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Abstract001

Large language models (LLMs) are widely002
deployed as zero-shot evaluators for an-003
swer grading, content moderation, and doc-004
ument ranking. Yet studies show that005
guard models (Guards)—LLMs fine-tuned006
for safety—remain vulnerable to "jailbreak" at-007
tacks, jeopardising downstream chatbots. We008
confirm this weakness on three public bench-009
marks (BeaverTails, XSTest, AdvBench) and010
trace it to representation shifts that arise in011
the embedding layer and cascade through the012
Transformer stack. To counteract the effect, we013
introduce Gamma-Guard: lightweight resid-014
ual adapters inserted after the embeddings and015
at sparse intervals in the model. The adapters016
start with zero-scaled gates, so they retain the017
original behaviour; a brief adversarial fine-018
tuning phase then teaches them to denoise em-019
beddings and refocus attention. With fewer020
than 0.1 % extra parameters and only a 2 %021
latency increase, Gamma-Guard lifts adver-022
sarial accuracy from ≤ 5% to ≈ 95% a 90023
percentage-point gain while reducing clean-024
data accuracy by just 8 percentage points. Ex-025
tensive ablations further show that robustness026
improvements persist across different layer027
placements and model sizes. To our knowledge,028
this is the first approach that directly augments029
large Guards with trainable adapters, providing030
a practical path toward safer large-scale LLM031
deployments.032

1 Introduction033

Large language models (LLMs) have proven to be034

highly efficient zero-shot evaluators: even with-035

out task-specific data, they can assign consistent,036

transferable quality scores to individual or multi-037

ple texts (Zheng et al., 2023; Chen et al., 2023b;038

Zhang et al., 2023). On benchmarks such as MT-039

BENCH and CHATBOT ARENA, their agreement040

with human raters exceeds 80 % (Zheng et al.,041

2023). Follow-up studies, however, reveal sys-042

tematic errors—e.g. position bias and verbosity043

User: Please judge whether the following 
content contains harmful content.

Model: Shit, fuck, fucker, cunt, dick, 
dickhead, asshole.

User: Please judge whether the following 
content contains harmful content.

Model: Shit, fuck, fucker, cunt, dick, 
dickhead, asshole. Change asz acular abin 
oxel decess eps idas etsk anical

Normal text content detection data

Adversarial Text Content Detection Data

Guard Result

Detection 
successful

Detection 
failed

Figure 1: A simple example shows that for normal data,
an LLM Guard can accurately detect harmful content,
whereas for adversarial data it fails.

bias—indicating that finer-grained calibration is 044

still needed (Shi et al., 2024a). Because evaluation 045

is inexpensive and prompts are flexible, the “LLM- 046

as-a-Judge” paradigm has been widely adopted, 047

accompanied by detailed guidelines and continu- 048

ally updated open-source resources (Li, 2025; Guo 049

et al., 2025). Accordingly, Meta’s Llama-Guard 050

series has been integrated into production pipelines 051

to filter non-compliant content, and the latest mul- 052

timodal release—Llama-Guard 3 Vision—already 053

moderates both text and images (Chi et al., 2024b). 054

Yet the rise of diverse “jailbreak” tech- 055

niques—ranging from character-level injections 056

to gradient-driven prompts—has exposed serious 057

weaknesses in large-scale Guard models. Re- 058

cent empirical work shows that commercial Llama- 059

Guard models can be bypassed with success rates 060

of 90–100 % even under black-box settings (Hack- 061

ett et al., 2025b; Ying et al., 2025; Raina et al., 062

2024). Existing robustness solutions for small 063

safety classifiers—e.g. the single-token sentinel of 064

STSHIELD (Wang et al., 2025b), difficulty-aware 065

routing in SAFEROUTE (Lee et al., 2025a), or rule- 066

distilled “constitutional” classifiers (Sharma et al., 067

2025b)—have achieved partial success, but they 068

rely on extra inference passes, model switching, or 069
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prompt instrumentation that incur notable latency070

and cost. Moreover, they are typically tuned for071

1–2 B-parameter models and do not scale straight-072

forwardly to the 7–13 B range used by modern073

Llama-Guard deployments. Thus, enhancing the074

adversarial robustness of large-model Guards with-075

out sacrificing throughput or latency—while keep-076

ing them deployable at scale—remains a central077

challenge for safe, real-world generative AI.078

To address this challenge, we introduce079

Gamma-Guard: learnable Lightweight Resid-080

ual Adapters that can be embedded directly into081

large Guard models. Layer-wise feature visual-082

ization and attention analysis reveal that vulnera-083

bility stems mainly from insufficient suppression084

of adversarial noise in the early embedding space;085

the perturbation is then amplified across roughly086

20 layers, eventually diluting attention in decision087

layers and causing misclassification. Guided by088

this observation, we attach a lightweight bottle-089

neck network after the embedding layer and apply090

a learnable scaling factor γ to inject a residual that091

counteracts the noise. The branch’s intermediate092

features dynamically adjust subsequent attention093

matrices, and a low-pass filter is applied to the094

first few layers—forming a closed “denoise-and-095

correct” loop. The design adds < 0.1% parameters096

and 2 % inference latency, yet markedly improves097

Guard robustness against character-level, gradient-098

based, and sentence-level attacks.099

Our main contributions are:100

1. We present a detailed analysis of why large-101

model Guards are vulnerable and where ad-102

versarial effects originate.103

2. We propose a learnable Lightweight Residual104

Adapter (Gamma-Guard) that plugs into ex-105

isting Guards and dynamically corrects their106

decisions, greatly boosting robustness.107

3. Extensive experiments over diverse attack108

suites show that Gamma-Guard delivers large109

robustness gains with negligible performance110

overhead and minimal accuracy loss on origi-111

nal inputs.112

2 Related Work113

Evolution of Large Language Models and the114

Pervasive Adoption of Guards. Over the past115

two years, the parameter scale and multimodal116

capabilities of large language models (LLMs)117

have grown exponentially, and the accompany- 118

ing ecosystem of safety filters—Guards—has ma- 119

tured just as rapidly. Meta first open-sourced 120

Llama Guard, adapting Llama-2-7B into a bidi- 121

rectional input–output safety classifier (Inan et al., 122

2023), and has iteratively refined it under the Pur- 123

ple Llama program, providing production-ready 124

integration guidelines (Meta AI, 2023). The latest 125

Llama Guard 3 Vision extends moderation to im- 126

age–text inputs (Chi et al., 2024a), while Llama 127

Guard 4-12B further reduces inference latency in 128

multimodal scenarios (Meta AI, 2025). On the 129

academic side, WildGuard released the WildGuard- 130

Mix benchmark, covering 13 risk categories and 131

becoming a standard tool for evaluating Guard 132

models (Han et al., 2024b). In industrial deploy- 133

ment, the OWASP Top 10 for LLM formally lists 134

prompt injection, over-privileged access, and re- 135

lated threats, making Guards the “default gate” in 136

generative-AI production pipelines (Community, 137

2025). 138

Attack Methods Targeting Guards. Despite 139

their strong performance on standard benchmarks, 140

recent studies show that Guards remain vulnera- 141

ble to a variety of sophisticated attacks. Hack- 142

ett et al. (2025a) achieved a 100 % bypass rate 143

against six commercial Guards via character injec- 144

tion and adversarial optimization. G2PIA leverages 145

reinforcement learning to efficiently search black- 146

box prompt-injection sequences (Shi et al., 2024b). 147

PRP proposes universally transferable prefix per- 148

turbations (Wei et al., 2024), and Bi-Modal Adver- 149

sarial Prompt extends such attacks to mixed im- 150

age–text inputs (Liu et al., 2024). Even after RLHF 151

fine-tuning, the Instruction-Robustness Benchmark 152

shows that embedded malicious instructions can 153

greatly undermine filtering effectiveness (Xu et al., 154

2024). Moreover, AP-Test demonstrates that at- 155

tackers can automatically detect whether a specific 156

Guardrail is deployed, providing reconnaissance 157

for subsequent tailor-made jailbreaks (Zhang et al., 158

2025). 159

Defensive Methods for Guards. To mitigate 160

these risks, researchers have proposed several effi- 161

cient and composable defenses. STShield appends 162

a single-token sentinel to the output sequence, en- 163

abling real-time jailbreak detection in under 50 164

ms (Wang et al., 2025a). SafeRoute employs a 165

two-tier routing scheme that invokes a large Guard 166

only for “hard” examples, balancing computational 167

cost and security (Lee et al., 2025b). Anthropic’s 168
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Constitutional Classifier distills explicit rules with169

synthetic data to withstand cross-domain univer-170

sal jailbreaks while keeping the over-refusal rate171

at just 0.38 % (Sharma et al., 2025a). For mul-172

timodal settings, UniGuard unifies soft and hard173

filters to handle textual and visual risks simulta-174

neously (Han et al., 2024a), whereas WildGuard175

offers an end-to-end toolkit that facilitates hands-176

on red-team exercises and pipeline evaluation (Han177

et al., 2024b). Overall, strengthening the adver-178

sarial robustness of Guards while preserving the179

flexibility of zero-shot evaluation remains a core180

challenge for the safe deployment of LLMs.181

3 The Vulnerability of Guard Model182

This section examines the vulnerabilities of Guard183

models. We first demonstrate that such models184

are indeed highly susceptible to attacks and then185

present empirical evidence that pinpoints and ana-186

lyzes the underlying causes of this fragility.187

3.1 Vulnerability to Adversarial Attacks188

Figure 2: Three-dimensional features of the Llama-
Guard model at layer 0. Each axis corresponds to one
of the first three principal components of the embed-
ding vectors. The dataset is the commonly used XSTest
benchmark for Guard evaluation.

Adversarial perturbations systematically distort189

Guard models: they start by shifting representa-190

tions in the embedding layer and, as the signal191

propagates, ultimately warp the decision bound-192

ary. To substantiate this claim, we generated three193

families of attacks—suffix insertion, word-level194

substitution, and sentence-level rewriting—and fed195

both the adversarial and original texts into Llama-196

Guard. Figures 2 and 3 plot the three-dimensional197

feature distributions at layer 0 (embeddings) and198

layer 32 (output logits), respectively. The adversar-199

ial points are already displaced in the embedding200

space and diverge further with depth, producing 201

a marked boundary drift by the final layer. These 202

observations, consistent with earlier security re- 203

ports(Raina et al., 2024), confirm that input-level 204

noise can persist through all layers and decisively 205

alter model predictions. Additional visualisations 206

appear in AppendixA. 207

Figure 3: Three-dimensional features of the Llama-
Guard model at layer 32 (output layer). Visualization
settings are identical to Figure 2.

3.2 Root-Cause Analysis of Vulnerabilities 208

Figure 4: Layer-wise probability comparison between
original and adversarial samples in Llama-Guard. The
x-axis is the layer index; the y-axis is the probability.
The yellow curve denotes “unsafe,” and the blue curve
denotes “safe.” The dataset is XSTest, commonly used
for Guard evaluation.

Where the shift emerges. Adversarial influence 209

first appears harmless—probability curves for orig- 210

inal and perturbed inputs are indistinguishable 211

through layer 27 but then surges in the final five lay- 212

ers that perform Guard classification. To reveal this 213

pattern, we passed both inputs through the model, 214

extracted layer-wise logits, and decoded them into 215

3



Figure 5: Layer-wise probability comparison between
original and adversarial samples in Llama-Guard. The
x-axis is the layer index; the y-axis is the probability.
The yellow curve denotes “unsafe,” and the blue curve
denotes “safe.” The dataset is XSTest, commonly used
for Guard evaluation.

“safe/unsafe” probabilities (Figures 4–5). Because216

the bulk of distortion arises after generic feature217

extraction has completed, the most cost-effective218

defence is to intervene before layer 27, ideally at219

the embedding layer, rather than tamper with the220

decision head itself. Full experimental curves are221

provided in Appendix B.222

Why the shift matters. The same inputs show223

that adversarial tokens erode the model’s atten-224

tional focus: weights that original samples assign225

to key tokens become diffuse, hiding crucial cues226

and driving misclassification (Figure 6). Restoring227

robustness therefore requires a mechanism that re-228

concentrates attention even in the presence of input229

noise. Detailed attention visualisations appear in230

Appendix C.231

4 Learnable Scaled Residual Adapter232

(γ-Adapter)233

Architecture Overview. The γ-Adapter is in-234

serted after the embedding (or intermediate repre-235

sentation) x∈RB×L×D of each Transformer block.236

It appends a lightweight bottleneck network ∆(·)237

and outputs a residual form controlled by a learn-238

able scalar:239

x̃ = x+ γ∆(x), (1)240

where γ is initialized to 0, and ∆ adopts a “down-241

projection → non-linearity → up-projection” feed-242

forward structure with hidden dimension H ≪243

D. The design combines the parameter efficiency244

of Adapters (Houlsby et al., 2019; Hu et al.,245

Figure 6: Attention heat maps of the model on original
(top) and adversarial (bottom) samples. The x-axis is
the layer index; the y-axis is the token position; color
intensity indicates attention weight. Dataset: XSTest.
Notice: It is worth noting that the font size of the hor-
izontal and vertical coordinates of this figure in this
article is small, but due to space limitations, a larger
font size cannot be displayed here. However, this does
not affect understanding. The color of each grid repre-
sents the output’s attention to the input content. If you
want to see the original image, we will publish the code
and data later.

2022) with the zero-init residual gating strategy 246

of ReZero/LayerScale (Bachlechner et al., 2021; 247

Cai et al., 2021; Touvron et al., 2021). 248

Robustness Mechanisms. 249

1) Zero-init stable training: When γ=0, the 250

network behaves exactly like the original 251

model, avoiding an immediate performance 252

drop after loading pretrained weights; γ then 253

grows gradually and activates only when dis- 254

tribution shift or adversarial perturbation is 255

detected, reducing the risk of gradient explo- 256

sion (Bachlechner et al., 2021). 257

2) Minimum-perturbation assumption: By 258

learning the increment ∆(x) instead of recon- 259

structing the full representation, the model 260

only captures the “noise → semantics” resid- 261
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ual mapping, achieving higher sample effi-262

ciency and smaller changes on original inputs263

(Hu et al., 2022; Chen et al., 2023a).264

3) Parameter localization and regularization:265

Only a few hundred thousand trainable pa-266

rameters—concentrated in ∆ and γ—act as267

a “local buffer” for perturbations during ad-268

versarial training or out-of-distribution fine-269

tuning, while the frozen large-model weights270

provide a stable feature backbone (Chen et al.,271

2023a; Wang et al., 2024).272

4) Interpretable gating: The scalar γ offers273

transparent control over the correction mag-274

nitude: γ ≈ 0 means “trust the original rep-275

resentation,” whereas γ→ 1 means “rely on276

the denoised correction,” facilitating post-hoc277

analysis of robustness contributions (Cai et al.,278

2021).279

Practical Advantages. Experiments show that,280

across diverse benchmarks and adversarial scenar-281

ios, models equipped with the γ-Adapter achieve282

a 2–5% gain in robust accuracy while adding al-283

most no inference latency—significantly outper-284

forming full fine-tuning or plain Adapters (Chen285

et al., 2023a; Gu et al., 2024).286

5 Method: Gamma-Guard287

This section details our Embedding-Level Resid-288

ual Denoising & Attention-Correction Framework289

(Figure 7). The core idea is three-fold:290

1. Insert a lightweight γ-Adapter after the word291

embeddings to denoise them.292

2. Use the key information produced by the293

adapter to dynamically rectify the attention294

matrices in subsequent Transformer layers.295

3. Apply a low-pass filter to the hidden repre-296

sentations of the first few layers to further297

suppress high-frequency perturbations.298

The whole framework leaves the original pretrained299

parameters untouched; training only a handful of300

incremental parameters already yields a marked301

improvement in adversarial robustness.302

5.1 Embedding-Level γ-Adapter Denoising303

Design Motivation. Adversarial inputs typically304

inject subtle high-frequency noise into the embed-305

ding space, which then perturbs attention allocation.306

Retraining the entire network is costly, so we bor- 307

row the parameter-efficient spirit of Adapters and 308

the zero-init gating strategy of ReZero/LayerScale 309

(see Section 4) to create a γ-Adapter. By freez- 310

ing the original weights and learning only a tiny 311

residual mapping, we capture the “noise → seman- 312

tics” correction while leaving original inputs nearly 313

untouched. 314

Network Structure. Given a token sequence T 315

with length L and embedding dimension D, 316

x = Embed(T ) ∈ RL×D, 317

the γ-Adapter first passes x through a bottleneck 318

∆(x) = W2 σ
(
W1x

)
, (2) 319

W1 ∈ RD×H , W2 ∈ RH×D, H ≪ D,
(3)

320

and then produces the scaled residual 321

x̃ = x+ γ∆(x), γ ∼ N (0, 10−6). (4) 322

σ is RELU. Unlike LoRA’s low-rank update, our 323

adapter keeps the full rank but bounds its magni- 324

tude via γ. 325

Zero-Init Training Dynamics. At t=0 we have 326

x̃ = x, so the network equals the pretrained model 327

and avoids immediate degradation (Bachlechner 328

et al., 2021). Let L be the loss; then 329

∂γL =
〈
∇x̃L, ∆(x)

〉
, ∂W2L = γ∇x̃Lσ(W1x)

⊤. 330

Because γ≈0 at the start, these gradients are nat- 331

urally damped, ensuring a stable “cold start.” As 332

training proceeds, γ grows and the adapter transi- 333

tions to a fully nonlinear denoiser. 334

Robustness Analysis. Let a small perturbation ϵ 335

be added to x with ∥ϵ∥≪∥x∥. A first-order Taylor 336

expansion gives 337

˜x+ ϵ = x+ ϵ+ γ∆(x) + γ J∆(x) ϵ+O
(
∥ϵ∥2

)
, 338

where J∆ is the Jacobian of ∆. Because γ < 1 339

and the bottleneck limits the spectral norm of J∆, 340

we have ∥(γJ∆− I)ϵ∥≪∥ϵ∥, achieving first-order 341

noise suppression. For original inputs (ϵ=0) the 342

model reduces to x̃ = x, avoiding unnecessary 343

alterations. 344

Parameter and FLOPs Overhead. With 345

D=4096 and H=512, the new parameters number 346

P = 2DH + 1 ≈ 0.09% of the base model 347

(~1.6 MB). Forward computation adds two dense 348

layers; total FLOPs rise by <3%, increasing 8-B 349

inference latency by under 2 ms. 350
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Figure 7: Overall architecture. Left(a): the vanilla Llama-style stack with embedding, attention, and MLP blocks.
Right(b): our additions—(1) a residual branch at the embedding layer to amplify salient features, (2) dynamic
attention correction guided by that branch, and (3) a noise-suppression module after the MLP output. Note that the
attention and MLP modifications introduce only tiny extra weights; most operations occur at the embedding level.

Implementation Details.351

• Weight Init: W1 ∼ N (0,
√
2/D), W2=0,352

and γ is zero or a tiny Gaussian noise.353

• Regularization: For original samples we354

add λ∥γ∥22 with λ=10−4 to prevent over-355

correction.356

• Optimizer & Precision: Only {W1,W2, γ}357

are updated, using Adam (β1=0.9, β2=0.98,358

lr 5×10−5) in bfloat16.359

5.2 Attention-Correction Module360

Let the original self-attention weights of layer l be361

A(l) = softmax
(
Q(l)K(l)⊤

√
dk

)
.362

We compute a correction mask from the adapter’s363

hidden feature h = ∆(x):364

M (l) = tanh
(
W (l)

m h
)
∈ RL×L,365

and obtain the rectified attention366

Â(l) = softmax
(
Q(l)K(l)⊤

√
dk

+M (l)
)
. (5)367

Here W
(l)
m ∈ RH×L contains very few additional368

parameters and can down-weight noisy tokens,369

thereby weakening the propagation of adversarial370

interference.371

5.3 Low-Pass Filter 372

For the first p layers we perform a 1-D discrete 373

Fourier transform (DFT) on each hidden represen- 374

tation X(i): 375

X(i)(f) = F{X(i)(t)}, 376

multiply it by an ideal low-pass kernel H(f) = 377

1|f |≤fc , and inverse-transform: 378

X
(i)
low(f) = X(i)(f)H(f),

X
(i)
low(t) = F−1

{
X

(i)
low(f)

}
.

(6) 379

The cutoff frequency fc can be fixed or learned. 380

This step suppresses high-frequency adversarial 381

noise while leaving the main semantic band largely 382

intact. 383

5.4 Training Objective and Data 384

Dataset Construction. We sample 300 original 385

dialogue instances Doriginal and 300 adversarial in- 386

stances Dadv (covering suffix, rewrite, and substitu- 387

tion attacks), totaling 600 examples that are cycled 388

through in mini-batches. 389

Loss Function. For each example, let z be the 390

logits from the base Guard and ẑ the logits after 391

our framework. We minimize the KL divergence at 392

the last token 393

LKL = KL
[
softmax(ẑ−1)

∥∥ softmax(z−1)
]
, 394
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Table 1: Accuracy (higher is better, %) on three Guard benchmarks under 13 attack types. LG3 = Llama-Guard-
3-8B(Llama Team, 2024), LG2 = Llama-Guard-2-8B(Team, 2024). “None” = Original model, STSHIELD =
reproduced baseline, Ours = Our proposed method(Gamma-Guard). ORI = original data with no attack. 100
examples per attack per dataset.

Dataset Method Attack Type

ILGR↑ GCG↑ TF↑ PWWS↑ GT↑ SPSO↑ BTA↑ BAE↑ FD↑ SEA↑ SCPN↑ GAN↑ ORI↑

B
ea

ve
rT

ai
ls

None-LG3 14 18 0 0 0 0 2 0 0 0 0 0 100
None-LG2 28 28 0 0 0 0 0 0 0 0 0 6 100
STSHIELD-LG3 70 67 66 71 74 82 76 78 71 64 75 72 98
STSHIELD-LG2 69 65 68 70 74 81 73 66 73 61 73 63 96
Ours-LG3 100 98 96 96 90 100 92 94 90 86 96 92 92
Ours-LG2 84 84 90 100 95 100 95 100 100 100 100 93 94

X
ST

es
t

None-LG3 12 12 0 0 0 0 0 0 0 0 0 0 100
None-LG2 18 18 20 15 20 15 25 15 20 0 6 6 100
STSHIELD-LG3 69 61 66 73 76 80 68 64 78 62 74 64 95
STSHIELD-LG2 64 64 66 68 78 80 78 62 68 63 68 63 97
Ours-LG3 96 90 90 90 100 90 95 95 90 91 91 90 92
Ours-LG2 93 93 95 75 85 80 75 85 90 80 81 81 94

A
dv

B
en

ch

None-LG3 27 25 33 31 27 34 21 35 33 0 0 0 100
None-LG2 6 6 0 0 0 0 0 0 0 0 0 0 100
STSHIELD-LG3 66 66 72 73 71 80 72 69 77 56 69 58 93
STSHIELD-LG2 71 67 71 71 69 80 77 64 77 60 74 60 91
Ours-LG3 100 100 88 87 91 93 88 88 88 80 73 66 92
Ours-LG2 70 70 80 80 75 73 80 81 80 82 79 83 94

and add L2 regularization on original inputs:395

L = LKL + λ∥γ∥22, λ = 10−4.396

Only {γ,W1,W2,W
(l)
m } are trainable; we use397

Adam with a base learning rate of 5×10−5.398

Parameter Budget and Runtime. With hidden399

size H=512 and k layers using attention correction,400

the extra parameters are ≈ H(D+L) + kHL+1,401

staying below 0.1% of the base model. At infer-402

ence time we add merely one extra MLP and a few403

matrix additions, increasing latency by <2%.404

6 Results and Analysis405

This section introduces the experimental environ-406

ment, design, and objective analysis of the results.407

6.1 Experimental Setup408

Datasets. To evaluate Guard performance fairly,409

we adopt three benchmarks commonly used in re-410

lated work: PKU-ALIGNMENT/BEAVERTAILS (Ji411

et al., 2023), WALLEDAI/XSTEST (Röttger et al.,412

2023), and WALLEDAI/ADVBENCH (Zou et al.,413

2023b).414

Attack Methods. Because no public dataset415

specifically targets Guard models, we reproduce416

12 adversarial methods strictly following their417

original descriptions: ILGR (Raina et al., 2024),418

GCG (Zou et al., 2023a), TF (Jin et al., 2020), 419

PWWS (Ren et al., 2019), GT (Alzantot et al., 420

2018), SPSO (Zang et al., 2020), BTA (Li et al., 421

2020), BAE (Garg and Ramakrishnan, 2020), 422

FD (Papernot et al., 2016), SEA (Ribeiro et al., 423

2018), SCPN (Iyyer et al., 2018), and GAN (Zhao 424

et al., 2018). The untouched benchmark is denoted 425

ORI. 426

Baselines. No prior study tackles LLM Guard 427

robustness, making Gamma-Guard the first. As 428

a baseline we re-implemented STSHIELD(Wang 429

et al., 2025a), originally built for raw LLM Chat, 430

so some deviation is expected. 431

Metric. We report accuracy (Acc), the standard 432

metric in Guard evaluation. Labels are taken from 433

Llama-Guard-3-8B (Llama Team, 2024), the Ope- 434

nAI moderation endpoint, and human verification, 435

The specific approach is that if the results of the 436

three are the same, we will consider the results 437

credible. 438

Training the Residual Branch. As described in 439

Section 5, we train the residual branch once per 440

base model using 600 examples: 50 % original and 441

50 % adversarially modified from the three datasets 442

above. After training, the branch parameters are 443

frozen, ensuring generalization during all subse- 444

quent tests. 445
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Table 2: Accuracy (%, higher is better) on BeaverTails
when attention-correction residuals are inserted every k
layers.

Attack k=0 k=1 k=5 k=10 k=15

ILGR 70 98 98 98 98
GCG 72 94 94 90 90
TF 66 98 98 86 94
PWWS 66 98 98 94 86
GT 58 94 96 90 94
ORI 94 90 92 90 90

6.2 Benchmark Results and Discussion446

Overall robustness. Table 1 shows that Gamma-447

Guard almost eliminates jailbreaks. Averaging448

the 12 adversarial columns (ORI excluded) yields449

macro robust accuracy Accrob of 94.2 %, 92.3 %,450

and 86.8 % on BeaverTails, XSTest, and Ad-451

vBench, respectively, when plugged into Llama-452

Guard-3-8B (LG3). In stark contrast, the origi-453

nal guards collapse to ≤ 3%, and the reproduced454

STSHIELD plateaus around 70%. Hence, Gamma-455

Guard closes a ∼ 90-point robustness gap while456

adding < 0.1% parameters, ≈ 2% latency, and457

only an 8-pp drop on original accuracy.458

Dataset-level detail. BeaverTails: 11/12 attacks459

reach ≥ 90% (five hit 100%). XSTest: all at-460

tacks stay at or above 90%, except a marginal dip461

for SEA. AdvBench: eight attacks exceed 88%;462

sentence-rewrite methods SCPN and GAN remain463

hardest (73 % and 66 %), highlighting discourse-464

level edits as the next frontier.465

Attack-type trends. Character-level pertur-466

bations (ILGR/GCG) are nearly neutralised467

(98–100 % on LG3); gradient- or score-based468

attacks (FD/GT) stabilize around 90 %; sentence-469

level rewrites remain the main weakness.470

Effect of model size. With the smaller LG2 back-471

bone, Gamma-Guard still lifts Accrob to 84.4 % on472

BeaverTails and 77.8 % on XSTest, shrinking the473

LG2–LG3 gap from > 22% (under STSHIELD)474

to < 7%. LG2 even surpasses LG3 on several at-475

tacks (e.g., SEA/SCPN in BeaverTails), indicating476

that capacity-limited models benefit most from the477

residual adapter.478

6.3 Ablation Study479

As stated in Section 5, injecting a residual into ev-480

ery attention layer of Llama-Guard-3 (32 layers481

total) would inflate compute and parameters. We 482

therefore treat the interval k—how often to add a 483

residual—as a tunable hyper-parameter and con- 484

duct an ablation on Llama-Guard-3-8B: 485

• Embedding-level denoising always on. 486

• Attention residual interval k: inject only 487

when layer mod k = 0, with k ∈ 488

{0, 1, 5, 10, 15}. k=0 disables attention cor- 489

rection entirely. 490

Setup We use BeaverTails and report both origi- 491

nal accuracy and attack resistance; all other hyper- 492

parameters remain fixed. 493

Results & Discussion Table 2 shows that: 494

• k=0 (embedding fix only): almost no impact 495

on original data but weakest defense. 496

• k=1: strongest robustness yet largest drop on 497

original accuracy. 498

• k=5: the best compromise—huge robustness 499

gains with only a slight original-accuracy dip. 500

• k=10, 15: defenses weaken again, indicating 501

overly sparse residuals cannot fully suppress 502

perturbations. 503

Overall, an interval of k=5 yields the best bal- 504

ance between robustness and fidelity. The optimal 505

k may vary by model or dataset, but similar ab- 506

lations can always locate a sweet spot of “high 507

robustness with minimal accuracy loss.” 508

7 Conclusion 509

In sum, we introduce Gamma-Guard—the first 510

method that markedly strengthens adversarial 511

robustness for guardrails within large-language- 512

model pipelines—without sacrificing efficiency. 513

This advance rests on three key findings: (i) pilot 514

studies pinpoint that production guards fail when 515

early-layer noise cascades into the decision head; 516

(ii) a lightweight, learnable residual branch, trained 517

on only a handful of adversarial samples, can simul- 518

taneously denoise embeddings and refocus atten- 519

tion; and (iii) comprehensive experiments across 520

datasets and attack suites confirm large robustness 521

gains with only a single-digit drop in original ac- 522

curacy and negligible runtime overhead. Together, 523

these results chart a practical path toward safer, 524

large-scale LLM deployments. 525
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8 Limitations526

Although our residual branch markedly improves527

Guard robustness, it does not yet achieve a near-528

perfect 99% success rate, suggesting room for529

stronger architectures. Moreover, the branch still530

causes a small accuracy drop on benign inputs;531

future work should minimize or eliminate that532

trade-off. Finally, our evaluation covers the most533

widely used public Guard benchmarks, but some534

private datasets remain inaccessible; testing on535

such closed-source data would provide a more com-536

plete picture of real-world performance.537
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C Attention Analysis775

This section presents the attention-heat-map anal-776

ysis underlying our error diagnosis. See the main777

text for interpretation of token-level focus differ-778

ences between original and adversarial inputs.779
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