
Published as a conference paper at ICLR 2025

PICASO: PERMUTATION-INVARIANT CONTEXT COM-
POSITION WITH STATE SPACE MODELS

Tian Yu Liu∗

UCLA
Alessandro Achille
AWS AI Labs

Matthew Trager
AWS AI Labs

Aditya Golatkar
AWS AI Labs

Luca Zancato
AWS AI Labs

Stefano Soatto
AWS AI Labs

ABSTRACT

Providing Large Language Models with relevant contextual knowledge at infer-
ence time has been shown to greatly improve the quality of their generations.
This is often achieved by prepending informative passages of text, or ‘contexts’,
retrieved from external knowledge bases to their input. However, processing addi-
tional contexts online incurs significant computation costs that scale with their
length. State Space Models (SSMs) offer a promising solution by allowing a
database of contexts to be mapped onto fixed-dimensional states from which to
start the generation. A key challenge arises when attempting to leverage infor-
mation present across multiple contexts, since there is no straightforward way to
condition generation on multiple independent states in existing SSMs. To address
this, we leverage a simple mathematical relation derived from SSM dynamics to
compose multiple states into one that efficiently approximates the effect of con-
catenating raw context tokens. Since the temporal ordering of contexts can of-
ten be uninformative, we enforce permutation-invariance by efficiently averaging
states obtained via our composition algorithm across all possible context order-
ings. We evaluate our resulting method on WikiText and MSMARCO in both
zero-shot and fine-tuned settings, and show that we can match the strongest per-
forming baseline while enjoying on average 5.4× speedup.

1 INTRODUCTION

Incorporating new information in deep learning models has traditionally been a costly process, of-
ten requiring re-training or fine-tuning their weights on new data. Fortunately, Large Language
Models (LLMs) provide a compelling alternative: These models can ‘learn’ to leverage new con-
textual information in real-time by simply prepending them as inputs, without having to modify
their weights (Ram et al., 2023). This has motivated a powerful application known as Retrieval-
Augmented Generation (RAG), where LLMs are deployed with the ability to retrieve and incorpo-
rate relevant sources of information, or ‘contexts’, from vast external knowledge bases when queried
by users at inference time.

Despite being faster than the naive fine-tuning of model weights, this approach still incurs significant
computational costs. Not only must the system process the user query and generate an answer, but it
must also process the retrieved context, which in real-world settings can amount to thousands of to-
kens. This problem is exacerbated in Transformer-based models, as the inference cost of generating
output tokens scales quadratically with the length of the extended input (see Figure 1).

In contrast, State Space Models (SSMs) offer a more efficient alternative. SSMs encode information
from arbitrary-length input sequences into a fixed-size state vector, which can then be conditioned
on to generate new tokens without revisiting the original input. This suggests a simple method to
reduce the cost of incorporating new contexts at inference-time: Instead of retrieving from a database
containing raw context tokens, we can create a “database of states” containing pre-computed state
representations of contexts. At inference time, generation starts directly from the retrieved state,

∗Work conducted during an internship at Amazon

1

Published as a conference paper at ICLR 2025

… …

Summarize the key findings of this month’s AI papers

Query

Retrieve
Compose

Initial State

Database of Contexts Database of States

Preprocess

4096 8192 16384
Total Length of Retrieved Contexts

0

250

500

750

1000

1250

1500

1750

2000

In
cr

e
a
se

 i
n

P
ro

ce
ss

in
g
 +

 I
n
fe

re
n
ce

 T
im

e
 (

m
s) Transformer (Pythia 2.8B)

SSM (Mamba-2 2.7B)

PICASO-R

Figure 1: (Left:) We propose a “Database of States,” where contexts are stored as pre-processed
state vectors. Given a query, relevant states are then retrieved and composed into a single state
vector which is used to condition the model’s generation. (Right:) We plot the increase in total time
required to generate an additional 64 tokens, when concatenating a 64-token prompt with retrieved
contexts. We model the time taken for PICASO-R as the time taken to combine 5 pre-processed
context states, which involves only arithmetic operations and notably zero model processing time.
As a result, the processing and inference costs for PICASO-R remain constant regardless of the
length of retrieved contexts. In contrast, the timings for a Transformer model scale quadratically,
and for an SSM linearly, with total length when generating from concatenated context tokens. These
timings are measured using the official Mamba benchmarking code, which includes optimizations
such as quantization and CUDA graphs for SSMs, and flash attention for Transformers.

simultaneously eliminating the latency from having to process context tokens online, and greatly
reducing inference time compared to Transformer models (Figure 1).

However, a key challenge arises when conditioning on multiple retrieved states. While input tokens
can be simply concatenated and fed into an LLM or SSM, existing models are trained to generate
outputs conditioned only on a single SSM state. To address this, we derive a simple mathematical
relation via SSM dynamics to compose multiple states into one, in a manner that exactly equates to
the result of concatenation in a single-layer model. Consequently, by simply storing an additional
weight matrix along with each context, pre-computed states can be effectively composed at inference
time to condition generation on any arbitrary set of contexts.

Since states are computed causally, the order in which contexts are presented affects the state –
when there is no natural ordering among retrieved contexts, different order of presentation would
yield different states. Consequently, we propose to enforce order-invariance explicitly through av-
eraging states obtained by composing contexts across all possible permutations. While this may
appear costly at first glance, we show that the resulting state can be computed exactly in polynomial
time in the number of context segments using Dynamic Programming, and this can be further re-
duced to linear time by accepting slight approximations. This greatly benefits Retrieval-Augmented
Generation tasks, where our results show a 10% improvement over the best order-dependent state
composition method when order-invariance is incorporated into the conditioned state.

To outline our main contributions, we introduce a method for efficiently retrieving and compos-
ing multiple pre-computed states at inference time to condition the generation of high-quality
outputs, which we term PICASO (Permutation-Invariant Compositional Aggregation of States as
Observations). Our experiments show that PICASO achieves 91% of the performance gain from
combining the raw tokens of multiple contexts, while offering a 5.4× speed-up over concatenation.

PICASO can be applied to any off-the-shelf SSM model without any changes. To further improve
performance, we introduce a method for fine-tuning the model to better leverage the composed
states for generation. Using a pre-trained Mamba-2 2.7B model, less than a day of fine-tuning on a
single A100 GPU leads to the same performance as concatenation while maintaining the 5.4× faster
composition time on the WikiText-V2 dataset.

2

Published as a conference paper at ICLR 2025

2 RELATED WORK

State Space Models and Hybrid Models. Recent efforts to overcome the significant computa-
tional costs of Transformer models on long contexts have inspired the exploration of more efficient
alternatives, including State Space Models (SSMs). Through maintaining a fixed-size “state”, a
sufficient statistic of the past for the purpose of future prediction, these models offer advantages
compared to Transformer models. They only require constant memory consumption regardless of
the sequence length, and linear computational complexity, rather than quadratic, as longer sequences
are processed. The idea of leveraging recurrent models with fixed dimensional states to represent
complex sequences is not new, in fact, several variations of SSMs have been developed in the past,
ranging from Linear Time Invariant (LTI) systems, to more expressive non-linear Time Varying
(Jazwinski, 2007) and Input Varying (Krener, 1975) systems.

More recently, many of these ideas have been rediscovered and implemented on modern parallel
hardware as basic building blocks for Foundation Models. Gu & Dao (2023) proposed Mamba,
an input-dependent linear SSM (termed ‘selective’) based on LIV systems, that achieves compa-
rable performance to Transformers (Vaswani, 2017) on language modeling while enjoying faster
inference. Mamba-2 (Dao & Gu, 2024) further improved computational time by implementing SSM
layers with structured matrix multiplications to better leverage modern Tensor Cores. Although pure
SSM models can compete with Transformer blocks on many NLP tasks, they lag behind on tasks
that require strong recall capabilities. To balance inference efficiency and model capabilities, Hybrid
models combining Attention and SSM blocks have been proposed. Lieber et al. (2024) combined
SSM blocks along with global-attention blocks to create a hybrid architecture with Mixture-of-
Expert layers for training larger models. To further improve long context ability and efficiency, Ren
et al. (2024) leveraged sliding window attention, while Zancato et al. (2024) developed a general
family of architecture that include Transformers, SSMs and their hybrid combinations, leveraging
both verbatim and fading memory, in both long- and short-term.

Retrieval-Augmented Generation and In-Context Learning. Our work falls within the scope
of In-Context Retrieval-Augmented Language Models (Ram et al., 2023), where language models
are conditioned on retrieved contexts via concatenation. Retrieval Augmented Generation (RAG)
allows language models to leverage knowledge stored in external databases, which greatly improves
performance on knowledge-intensive and domain-specific tasks (Lewis et al., 2020). In our work,
we simply use a pre-trained sentence embedding model for retrieval, and we refer to Gao et al.
(2023) for a detailed survey on other mechanisms. Apart from retrieval, processing (multiple) re-
trieved contexts can also greatly increase generation latency. Izacard et al. (2023) mitigates this by
independently processes each retrieved context with a LLM encoder, using cross attention over the
concatenated encoder outputs. Zhu et al. (2024) similarly encodes retrieved contexts in parallel, and
performs decoding in a selective manner by attending only to highly relevant encoder outputs.

In-Context Learning (ICL) (Brown et al., 2020) has emerged as an effective method to perform infer-
ence without learning (i.e., transduction), by conditioning on labeled samples provided in-context,
commonly implemented as a set of (query, answer) pairs (Dong et al., 2022). Similar to RAG, the
quality of selected demonstrations have been shown to greatly affect downstream performance (Xu
et al., 2024). Several methods have been developed for selecting effective demonstrations, based
on sentence embeddings (Liu et al., 2021), mutual information (Sorensen et al., 2022), perplexity
(Gonen et al., 2022), and even BM25 (Robertson et al., 2009). Similar to the motivation of our
work, several studies have shown that the performance of ICL is heavily dependent on demonstra-
tion ordering. Zhao et al. (2021) shows that answers positioned towards the end of the prompt are
more likely to be predicted, while Lu et al. (2021) shows that results can vary wildly between ran-
dom guess and state-of-the-art depending on the order that demonstrations are presented. Outside
of ICL, Liu et al. (2024) further shows that language models do not robustly utilize information in
long input contexts due to sensitivity to positioning.

Model and State Composition. Our work falls into the category of composing of deep models,
representations, and states. Wortsman et al. (2022) proposes Model Soup, which composes multiple
non-linearly fine-tuned models via averaging model weights. Liu & Soatto (2023); Liu et al. (2023)
leverages model linearization to enforce an equivalence between weight averaging and output en-
sembling. Perera et al. (2023) independently learns task-specific prompts which can be linearly

3

Published as a conference paper at ICLR 2025

averaged to yield new prompts for composite tasks. For SSMs, Pióro et al. (2024) investigates
averaging of states, along with decay-weighted mixing which is closely related to a baseline ver-
sion of our method, CASO. However, the equations described in their work differ from CASO, and
their evaluations are limited to composition of two equal-length contexts. In contrast, our method
greatly improves upon CASO by incorporating permutation invariance, which we show is important
to achieve performances comparable to that of concatenation.

3 METHOD

3.1 PRELIMINARIES:

A linear input-dependent discrete-time state-space model has the form{
xt = A(ut)xt−1 +B(ut)ut

yt = C(ut)xt +Dut.
(1)

Here xt ∈ Rm is the state at time t, while ut, yt ∈ Rd are the input and the output respectively.
The matrices A(ut) ∈ Rm×m, B(ut) ∈ Rm×d, C(ut) ∈ Rd×m (which are input-dependent) and
D ∈ Rd×d are learnable parameters.

Unrolling the first equation, we obtain

xt = A(ut) · · ·A(u1)x0 +

t−1∑
τ=0

A(ut) · · ·A(ut−τ+1)B(ut−τ)ut−τ

= A(u)x0 + x(u),

(2)

where u = (u1, . . . , ut) denotes the sequence of inputs, A(u) = A(ut) · · ·A(u1) is the accumu-
lated decay matrix and x(u) =

∑t−1
τ=0 A(ut) · · ·A(ut−τ+1)B(ut−τ)ut−τ is the accumulated input

signal. Since this coincides with xt when x0 = 0, we refer to it as the state for input sequence u.

In the following, we write V ⊂ Rd for a finite set of token embeddings and V∗ =
⋃

n≥0 Vn for
the set of variable-length sequences of token embeddings. We view a State Space (language) Model
(SSM) as a map fθ : V∗ × Rm 7→ P(V) with parameters θ which takes in as input an initial state
x ∈ Rm and token embedding sequence u ∈ V∗, and returns a distribution over V . Modern SSMs
(Gu & Dao, 2023; Zancato et al., 2024) usually contain multiple stacked selective state space layers
as in equation 1. In a multi-layer setting, we write x(u) and A(u) for the sequence of states and
decay matrices corresponding to all layers.

3.2 DATABASE OF STATES

By the Markov property, the state of an SSM makes the past independent of the future. In other
words, fθ(u · u′, 0) = fθ(u, x(u

′)) for all u,u′ ∈ V∗, where · denotes concatenation. In practice,
this means that a SSM model can equivalently be initialized with the state arising from a (variable-
length) input sequence, instead of the input sequence itself. This is akin to the KV-cache of Trans-
former architectures, except that the dimension of the state is fixed regardless of sequence length.

In several real-world use cases such as Retrieval Augmented Generation, relevant contexts are com-
monly obtained or retrieved from a database (Borgeaud et al., 2022). Instead of storing them in the
database as raw text or tokens, we propose to use a “database of states,” where we pre-process each
context and store their states. When conditioning on a single context, we can initialize the SSM
with the retrieved pre-processed state instead of having to process it online. However this poses a
problem when attempting to compose multiple contexts, since we do not know how to compose their
states. We will show how this is tackled with our proposed method.

3.3 PERMUTATION-INVARIANT COMPOSITION WITH STATE SPACE MODELS

Given a query and a collection of relevant contexts, an easy method to compose them is to simply
concatenate all context tokens with the query into a single sequence to feed into the SSM. Recall that
this, however, presents two key limitations. Before even a single token continuation can be generated

4

Published as a conference paper at ICLR 2025

from the query, the entire sequence of concatenated contexts has to be processed sequentially, which
can be computationally intensive when contexts are long or numerous (Figure 1). Another limitation
is having to select the order of context concatenation when prompting the model, for which there
might be no natural way of doing so without a powerful scoring mechanism.

To address the first limitation, we propose a first version of our method, Compositional Aggregation
of States as Observations (CASO), which works by modeling sequence concatenation with state
composition based on the dynamics of a single-layer SSM.
Proposition 1 (CASO). Let u1, . . . ,un be a collection of input sequences and let u = u1 · · ·un

be their concatenation. Then, for a SSM layer that evolves based on equation 1, we have

x(u) = x(un) +

n−1∑
i=1

A(un) · · ·A(ui+1) · x(ui) (3)

We can see this by recursively applying equation 2 on x(u) = A(un)x(u1 · · ·un−1) + x(un).

Given a collection of contexts u1, . . . ,un, CASO simply approximates the dynamics of multi-
layer SSMs, for which Proposition 1 does not hold exactly, via xCASO

θ (u1, . . . ,un) = x(un) +∑n−1
i=1 A(un) · · ·A(ui+1)·x(ui). We then load xCASO

θ (u1, . . . ,un) as the initial state of the model
to infer continuations from the given query. We note that in Mamba-style models, the matrices A(·)
are diagonal. As such, computing CASO requires only simple element-wise arithmetic operations
and importantly zero model computation time (i.e. zero forward passes required).

However, since each state is weighted by the decay factors of future contexts, this composition
operation is still very much order-dependent. We propose to introduce permutation-invariance by
considering a group of permutations G ⊆ Sn, where Sn denotes the symmetric group of n elements,
using which we define our method, PICASO (Permutation-Invariant CASO):

xPICASO(u1, . . . ,un) :=
1

|G|
∑
π∈G

xCASO(uπ(1), . . . ,uπ(n)) (4)

For any group G, by expansion of the CASO terms and collecting common factors, this can be
written as a linear combination of individual context states x(ui):

xPICASO(u1, . . . ,un) =

n∑
i=1

Wi(u1, . . . ,un)x(ui)

with weights Wi depending on A(u1), . . . , A(un). In this work we are particularly concerned
with two cases: the full symmetric group G = Sn, which includes all possible permutations, and
the cyclic group G = Cn, which consists of rotations of the sequence. We will refer to them as
PICASO-S and PICASO-R respectively.

While they appear computationally infeasible at first glance, since PICASO-S and PICASO-R av-
erage over n! and n CASO states respectively, each of which is itself a composition of n context
states, the following propositions show that they can actually be computed in polynomial and linear
time respectively for modern SSM models with diagonal A matrices.
Proposition 2. Assume G = Sn and that the matrices A(ui) commute (e.g., are diagonal). Using
shorthand notations Ai := A(ui) and Wk := Wk(u1, . . . ,un) we have

Wk =
1

n!

[
(n− 1)! + (n− 2)! · 1! ·

∑
1≤i1≤n
i1 ̸=k

Ai1 + (n− 3)! · 2! ·
∑

1≤i1<i2≤n
i1,i2 ̸=k

Ai1Ai2 + . . .

]

=
1

n

n−1∑
m=0

1(
n−1
m

) · em(A1, . . . , Ak−1, Ak+1, . . . , An),

where

em(A1, · · ·An−1) :=
∑

1≤i1<i2<···<im≤n−1

Ai1 · · ·Aim

is the m-th elementary symmetric polynomial (Macdonald, 1998) (in the matrices Ai).

5

Published as a conference paper at ICLR 2025

Elementary symmetric polynomials satisfy the recursive relation

em(A1, . . . , An−1) = An−1em−1(A1, . . . , An−2) + em(A1, . . . , An−2).

Using this relation, we can compute all values of em, and hence the coefficients Wk, using O(n2) op-
erations via Dynamic Programming. We detail the implementation in Algorithm 1 of the Appendix.
Consequently, the full state from PICASO-S can be efficiently computed in polynomialO(n3) time,
which we show in the experiments to still be faster than processing textual context concatenations
even for n as large as 10.

Next, we similarly show that the coefficients for PICASO-R can be efficiently computed by exploit-
ing invertibility of the matrices A(ui).
Proposition 3. Assume G = Cn (cyclic permutations). Then writing Ai := A(ui) and Wk :=
Wk(u1, . . . ,un) we have

Wk =
1

n

[
Id +

n−1∑
m=1

A[k+m]n · · ·A[k+1]n

]
.

where Id is the identity matrix, and [i]n denotes imodn. Assuming that the matrices Ai are invert-
ible, these can be computed efficiently by setting

Āi =

{
A[i]n · · ·A1 ·An · · ·A1 i > n

Ai · · ·A1 i ≤ n
, B̄i = Ā1+ . . .+ Āi−1, Wk =

1

n
[Ā−1

k (B̄k+n− B̄k)],

for i = 1, . . . , 2n, and k = 1, . . . , n.

We detail in Algorithm 3 in the Appendix our efficient implementation for computing PICASO-R
in O(n) time complexity via cumulative sums and products. Evidently, PICASO-R is significantly
faster than PICASO-S while trading off exact permutation invariance for invariance only to cyclic
permutations of the original order. We will show that the difference in empirical performance be-
tween PICASO-S to PICASO-R is negligible, as such PICASO-S can almost always be replaced
with its much faster variant PICASO-R.

We remark that the property of permutation-invariance can also be applied to naive concatenation (as
opposed to CASO). This is achieved simply by concatenating contexts in various different orders,
followed by taking an average of their resulting states. While performing this for the symmetric
group Sn is computationally infeasible, we can similarly restrict our permutation set to Cn. We
term this variant Permutation-Invariant Concatenation (PIConcat-R), where −R denotes invariance
to the set of cyclic permutations. We note that the model computational costs (forward passes) of
this method still scales quadratically with number of contexts (compared to linear scaling of regular
concatenation), as such we include it only for completeness.

As a final technicality, we note that for Mamba-style SSM models, we additionally require storing
the last mconv (usually mconv = 4) input tokens of each SSM layer to ensure that the state is
sufficient for generating the same distributions over continuations as the input sequence. We perform
simple averaging to combine these tokens from different contexts which we show to work well
empirically; more sophisticated methods could be explored in future work.

4 WHY PICASO’S AVERAGE WORKS

While the combination of state expression for CASO is directly motivated by the dynamics of the
system, there is no a priori reason why averaging permuted CASO states should perform well. In
Figure 3 we show that averaging both independent states and CASO states can perform better than
using any individual state. This suggests a emergent/learned algebraic structure on the space of
states such that linear combination of states combine their information to some degree.

In our empirical results below, we show that averaging all individual states (which would also be
a permutation-invariant solution) performs significantly weaker than averaging CASO states (as
PICASO does). We believe that this is because the approximate linear structure of the state space
is only valid locally. The combined states are naturally closer together than the independent states,
hence able to better exploit the local linearity. We show this in the following proposition:

6

Published as a conference paper at ICLR 2025

Proposition 4. Consider a single-layer SSM parametrized by θ, and two input sequences u and u′.
Then, the Euclidean distance between the states can be bounded via

∥xCASO(u,u′)− xCASO(u′,u)∥22 ≤ ∥(I −A(u′))x(u)∥22 + ∥(I −A(u))x(u′)∥22

To see this, simply apply the triangle inequality on the following obtained via substituting the equa-
tions for CASO:

∥xCASO(u,u′)− xCASO(u′,u)∥22 = ∥A(u′)x(u) + x(u′)− (A(u)x(u′) + x(u))∥22
= ∥(A(u′)− I)x(u) + (I −A(u))x(u′)∥22

As a special case, we observe that as the decay factor approaches the identity, the distance between
two CASO states approaches zero. In Figure 2, we visualize naive averaging of the states arising
from 3 retrieved contexts, and averaging of CASO states resulting from each cyclic permutation of
these contexts. We use WikiText-v2 as described in the Experiments for these plots. Indeed, we
observe that CASO states are much closer to one another in the resulting loss landscape.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Context 2
Context 3
Context 1
Average

2.21742 × 100

2.2499 × 100

2.28285 × 100

2.31628 × 100

2.3502 × 100

2.38462 × 100

2.41954 × 100

2.45497 × 100

2.49093 × 100

2.52741 × 100

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

CASO(3,1,2)
CASO(2,3,1)
CASO(1,2,3)
Average

2.21742 × 100

2.2499 × 100

2.28285 × 100

2.31628 × 100

2.3502 × 100

2.38462 × 100

2.41954 × 100

2.45497 × 100

2.49093 × 100

2.52741 × 100

Lo
ss

Figure 2: Left: Naive averaging (“Soup”) of context states. Right: Averaging CASO states. CASO
states are “closer” to one another (see Proposition) and hence can be more meaningfully interpolated.
On the other hand, naively averaging states of independent contexts do not possess this property.
Both plots are computed over 10 samples of (query, continuation, retrieved contexts).

5 LEARNING TO USE COMPOSED STATES

As previously noted, in practice, for SSM models consisting of multiple state space blocks stacked
with temporal convolutions, x(u) in equation 3 will not be exactly the state arising from a concate-
nated list of inputs. In this section, we introduce a fine-tuning objective to enable SSMs to better
leverage composed states. Let D = {(ui, ui, Si)}Ni=1 be a dataset of sequences ui, their next-token
continuation ui, and a collection (in some particular order) of contexts Si retrieved from a database
using ui. We minimize the prediction loss over the continuation, given a (composed) initial state
and the query sequence:

LBPTC(θ) =
∑

(ui,ui,Si)∈D

LCE(fθ(ui, x
PICASO(Si)), ui),

where LCE(·, ·) is the cross-entropy loss.

We denote this learning objective Backpropagation Through Composition (BPTC), where gradients
are propagated through the state composition process xPICASO. To reduce training time, we also
consider an alternative version where we do not backpropagate through the composition step, which
we denote Backpropagation To Composition (BP2C):

LBP2C(θ) =
∑

(ui,ui,Si)∈D

LCE(fθ(ui, sg
[
xPICASO(Si)

]
), ui),

where sg denotes the stop-gradient operator. We will show that when used for fine-tuning, this
learning objective greatly improves the model’s ability to leverage composed states for generation
to the level of the concatenation albeit with much faster speeds, while maintaining performance on
standard LLM evaluation tasks.

7

Published as a conference paper at ICLR 2025

6 EXPERIMENTS

0 2 4 6 8 10
Number of Composed Segments

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

Lo
ss

Baseline

Concat

Soup

CASO

PICASO-R

PICASO-S

PIConcat-R

0 50 100 150 200 250
Composition Time (ms)

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

Lo
ss

Segments Retrieved

0

2

4

6

8

10

Algorithm

Baseline

Concat

Soup

CASO

PICASO-R

PICASO-S

Figure 3: Zero-shot evaluation of PICASO using Mamba-2 compared to other composition methods
on WikiText. While the performance of PICASO lags slightly behind that of concatenation (left),
PICASO-R is on average 5.4× faster (right). PICASO-S and PICASO-R perform similarly and
yield overlapping curves (hence not visible in the left plot). Incorporating permutation invariance
for concatenation via PIConcat-R gives the best results. However, it incurs magnitudes higher com-
putational costs despite being performed within a single batched forward pass, hence we omit from
the right plot to prevent it from disrupting the scale of the x-axis and focus comparisons on PICASO.

6.1 IMPLEMENTATION DETAILS

We run our main experiments on the largest available SSM on Huggingface - Mamba-2 2.7B (Dao &
Gu, 2024). We evaluate our method on two large-scale datasets - WikiText-V2 (Merity et al., 2016)
and MSMARCO (Nguyen et al., 2016). We use the training splits as our fine-tuning data, and the
testing/validation splits respectively for evaluation. To pre-process WikiText-V2 for our use case,
we split each passage in the dataset into two equal context “segments”, with the goal of predicting
the second (continuation) from the first (query). The retrieval database comprises all remaining
segments, from which we retrieve via an external sentence embedding model, All-MiniLM-L6-v21.
In most experiments, we retrieve up to 10 segments, since improvements appears to saturate beyond
that, and loss from concatenation blows up as a result of exceeding training context length (Figure 6,
Appendix). We pre-process MSMARCO by filtering only entries with well-formed answers and
discarding those without relevant passages.

We used the official benchmark2 with an A100 GPU for our timing experiments in Figure 1 to ensure
fairest comparisons. For the rest of the experiments, we run the model in full-precision, and evaluate
performance of the model starting from a custom initial state, a feature not supported by the official
benchmark at the time of writing, as such timings differ.

For fine-tuning experiments using BPTC and BP2C, we base our implementation on the official
HuggingFace 3 trainer with default hyperparameters, and retrieve the k most relevant context seg-
ments for each query sample for composition. For WikiText, we select k ∈ {0, . . . , 10} uniformly
at random for each batch. For MSMARCO, we use all the available passages (both relevant and ir-
relevant) associated with each training example. For both datasets, we fine-tune for only 1 epoch. In
all fine-tuning experiments, we ensure the training set (both the examples and the context database)
are disjoint from the validation set to ensure fair evaluation.

6.2 COMPARISON MODELS

We compare inference accuracy (measured by log-perplexity) and processing latency of PICASO
with its order-dependent version, CASO, in addition to the following methods:

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
2https://github.com/state-spaces/mamba
3https://github.com/huggingface/transformers

8

Published as a conference paper at ICLR 2025

Baseline: Loss of the model on the test sample without using any contextual information.

Concatenation (Ram et al., 2023): We concatenate individual context segments based on a specific
ordering. For WikiText-V2 experiments, we consider the “best-case ordering” as determined by
the sentence embedding model where more relevant contexts are closer to the query (at the end).
We initialize the model with the state of the earliest context segment in the concatenation, which
we assume to be available via pre-processing, and recompute the composed state from only the
remaining ones.

Soup (Pióro et al., 2024): Simple averaging of states obtained from each context.

6.3 MAIN RESULTS

In this section, we evaluate both the zero-shot and fine-tuned performance of PICASO in Sec-
tion 6.3.1 and Section 6.3.2 respectively, and show in Section 6.3.3 that the fine-tuned model does
not overfit to the composition task. We also include additional experiments showing that LLM ca-
pabilities are not impacted by fine-tuning in Appendix B.4, and show that PICASO can also be used
for data attribution in Appendix C

6.3.1 ZERO-SHOT PERFORMANCE

We demonstrate in Figure 3 that applying PICASO-R in a zero-shot manner on WikiText-V2 greatly
improves performance over the baseline by an average of 10.1% across 1-10 retrieved context seg-
ments. This greatly improves over Soup (8.5%) and CASO (9.2%). Compared to concatenation
(11.1%), PICASO-R performs slightly worse but benefits from magnitudes improvement in pro-
cessing time on an average of 5.4×. In this task, PICASO-R achieves almost exactly the same
performance as PICASO-S, but with a much faster composition time. As a sanity check for motiva-
tion for our method, we show that PIConcat achieves the best performance (12.0%) overall, but at
the cost of significantly greater computational time despite our batched-inference implementation.

In Row 1 of Table 1, we show that applying PICASO-R and PICASO-S in a zero-shot manner on
MSMARCO similarly yields considerable improvements (37.2%) over the naive baseline, while
achieving performance close to that of concatenation (41.3%).

0 2 4 6 8 10
Number of Composed Segments

2.04

2.06

2.08

2.10

2.12

2.14

2.16

Lo
ss

Baseline

Concat

Soup

CASO

PICASO-R

PICASO-S

PIConcat-R

0 50 100 150 200 250
Composition Time (ms)

2.06

2.08

2.10

2.12

2.14

2.16

Lo
ss

Segments Retrieved

0

2

4

6

8

10

Algorithm

Baseline

Concat

Soup

CASO

PICASO-R

PICASO-S

0 2 4 6 8 10
Number of Composed Segments

2.06

2.08

2.10

2.12

2.14

2.16

2.18

2.20

Lo
ss

Baseline

Concat

Soup

CASO

PICASO-R

PICASO-S

PIConcat-R

Figure 4: (Left + Middle:) Fine-tuning with BPTC on WikiText brings the performance of PICASO
to that of concatenation, while retaining its significant speed advantages. (Right:) Fine-tuning with
BP2C on WikiText improves the effectiveness of PICASO as well, but is much faster in terms of
training time since it does not require backpropagating through the composed state. Note that fine-
tuning has no impact on the actual composition time when used for inference.

6.3.2 BACKPROPAGATION THROUGH AND TO COMPOSITION

While PICASO demonstrates strong performance in the zero-shot setting, PICASO still lags behind
concatenation in terms of prediction accuracy. We attribute this to composed states being “out-of-
distribution” for the model, since these states do not arise from any sequence of input tokens. In
this section, we test if this can be resolved via fine-tuning with PICASO-R composed states via
BPTC and BP2C. Indeed, as we show in Figure 4, BPTC and BP2C greatly improves the perfor-
mance of PICASO-R and PICASO-S to that similar to concatenation, while maintaining much faster
processing timings on WikiText. Similarly, we show in Rows 4-5 of Table 1 that fine-tuning on the
MSMARCO training set also levels the performance of PICASO with that of concatenation. We also

9

Published as a conference paper at ICLR 2025

Table 1: All models in this table are evaluated on the MSMARCO validation set. We evaluate
performance of models fine-tuned via BPTC/BP2C on both the WikiText and MSMARCO training
sets. Rows 2-3 show that fine-tuning models to compose WikiText context segments does not harm
performance when evaluated on composing context segments from MSMARCO. When compos-
ing segments from distributions similar to those encountered during training (Rows 4-5), PICASO
matches the performance of concatenation while being magnitudes faster.

Naive Concat Soup CASO PICASO-R PICASO-S

Mamba2-2.7B Base 2.42 1.42 2.04 1.56 1.52 1.52
Mamba2-2.7B BP2C-WikiText 2.44 1.44 2.07 1.53 1.50 1.50
Mamba2-2.7B BPTC-WikiText 2.43 1.46 2.08 1.53 1.49 1.49
Mamba2-2.7B BP2C-MSMARCO 1.85 0.68 1.27 0.72 0.69 0.69
Mamba2-2.7B BPTC-MSMARCO 1.79 0.65 1.20 0.68 0.65 0.65

note that while BP2C is significantly faster in terms of training time, it incurs a small performance
trade-off compared to BPTC for both datasets, keeping number of training iterations constant.

6.3.3 EVALUATION OF FINE-TUNED MODEL ON OTHER DIFFERENT TASKS

We showed that models fine-tuned on a specific downstream task (training set) using BPTC/BP2C
perform strongly when composing samples drawn from a similar distribution (test set). We further
show in Table 1 that models fine-tuned on one domain (WikiText) can demonstrate small perfor-
mance gains (or at the very least, no performance loss) when composing samples via PICASO on
another domain (MSMARCO). Finally, we show in Appendix B.4 that fine-tuning models with
BP2C/BPTC maintain (and occasionally even improve) performance on general LLM evaluation
tasks compared against the original model.

7 LIMITATIONS AND DISCUSSION

We have proposed a method, PICASO, that enables efficient retrieval and composition of contexts
by pre-processing their individual states. Without any training, our approach can handle the com-
position of information contained in up to 10 context segments in a manner that is order-invariant.
PICASO notably requires zero online model processing time, since generation can begin directly
from the composed states. When models are further fine-tuned with our proposed learning objec-
tive, states composed using PICASO perform comparably to those produced from the concatenation
of context tokens, while offering on average a 5.4× faster composition time.

Nevertheless, our method does have some limitations. When applied in a zero-shot manner, PICASO
still lags slightly behind concatenation in terms of prediction accuracy. PICASO is also currently
limited to architectures based on SSM layers. We leave as future work extension of PICASO towards
recently popularized attention-based hybrid models, which require more sophisticated methods of
composing key-value caches. Lastly, we also leave as future work the exploration of parameter-
efficient fine-tuning methods such as adapters, which can be used to augment the model at inference
time to enable state composition while preserving the original model’s behavior.

REFERENCES

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

10

Published as a conference paper at ICLR 2025

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Hila Gonen, Srini Iyer, Terra Blevins, Noah A Smith, and Luke Zettlemoyer. Demystifying prompts
in language models via perplexity estimation. arXiv preprint arXiv:2212.04037, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models. Journal of Machine Learning Research, 24(251):
1–43, 2023.

Andrew H Jazwinski. Stochastic processes and filtering theory. Courier Corporation, 2007.

Arthur J Krener. Bilinear and nonlinear realizations of input-output maps. SIAM Journal on Control,
13(4):827–834, 1975.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
mamba language model. arXiv preprint arXiv:2403.19887, 2024.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024.

Tian Yu Liu and Stefano Soatto. Tangent model composition for ensembling and continual fine-
tuning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
18676–18686, 2023.

Tian Yu Liu, Aditya Golatkar, and Stefano Soatto. Tangent transformers for composition, privacy
and removal. arXiv preprint arXiv:2307.08122, 2023.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786, 2021.

11

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602

Published as a conference paper at ICLR 2025

Ian Grant Macdonald. Symmetric functions and Hall polynomials. Oxford university press, 1998.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. MS MARCO: A human generated machine reading comprehension dataset. CoRR,
abs/1611.09268, 2016. URL http://arxiv.org/abs/1611.09268.

Pramuditha Perera, Matthew Trager, Luca Zancato, Alessandro Achille, and Stefano Soatto. Prompt
algebra for task composition. arXiv preprint arXiv:2306.00310, 2023.

Maciej Pióro, Maciej Wołczyk, Razvan Pascanu, Johannes von Oswald, and João Sacramento. State
soup: In-context skill learning, retrieval and mixing. arXiv preprint arXiv:2406.08423, 2024.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
Yoav Shoham. In-context retrieval-augmented language models. Transactions of the Association
for Computational Linguistics, 11:1316–1331, 2023.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL http://arxiv.org/
abs/1908.10084.

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Sim-
ple hybrid state space models for efficient unlimited context language modeling. arXiv preprint
arXiv:2406.07522, 2024.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Taylor Sorensen, Joshua Robinson, Christopher Michael Rytting, Alexander Glenn Shaw, Kyle Jef-
frey Rogers, Alexia Pauline Delorey, Mahmoud Khalil, Nancy Fulda, and David Wingate. An
information-theoretic approach to prompt engineering without ground truth labels. arXiv preprint
arXiv:2203.11364, 2022.

Ashish Vaswani. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Xin Xu, Yue Liu, Panupong Pasupat, Mehran Kazemi, et al. In-context learning with retrieved
demonstrations for language models: A survey. arXiv preprint arXiv:2401.11624, 2024.

Luca Zancato, Arjun Seshadri, Yonatan Dukler, Aditya Golatkar, Yantao Shen, Benjamin Bowman,
Matthew Trager, Alessandro Achille, and Stefano Soatto. B’mojo: Hybrid state space realizations
of foundation models with eidetic and fading memory. arXiv preprint arXiv:2407.06324, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International conference on machine learning, pp.
12697–12706. PMLR, 2021.

Yun Zhu, Jia-Chen Gu, Caitlin Sikora, Ho Ko, Yinxiao Liu, Chu-Cheng Lin, Lei Shu, Liangchen
Luo, Lei Meng, Bang Liu, et al. Accelerating inference of retrieval-augmented generation via
sparse context selection. arXiv preprint arXiv:2405.16178, 2024.

12

http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084

Published as a conference paper at ICLR 2025

A ALGORITHMS: PICASO-S AND PICASO-R

We show in Algorithm 1 how PICASO-S is computed in polynomial time via a dynamic program-
ming approach based on Algorithm 2. In Algorithm 3, we also show how PICASO-R can be com-
puted with linear time complexity. Time complexity is measured as the number of arithmetic oper-
ations required as a function of number of context states.

Algorithm 1 PICASO-S- O(n3)

Require: States x = {xi}n−1
i=0 , Decays A = {Ai}n−1

i=0

return
∑n−1

i=0 PICASO-S-DP(A−i) · xi

▷ A−i denotes all elements of A except Ai

Algorithm 2 PICASO-S-DP - O(n2)

Require: Decays A = {Ai}n−1
i=0

DP[:,:] ← zeros(n, n)
DP[0,:] ← 1
w ← 0
for i = 1, . . . , n− 1 do

for j = i, . . . , n− 1 do
DP[i][j]← DP[i][j − 1] +Aj−1· DP[i− 1][j − 1]

end for
end for
for i = 0, . . . , n− 1 do

w ← w + 1

n·(n−1
i)
· DP[i][n− 1]

end for
return w

Algorithm 3 PICASO-R - O(n)
Require: States x = {xi}n−1

i=0 , Decays A = {Ai}n−1
i=0

x̂← 0, Â← [A1, . . . , An, A1, . . . , An]

ÂΠ = cumprod(Â)

ÂΣΠ = cumsum(ÂΠ)
for i = 1, . . . , n− 1 do

wi ← 1
n ·

((
ÂΣΠ[n+ i− 1]− ÂΣΠ[i]

)
ÂΠ[i]

−1
+ 1

)
x̂← x̂+ wi · xi

end for
return x̂

B FURTHER ANALYSIS

B.1 COMPUTATIONAL COSTS OF PICONCAT

In Figure 5, we visualize the computational costs incurred by PIConcat, which we show to dominate
that of other methods despite resulting in the best performance on the WikiText dataset.

B.2 SCALING BEYOND EFFECTIVE CONTEXT LENGTH

In Figure 6, we show that as the total length of retrieved contexts scale beyond a certain threshold
(effective context size of the model), the loss from concatenation blows up and rapidly increases
beyond the no-retrieval baseline. On the other hand, performance of PICASO remains stronger than
that of the baseline when composing 50 context segments.

13

Published as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500
Composition Time (ms)

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

Lo
ss

Segments Retrieved

0

2

4

6

8

10

Algorithm

Baseline

Concat

Soup

CASO

PICASO-R

PICASO-S

PIConcat-R

Figure 5: Timings for different composition algorithms evaluated on WikiText using Mamba-2 2.7B
(zero-shot), including that of PIConcat-R. While PIConcat results in the best performance (y-axis),
its computational cost (x-axis) is significantly higher than that of other methods. We refer to Figure 3
for a more condensed plot to compare the remaining methods.

0 10 20 30 40 50
Number of Composed Segments

3

4

5

6

7

Lo
ss

Baseline

Concat

Soup

CASO

PICASO-R

PICASO-S

Figure 6: Concatenation scales poorly with total size of retrieved contexts beyond training context
length. PICASO yields greater stability even composing up to 50 context segments retrieved from
WikiText.

B.3 INFERENCE VS PROCESSING TIME

In Figure 7, we show that the context processing time for Mamba-2 comprises a significant propor-
tion of the total generation time. For large sequence lengths beyond 6K tokens, the processing time
even dominates the inference time for generating 32 tokens.

B.4 PERFORMANCE ON LLM EVALUATION TASKS

In Table 2, we show that fine-tuning Mamba2-2.7B with BTPC/BP2C objectives do not degrade
existing LLM capabilities when evaluated on several LLM evaluation benchmarks - HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC-E, ARC-C (Clark et al., 2018), WinoGrande
(Sakaguchi et al., 2021), and OpenbookQA (Mihaylov et al., 2018).

14

Published as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000 12000 14000 16000
Input Sequence Length

0.0

0.1

0.2

0.3

0.4

0.5

Pr
oc

es
sin

g
tim

e
/

32
 to

ke
n

in
fe

re
nc

e
tim

e
(s

)

Mamba-2 (2.7B) -- Inference Time
Mamba-2 (2.7B) -- Processing Time

Figure 7: Mamba-2 Processing vs Inference Time of 32 tokens. Processing time (orange) occupies
a significant proportion of the total time taken to generate from an input sequence, even dominating
the constant inference time from the processed state (blue) as number of tokens in the input grows.

Table 2: Evaluation of Mamba2-2.7B trained with BPTC and BP2C on LLM evaluation tasks. Here,
we show that fine-tuning for composition does not degrade existing LLM capabilities. In this table,
we report the length-normalized accuracy for each task.

HellaSwag PIQA ARC-E ARC-C WinoGrande OpenbookQA

Mamba2-2.7B Base 66.6± 0.5 76.3± 1.0 64.8± 1.0 36.3± 1.4 63.9± 1.4 38.8± 2.2
BP2C-WikiText 66.7± 0.5 76.3± 1.0 64.9± 1.0 37.5± 1.4 63.6± 1.4 39.8± 2.2
BPTC-WikiText 66.7± 0.5 75.6± 1.0 64.9± 1.0 37.2± 1.4 63.2± 1.4 40.2± 2.2

B.5 ABLATION ON CHOICE OF RETRIEVER

In Figure 8, we ablate the impact of difference retriever choices on PICASO-R. In par-
ticular, we evaluate the performance of PICASO-R on WikiText when using the follow-
ing embedding models from Sentence-Transformers (Reimers & Gurevych, 2019): aver-
age word embeddings glove.6B.300d, all-MiniLM-L6-v2, and all-mpnet-base-v2, arranged in in-
creasing order of performance on 14 different sentence embedding tasks (Reimers & Gurevych,
2019). As expected, Figure 8 shows that the performance of PICASO-R highly correlates with the
strength of the retriever, where stronger retrievers yields better results on WikiText.

0 2 4 6 8 10
Number of Composed Segments / States

2.40

2.45

2.50

2.55

2.60

2.65

Lo
ss

average_word_embeddings_glove.6B.300d

all-mpnet-base-v2

all-MiniLM-L6-v2

Figure 8: Ablation study on how choice of retriever model impacts performance of PICASO-R on
WikiText. As expected, stronger retriever models result in better downstream performance.

15

Published as a conference paper at ICLR 2025

B.6 EVALUATION ON MULTIPLE CHOICE TASKS

In this section, we evaluate PICASO-R on the OpenbookQA (Mihaylov et al., 2018) multiple-choice
task, where we retrieve from a context database of full passages from WikiText-V2. While Open-
bookQA provides the ground truth fact for each evaluation sample, we discard this in our evaluations
following standard practice in Gao et al. (2024). We leverage the same retrieval model used for the
main WikiText experiments. Table 3 shows that PICASO-R achieves performance close to concate-
nation, with a 8× speed-up in composition time.

Naive Concat PICASO-R
Acc (↑) Time (↓) Acc (↑) Time (↓) Acc (↑) Time (↓)
38.8% NA 40.0% 233 ms 39.9% 29 ms

Table 3: Evaluation on OpenbookQA dataset, augmented with retrieved passages from WikiText.
We use normalized accuracy as our evaluation metric, and report the time taken to compose retrieved
passages. Numbers shown in the table are averaged across retrieving between 1 to 10 full contexts
from WikiText (as opposed to half context segments in our main paper experiments).

B.7 CONTEXT STATISTICS

In Figure 9, we plot the distribution over the lengths (tokens and characters) of retrieved context
segments used in the main paper WikiText retrieval dataset.

0 200 400 600 800 1000 1200
Num documents

0

50

100

150

200

250

300

Nu
m

 c
ha

ra
ct

er
s

0 50 100 150 200 250 300
Num documents

0

50

100

150

200

250

300

Nu
m

 to
ke

ns

Figure 9: Histogram of the lengths, in terms of (Left) characters and (Right) tokens, of database
context segments used in the main paper WikiText experiments.

C DATA ATTRIBUTION

Table 4: Zero-shot Data Attribution on MSMARCO with Mamba2-2.7B, measured by precision. We
compare Leave-One-In (LOI) and Leave-One-Out (LOO), where we implement LOO with varying
methods for state composition.

LOI Concat Soup CASO PICASO-R PICASO-S

0.699 0.690 0.629 0.725 0.732 0.731

Consider a question-answer pair (uq,ua), and a sequence of potentially relevant contexts S =
(u1, . . . ,un). We would like to select the most relevant context for inferring the answer. There are
at least two ways to do so with model fθ:

16

Published as a conference paper at ICLR 2025

The first method, which we term “Leave-one-in”, is to prepend each candidate context to the ques-
tion, and evaluate the loss on the answer. Equivalently, argmini LCE(fθ(uq, x(ui)),ua), where
we abuse notation to denote loss on the sequence (instead of token) ua.

The second method, which we term “Leave-one-out”, is to compare the marginal increase in loss
of the answer when removing each candidate from the composition of all of them. Equivalently,
argmaxi{LCE(fθ(uq, x̂(S−i)),ua) − LCE(fθ(uq, x̂(S)),ua)}, where x̂(S−i) denotes a state
composed from all contexts in S other than ui.

Intuitvely, the former measures “absolute” influence of a context, while the latter measures “relative”
influence computed as the marginal improvement from adding it to the set of other contexts.

There are several different ways to implement the latter by varying the composition method used.
We show in Table 4 that not only does Leave-One-Out perform best on the MSMARCO dataset,
but implementing Leave-One-Out with PICASO-S and PICASO-R not only accelerates processing,
but also surpasses the performance of conatenation. We attribute this to the permutation-invariance
property of PICASO, which unlike concatenation, does not introduce irrelevant biases arising from
arbitrary context orders.

D CONCATENATION FOR SSMS: CONNECTION TO JUMP-LINEAR SYSTEMS

Consider a collection of context segments retrieved based on relevance to a query, and sorted ran-
domly as context to the query. While these segments share information, they are independent given
the query, and their order is accidental and uninformative.

We are interested in a model that can efficiently process inputs in this format and extract all shared
information from the input. Attention-based models are a natural choice because of the permutation-
invariance of attention mechanisms (ignoring positional encoding), but they would have to process
the entire input (all segments) with quadratic inference cost. On the other hand, SSMs have linear
cost, but they are ill-fit to process this kind of input because of the context switches, which make the
Markov assumption implicit in the state representation invalid.

We consider a broader class of models, namely switching dynamical systems (or jump-Markov,
jump-diffusion, or linear hybrid, or jump-linear systems) as the class of interest. A jump-linear
system is one that has a continuous state, say xt that evolves synchronously, and a discrete state that
changes the value of xt, for instance

xt+1 =

{
Axt +But if t ∈ Z\Ω
xt+1 ∼ P if t ∈ Ω

Learning and inference for this model class corresponds to identification and filtering for this class of
Jump-Markov models. In addition to a random switching, the switch can be triggered by a particular
‘flag’ (value) of the input:

xt+1 =

{
Axt +But if ut ̸= utrigger

xt+1 ∼ P if ut = utrigger

If the value of utrigger is known, then a given identification and filtering scheme can be applied by
switching the estimated state according to the trigger.

Since modern state space models are input-dependent, they automatically fit the latter class of mod-
els and can handle switches without modifications. However, what they cannot handle is the fact
that the order of the segments is uninformative. As a result, presenting the same segments in dif-
ferent order would yield different states. Accordingly, our goal is to enable SSMs to learn from
segments up to permutations, so we can accommodate sequences where the ordering within seg-
ments is informative and respected, while the ordering of segments is uninformative and factored
out.

E GENERAL RECURRENCE STRUCTURE

In the main paper, we introduced a specific recursive relation satisfied by Elementary Symmetric
Polynomials. Here, we introduce a more general form which can potentially be used for more
efficient implementations:

17

Published as a conference paper at ICLR 2025

Proposition 5. For any choice of 1 ≤ q ≤ n− 1

em(A1, · · · , An−1) =

min(m,q)∑
j=max(q+m−n+1,0)

em−j(A1, · · · , An−1−q)ej(An−q, · · ·An−1)

Proof. We compute em(A1, · · · , An−1) using a Dynamic Programming (DP) approach, where
we break the problem into smaller problems, and merge the solutions. First we split the
n − 1 variables at some random index q to create two partitions, (A1 · · · , An−1−q) and
(An−q, · · ·An−1), and then compute em−j and ej on each partition respectively. For a given
value of j, em−j(A1, · · · , An−1−q)ej(An−q, · · ·An−1) will only compute a subset of values from
em(A1, · · · , An−1), and hence we sum over all possible values for j.

In particular, taking q = 1, we obtain the following:

em(A1, . . . , An−1) = An−1em−1(A1, . . . , An−2) + em(A1, . . . , An−2)

which we use for our implementation of PICASO-S.

18

	Introduction
	Related Work
	Method
	Preliminaries:
	Database of States
	Permutation-Invariant Composition with State Space Models

	Why PICASO's average works
	Learning to use composed states
	Experiments
	Implementation Details
	Comparison Models
	Main Results
	Zero-shot performance
	Backpropagation Through and To Composition
	Evaluation of fine-tuned model on other different tasks

	Limitations and Discussion
	Algorithms: PICASO-S and PICASO-R
	Further Analysis
	Computational Costs of PIConcat
	Scaling beyond effective context length
	Inference vs Processing Time
	Performance on LLM Evaluation Tasks
	Ablation on Choice of Retriever
	Evaluation on Multiple Choice Tasks
	Context Statistics

	Data Attribution
	Concatenation for SSMs: Connection to jump-linear systems
	General Recurrence Structure

