strength.

3.2 TASK DEFINITION: EVENT-CUSTOMIZED IMAGE GENERATION

In this section, we first formally define the event-customized image generation task. Given a ref-
erence image IR involves N reference entities ER = {R1, . . . , RN}, we define the “event” as the
specific actions and poses of each single reference entity, and the relations and interactions between
different reference entities. Together we have the entity masks M = {m1, . . . ,mN}, where mi is the
mask of its corresponding entity Ri. The event-customized image generation task aims to capture
the reference event, and further generate a target image IG under the same event but with diverse
and novel target entities EG = {G1, . . . , GN} in the target prompt P = {w0, . . . , wN}, where wi is
the description of the target entity Gi, and each target entity Gi should keep the same action or pose
with its corresponding reference entity Ri. As the example shown in Figure 2, given the reference
image with four reference entities (e.g., three people and one object), the event-customization aims
to capture the complex reference event and generate the target image with a novel combination of
different target entities (e.g., skeleton, statue, monkey, book).

3.3 APPROACH

Overview. We now introduce the proposed training-free event customization framework FreeEvent.
Specifically, we decompose the event-customized image generation into two parts, 1) generating
target entities (i.e., switching each reference entity to target entity), and 2) generating the same
reference event (i.e., transferring the event from the reference image to the target image). Following
this idea, we design two extra paths for the diffusion denoising process of event customization,
denoted as the entity switching path and the event transferring path, respectively. Generally, as
shown in Figure 2, the generation of IG starts by randomly initializing the latent zGT ∼ N (0, I),
and iteratively denoise it to zG0 . During this denoising process, the entity switching path guides the
generation of each target entity through cross-attention guidance and regulation based on the target
prompt P and reference entity masks M. The event transferring path extracts the spatial features and
self-attention maps from the reference image IR, and then injects them to the denoising process.
The final zG0 is then transformed back to the target image IG by the decoder.

U-Net Architecture The Stable Diffusion (Rombach et al., 2022) utilizes the U-Net architec-
ture (Ronneberger et al., 2015) for ϵθ, which contains an encoder and a decoder, where each consists
of several basic encoder/decoder blocks, and each encoder/decoder block further contains several
encoder/decoder layers. Specifically, as shown in Figure 3(a), each U-Net encoder/decoder layer
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Figure 2: The overview of pipeline. Given the reference image, the event customization is overall
a general diffusion denoising process with two extra paths. 1) The entity switching path guides
the generation of each target entity through cross-attention guidance and regulation 2) The event
transferring path injects the spatial features and self-attention maps from the reference image to the
denoising process. The final zG0 is then transformed back to target image IG by the decoder.

consists of a residual module, a self-attention module, and a cross-attention module. For block b,
layer l, and timestep t, the residual module produces the spatial feature of the image as f . The self-
attention module produces the self-attention map as SA = Softmax(

QsK
T
s√

d
), where Qs and Ks are

query and key features projected from the visual features. For text-to-image generation, the cross-
attention module further produces the cross-attention map between the text prompt P and the image
as CA = Softmax(

QcK
T
c√

d
), where Qc is the query features projected from the visual features, and

Kc is the key features projected from the textual embedding of P.

Entity Switching Path. This path aims on generating target entities EG = {G1, . . . , GN} in IG by
switching each refenrece entity Ri to Gi based on the target prompt P and reference entity masks M.
And the key is to ensure each target entity Gi is generated at the same location as their corresponding
reference entity Ri and avoid the appearance leakage between different entities. Inspired by prior
works (Hertz et al., 2022; Chen et al., 2024a) that utilize the cross-attention maps to control the
layout of text-to-image generation, we apply the cross-attention guidance and regulation to achieve
the entity switching.

As shown in Figure 2(a), at the timestep t of the denoising process, we first obtain the latent for
entity switching as zAt = zGt , we then input zAt together with the target prompt P into the U-Net,
and calculate the cross-attention maps as CAA. As shown in Figure 3(b), we then introduce an
energy function to bias the cross-attention of each token wi as:

g(CAA
i ,mi) = (1− CAA

i ∗mi

CAA
i

)2 (3)

where CAA
i is the cross-attention map of token wi. Optimizing this function encourages the cross-

attention maps of each target entity Gi to obtain higher values inside the corresponding area specified
by mi, and further guide the localized layout of each target entity. We calculate the gradient of this
guidance via backpropagation to update the latent zGt :

zGt = zAt − σ2
t η▽zA

t

∑
i∈N

g(CAA
i ,mi) (4)

where η is the guidance scale and σt =
√

(1− ᾱt/ᾱt. Additionally, to avoid the appearance leakage
between each target entity, we further regulate the cross-attention map of each token within its
corresponding area. Specifically, for cross-attention maps CAG calculated at timestep t during the
denoising process, we have:

CAG
i = mi ⊙ CAG

i (5)

where CAG
i is the cross-attention map of token wi.
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Figure 3: (a) The architecture of the U-Net layer. (b) The process of cross-attention guidance and
regulation. (c) The process of spatial feature and self-attention injection.

Event Transferring Path. This path aims to extract the specific reference event from the reference
image IR, including the action, pose, relation, or interactions between each reference entity, and
transferring them to the target image IG. Meanwhile, from the perspective of image spatial infor-
mation, the event is essentially the structural, semantic layout, and shape details of the image. Thus,
based on the observation that the spatial features and self-attention maps can be utilized to control
the image layout and structure (Tumanyan et al., 2023; Xu et al., 2023; Lin et al., 2024), we perform
spatial feature and self-attention map injection to achieve the event transferring.

Specifically, as shown in Figure 2(b) we first get the latent code of the reference image zR0 =
E(IR), and at each time step t during the denoising process, we obtain zRt via the diffusion forward
process. We then input zRt into the U-Net to extract the spatial features and self-attention maps of
the reference image as fR and SAR. Parallelly, for the denoising process, we input zGt together
with the target prompt P into the U-Net, and calculate the spatial features and self-attention maps
for the generated image as: fG and SAG. Then, as shown in Figure 3(c), we perform the injection
by directly replacing corresponding spatial features and self-attention maps:

fG ← fR and SAG ← SAR. (6)

Highlights. By applying cross-attention guidance and regulation on each text token, our attention-
guided entity switching can also be used to generate target entities of user-specified subjects, i.e.,
represented by specific identifier tokens. Thus, our framework can be easily combined with subject
customization methods to generate creative images with both customized events and subjects.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation Benchmarks. In order to provide sufficient and suitable conditions for both quantitative
and qualitative comparisons on this new task, we collect two new benchmarks2. 1) For quantitative
evaluation, we present SWiG-Event, a benchmark derived from SWiG (Pratt et al., 2020) dataset,
which comprises 5,000 samples with various events and entities, i.e., 50 kinds of different actions,
poses, and interactions, where each kind of event has 100 reference images, and each reference
image contains 1 to 4 entities with labeled bounding boxes and nouns. 2) For qualitative evaluation,
we present Real-Event, which comprises 30 high-quality reference images from HICO-DET (Chao
et al., 2015) and the internet with a wide range of events and entities (e.g., animal, human, object,
and their combinations). We further employ Grounded-SAM (Kirillov et al., 2023; Ren et al., 2024)
to extract the mask of each entity.

Baselines. To evaluate the effectiveness of our method, we compared it with several kinds of state-
of-the-art baselines. For conditioned text-to-image generation baselines, we compared with the
training-based method ControlNet (Zhang et al., 2023) and the training-free method BoxDiff (Xie

2Due to the limited space, more details are left in the Appendix.
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Model Image Retrieval Verb Detection CLIP Score FID↓R@1↑ R@5↑ R@10↑ T-1↑ T-5↑ T-10↑ CLIP-I↑ CLIP-T↑
ControlNet 10.64 26.12 36.82 10.66 23.98 31.28 0.6009 0.2198 70.45
BoxDiff 8.60 22.48 32.08 5.58 14.52 19.42 0.5838 0.2153 68.49
FreeEvent 41.12 63.02 72.74 34.10 62.04 71.82 0.7044 0.2238 29.05

Table 1: Performance of our model and state-of-art conditional text-to-image generation models on
SWiG-Event. For image retrieval, the R@k represents that among the top-k images with the highest
similarity to the target image, its corresponding reference image is included. For verb detection, the
T-K represents the top-k detection accuracy.

et al., 2023). For localized editing baselines, we compared with training-free methods PnP (Tu-
manyan et al., 2023) and MAG-Edit (Mao et al., 2023). For customization baselines, we compared
with training-based methods Dreambooth (Ruiz et al., 2023) and ReVersion (Huang et al., 2023).

Implementation Details. We use Stable Diffusion v2-1-base as the base model for all methods, and
images are generated with a resolution of 512x512 on a NVIDIA A100 GPU2.

4.2 QUANTITATIVE COMPARISONS

In this subsection, we compare our method with conditional text-to-image generation baselines Con-
trolNet (Zhang et al., 2023) and BoxDiff (Xie et al., 2023) on the SWiG-Event benchmark.

Setting. Each reference image in SWiG-Event contains reference entities together with labeled
event class, bounding boxes, nouns, and their corresponding masks. Specifically, we construct the
target prompt as a list of reference entity nouns, i.e., we ask all the methods to reproduce the event
of the reference image with the same reference event and same reference entities. Additionally,
ControlNet takes the semantic map merged from the masks as the layout condition, and BoxDiff
takes the bounding boxes with labeled entity nouns as the layout condition2.

Evaluation. We apply multiple metrics to evaluate the customization quality of 5,000 target images.
1) Image retrieval performance. We retrieved each target image for its corresponding reference im-
age based on the CLIP score across all the 100 reference images that have the same reference event
class. Specifically, we extracted the image feature of each image through a pre-trained CLIP (Rad-
ford et al., 2021) visual encoder and calculated the cosine similarities for image retrieval. 2) Verb
detection performance. We utilized the verb detection model GSRTR (Cho et al., 2021) which was
trained on the SWIG dataset to detect the verb class of each generated image, and then calculated
the detection accuracy based on the annotations of the reference images (i.e., whether the gener-
ated images and their reference images have the same verb class). 3) Standard image generation
metrics. For a more comprehensive comparison, we used the FID (Heusel et al., 2017) score, the
CLIP-I (Radford et al., 2021) score, and the CLIP-T (Radford et al., 2021) score. We use the CLIP-I
score to evaluate the image alignment of generated images with their reference images. And use the
CLIP-T score to evaluate the text alignment of the generated images with text prompts.

Results. As shown in Table 1, we can observe: 1) FreeEvent has better retrieval performance than
both ControlNet and BoxDiff. This demonstrates that the target images generated by FreeEvent bet-
ter preserve the overall characteristics of the reference event and entity. 2) FreeEvent also achieves
the best verb detection performance, which indicates our method can better preserve the interaction
semantics of the generated images. 3) FreeEvent further achieves superior performance over base-
lines across all standard image generation metrics, indicating our method can generate images with
better qualities and alignment with both the reference images and texts. These results all demonstrate
the effectiveness of FreeEvent for event customization.

4.3 QUALITATIVE COMPARISONS

We compare FreeEvent with a wide range of state-of-the-art baselines on the Real-Event bench-
mark, including conditioned text-to-image generation method ControlNet (Zhang et al., 2023) and
BoxDiff (Xie et al., 2023), localized image editing method PnP (Tumanyan et al., 2023) and MAG-
Edit (Mao et al., 2023), image customization methods Dreambooth (Ruiz et al., 2023) and ReVer-
sion (Huang et al., 2023).
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ControlNet BoxDiff PnP MAG-Edit DreamBooth ReVersionOursReference Image
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③
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Figure 4: Comparision of Event Customization. Different colors and numbers show the associa-
tions between reference entities and their corresponding target prompts.

Setting. For each reference image in Real-Event, we manually constructed target prompts with
various combinations of different target entities. Specifically, ControlNet takes the semantic map and
BoxDiff takes the labeled bounding boxes as the layout conditions. MAG-Edit takes the reference
entity masks for localized editing. Dreambooth and ReVersion learn event-specific identifier tokens
for text-to-image generation.

Results. As shown in Figure 4, we can observe: 1) Conditional text-to-image generation models
ControlNet and BoxDiff can only maintain the rough layout of each entity and struggle to capture
the detailed action, pose, or interaction between different entities. And they both failed to match the
generated entity with the desired target prompt. 2) For localized image editing methods PnP and
MAG-Edit, while they can capture the reference event, they both struggle to accurately generate the
target entities, and suffer from severe appearance leakage between each target entity (e.g., orange
and strawberry in row four, tiger and lion in row six), and sometimes even failed to edit
and output the original content. 3) The subject-customization model Dreambooth and the relation-
customization model ReVersion both failed to generate satisfying results. As discussed before,
these training-based methods require multiple reference images and are unable to learn the specific
event when facing only one reference image. 4) Obviously, our FreeEvent successfully achieves
the customization of various complex events with novel combinations of target entities. Meanwhile,
the ControlNet and the localized image editing models tend to generate the target entities strictly
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Original 
Output

① ape ② robot

① ②

Reference 
Image 

are discussing

are boxing

+ background + style+ verb

on the beach cartoon

in the library old photo

in the snoware playing Chinese painting

(a) Ablation on two paths (b) Ablation on target prompt

Target prompt：

Target prompt：

Target prompt：

Figure 5: Ablations of the proposed paths and the target prompt. The “guidance” and “regula-
tion” denote the cross-attention guidance and cross-attention regulation in the entity switching path,
respectively. The “injection” denotes the event transferring path.

matching the mask of their corresponding reference entities (e.g., bird in row three), which appears
very incongruous. On the contrary, the entities generated by FreeEvent not only match the layout of
the reference entity but also keep it harmonious. After all, while we use the reference entity mask
to guide the generation of each target entity, the cross-attention guidance focuses on directing the
overall layout of each target entity and does not restrict their detailed appearance, allowing for a
more diverse generation of target entities2.

4.4 ABLATIONS

Effectiveness of Entity Switching Path and Event Transferring Path. We first run ablations to
verify the effect of two proposed paths during event customization.

Results. As the results are shown in Figure 5(a), we can observe: 1) For the entity switching path,
removing the cross-attention guidance results in the failure of target entities generation (e.g., the ape,
the meat), and removing cross-attention regulation leads to the appearance leakage between entities
(e.g., the tiger and lion, the skeleton and statue). 2) After removing the event transferring path,
although the target entities can be generated, the reference events are completely lost (i.e., the pose,
action, relations, and interactions between each entity). These results all corroborates the effect of
two paths in event customization.

Influence of Different Target Prompts. Noteablly, in our paper, the target prompt only contains
the nouns of the target entities, we then run the ablations to analyze the influence of different de-
scriptions (i.e., verb, background, style) in the target prompt for event customization.

Results. From Figure 5(b) we can observe: 1) Adding verb description leads to a certain degree of
negative impact on entity appearance (e.g., the head of the ape, the face of the monkey) since these
verbs may not be aligned with the model. Besides, accurately describing events in complex scenes
can be challenging for users. Therefore, since FreeEvent can already achieve precise extraction
and transfer of the reference events, users do not need to describe the specific events in the target
prompt, which further demonstrates FreeEvent’s practicality. 2) FreeEvent can accurately generate
extra contents for the background and style. Although there may be some detailed changes in the
entity’s appearance compared to the original output, these do not affect the entity’s characteristics
or the event. This also demonstrates FreeEvent’s strong generalization capability.

Combination of Event and Subject Customization. We further validate the ability of our frame-
work to combine with subject customization methods to generate target entities with user-specified
subjects, i.e., represented by identifier tokens. We took the Break-A-Scene model (Avrahami et al.,
2023) to learn identifier tokens for each subject and replaced the Stable Diffusion models in Figure 2
with the fine-tuned one.
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Figure 6: Results of Event-Subject Customization. Different colors and numbers show the asso-
ciations between reference entities and their corresponding target prompts.

Model Ours ControlNet BoxDiff PnP MAG-Edit DreamBooth ReVersion
HJ 48 19 2 31 13 1 0

Table 2: Results of the user studies on the Real-Event. “HJ” denotes the count of human judgment.

Results. As shown in Figure 6, FreeEvent can effectively generate various given subjects in specific
events. Specifically, FreeEvent enables the flexible generation of a wide range of subject concepts
(e.g., humans, regular objects, and backgrounds) and their combinations. These results demonstrated
the great potential of our framework for Event-Subject customization.

4.5 USER STUDY

Setting. We conducted user studies on Real-Event to further evaluate the effectiveness of FreeEvent.
Specifically, we invited 10 experts and gave them a reference image, a target prompt, and seven
target images generated by different models. They are asked to choose the three target images that
they believe demonstrate the best results in event customization, taking into account the generation
effects of the events and entities, as well as the overall coherence of the images. We prepared 50
trials and asked the experts to give their judgments. The target image which got more than six votes
is regarded as human judgment.

Results. As shown in Table 2, FreeEvent achieves better performance on human judgments (HJ)
compared with all the baseline models.

5 CONCLUSION

In this paper, we proposed a new image generation task: Event-Customized Image Generation. It fo-
cuses on the customization of complex events with various target entities. Meanwhile, we proposed
the first training-free event-customization framework FreeEvent. To facilitate this new task, we also
collected two evaluation benchmarks from existing datasets and the internet, dubbed SWiG-Event
and Real-Event, respectively. We validate the effectiveness of FreeEvent with extensive comparative
and ablative experiments. Moving forward, we are going to 1) extend the event customization into
other modalities, e.g., video generation; 2) explore advanced techniques for the finer combination of
different customization works, e.g., subject, event, and style customizations.
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Figure 7: (a) The SWiG-Event sample. (b) The process of quantitative evaluation and image re-
trieval.

APPENDIX

The Appendix is organized as follows:

• In Sec. A, we show more implementation details.
• In Sec. B, we show more details of the SWiG-Event benchmark and the process of quantita-

tive evaluation and image retrieval.
• In Sec. C, we show the results for attribute generation during event customization. .
• In Sec. D, we provide the discussion of our work’s limitations and potential negative societal

impacts.
• In Sec. E, we show more qualitative comparison results of event customization on the Real-

Event. .

A IMPLEMENTATION DETAILS.

The denoising process was set with 50 steps. For entity switching path, for all blocks and lay-
ers containing the cross-attention module, we apply the cross-attention guidance during the first
10 steps. And apply the cross-attention regulation during the whole 50 steps. For event transfer-
ring path, we perform spatial feature injection for block and layer at {decoder block 1 :[layer 1]}
during the whole 50 steps. And perform self-attention injection for blocks and layers at
{decoder block 1 :[layer 1, 2],decoder block 2 :[layer 0, 1, 2],decoder block 3 :[layer 0, 1, 2]} dur-
ing the first 25 steps. We set the classifier-free guidance scale to 15.0.

B DETAILS OF SWIG-EVENT AND PROCESS OF IMAGE RETRIEVAL.

As shown in Figure 7(a), each SWiG-Event sample consists of a reference image with labeled bound-
ing boxes and masks for each reference entity, the nouns of each reference entity, and the event class.
As shown in Figure 7(b), we constructed the target prompt as a list of reference entity nouns. The
ControlNet takes the semantic map merged from the masks as the layout condition, and BoxDiff
takes the bounding boxes with labeled entity nouns as the layout condition.

To compare the image retrieval performance, we retrieved the target image for its corresponding
reference image across all the 100 reference images that have the same reference event class.

C ATTRIBUTE GENERATION RESULTS.

In this paper, we didn’t explicitly model the attributes during generation. However, as the results
are shown in Figure 5(b), since we can generate extra content for background and style by giving
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Figure 8: The results of attribute generation during event customization.

corresponding text descriptions, we thus tried to model the attributes by giving extra adjectives to the
target prompt as an easy and natural exploration. Meanwhile, to ensure the accurate generation of the
attributes, we applied the cross-attention guidance and regulation on each attribute using the mask
of the entity they describe. As the results shown in Figure 8, our method successfully addresses
the attributes of the corresponding entity (e.g., colors, materials, and ages). After all, while the
attribute part is not the primary focus of our work, our approach shows potential and effectiveness
in addressing it, and we would be happy to conduct further research in our future work.

D LIMITATION AND POTENTIAL NEGATIVE SOCIETAL IMPACT.

Limitations. The main limitation of FreeEvent lies in the complexity of events and the number
of entities. The customization effect may be compromised when there are too many entities in an
image, especially if they are too small. As the first work in this direction, we hope our method can
unveil new possibilities for more complex customization and the generation of a greater number
of richer, more diverse entities. Additionally, since our model is built on pretrained Stable Diffu-
sion (SD) models, our performance depends on the generative capabilities of SD. This can lead to
suboptimal results for entities that the current SD struggles with, such as human faces and hands.

Potential Negative Societal Impacts. Since FreeEvent can seamlessly integrate with subject cus-
tomization methods to generate target entities based on user-specified subjects, this capability also
raises the same concerns about the potential misuse of pretrained SD models for malicious appli-
cations (e.g., Deepfakes) involving real human figures. To address this, it is essential to implement
robust safeguards and ethical guidelines, similar to the security measures and NSFW content detec-
tion mechanisms already present in existing diffusion models.

E MORE QUALITATIVE COMPARISION RESULTS.

We show more comparisons on Real-Event in Figure 9, Figure 10, Figure 11, Figure 12 and Fig-
ure 13. Specifically, we list them by the order of entity numbers. And we use different combinations
of target entities for the same reference image to generate diverse target images.
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841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
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① warrior ② sword

ControlNet BoxDiff PnP MAG-Edit DreamBooth ReVersionOursReference Image

① monkey ② otter

①
②

① tiger ② otter

①
②

① Spiderman ② Batman

①
②

① ape ② robot ,cartoon

① ②

① Spiderman ② Batman

① ②

① ape ② robot

① ②

① Jedi ② lightsaber

①

②

① girl ② carrot

① Spiderman ② batman

Figure 9: Comparision of Event Customization. Different colors and numbers show the associa-
tions between reference entities and their corresponding target prompts.
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864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
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① player ② baseball

ControlNet BoxDiff PnP MAG-Edit DreamBooth ReVersionOursReference Image

① Egyptian ② camel

① ②

① Spiderman ② cow

① ②

① old man ② tennis ball

① woman ② sheep

① old lady ② cake

①

②

① robot ② monkey

① ②

① Superman ② Ironman

① policeman ② female soldier

① Batman ② orange

①

②

Figure 10: Comparision of Event Customization. Different colors and numbers show the associ-
ations between reference entities and their corresponding target prompts.
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918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
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① Spiderman ② Batman ③ cat

① ②

③

① book ② sheep

①

②

① princess② unicorn

①

②

① soldier ② tank

①

②

① monkey ② horse

① Spiderman ② horse

① knight ② dinosaur

① Egyptian ② camel

① flower ② backpack

① bear ② cake

ControlNet BoxDiff PnP MAG-Edit DreamBooth ReVersionOursReference Image

Figure 11: Comparision of Event Customization. Different colors and numbers show the associ-
ations between reference entities and their corresponding target prompts.
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972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
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ControlNet BoxDiff PnP MAG-Edit DreamBooth ReVersionOursReference Image

① tiger ② lion ③ meat

①
②

③

① cat ② dog ③ orange

①
②

③

① bear ② fox ③ polar bear

①
②

③

① tiger ② cat ③ lion

① bear ② Spiderman ③ panther

① dog ② dog ③ apple

① monkey ② lemon ③ orange

①

② ③

① robot ② cake ③ donut

①

② ③

① Spiderman ② orange ③ strawberry 

①

② ③

① Batman ② orange ③ strawberry

Figure 12: Comparision of Event Customization. Different colors and numbers show the associ-
ations between reference entities and their corresponding target prompts.
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1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
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① Batman ② wolf ③ bear ,cartoon

①

② ③

① Tarzan ② tiger ③ lion

①

② ③

① bear ② tiger ③ lion

①

②

③

① robot ② bird ③ apple

①

②
③

① Spiderman ② cat ③ tiger

① robot ② tiger ③ lion

ControlNet BoxDiff PnP MAG-Edit DreamBooth ReVersionOursReference Image

① Wolverine ② Spiderman ③ Deadpool ④ MacBook

①
② ③

④

① skeleton ② statue ③ monkey ④ book

①
② ③

④

① Spiderman ② robot ③ bear ④ monkey

①
②

③ ④

① Spiderman ② robot ③ bear ④ monkey

①

②
③

④

Figure 13: Comparision of Event Customization. Different colors and numbers show the associ-
ations between reference entities and their corresponding target prompts.
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